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Abstract. The atmospheric weighted mean temperature (𝑇𝑚) is a key parameter in global navigation satellite system (GNSS) 

water vapor retrieval and can convert the zenith wet delay (ZWD) into precipitable water vapor (PWV). However, there are 10 

some shortcomings in the existing 𝑇𝑚 models, such as the detailed time-varying lapse rate not being considered. Additionally, 

the spatiotemporal characteristics of 𝑇𝑚 need to be further refined. Therefore, we developed a new global high-precision and 

high-spatiotemporal-resolution 𝑇𝑚 model considering time-varying lapse rate using the latest European Centre for Medium-

Range Weather Forecasts Reanalysis 5 (ERA5) atmospheric reanalysis data. Firstly, a new global grid 𝑇𝑚 lapse rate model 

(NGGTm-H model) was developed using the sliding window algorithm. Secondly, the daily variation characteristics of 𝑇𝑚 15 

and its relationships with geographical situation were investigated. Finally, a new global hybrid-grid 𝑇𝑚 model (NGGTm 

model) considering time-varying lapse rate was developed. To verify the effectiveness of the proposed model, the NGGTm 

model was compared with the Bevis and global pressure and temperature 3 (GPT3) models using the 𝑇𝑚 data recorded at 378 

radiosonde stations in 2017 and the surface gridded 𝑇𝑚 data calculated from the ERA5 reanalysis data. The results show that 

taking the surface gridded 𝑇𝑚  data of ERA5 as reference values, the average root mean square error (RMSE) value 20 

calculated by the NGGTm model was 2.84 K, which was higher lower with 0.50 K, 0.18 K and 0.06 K than those of the 

Bevis, GPT3-5 and GPT3-1 models, respectively. Meanwhile, taking the 𝑇𝑚 from the radiosonde stations as the reference 

values, the mean bias and RMSE of the NGGTm model were 0.10 K and 3.30 K, respectively, which exhibit the best 

accuracy and stability among the Bevis, GPT3-5 and GPT3-1 models. 

1 Introduction 25 

Precipitable water vapor (PWV), a basic component of the water cycle of the Earth, is a key parameter in climate variation 

and material and energy exchange research performed at the global scale (Huang et al., 2023a; Ding et al., 2022). PWV 

directly impacts the ground temperature and air humidity (Rocken et al., 1997). Furthermore, PWV is highly active in the 

Earth's atmosphere and plays a crucial role in the formation and evolution of weather. Its temporal and spatial variations are 
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essential for the development of clouds and rainfall (Philipona et al., 2005; Jin & Luo, 2009). Understanding the exact 30 

spatiotemporal features of global PWV variations holds immense practical importance for monitoring and forecasting 

catastrophic weather events and conducting research on climate change. However, atmospheric PWV is highly susceptible to 

the underlying terrain, seasonal variations, and other climate changes, causing its spatial distribution to change uneven and 

rapidly over time. Therefore, accurately monitoring PWV poses a significant challenge (Wang et al., 2007; Wang & Zhang, 

2009). Currently, the methods for deriving PWV mainly include radiosonde, ground-based detection, microwave radiometer 35 

and satellite remote sensing inversion methods (Alexandrov et al., 2009; Gui et al., 2017; Zeng et al., 2019). Each 

technology has its own set of advantages and limitations. Radiosondes, for example, are highly accurate in measuring 

meteorological parameters but are limited by their low spatiotemporal resolution, high observation costs, and inability to 

provide real-time or near-real-time updates on PWV changes (Zhai & Eskridge, 1996). Microwave radiometers that operate 

in the microwave region of the electromagnetic spectrum, and satellite remote sensing that rely on infrared band detection, 40 

offer high detection accuracies. However, their effectiveness is limited by interference from weather conditions such as 

clouds, fog, rain, and snow. Additionally, these instruments are unable to provide profile information of PWV in the vertical 

direction, and this shortcoming restricts their applicability in PWV detection tasks (Dalu, 1986; Gao & Kaufman, 2003).  

Global Navigation Satellite System (GNSS) has become a crucial technology for real-time and high-precision PWV 

detection with advantages of all-weather capability, a high temporal resolution, low costs, and weather resistance (Zhao et al., 45 

2018; Jiang et al., 2017; Manandhar et al., 2017; Huang et al., 2022). The precision of GNSS-derived PWV can be as high as 

1 to 1.5 mm, with a temporal resolution of 0.5 hours (Rocken et al., 1993; Adams et al., 2011). PWV can be inverted by 

multiplying zenith wet delay (ZWD) with the water vapor conversion factor. The tropospheric delay can be expressed as 

the zenith total delay (ZTD), which consists of two parts: the zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD). 

