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Abstract. The atmospheric weighted mean temperature (𝑇𝑚) is a key parameter in global navigation satellite system (GNSS) 

water vapor retrieval and can convert the zenith wet delay (ZWD) into precipitable water vapor (PWV). However, there are 10 

some shortcomings in the existing 𝑇𝑚 models, such as the detailed time-varying lapse rate not being considered. Additionally, 

the spatiotemporal characteristics of 𝑇𝑚 need to be further refined. Therefore, we developed a new global high-precision and 

high-spatiotemporal-resolution 𝑇𝑚 model considering time-varying lapse rate using the latest European Centre for Medium-

Range Weather Forecasts ReAnalysis 5 (ERA5) atmospheric reanalysis data. Firstly, a global multidimensional 𝑇𝑚 lapse rate 

model (NGGTm-H model) was developed using the sliding window algorithm. Secondly, the daily variation characteristics 15 

of 𝑇𝑚 and its relationships with geographical situation were investigated. Finally, a hybrid-grid global 𝑇𝑚 model considering 

time-varying lapse rate (NGGTm model) was developed. To verify the effectiveness of the proposed model, the NGGTm 

model was compared with the Bevis and GPT3 models using the 𝑇𝑚 data recorded at 378 radiosonde stations in 2017 and the 

surface grid 𝑇𝑚 data calculated from the ERA5 reanalysis data. The results show that taking the surface grid 𝑇𝑚 data of 

ERA5 as reference values, the average root mean square error (RMSE) value predicted by the NGGTm model was 2.84 K, 20 

which was higher with 0.50 K, 0.18 K and 0.06 K than those of the Bevis, GPT3-5 and GPT3-1 models, respectively. 

Meanwhile, taking the 𝑇𝑚  data from the radiosonde stations as the reference values, the mean bias and RMSE of the 

NGGTm model were 0.10 K and 3.30 K, respectively, which exhibit the best accuracy and stability among the Bevis, GPT3-

5 and GPT3-1 models. 

1 Introduction 25 

Precipitable water vapor (PWV), a basic component of the water cycle of the Earth, is a key parameter in climate variation 

and material and energy exchange research performed at the global scale (Huang et al., 2023; Ding et al., 2022). PWV 

directly impacts the ground temperature and air humidity (Rocken et al., 1997). Furthermore, PWV is highly active in the 

Earth's atmosphere and plays a crucial role in the formation and evolution of weather. Its temporal and spatial variations are 
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essential for the development of clouds and rainfall (Philipona et al., 2005; Jin & Luo, 2009). Understanding the exact 30 

spatiotemporal features of global PWV variations holds immense practical importance for monitoring and forecasting 

catastrophic weather events and conducting research on climate change. However, atmospheric PWV is highly susceptible to 

the underlying terrain, seasonal variations, and other climate changes, causing its spatial distribution to change uneven and 

rapidly over time. Therefore, accurately monitoring PWV poses a significant challenge (Wang et al., 2007; Wang & Zhang, 

2009). Currently, the methods for deriving PWV mainly include radiosonde, ground-based detection, microwave radiometer 35 

and satellite remote sensing inversion methods (Alexandrov et al., 2009; Gui et al., 2017; Zeng et al., 2019). Each 

technology has its own set of advantages and limitations. Radiosondes, for example, are highly accurate in measuring 

meteorological parameters but are limited by their low spatiotemporal resolution, high observation costs, and inability to 

provide real-time or near-real-time updates on PWV changes (Zhai & Eskridge, 1996). Microwave radiometers and satellite 

remote sensing, which rely on infrared band detection, offer high detection accuracies. However, their effectiveness is 40 

limited by interference from weather conditions such as clouds, fog, rain, and snow. Additionally, these instruments are 

unable to provide profile information of PWV in the vertical direction, and this shortcoming restricts their applicability in 

PWV detection tasks (Dalu, 1986; Gao & Kaufman, 2003).  

Global Navigation Satellite System (GNSS) has become a crucial technology for real-time and high-precision PWV 

detection with advantages of all-weather capability, a high spatiotemporal resolution, low costs, and weather resistance 45 

(Zhao et al., 2018; Jiang et al., 2017; Manandhar et al., 2017; Huang et al., 2021; Huang et al., 2022). The precision of 

GNSS-derived PWV can be as high as 1 to 1.5 mm, with a temporal resolution of 0.5 hours (Rocken et al., 1993; Adams et 

al., 2011). The tropospheric delay can be expressed as the zenith total delay (ZTD), which consists of two parts: the zenith 

hydrostatic delay (ZHD) and zenith wet delay (ZWD). The ZTD is an important factor affecting high precision GNSS 

positioning and also the basic data for GNSS atmospheric research (Huang et al., 2023c; Zhu et al., 2022). According to the 50 

high-precision observation data provided by the GNSS base station network, high-precision ZTD information can be 

obtained through data processing with high-precision GNSS data processing software or by integrating atmospheric 

reanalysis data. The ZHD values, with strong variation regularity, can be calculated by a simple model using surface 

pressure data to obtain an accuracy at the millimeter level. However, the variation law of ZWD influenced mainly by water 

vapor is difficult to investigate (Vedel et al., 2001). The ZWD can be computed by subtracting the ZHD from the ZTD. Then, 55 

the result can be converted to PWV by using the water vapor conversion factor. Among the parameters involved, the 

atmospheric weighted mean temperature (𝑇𝑚) is the key parameter for calculating the water vapor conversion factor. The 

accuracy of GNSS tropospheric water vapor retrievals can be significantly improved by using high-precision 𝑇𝑚 data. 

High precision 𝑇𝑚  data can typically be calculated by integrating radiosonde data, atmospheric reanalysis data, and 

numerical weather prediction (NWP) data. However, the distribution of radiosonde stations is uneven, and there is a time 60 

delay in releasing atmospheric reanalysis data. In addition, NWP data are subject to certain limitations, including low 

temporal resolution and slow update speed, which renders them unsuitable for real-time or near-real-time PWV monitoring 

(Zhang et al., 2017). To improve the calculation efficiency of 𝑇𝑚, it is necessary to build a real-time and high-precision 𝑇𝑚 
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model to meet the needs of GNSS PWV inversion. Existing 𝑇𝑚 models can be divided into two categories: meteorological 

parameter models and nonmeteorological parameter models. By analyzing the correlation between the surface temperature 65 

(𝑇𝑠) and 𝑇𝑚 and utilizing two-year profile information from 13 radiosonde stations in North America, the Bevis formula was 

developed through linear regression analysis (Bevis et al., 1992). This formula can successfully retrieve PWV information in 

the zenith direction of the station using GPS observation data and introduced the concept of GPS in meteorological research 

for the first time. The linear regression model remains a reliable and convenient tool that is still widely used today. However, 

it is important to note that the coefficients of this model exhibit distinct characteristics based on the region and season in 70 

which it is applied. Therefore, recalculating the parameters of the model is necessary when applying the model in other 

regions (Ross & Rosenfeld, 1997; Emardson et al., 1998). With the continuous development of GNSS PWV detection 

technology, many scholars have refined and expanded the Bevis model regionally and developed other 𝑇𝑚 models based on 

measured meteorological parameters. Besides 𝑇𝑠 , 𝑇𝑚  is also related to 𝑃𝑠  and 𝑒𝑠 . The global single-factor 𝑇𝑚  model and 

multifactor 𝑇𝑚 model were developed, which showed better accuracy and reliability (Yao et al., 2014c). To achieve better 75 

results in the global range, Yao et al. (2014b) proposed a 𝑇𝑚 linear regression model in each latitude interval region using the 

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data. In addition, neural network algorithm 

can be used to establish 𝑇𝑚 model that can output corresponding 𝑇𝑚 values by simply inputting 𝑇𝑠 information. The accuracy 

of this model is dependent on the precision of the input 𝑇𝑠 information. When highly precise 𝑇𝑠 data were used, the model 

accuracy was increased (Ding, 2018). The above models have achieved good results when providing the required measured 80 

meteorological parameters, but most of the GNSS stations in the world do not have supporting meteorological sensors 

installed leading to the difficulty for measuring meteorological parameters in real-time. Therefore, these models are difficult 

to apply to real-time or near-real-time GNSS PWV detection tasks. To realize real-time GNSS PWV detection, many 

scholars have developed 𝑇𝑚 models (empirical models) that run without measured meteorological parameters. For example, 

Zhu et al. (2021) developed a new 𝑇𝑚  model taking climate differences into account in the Shanxi region. The non-85 

meteorological parameter 𝑇𝑚 model (named the Emardson model) was developed to take the annual cycle variation into 

account by using radiosonde data collected in Europe over many years, which was capable of meeting the requirement for 

GNSS water vapor detection (Emardson & Derks, 2000). Therefore, the model has been widely used in real-time GNSS 

meteorology research. Additionally, the lapse rate is the key parameter in the 𝑇𝑚 elevation correction. Taking the lapse rate 

into account can not only improve the 𝑇𝑚  model accuracy, but also showed significant performances in regions with 90 

undulating terrain (Huang et al., 2023b; Sun et al., 2021; Yao et al., 2018). The 𝑇𝑚 lapse rate is an effective means of not 

only correcting 𝑇𝑚 to different surface heights but also providing a vertical correction value for 𝑇𝑚 at any height. Therefore, 

investigating the spatiotemporal variation characteristics of the 𝑇𝑚 lapse rate and developing a 𝑇𝑚 lapse rate model have high 

application values in 𝑇𝑚  vertical and spatial interpolation tasks. Furthermore, a high-precision global 𝑇𝑚  model that 

considers elevation, latitude, and time in real time could greatly enhance the accuracy of GNSS PWV monitoring. Although 95 

the aforementioned models excel in certain regions and possess unique strengths, they are not suitable for calculating 𝑇𝑚 at 

https://doi.org/10.5194/gmd-2024-21
Preprint. Discussion started: 11 April 2024
c© Author(s) 2024. CC BY 4.0 License.



4 

 

the global level. Yao et al. (2012) developed the first new global atmospheric weighted average temperature model (GWMT 

model) using data from 135 radiosonde stations worldwide over several years. This new model can estimate the 𝑇𝑚 value at 

any location by simply inputting the station location and the annual product day, which have been applied to real-time GNSS 

PWV inversion studies worldwide. However, because the radiosonde data used in the GWMT model are all located on land, 100 

there is a certain systematic bias in ocean areas. To address this issue, the GTm-II model, GTm-III model, and GTm-H 

model were developed jointing atmospheric reanalysis data (Yao et al., 2013; 2014a). GPT-series models also show 

excellent performance worldwide (Landskron & Böhm, 2018; Böhm et al., 2007; Böhm et al., 2015). Moreover, some 

scholars have improved the GPT2w model (Yang et al., 2020; Huang et al., 2019b). Although the GPT3 model is currently 

the most representative empirical model with a high precision on the global scale, GPT3 model dose not take into account 105 

elevation correction or detailed 𝑇𝑚 lapse rate. Thus, it is necessary to develop a new model to improve the real-time high-

precision global empirical 𝑇𝑚 model and to select appropriate data sources for model development. 

The global 𝑇𝑚  models mentioned above were established without accounting for the detailed time-varying lapse rate. 