The ZTD is an important factor affecting high precision GNSS positioning and also the basic data for GNSS atmospheric 50 

research (Huang et al., 2023b; Zhu et al., 2022). According to the high-precision observation data provided by the GNSS 

base station network, high-precision ZTD information can be obtained through data processing with high-precision GNSS 

data processing software or by integrating atmospheric reanalysis data. The ZHD values, with strong variation regularity, can 

be calculated by a simple model using surface pressure data to obtain an accuracy at the millimeter level. However, the 

variation in ZWD influenced mainly by water vapor is difficult to investigate (Vedel et al., 2001). The ZWD can be 55 

computed by subtracting the ZHD from the ZTD. Then, the result can be converted to PWV by using the water vapor 

conversion factor. Among the parameters involved in PWV inversion, the atmospheric weighted mean temperature (𝑇𝑚) is 

the key parameter for calculating the water vapor conversion factor. The accuracy of GNSS tropospheric water vapor 

retrievals can be significantly improved by using high-precision 𝑇𝑚 data. 

High precision 𝑇𝑚  data can typically be calculated by integrating radiosonde data, atmospheric reanalysis data, and 60 

numerical weather prediction (NWP) data. However, the distribution of radiosonde stations is uneven, and there is a time 

delay in releasing atmospheric reanalysis data. In addition, NWP data are subject to certain limitations, including low 

temporal resolution and slow update speed, which renders them unsuitable for real-time or near-real-time PWV monitoring 
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(Zhang et al., 2017). To improve the calculation efficiency of 𝑇𝑚, it is necessary to build a real-time and high-precision 𝑇𝑚 

model to meet the needs of GNSS PWV inversion. Existing 𝑇𝑚 models can be divided into two categories: meteorological 65 

parameter models and nonmeteorological parameter models. By analyzing the correlation between the surface temperature 

(𝑇𝑠) and 𝑇𝑚 and utilizing two-year profile information from 13 radiosonde stations in North America, the Bevis formula was 

developed through linear regression analysis (Bevis et al., 1992). This formula can successfully retrieve PWV information in 

the zenith direction of the station using GPS observation data and introduced the concept of GPS in meteorological research 

for the first time. The linear regression model remains a reliable and convenient tool that is still widely used today. However, 70 

it is important to note that the coefficients of this model exhibit distinct characteristics based on the region and season in 

which it is applied. Therefore, recalculating the parameters of the model is necessary when applying the model in other 

regions (Ross & Rosenfeld, 1997; Emardson et al., 1998). With the continuous development of GNSS PWV detection 

technology, many scholars have refined and expanded the Bevis model regionally and developed other 𝑇𝑚 models based on 

measured meteorological parameters. Besides 𝑇𝑠 , 𝑇𝑚  is also related to 𝑃𝑠  and 𝑒𝑠 . The global single-factor 𝑇𝑚  model and 75 

multifactor 𝑇𝑚 model were developed, which showed better accuracy and reliability (Yao et al., 2014a). To achieve better 

results in the global range, Yao et al. (2014b) proposed a 𝑇𝑚 linear regression model in each latitude interval region using the 

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data. In addition, neural network algorithm 

can be used to establish 𝑇𝑚 model that can output corresponding 𝑇𝑚 values by simply inputting 𝑇𝑠 information. The accuracy 

of this model dependents on the precision of the input 𝑇𝑠 information. When highly precise 𝑇𝑠 data were used, the model 80 

accuracy was increased (Ding, 2018). The above models have achieved good results when providing the required measured 

meteorological parameters, but most of the GNSS stations in the world do not have supporting meteorological sensors 

installed leading to the difficulty for measuring meteorological parameters in real-time. Therefore, these models are difficult 

to apply to real-time or near-real-time GNSS PWV detection tasks. To realize real-time GNSS PWV detectionTo address 

this issue, many scholars have developed 𝑇𝑚  models (empirical models) that run without measured meteorological 85 

parameters. For example, Zhu et al. (2021) developed a new 𝑇𝑚 model taking climate differences into account in the Shanxi 

region. The non-meteorological parameter 𝑇𝑚 model (named the Emardson model) was developed to take the annual cycle 

variation into account by using radiosonde data collected in Europe over many years, which was capable of meeting the 

requirement for GNSS water vaporPWV detection (Emardson & Derks, 2000). Therefore, the model has been widely used in 

real-time GNSS meteorology research. Additionally, the lapse rate is the key parameter in the 𝑇𝑚  elevation vertical 90 

correction. Taking the lapse rate into account can not only improve the 𝑇𝑚 model accuracy, but also showed significant 

performances improvement in regions with undulating terrain (Huang et al., 2023c; Sun et al., 2021; Yao et al., 2018). The 