Therefore, in this study, we aim to global 𝑇𝑚  model that takes into account time-varying lapse rate and high-precision 

capabilities. To attain this objective, firstly, we investigated the spatiotemporal variations and characteristics of the lapse rate 110 

of global 𝑇𝑚 and developed the lapse rate model (NGGTm-H). Secondly, a hybrid-grid global model (NGGTm) for the 

estimation of atmospheric weighted mean temperature considering time-varying lapse rate was developed by using profile 

gridded 𝑇𝑚 data calculated by integrating the latest European Centre for Medium-Range Weather Forecasts ReAnalysis 5 

(ERA5) reanalysis data. To verify the effectiveness of the new model, the NGGTm model was compared with the Bevis and 

GPT3 models using 𝑇𝑚 data from radiosonde stations with ERA5 reanalysis data. 115 

2 Data and methodology 

2.1 Data 

The ERA5 atmospheric reanalysis dataset, provided by ECMWF (https://apps.ecmwf.int/datasets/data/interim-full-daily), is 

the fifth-generation global climate reanalysis dataset. This dataset provides hourly surface‐level parameters and pressure‐

level data with a horizontal resolution of 0.25°×0.25° (latitude×longitude) and a vertical resolution of 37 levels. ERA5 data 120 

can provide high-resolution and relatively complete surface‐level and pressure‐level data and are thus expected to be widely 

used in the future. The radiosonde station data can be downloaded for free from the University of Wyoming 

(http://weather.uwyo.edu/upperair/sounding.html). This product provides meteorological layered data and surficial 

parameters such as atmospheric water vapor from the ground to the near-Earth space (an altitude of approximately 30 km) 

and provides radiosonde data twice a day (UTC 00:00 and 12:00); these data are often used as reference values for model 125 

verification tasks. The ERA5 gridded data from 2012 to 2017 and the radiosonde data in 2017 on the global scale were used 

to analyze and develop the model in this study. 
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2.2 Methodology 

𝑇𝑚 is the key parameter used to convert ZWD into PWV. Using atmospheric reanalysis data, radiosonde data and other data, 

highly accurate 𝑇𝑚 information can be obtained by integral calculation. In addition, the modeling method can also obtain 𝑇𝑚 130 

values at a high accuracy and with a high calculation efficiency. The specific 𝑇𝑚 integral calculation formula is expressed as 

follows: 

 𝑇𝑚 =
∫(𝑒/𝑇) 𝑑𝐻

∫(𝑒/𝑇2)𝑑𝐻
 (1) 

where 𝑒 is the water vapor pressure (hPa), 𝑇 is the temperature (K), and 𝐻 is the integral range (m). 

The modeling methods used to calculate 𝑇𝑚  can be divided into two categories: ①  𝑇𝑚  models based on measured 135 

meteorological parameters, of which the most representative is the Bevis model (𝑇𝑚=70.2+0.72𝑇𝑠), namely, the 𝑇𝑚 linear 

regression model, and ② non-meteorological parameter 𝑇𝑚 models, of which the most classical is the GPT series model. The 

GPT3 model, the latest model in the GPT series, has a high accuracy in calculating global 𝑇𝑚. The GPT3 model formula 

used to calculate 𝑇𝑚 can be expressed as follows: 

 𝑇𝑚
𝐺𝑃𝑇3 = 𝑎0 + 𝑎1 cos (2𝜋

𝐷𝑂𝑌

365.25
) + 𝑏1 sin (2𝜋

𝐷𝑂𝑌

365.25
) + 𝑎2 cos (4𝜋

𝐷𝑂𝑌

365.25
) + 𝑏2 sin (4𝜋

𝐷𝑂𝑌

365.25
) (2) 140 

where 𝑇𝑚
𝐺𝑃𝑇3 denotes 𝑇𝑚 calculated by the GPT3 model, 𝑎0 denotes the average annual value of 𝑇𝑚, 𝑎1 and 𝑏1 denote the 

annual cycle coefficient of 𝑇𝑚, 𝑎2 and 𝑏2 denote the semiannual cycle coefficient of 𝑇𝑚, and 𝐷𝑂𝑌 denotes the day of the 

year. 

PWV refers to the total water vapor content of a vertical column per unit area in the atmosphere. PWV can be converted 

from ZWD using the following formula: 145 

 𝑃𝑊𝑉 =  × 𝑍𝑊𝐷 (3) 

where  denotes the PWV conversion factor. This conversion factor can be expressed as follows: 

  =
106

𝜌𝑤𝑅𝑣(𝑘2
′ +𝑘3/𝑇𝑚)

 (4) 

where 𝑅𝑣 denotes the water vapor gas constant, 𝑘2
′  and 𝑘3 are constants (𝑘2

′ =22.97 K/hPa and 𝑘3=375463 K2/hPa), and the 

other parameters are described above. Therefore, 𝑇𝑚 is the key parameter in the GNSS PWV inversion. 150 

To facilitate the subsequent test of the accuracy of the 𝑇𝑚 values calculated using the atmospheric reanalysis data and the 

performance of the new 𝑇𝑚 model, this study uses the bias and root mean square error (RMSE) as the accuracy evaluation 

indicators, calculated using the following formulas: 

 𝑏𝑖𝑎𝑠 =
1

𝑁
∑ (𝐾𝑃𝑀

𝑖 − 𝐾𝑃𝑅
𝑖 )𝑁

𝑖=1  (5) 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐾𝑃𝑀

𝑖 − 𝐾𝑃𝑅
𝑖)2𝑁

𝑖=1  (6) 155 

where N denotes the number of samples, 𝐾𝑃𝑀
𝑖  denotes the calculated value of the atmospheric reanalysis data or model, and 

𝐾𝑃𝑅
𝑖  denotes the reference value. 
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3 Development of the 𝑻𝒎 lapse rate model 

3.1 Analysis of the spatiotemporal characteristics of the 𝑻𝒎 lapse rate 

Given the discernible variations in topography and the significant range of elevation at a global scale, there can be 160 

considerable disparities between the atmospheric reanalysis data grid points and the actual elevations of the user. The 

variation in the 𝑇𝑚 elevation is much larger than the variation in the horizontal direction, so it is necessary to correct for the 

vertical 𝑇𝑚 information provided by the reanalysis data. The previous study has analyzed this topic and concluded that there 

is an approximately linear relationship between the layered gridded 𝑇𝑚 data and elevation (Huang et al., 2019a). To analyze 

the change in 𝑇𝑚 with elevation in depth, six representative ERA5 reanalysis data grid points ((60° N, 90° W), (60° N, 90° 165 

E), (0°, 90° W), (0°, 90° E), (60° S, 90° W) and (60° S, 90° E)) were selected globally to analyze the grid-level 𝑇𝑚 data and 

corresponding height data on January 1st, 2017. The results are shown in Fig. 1. 

 

Figure 1 𝑻𝒎 changes with elevation at six representative ERA5 reanalysis data gridded points on January 1st, 2017. 

(a) (60° N, 90° W). (b) (0°, 90° W). (c) (60° S, 90° E). (d) (60° N, 90° E). (e) (0°, 90° E). (f) (60° S, 90° W). 170 

Figure 1 shows that the grid-level 𝑇𝑚 data of six representative ERA5 reanalysis data grid cells exhibit approximate linear 

change relationships with elevation. Moreover, the grid-level 𝑇𝑚  data gradually decrease with increasing elevation. 

Therefore, the slope of the fitting line represents the lapse rate of 𝑇𝑚, and this relation can be expressed as follows: 

 𝑇𝑚 = 𝛾 × 𝛿ℎ + 𝑙 (7) 
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where 𝛾 denotes the lapse rate of 𝑇𝑚, 𝛿ℎ denotes the height, and 𝑙 denotes a constant. 175 

To investigate the variation relationship between the lapse rate of 𝑇𝑚 and time at the global scale, six representative ERA5 

reanalysis data grid points were selected to calculate the lapse rate of 𝑇𝑚 from 2012 to 2016. Furthermore, the time series for 

the lapse rate of the daily mean 𝑇𝑚 from 2012 to 2016 was obtained and used to achieve seasonal fitting by the cosine 

function of the annual and semiannual periods. The results are shown in Fig. 2. 

 180 

Figure 2 The time-series variations in the Tm lapse rate from the ERA5 reanalysis data at six representative grid 

points. (a) (60° N, 90° W). (b) (60° N, 90° E). (c) (0°, 90° W). (d) (0°, 90° E). (e) (60° S, 90° W). (f) (60° S, 90° E). 

Figure 2 shows the obvious seasonal variations in the lapse rate of 𝑇𝑚 calculated using the ERA5 reanalysis data at six 

representative grid points. From Fig. 2, the annual and semiannual variations in the lapse rate of 𝑇𝑚 are relatively slight at 

the grid points located on the equator. However, the lapse rates of 𝑇𝑚 at the grid points located in the high-latitude areas of 185 

the Southern Hemisphere exhibit relatively large variation ranges and show obvious annual and semiannual variations, 

whereas those in the high-latitude areas of the Northern Hemisphere show slight variation ranges and obvious annual and 

semiannual cycle variations. The main reason for these results is that most of the high-latitude areas of the Southern 

Hemisphere are oceans and are thus not affected by complex climates. 

Hence, a clear seasonal pattern is evident in the lapse rate of 𝑇𝑚, and the variation patterns vary across different regions. 190 

The lapse rate of 𝑇𝑚 was then calculated with a temporal resolution of 1 hour from 2012 to 2016 at the global scale. The 
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annual mean value, annual cycle amplitude, semiannual cycle amplitude and daily cycle amplitude of the lapse rate of 𝑇𝑚 

were calculated by using Eq. (8) at selected grid points at the global scale. The utilized formula is expressed as follows: 

 𝛾 = 𝐴0 + 𝐴1 cos (2𝜋
𝐷𝑂𝑌

365.25
) + 𝐴2 sin (2𝜋

𝐷𝑂𝑌

365.25
) + 𝐴3 cos (4𝜋

𝐷𝑂𝑌

365.25
) + 𝐴4 sin (4𝜋

𝐷𝑂𝑌

365.25
) + 𝐴5 cos (2𝜋

𝐻𝑂𝐷

24
) +

                  𝐴6sin (2𝜋
𝐻𝑂𝐷

24
)  (8) 195 

where 𝛾 is the lapse rate of 𝑇𝑚; 𝐴0 is the annual mean value of the lapse rate of 𝑇𝑚; (𝐴1, 𝐴2) are the annual cycle coefficients 

for the lapse rate of 𝑇𝑚; (𝐴3, 𝐴4) are the semiannual cycle coefficients for the lapse rate of 𝑇𝑚; (𝐴5, 𝐴6) are the daily cycle 

coefficients for the lapse rate of 𝑇𝑚; 𝐷𝑂𝑌 is the day of the year; and 𝐻𝑂𝐷 is the UTC time. The above coefficients were 

calculated at each grid point based on a least-square adjustment by using all selected grid points in the world from 2012 to 

2016. The results are shown in Fig. 3. 200 

 

Figure 3 The distributions of the annual mean value and amplitudes of the 𝑻𝒎 lapse rate calculated using global 

ERA5 reanalysis data. (a) annual average value. (b) annual cycle amplitude. (c) semiannual cycle amplitude. (d) daily 

cycle amplitude. 
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As shown in Fig. 3, a strong correlation was found between the annual mean 𝑇𝑚 lapse rate and latitude. Regarding the 205 

annual cycle amplitude of the lapse rate of 𝑇𝑚, obvious annual cycle amplitude values were observed in most land areas, 

especially over the Antarctic continent, though these amplitudes were relatively small in the ocean and coastal areas located 

in the middle and low latitudes of the Northern and Southern Hemispheres. In addition, a sea‒land difference was observed 

in the semiannual cycle amplitude of the 𝑇𝑚  lapse rate. The daily cycle amplitude of the lapse rate of 𝑇𝑚  remained at 

approximately 0.06 K/km. Since the daily variation in the lapse rate of 𝑇𝑚  can be overshadowed by the annual and 210 

semiannual variations, we focused on optimizing the model coefficients solely for these cycles to improve the calculation 

efficiency when developing the 𝑇𝑚 lapse rate model.  

The above analysis demonstrated that the variation law of the lapse rate of 𝑇𝑚 differs spatially. Moreover, due to the poor 

performance in spatial differences arising, it is difficult to accurately grasp the variation law of the lapse rate of 𝑇𝑚  in 

developing a global uniform model for the lapse rate of 𝑇𝑚. Therefore, we presents a solution to the issue of coefficient 215 

redundancy that can occur when developing a model from individual grid points. Specifically, a sliding window algorithm 

was introduced to develop the Tm lapse rate model, leading to optimized coefficients and improved accuracy, stability, and 

applicability of the model. Note that, the sliding window algorithm has been used in the previous study, which exhibits a 

superior performance (Huang et al., 2019a). 