𝑇𝑚 lapse rate is an effective means of not only correcting 𝑇𝑚 to different surface heights on the ground but also providing a 

vertical correction value for 𝑇𝑚  at any height above the ground. Therefore, investigating the spatiotemporal variation 

characteristics of the 𝑇𝑚 lapse rate and developing a 𝑇𝑚 lapse rate model have high application values in 𝑇𝑚 vertical and 95 

spatial interpolation tasks. Furthermore, a high-precision global 𝑇𝑚 model that considers elevation, latitude, and time in real 
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time could greatly enhance the accuracy of GNSS PWV monitoring. Although the aforementioned models excel in certain 

regions and possess unique strengths, they are not suitable for calculating 𝑇𝑚 at the global level. Yao et al. (2012) developed 

the first new global atmospheric weighted average temperature model (GWMT model) using data from 135 radiosonde 

stations worldwide over several years. This new model can estimate the 𝑇𝑚 value at any location by simply inputting the 100 

station location and the day of the year (DOY), which have been applied to real-time GNSS PWV inversion studies 

worldwide. However, because the radiosonde data used in the GWMT model are all located on land, there is a certain 

systematic bias in ocean areas. To address this issue, the GTm-II model, GTm-III model, and GTm-H model were developed 

jointing atmospheric reanalysis data (Yao et al., 2013). Global pressure and temperature (GPT) -series models which include 

GPT, GPT2, GPT2w and GPT3 model also show excellent performance worldwide (Landskron & Böhm, 2018; Böhm et al., 105 

2007; Böhm et al., 2015; Yang et al., 2020). Moreover, some scholars have improved the GPT2w model (Yang et al., 2020). 

Although the latest GPT3 model is currently the most representative empirical model with a high precision on the global 

scale, GPT3 model dose not take into account elevation vertical correction or detailed 𝑇𝑚 lapse rate. Thus, it is necessary to 

develop a new model to improve the real-time high-precision global empirical 𝑇𝑚  model and to select appropriate data 

sources for model development. 110 

The global 𝑇𝑚  models mentioned above were established without accounting for the detailed time-varying lapse rate. 

Therefore, in this study, our aim was to develop a global 𝑇𝑚 model that takes into account time-varying lapse rate and high-

precision capabilities. To attain this objective, first, we investigated the spatiotemporal variations and characteristics of the 

lapse rate of global 𝑇𝑚 and developed a new global grid lapse rate model (NGGTm-H). Second, a new global hybrid-grid 

model (NGGTm) for the estimation of atmospheric weighted mean temperature considering time-varying lapse rate was 115 

developed by using profile gridded 𝑇𝑚 data calculated by integrating the latest European Centre for Medium-Range Weather 

Forecasts ReAnalysis 5 (ERA5) reanalysis data. To verify the effectiveness of the new model, the NGGTm model was 

compared with the Bevis and GPT3 models using 𝑇𝑚 data from radiosonde stations with and ERA5 reanalysis data. 

2 Data and methodology 

2.1 Data 120 

The ERA5 atmospheric reanalysis datasetdata, provided by ECMWF (https://apps.ecmwf.int/datasets/data/interim-full-daily), 

is the fifth-generation global climate reanalysis dataset. This dataset provides hourly surface‐level parameters and pressure‐

level data with a horizontal resolution of 0.25°×0.25° (latitude×longitude) and a vertical resolution of 37 levels. ERA5 data 

can provide high-resolution and relatively complete surface‐level and pressure‐level data and are thus expected to be widely 

used in the future. The radiosonde station data can be downloaded for free from the University of Wyoming 125 