3.2 Development of NGGTm-H 220 

The ERA5 reanalysis data with a horizontal resolution of 0.25°×0.25° were selected as the data source to develop the model 

in this study. We divided global segments into regular windows with the same horizontal resolution as the ERA5 reanalysis 

data. The specific process was as follows: starting from the first window, by using the data of 9 gridded points in each 

window, the model coefficients of the corresponding window were calculated in order from west to east and from north to 

south and stored at the geometric center of the corresponding window. Finally, all the coefficients for the global 𝑇𝑚 lapse 225 

rate model were obtained. 

To investigate the influence of the window size on the model precision and optimize the model coefficients as much as 

possible, three different window sizes, with resolutions of 0.5°×0.5°, 1°×1° and 2°×2°, were selected to develop the model. 

As mentioned above, it was necessary to consider the characteristics of the annual and semiannual cycles when developing 

the model. Therefore, the formula of the global 𝑇𝑚 lapse rate model in each window can be expressed as follows: 230 

 𝛾𝑖 = 𝐴0
𝑖 + 𝐴1

𝑖 cos (2𝜋
𝐷𝑂𝑌

365.25
) + 𝐴2

𝑖 sin (2𝜋
𝐷𝑂𝑌

365.25
) + 𝐴3

𝑖 cos (4𝜋
𝐷𝑂𝑌

365.25
) + 𝐴4

𝑖 sin (4𝜋
𝐷𝑂𝑌

365.25
) (9) 

where 𝑖 is the number of windows; 𝛾𝑖 is the lapse rate of 𝑇𝑚 in the ith window; 𝐴0
𝑖 is the annual mean value of the lapse rate 

of 𝑇𝑚 in the ith window; (𝐴1
𝑖, 𝐴2

𝑖) is the annual cycle coefficient of the lapse rate of 𝑇𝑚 in the ith window; (𝐴3
𝑖, 𝐴4

𝑖) is the 

semiannual cycle coefficient of the lapse rate of 𝑇𝑚 in the ith window; and 𝐷𝑂𝑌 is the day of the year. 

 𝑇𝑚
𝑈 = 𝑇𝑚

𝐺 − 𝛾𝑖(𝐻𝑈 − 𝐻𝐺) (10) 235 
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where 𝑇𝑚
𝑈 is the 𝑇𝑚 value at the user height; 𝑇𝑚

𝐺 is the 𝑇𝑚 value at the height of the gridded points from the reanalysis data; 𝛾𝑖 

is the lapse rate of 𝑇𝑚 at the window where the user is located; 𝐻𝑈 is the elevation of the user; and 𝐻𝐺 is the elevation of the 

gridded point from the reanalysis data. 

The five coefficients required in the 𝑇𝑚 lapse rate model in all windows of the world were calculated by the least-squares 

adjustment. Then, the above coefficients were stored at the geometric centers of the windows with resolutions of 0.5°×0.5°, 240 

1°×1° and 2°×2°. Finally, a global real-time and high-precision 𝑇𝑚 lapse rate model was developed and named NGGTm-H 

(this model contains three models with different resolutions: NGGTm-H1, NGGTm-H2 and NGGTm-H3). The vertical 𝑇𝑚 

correction was calculated by combining Eq. (9) and (10) and using the position and day of the year provided by the users. 

3.3 Validation of NGGTm-H 

To validate the precision and applicability of the spatial interpolation method using the NGGTm-H model at the global scale, 245 

the 𝑇𝑚 data collected at 378 radiosonde stations around the world in 2017 were used as reference values. The 𝑇𝑚 data at four 

grid points containing radiosonde stations obtained from the surface-level gridded 𝑇𝑚  values calculated by the ERA5 

reanalysis data were corrected to the heights of the radiosonde stations. Then, the corrected 𝑇𝑚 values at these four grid 

points were interpolated to the positions of the radiosonde stations using the inverse distance-weighted method. Finally, the 

statistical results of the bias and RMSE values of the spatially interpolated 𝑇𝑚 values from all radiosonde stations are shown 250 

in Table 1. 

Table 1 The precision statistics obtained for the three resolutions of the NGGTM-H model tested using 𝑻𝒎 data from 

global radiosonde stations and ERA5 surface-level gridded data recorded in 2017 (unit: k) 

Model 

Bias RMSE 

Minimum Maximum Mean Minimum Maximum Mean 

NGGTm-H1 -4.43 3.31 0.12 0.38 4.53 1.18 

NGGTm-H2 -4.52 3.42 0.14 0.35 4.55 1.21 

NGGTm-H3 -4.57 3.39 0.15 0.41 4.62 1.23 

From Table 1, as the resolution of the model increased, the mean bias of the NGGTm-H model gradually decreased.  The 

mean bias of the NGGTm-H1 model was smallest, at 0.12 K. Compared to those of the NGGTm-H2 model and the 255 

NGGTm-H3 model, the mean bias of the NGGTm-H1 model was reduced by only 0.02 K and 0.03 K, respectively. Positive 

biases with relatively small absolute values were obtained for the NGGTm-H model at the three resolutions using 𝑇𝑚 data 

from radiosonde stations and ERA5 surface-level gridded points. The main reason for these results was that the majority of 

radiosonde stations are located in land areas. However, the vertical correction values of 𝑇𝑚 obtained using the NGGTm-H 
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model in the land area were slightly larger than the reference values. In addition, the precision of the NGGTm-H1 model 260 

showed the best with a mean RMSE of 1.18 K. Thus, NGGTm-H1 model had a certain improvement compared to the 

NGGTm-H2 and NGGTm-H3 models. 

4 Development of a global model considering time-varying lapse rate: NGGTm 

4.1 Analysis of 𝑻𝒎 temporal characteristics 

Relevant studies have shown that 𝑇𝑚  undergoes diurnal variations (Sun et al., 2019). To further analyze the temporal 265 

characteristics in 𝑇𝑚 in depth at the global scale, we calculated the annual mean value, annual cycle amplitude, semiannual 

cycle amplitude, daily cycle amplitude, and semidaily cycle amplitude at all grid points using the least-squares adjustment 

using surface-level gridded 𝑇𝑚 data calculated from all the ERA5 reanalysis data recorded from 2012 to 2016 worldwide. 