(http://weather.uwyo.edu/upperair/sounding.html). This product provides meteorological layered data and surficial 

parameters such as atmospheric water vaporPWV from the ground to the near-Earth space (an altitude of approximately 30 

km) and provides radiosonde data twice a day (UTC 00:00 and 12:00); these data are often used as reference values for 

https://apps.ecmwf.int/datasets/data/interim-full-daily
http://weather.uwyo.edu/upperair/sounding.html
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model verification tasks. The ERA5 gridded data from 2012 to 2017 and the radiosonde data in 2017 on the global scale 

were used to analyze and develop the model in this study. 130 

2.2 Methodology 

𝑇𝑚 is the key parameter used to convert ZWD into PWV. Using atmospheric reanalysis data, radiosonde data and other data, 

highly accurate 𝑇𝑚 information can be obtained by integral calculation. In addition, the modeling method can also obtain 𝑇𝑚 

values at a high accuracy and with a high calculation efficiency. The specific 𝑇𝑚 integral calculation formula is expressed as 

follows: 135 

 𝑇𝑚 =
∫

𝑒

𝑇
𝑑𝐻

ℎ𝑡𝑜𝑝
ℎ𝑏𝑜𝑡

∫
𝑒

𝑇2𝑑𝐻
ℎ𝑡𝑜𝑝

ℎ𝑏𝑜𝑡

 (1) 

Where ℎ𝑏𝑜𝑡 and ℎ𝑡𝑜𝑝 are the heights at the bottom and top of the integration calculation, 𝑒 is the water vapor pressure (hPa), 

𝑇 is the temperature (K), and 𝐻 is the integral rangeelevation (m). 

The modeling methods used to calculate 𝑇𝑚  can be divided into two categories: ①  𝑇𝑚  models based on measured 

meteorological parameters, of which the most representative is the Bevis model (𝑇𝑚=70.2+0.72𝑇𝑠), namely, the 𝑇𝑚 linear 140 

regression model, and ② non-meteorological parameter 𝑇𝑚 models, of which the most classical is the GPT series model. The 

GPT3 model, the latest model in the GPT series, has a high accuracy in calculating global 𝑇𝑚. The GPT3 model formula 

used to calculate 𝑇𝑚 can be expressed as follows: 

 𝑇𝑚
𝐺𝑃𝑇3 = 𝑎0 + 𝑎1 cos (2𝜋

𝐷𝑂𝑌

365.25
) + 𝑏1 sin (2𝜋

𝐷𝑂𝑌

365.25
) + 𝑎2 cos (4𝜋

𝐷𝑂𝑌

365.25
) + 𝑏2 sin (4𝜋

𝐷𝑂𝑌

365.25
) (2) 

where 𝑇𝑚
𝐺𝑃𝑇3 denotes 𝑇𝑚 calculated by the GPT3 model, 𝑎0 denotes the average annual value of 𝑇𝑚, 𝑎1 and 𝑏1 denote the 145 

annual cycle coefficient of 𝑇𝑚, 𝑎2 and 𝑏2 denote the semiannual cycle coefficient of 𝑇𝑚, and 𝐷𝑂𝑌 denotes the day of the 

year. 

PWV refers to the total water vapor content of a vertical column per unit area in the atmosphere. PWV can be converted 

from ZWD using the following formula: 

 𝑃𝑊𝑉 =  × 𝑍𝑊𝐷 (3) 150 

where  denotes the PWV conversion factor. This conversion factor can be expressed as follows: 

  =
106

𝜌𝑤𝑅𝑣(𝑘2
′ +𝑘3/𝑇𝑚)

 (4) 

where 𝑅𝑣 denotes the water vapor gas constant, 𝑘2
′  and 𝑘3 are constants (𝑘2

′ =22.97 K/hPa and 𝑘3=375463 K2/hPa), and the 

other parameters are described above. Therefore, 𝑇𝑚 is the key parameter in the GNSS PWV inversion. 

To facilitate the subsequent test of the accuracy of the 𝑇𝑚 values calculated using the atmospheric reanalysis data and the 155 

performance of the new 𝑇𝑚 model, this study uses the bias and root mean square error (RMSE) as the accuracy evaluation 

indicators. The formulas are expressed as follows: 

 𝑏𝑖𝑎𝑠 =
1

𝑁
∑ (𝑇𝑚𝑀

𝑖 − 𝑇𝑚𝑅
𝑖 )𝑁

𝑖=1  (5) 
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 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑇𝑚𝑀

𝑖 − 𝑇𝑚𝑅
𝑖 )2𝑁

𝑖=1  (6) 

where N denotes the number of samples, 𝑇𝑚𝑀
𝑖  denotes the calculated value of the atmospheric reanalysis data or model, and 160 

𝑇𝑚𝑅
𝑖  denotes the reference value. 

3 Development of the 𝑻𝒎 lapse rate model 

3.1 Analysis of the spatiotemporal characteristics of the 𝑻𝒎 lapse rate 

Given the discernible variations in topography and the significant range of elevation at a global scale, there can be 

considerable disparities between the atmospheric reanalysis data grid points and the actual elevations of the usertarget point. 165 

The variation in thevertical 𝑇𝑚  elevation variation is much larger than the variation in the horizontal direction, so it is 

necessary to correct for the vertical 𝑇𝑚 information provided by the reanalysis data. The previous study has analyzed this 

topic and concluded that there is an approximately linear relationship between the layered gridded 𝑇𝑚 data and elevation of 

𝑇𝑚  (Huang et al., 2019). To further analyze the changevariation in 𝑇𝑚  with elevation in depth, six representative ERA5 

reanalysis data grid points ((60° N, 90° W), (60° N, 90° E), (0°, 90° W), (0°, 90° E), (60° S, 90° W) and (60° S, 90° E)) were 170 

selected globally to analyze the grid-level 𝑇𝑚 data and corresponding height data on January 1st, 2017. The results are shown 

in Fig. 1. 

 

Figure 1 𝑻𝒎 changes with elevation at six representative ERA5 reanalysis data gridded points on January 1st, 2017. 

(a) (60° N, 90° W). (b) (0°, 90° W). (c) (60° S, 90° E). (d) (60° N, 90° E). (e) (0°, 90° E). (f) (60° S, 90° W). 175 
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Figure 1 shows that the grid-level 𝑇𝑚 data of six representative ERA5 reanalysis data grid cells exhibit approximate linear 

change relationships with elevation. Moreover, the grid-level 𝑇𝑚  data gradually decrease with increasing elevation. 

Therefore, the slope of the fitting line represents the lapse rate of 𝑇𝑚, and this relation can be expressed as follows: 

 𝑇𝑚 = 𝛾 × 𝛿ℎ + 𝑙 (7) 

where 𝛾 denotes the lapse rate of 𝑇𝑚, 𝛿ℎ denotes the height, and 𝑙 denotes a constant. 180 

To investigate the variation relationship between the lapse rate of 𝑇𝑚 and time at the global scale, six representative ERA5 

reanalysis data grid points were selected to calculate the lapse rate of 𝑇𝑚 from 2012 to 2016. Furthermore, the time series for 

the lapse rate of the daily mean 𝑇𝑚 from 2012 to 2016 was obtained and used to achieve seasonal fitting by the cosine 

function of the annual and semiannual periods. The results are shown in Fig. 2. 

 185 

Figure 2 The time-series variations in the Tm lapse rate from the ERA5 reanalysis data at six representative grid 

points. (a) (60° N, 90° W). (b) (60° N, 90° E). (c) (0°, 90° W). (d) (0°, 90° E). (e) (60° S, 90° W). (f) (60° S, 90° E). 

Figure 2 shows the obvious seasonal variations in the lapse rate of 𝑇𝑚 calculated using the ERA5 reanalysis data at six 

representative grid points. From Fig. 2 (c) and (d), the annual and semiannual variations in the lapse rate of 𝑇𝑚 are relatively 

slight at the grid points located on the equator. However, From Fig. 2 (e) and (f), the lapse rates of 𝑇𝑚 at the grid points 190 

located in the high-latitude areas of the Southern Hemisphere exhibit relatively large variation ranges and show obvious 

annual and semiannual variations, whereas those in the high-latitude areas of the Northern Hemisphere show slight variation 
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ranges and obvious annual and semiannual cycle variations from Fig. 2 (a) and (b). The main reason for these results is that 

most of the high-latitude areas of the Southern Hemisphere are oceans and are thus not affected by complex climates. 

 195 

Figure 3 The distributions of the annual mean value and amplitudes of the 𝑻𝒎 lapse rate calculated using global 

ERA5 reanalysis data. (a) annual average value. (b) annual cycle amplitude. (c) semiannual cycle amplitude. (d) daily 

cycle amplitude. 

Hence, a clear seasonal pattern is evident in the lapse rate of 𝑇𝑚, and the variation patterns vary across different regions. 