The results are shown in Fig. 4. 

 270 

Figure 4 The distributions of the annual mean value and amplitudes of 𝑻𝒎 calculated using global ERA5 reanalysis 

data. (a) annual mean value. (b) annual cycle amplitude. (c) semiannual cycle amplitude. (d) daily cycle amplitude. (e) 

half-day cycle amplitude. 

As shown in Fig. 4, strong correlations were found between the annual mean 𝑇𝑚 value and latitude and between the annual 

𝑇𝑚 cycle amplitude and latitude. The semiannual cycle amplitude of 𝑇𝑚 also exhibited a certain correlation with latitude, and 275 
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a certain sea‒land difference was observed. In summary, 𝑇𝑚 not only undergoes significant annual and semiannual variations 

but also experiences significant daily and semidiurnal variation. 

4.2 Development of the NGGTm model 

As mentioned above, it was necessary to consider the time-varying lapse rate and detailed temporal variations when 

developing high-precision global models. Therefore, a new hybrid-grid global 𝑇𝑚 model considering time-varying lapse rate 280 

was developed on the basis of NGGTm-H1 model, which used ERA5 reanalysis surface-level data recorded from 2012 to 

2016. Since the significant variations in the horizontal direction of 𝑇𝑚 compared to lapse rate, the estimation of 𝑇𝑚 at the 

gridded points did not use the sliding window algorithm. The formula is expressed as follows: 

 𝑇𝑚
𝐺 = 𝐵0 + 𝐵1 cos (2𝜋

𝐻𝑂𝐷

24
) + 𝐵2 sin (2𝜋

𝐻𝑂𝐷

24
) + 𝐵3cos (4𝜋

𝐻𝑂𝐷

24
) + 𝐵4sin (4𝜋

𝐻𝑂𝐷

24
) (11) 

 𝐵𝑖 = 𝑏𝑖0 + 𝑏𝑖1cos (2𝜋
𝐷𝑂𝑌

365.25
) + 𝑏𝑖2 sin (2𝜋

𝐷𝑂𝑌

365.25
) + 𝑏𝑖3 cos (4𝜋

𝐷𝑂𝑌

365.25
) + 𝑏𝑖4 sin (4𝜋

𝐷𝑂𝑌

365.25
) (12) 285 

where 𝑇𝑚
𝐺 is the 𝑇𝑚 value at the gridded points; 𝐵𝑖 is the daily variation coefficient of 𝑇𝑚; and 𝐻𝑂𝐷 is the UTC time. After 

Eq. (12) was used to expand Eq. (11), 𝑏𝑖𝑗 (i=0,1,2,3,4 and j=0,1,2,3,4), which represents the 25 coefficient terms of the 

model, was calculated. 𝐷𝑂𝑌 is the day of the year. 

The 25 model coefficients were calculated by the least-squares adjustment at all global reanalysis data grid points, which 

used the surface-level gridded 𝑇𝑚 data with a temporal resolution of 1 hour. The above coefficients were stored on the grid 290 

points with a horizontal resolution of 0.25°×0.25°. Finally, the NGGTm model considering time-varying lapse rate was 

developed. The input parameters for this model are location and time only, which makes it convenient for users. Then, the 

𝑇𝑚 values at the positions of the users can be calculated by the inverse distance-weighted method using Eq. (9), (10), (11) 

and (12). 

5 Validation of NGGTm 295 

5.1 Comparison to gridded 𝑻𝒎 data 

In this section, to validate the accuracy of the new model, NGGTm model was used to calculate the 𝑇𝑚 values at all of the 

grid points at the global scale, which compared with the Bevis and GPT3 model. surface-level gridded 𝑇𝑚  data with a 

temporal resolution of 1 hour derived from the ERA5 reanalysis data in 2017 were selected as reference values. We defined 

GPT3 model with two horizontal resolutions of 1°×1° and 5°×5° as GPT3-1 and GPT3-5, respectively, which makes it 300 

convenient to describe. The 𝑇𝑠 data required by the Bevis model to calculate 𝑇𝑚 were derived from the GPT3-1 model. The 

statistical results are shown in Table 2, Fig. 5 and Fig. 6. 
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Table 2 The precision statistics of the bias and RMSE values of the four models tested using global surface-level 

gridded 𝑻𝒎 data from the ERA5 reanalysis product in 2017 (unit: k) 

Model 
Bias RMSE 

Minimum Maximum Mean Minimum Maximum Mean 

Bevis -9.11 9.64 0.66 0.58 9.78 3.34 

GPT3-5 -15.61 22.88 -0.30 0.73 23.12 3.02 

GPT3-1 -10.13 11.51 -0.28 0.68 12.88 2.90 

NGGTm -1.35 1.59 -0.09 0.72 6.33 2.84 

From Table 2, it can be seen that the mean bias of the Bevis model was 0.66 K, which indicated that the 𝑇𝑚 values 305 

calculated by the Bevis model were all larger than the reference values. The mean biases of the GPT3-5 model and the 

GPT3-1 model were -0.30 K and -0.28 K, respectively, which demonstrated that the 𝑇𝑚 values calculated by the GPT3 

model were slightly smaller than the reference values. The mean bias of the NGGTm model was only -0.09 K, which was the 

smallest absolute mean bias value among all the analyzed models. This result shows that the 𝑇𝑚 values calculated by this 

model were close to the reference values overall, which demonstrated that NGGTm model performed better than the other 310 

models. In terms of the variation ranges of the bias, the bias variation range of the GPT3-1 model shows improvement 

compared to that of the GPT3-5 model, which had the largest bias variation range. The main reason for the above results 

may be the GPT3 model did not consider the influence of elevation in its calculation of 𝑇𝑚, which resulted in the relatively 

large bias in the calculated 𝑇𝑚 values in high-elevation areas. The variation range of the bias for the GPT3-1 model was 

smaller than that of the GPT3-5 model, which indicated that improving the model resolution can help improve the stability of 315 

the model. Compared with the Bevis model, GPT3-5 model and GPT3-1 model, the variation range of the bias of the 