The lapse rate of 𝑇𝑚 was then calculated with a temporal resolution of 1 hour from 2012 to 2016 at the global scale. The 200 

annual mean value, annual cycle amplitude, semiannual cycle amplitude and daily cycle amplitude of the lapse rate of 𝑇𝑚 

were calculated by using Eq. (8) at selected grid points at the global scale. The utilized formula is expressed as follows: 

 𝛾 = 𝐴0 + 𝐴1 cos (2𝜋
𝐷𝑂𝑌

365.25
) + 𝐴2 sin (2𝜋

𝐷𝑂𝑌

365.25
) + 𝐴3 cos (4𝜋

𝐷𝑂𝑌

365.25
) + 𝐴4 sin (4𝜋

𝐷𝑂𝑌

365.25
) + 𝐴5 cos (2𝜋

𝐻𝑂𝐷

24
) +

                  𝐴6sin (2𝜋
𝐻𝑂𝐷

24
)  (8) 
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where 𝛾 is the lapse rate of 𝑇𝑚; 𝐴0 is the annual mean value of the lapse rate of 𝑇𝑚; (𝐴1, 𝐴2) are the annual cycle coefficients 205 

for the lapse rate of 𝑇𝑚; (𝐴3, 𝐴4) are the semiannual cycle coefficients for the lapse rate of 𝑇𝑚; (𝐴5, 𝐴6) are the daily cycle 

coefficients for the lapse rate of 𝑇𝑚; 𝐷𝑂𝑌 is the day of the year; and the hour of the day (𝐻𝑂𝐷) is the UTC time. The above 

coefficients were calculated at each grid point based on a least-square adjustment by using all selected grid points in the 

world from 2012 to 2016. The results are shown in Fig. 3. 

As shown in Fig. 3, a strong correlation was found between the annual mean 𝑇𝑚 lapse rate and latitude. Regarding the 210 

annual cycle amplitude of the lapse rate of 𝑇𝑚, obvious annual cycle amplitude values were observed in most land areas, 

especially over the Antarctic continent, though these amplitudes were relatively small in the ocean and coastal areas located 

in the middle and low latitudes of the Northern and Southern Hemispheres. In addition, a sea‒land difference was observed 

in the semiannual cycle amplitude of the 𝑇𝑚  lapse rate. The daily cycle amplitude of the lapse rate of 𝑇𝑚  remained at 

approximately 0.06 K/km. Since the daily variation in the lapse rate of 𝑇𝑚  can be overshadowed by the annual and 215 

semiannual variations, we focused on optimizing and simplifying the model coefficients when developing the 𝑇𝑚 lapse rate 

model.  

The above analysis demonstrated that the variation law of the lapse rate of 𝑇𝑚 differs spatially. Moreover, due to the poor 

performance in spatial differences arising, it is difficult to accurately grasp the variation law of the lapse rate of 𝑇𝑚  in 

developing a global uniform model for the lapse rate of 𝑇𝑚. Therefore, we presents a solution to the issue of coefficient 220 

redundancy that can occur when developing a model from individual grid points. Specifically, a sliding window algorithm 

was introduced to develop the Tm lapse rate model, leading to optimized coefficients and improved accuracy, stability, and 

applicability of the model. Note that, the sliding window algorithm has been used in the previous study, which exhibits a 

superior performance (Huang et al., 2019). 

3.2 Development of NGGTm-H 225 

The ERA5 reanalysis data with a horizontal resolution of 0.25°×0.25° were selected as the data source to develop the model 

in this study. We divided global segments into regular windows with the same horizontal resolution as the ERA5 reanalysis 

data. The specific process was as follows: starting from the first window, by using the data of 9 gridded points in each 

window, the model coefficients of the corresponding window were calculated in order from west to east and from north to 

south and stored at the geometric center of the corresponding window. Finally, all the coefficients for the global 𝑇𝑚 lapse 230 

rate model were obtained. As shown in Fig. 4, blue dot denotes ERA5 gridded point, and the red dot denotes the center point 

of the window and the red rectangle denotes the size of the sliding window. 

To investigate the influence of the window size on the model precision and optimize the model coefficients as much as 

possible, three different window sizes, with resolutions of 0.5°×0.5°, 1°×1° and 2°×2°, were selected to develop the model. 

The window with the resolutions of 0.5°×0.5°, 1°×1° and 2°×2° contains 9, 25 and 49 gridded points, respectively. As 235 
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mentioned above, it was necessary to consider the characteristics of the annual and semiannual cycles when developing the 

model. Therefore, the formula of the global 𝑇𝑚 lapse rate model in each window can be expressed as follows: 

 𝛾𝑖 = 𝐴0
𝑖 + 𝐴1

𝑖 cos (2𝜋
𝐷𝑂𝑌

365.25
) + 𝐴2

𝑖 sin (2𝜋
𝐷𝑂𝑌

365.25
) + 𝐴3

𝑖 cos (4𝜋
𝐷𝑂𝑌

365.25
) + 𝐴4

𝑖 sin (4𝜋
𝐷𝑂𝑌

365.25
) (9) 

where 𝑖 is the number of windows; 𝛾𝑖 is the lapse rate of 𝑇𝑚 in the ith window; 𝐴0
𝑖 is the annual mean value of the lapse rate 

of 𝑇𝑚 in the ith window; (𝐴1
𝑖, 𝐴2

𝑖) is the annual cycle coefficient of the lapse rate of 𝑇𝑚 in the ith window; (𝐴3
𝑖, 𝐴4

𝑖) is the 240 

semiannual cycle coefficient of the lapse rate of 𝑇𝑚 in the ith window; and 𝐷𝑂𝑌 is the day of the year. 