NGGTm model was extremely small, ranging from -1.35 K to 1.59 K, which indicated that the stability of the NGGTm 

model was better than those of the other analyzed models. In addition, the mean RMSE of the NGGTm model was only 2.84 

K, which exhibited improvements of 0.5 K, 0.18 K and 0.06 K over the Bevis model, the GPT3-5 model and the GPT3-1 

model, respectively. These results show that the 𝑇𝑚 values calculated by the NGGTm model had the highest precision among 320 

all analyzed models. In terms of the variation ranges of RMSE, the variation ranges of RMSE for the GPT3-5 model and 

GPT3-1 model were larger than those of the other models. The RMSE variation range of the GPT3-1 model was smaller than 

that of the GPT3-5 model. Compared with the other models, the RMSE of the NGGTm model had the smallest variation 

range, ranging from 0.72 K to 6.33 K, which demonstrated that the precision and stability of the NGGTm model were better 

than those of the other analyzed models. 325 
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Figure 5 The bias distributions of the four models tested using global surface-level gridded 𝑻𝒎 data from the ERA5 

reanalysis product in 2017. (a) Bevis model. (b) GPT3-5 model. (c) GPT3-1 model. (d) NGGTm model. 

Figure 5 shows that the absolute bias values were relatively small for the Bevis model in the mid-latitude areas. The main 

reason for this result may be the Bevis model was developed based on radiosonde data in North America. Larger absolute 330 

bias values were observed for the GPT3-5 model in relatively high-elevation areas, such as the Qinghai-Tibet Plateau, 

western South America, and parts of Antarctica. The main reason for this result may be the GPT3 model did not take any 

vertical 𝑇𝑚 correction into account. The absolute bias values of the GPT3-1 model were smaller than those of the GPT3-5 

model in most parts of the world. Although relatively large absolute bias values were still shown for the GPT3-1 model in 

relatively high-elevation areas, a significant improvement can be seen. Therefore, the performance and stability of the model 335 

can be significantly improved by increasing the resolution of the model. The bias of the NGGTm model remained at 

approximately 0 K, significantly better than those of other models. In conclusion, the NGGTm model shows excellent 

stability and applicability at the global scale. 
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Figure 6 The RMSE distributions of the four models tested using global surface-level gridded 𝑻𝒎 data from the 340 

ERA5 reanalysis product in 2017. (a) Bevis model. (b) GPT3-5 model. (c) GPT3-1 model. (d) NGGTm model. 

From Fig. 6, relatively large RMSEs obtained for the Bevis model are shown in some areas, which indicated that the Bevis 

model performed poorly in the Qinghai-Tibet Plateau, northeastern Asia, the coasts of western and southwestern Africa, the 

Arctic Ocean, and Antarctica. Relatively large RMSEs obtained for the GPT3-5 model are shown in western North America, 

western South America, and the Qinghai-Tibet Plateau. The GPT3-1 model had a certain accuracy improvement compared 345 

with the GPT3-5 model in these areas. Furthermore, increasing the resolution of the model can improve the model precision 

of calculating 𝑇𝑚. The NGGTm model had small RMSEs around the world, which demonstrated higher precision especially 

at low latitudes. The NGGTm model performed significantly better than the Bevis model, the GPT3-5 model and GPT3-1 

model. 

5.2 Comparison to radiosonde data 350 
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To further validate the performance of the NGGTm model, the 𝑇𝑚 data from 378 radiosonde stations around the world in 

2017 were selected as reference values. The precision of the NGGTm model when calculating 𝑇𝑚 at these stations was 

validated and compared with the other three models. The 𝑇𝑠 data required by the Bevis model to calculate 𝑇𝑚 were derived 

from the radiosonde stations. The statistical results are shown in Table 3, Fig. 7 and Fig. 8. 

Table 3 The precision statistics of bias and RMSE for the four models tested using global 𝑻𝒎 data from 378 355 

radiosonde stations in 2017 (unit: k) 

Model 
Bias RMSE 

Minimum Maximum Mean Minimum Maximum Mean 

Bevis -4.98 6.49 0.39 0.98 7.05 3.57 

GPT3-5 -13.79 4.48 -1.00 0.99 13.90 3.65 

GPT3-1 -5.66 4.49 -0.79 0.98 6.23 3.48 

NGGTm -4.31 3.78 0.10 0.99 5.17 3.30 

From Table 3, the mean bias of the NGGTm model was only 0.10 K, with the smallest absolute value among the analyzed 

models. The bias range of the NGGTm model was also the smallest, ranging from -4.31 K to 3.78 K, which demonstrated 

that the NGGTm model performed better than the other models. In addition, the mean RMSE of the NGGTm model was 

only 3.30 K, which exhibited improvements of 0.27 K (8%), 0.35 K (11%) and 0.18 K (5%) over the Bevis model, GPT3-5 360 

model and GPT3-1 model, respectively. The RMSE range of the NGGTm model was the smallest, ranging from 0.99 K to 

5.17 K, indicating that the NGGTm model had the best precision and stability at the global scale. 

From Fig. 7, the Bevis model showed relatively obvious negative biases in low latitudes and obvious positive biases in 

middle and high latitudes, with a trend of increasing absolute biases from low latitudes to high latitudes. The GPT3-5 model 

and GPT3-1 model performed similarly, with relatively large absolute bias values on the Qinghai-Tibet Plateau and in 365 

western North America because the GPT3 model did not consider the relationship between 𝑇𝑚 and elevation. The absolute 

bias values of the NGGTm model were relatively small at the global scale, with values of approximately 0 K. These results 

demonstrated that the stability of the NGGTm model was better than those of the other analyzed models at the global scale. 

Figure 8 shows all models exhibited relatively small RMSEs at low latitudes and relatively large RMSE values at high 

latitudes, with a trend of increasing RMSEs from low latitudes to high latitudes. The main reason for this result may be the 370 

seasonal variation in 𝑇𝑚 is strengthened with increasing latitude. In addition, the GPT3-5 model showed relatively large 

RMSEs at a few radiosonde stations on the Qinghai-Tibet Plateau, whereas the GPT3-1 model exhibited a certain 

improvement for the reasons mentioned above. The NGGTm model still had a significant improvement compared with other 

models at the global scale, which demonstrated that the NGGTm model had the best precision and stability. 
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 375 

 

Figure 7 The bias distributions of the four models tested using global 𝑻𝒎 data from 378 radiosonde stations in 2017. 

(a) Bevis model. (b) GPT3-5 model. (c) GPT3-1 model. (d) NGGTm model. 

 

Figure 8 The RMSE distributions of the four models tested using global 𝑻𝒎 data from 378 radiosonde stations in 2017. 380 

(a) Bevis model. (b) GPT3-5 model. (c) GPT3-1 model. (d) NGGTm model. 
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Since there are strong correlations between 𝑇𝑚 and both elevation and latitude, to further analyze the relationship between 

the precision of 𝑇𝑚 calculated by the four models and the elevation variation, the 378 radiosonde stations around the world 

were divided into five intervals with an elevation span of 500 m for each interval. The bias and RMSE values at these 378 

radiosonde stations around the world were then calculated according to the above intervals. The results are shown in Fig. 9. 385 

 

Figure 9 The bias and RMSE distributions within different elevation intervals for the four models tested using global 

𝑻𝒎 data from 378 radiosonde stations in 2017. (a) bias. (b) RMSE. 

From Fig. 9, the Bevis model exhibited a positive correlation between bias and elevation. The main reason for the above 

result may be the Bevis model was developed by using radiosonde data collected in low-elevation North America, which 390 

leading the poor applicability in relatively high-elevation areas. The GPT3-5 model and GPT3-1 model exhibited negative 

biases in all elevation intervals. Whereas the NGGTm model exhibited relatively small absolute biases in all elevation 

intervals, especially those below 2000 m. Therefore, the NGGTm model exhibited extremely significant stability in all 

elevation intervals compared with other models at the global scale. In addition, the Bevis model performed smaller RMSEs 

than the GPT3-5 model at elevations below 1500 m. The RMSEs of the GPT3-1 model were smaller than those of the GPT3-395 

5 model at all elevation intervals, which further indicatied that increasing the resolution of the model can improve the 

precision and stability of the results. The RMSEs of the NGGTm model were smaller than those of the Bevis model, GPT3-5 
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model and GPT3-1 model in all elevation intervals. In conclusion, the NGGTm model showed the best precision and 

stability compared with the other analyzed models in all elevation intervals. 

To further analyze the relationship between the precision of four models and the latitude variation , the 378 radiosonde 400 

stations around the world were divided into several intervals with a latitude interval of 15 degrees. Few radiosonde stations 

are located at high latitudes. The high-latitude areas in the Northern and Southern Hemispheres were divided into intervals 

with latitude intervals of 15 degrees. The bias and RMSE values corresponding to the 378 radiosonde stations around the 

world were calculated according to the above intervals. The results are shown in Fig. 10. 

 405 

Figure 10 The bias and RMSE distributions in different latitude ranges obtained for the four models tested using 𝑻𝒎 

data recorded at 378 radiosonde stations globally in 2017. (a) bias. (b) RMSE. 

From Fig. 10, the Bevis model obtained relatively large absolute biases in most latitude ranges, which exhibited 

significantly positive biases in high latitudes and significantly negative biases in low latitudes. The GPT3-5 and GPT3-1 

models exhibited negative biases with relatively small absolute values at most latitudes and negative biases with relatively 410 

large absolute values in the high-latitude areas of the Southern Hemisphere, which can be observed especially for the GPT3-

5 model. The NGGTm model exhibited small absolute biases in all latitude ranges. In addition, all models showed small 

RMSEs in low-latitude areas but relatively large RMSEs in high-latitude areas. The RMSEs gradually increased with 

increasing latitude for all models. Compared to the other models, the NGGTm model had the best accuracy in all latitude 
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ranges, especially in the high-latitude areas of the Southern Hemisphere. In summary, the NGGTm model showed a high 415 

accuracy and stability for calculating Tm at all latitudes. 

6 Conclusion 

𝑇𝑚 is the key parameter of GNSS PWV inversion tasks and in the detection of PWV changes. Developing a real-time and 

high-precision 𝑇𝑚 lapse rate model is necessary for 𝑇𝑚 vertical correction. By analyzing the relationship between 𝑇𝑚 and 

elevation, an approximately linear relationship between 𝑇𝑚 and elevation can be found in the near-Earth space. Therefore, a 420 

linear function was used to fit the lapse rate of 𝑇𝑚. Based on an in-depth analysis of the detailed temporal variations in the 

𝑇𝑚 lapse rate, a sliding-window algorithm was introduced to develop the NGGTm-H model with horizontal resolutions of 

0.5°×0.5°, 1°×1° and 2°×2°. The user can obtain the corresponding vertically corrected 𝑇𝑚  value by providing only the 

coordinate information of any position and the day of the year. The NGGTm-H model can achieved excellent results in the 

precision verification performed by combining ERA5 reanalysis data and radiosonde data that were not involved in the 425 

modeling process. 

Based on the development of the 𝑇𝑚  lapse rate model and taking into account the impacts of the detailed temporal 

characteristics of 𝑇𝑚 , NGGTm model was developed. The accuracy and applicability of the NGGTm model were then 

verified by global radiosonde data and ERA5 reanalysis data that were not involved in the modeling process, which 

compared with those of the Bevis model and GPT3 model. The results show that the NGGTm model had the best 430 

performance and stability among the tested models. Compared to the Bevis model and GPT3 model, with increasing 

elevation, the performance improvement of the NGGTm model was more significant. The accuracy of the NGGTm model 

was also significantly improved with increasing latitude. In general, the NGGTm model can provide real-time and high-

precision 𝑇𝑚 information without requiring the input of measured meteorological parameters at the global scale. This model 

has broad application prospects in real-time GNSS PWV detection research. 435 

This study only verifies the stability and applicability of the NGGTm model, whereas the model has not yet been applied 

to GNSS PWV retrieval tasks. Therefore, the effectiveness of the NGGTm model in retrieving atmospheric PWV will be 

further investigated in future study. 

Data availability. The ERA5 reanalysis data used in this paper can be freely accessed at (http://cds.climate.copernicus.eu/cds
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