 𝑇𝑚
𝑈 = 𝑇𝑚

𝐺 − 𝛾𝑖(𝐻𝑈 − 𝐻𝐺) (10) 

where 𝑇𝑚
𝑈 is the 𝑇𝑚 value at the user height; 𝑇𝑚

𝐺 is the 𝑇𝑚 value at the height of the gridded points from the reanalysis data; 𝛾𝑖 

is the lapse rate of 𝑇𝑚 at the window where the user target point is located; 𝐻𝑈 is the elevation of the usertarget point; and 

𝐻𝐺 is the elevation of the gridded point from the reanalysis data. 245 

 

Figure 4 The realization process of the sliding window algorithm. 
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The five coefficients required in the 𝑇𝑚 lapse rate model in all windows of the world were calculated by the least-squares 

adjustment. Then, the above coefficients were stored at the geometric centers of the windows with resolutions of 0.5°×0.5°, 

1°×1° and 2°×2°. Finally, a global real-time and high-precision 𝑇𝑚 lapse rate model was developed and named NGGTm-H 250 

(this model contains three models with different resolutions: NGGTm-H1, NGGTm-H2 and NGGTm-H3). The vertical 𝑇𝑚 

vertical correction was calculated by combining Eq. (9) and (10) and using the position and day of the yearDOY provided by 

the users. 

3.3 Validation of NGGTm-H 

To validate the precision and applicability of the spatial interpolation method using the NGGTm-H model at the global scale, 255 

the 𝑇𝑚 data collected at 378 radiosonde stations around the world in 2017 were used as reference values. The altitude of 

radiosonde stations ranges from 0 to 4500 m, mostly within 2000 m. The 𝑇𝑚 data at four grid points containing radiosonde 

stations obtained from the surface-level gridded 𝑇𝑚 values calculated by the ERA5 reanalysis data were corrected to the 

heights of the radiosonde stations. Then, the corrected 𝑇𝑚 values at these four grid points were interpolated to the positions 

of the radiosonde stations using the inverse distance-weighted method. Finally, the statistical results of the bias and RMSE 260 

values of the spatially interpolated 𝑇𝑚 values from all radiosonde stations are shown in Table 1. 

Table 1 The precision statistics obtained for the three resolutions of the NGGTM-H model tested using 𝑻𝒎 data from 

global radiosonde stations and ERA5 surface-level gridded data recorded in 2017 (unit: k) 

Model 

Bias RMSE 

Minimum Maximum Mean Minimum Maximum Mean 

NGGTm-H1 -4.43 3.31 0.12 0.38 4.53 1.18 

NGGTm-H2 -4.52 3.42 0.14 0.35 4.55 1.21 

NGGTm-H3 -4.57 3.39 0.15 0.41 4.62 1.23 

From Table 1, as the resolution of the model increased, the mean bias of the NGGTm-H model gradually decreased.  The 

mean bias of the NGGTm-H1 model was smallest, at 0.12 K. Compared to those of the NGGTm-H2 model and the 265 

NGGTm-H3 model, the mean bias of the NGGTm-H1 model was reduced by only 0.02 K and 0.03 K, respectively. Positive 

mean biases with relatively small absolute values were obtained for the NGGTm-H model at the three resolutions using 

taking 𝑇𝑚 data from radiosonde stations as reference valuesand ERA5 surface-level gridded points. The main reason for 

these results was that the majority of radiosonde stations are located in land areas. The vertical correction values of 𝑇𝑚 

obtained using the NGGTm-H model were slightly larger in land areas but smaller in marine areas than the reference values. 270 

However, a small number of radiosonde stations distributed in marine areas were susceptible to the influence of marine 
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climate, resulting in the vertical correction values of the model was apparently smaller than the reference values. Therefore, 

the positive biases were smaller than the absolute value of the negative biases. In addition, the precision of the NGGTm-H1 

model showed the best with a mean RMSE of 1.18 K. Thus, NGGTm-H1 model had a certain improvement compared to the 

NGGTm-H2 and NGGTm-H3 models. 275 

4 Development of a global model considering time-varying lapse rate: NGGTm 

4.1 Analysis of 𝑻𝒎 temporal characteristics 

The NGGTm-H model was developed in Section 3, it can vertically adjust the given 𝑇𝑚 at starting height to the target height. 

In order to directly obtain 𝑇𝑚 at any height, it is necessary to develop a surface 𝑇𝑚 model. Analyzing the spatiotemporal 

characteristics of 𝑇𝑚 is crucial for developing 𝑇𝑚 models. Relevant studies have shown that 𝑇𝑚 undergoes diurnal variations 280 

(Sun et al., 2019). To further analyze the temporal characteristics in 𝑇𝑚 in depth at the global scale, we calculated the annual 

mean value, annual cycle amplitude, semiannual cycle amplitude, daily cycle amplitude, and semidaily cycle amplitude at all 

grid points using the least-squares adjustment using surface-level gridded 𝑇𝑚 data calculated from all the ERA5 reanalysis 

data recorded from 2012 to 2016 worldwide. The results are shown in Fig. 5. 

 285 

Figure 5 The distributions of the annual mean value and amplitudes of 𝑻𝒎 calculated using global ERA5 reanalysis 

data. (a) annual mean value. (b) annual cycle amplitude. (c) semiannual cycle amplitude. (d) daily cycle amplitude. (e) 

half-day cycle amplitude. 
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As shown in Fig. 5, strong correlations were found between the annual mean 𝑇𝑚 value and latitude and between the annual 

𝑇𝑚 cycle amplitude and latitude. The semiannual cycle amplitude of 𝑇𝑚 also exhibited a certain correlation with latitude, and 290 

a certain sea‒land difference was observed. In summary, 𝑇𝑚 not only undergoes significant annual and semiannual variations 

but also experiences significant daily and semidiurnal variation. 

4.2 Development of the NGGTm model 

As mentioned above, it was necessary to consider the time-varying lapse rate and detailed temporal variations when 

developing high-precision global 𝑇𝑚  models. Therefore, a new hybrid-grid global 𝑇𝑚  model considering time-295 

varying lapse rate was developed on the basis of NGGTm-H1 model, which used surface data of ERA5 reanalysis surface-

level data recorded from 2012 to 2016. Since the significant variations in the horizontal direction of 𝑇𝑚  compared to 

lapse rate, the estimation of 𝑇𝑚  at the gridded points did not use the sliding window algorithm. Since the significant 

variations in the horizontal direction of 𝑇𝑚 compared to lapse rate according to Fig. 5 (a) and Fig. 6 (a), it is necessary to 

develop surface 𝑇𝑚 models at each gridded point instead of using sliding windows. The formula is expressed as follows: 300 

 𝑇𝑚
𝐺 = 𝐵0 + 𝐵1 cos (2𝜋

𝐻𝑂𝐷

24
) + 𝐵2 sin (2𝜋

𝐻𝑂𝐷

24
) + 𝐵3cos (4𝜋

𝐻𝑂𝐷

24
) + 𝐵4sin (4𝜋

𝐻𝑂𝐷

24
) (11) 

 𝐵𝑖 = 𝑏𝑖0 + 𝑏𝑖1cos (2𝜋
𝐷𝑂𝑌

365.25
) + 𝑏𝑖2 sin (2𝜋

𝐷𝑂𝑌

365.25
) + 𝑏𝑖3 cos (4𝜋

𝐷𝑂𝑌

365.25
) + 𝑏𝑖4 sin (4𝜋

𝐷𝑂𝑌

365.25
) (12) 

where 𝑇𝑚
𝐺 is the 𝑇𝑚 value at the gridded points; 𝐵𝑖 is the daily variation coefficient of 𝑇𝑚; and 𝐻𝑂𝐷 is the UTC time. After 

Eq. (12) was used to expand Eq. (11), 𝑏𝑖𝑗 (i=0,1,2,3,4 and j=0,1,2,3,4), which represents the 25 coefficient terms of the 

model, was calculated. 𝐷𝑂𝑌 is the day of the year. 305 

The 25 model coefficients were calculated by the least-squares adjustment at all global reanalysis data grid points, which 

used the surface-level gridded 𝑇𝑚 data with a temporal resolution of 1 hour. The above coefficients were stored on the grid 

points with a horizontal resolution of 0.25°×0.25°. Finally, the NGGTm model considering time-varying lapse rate was 

developed. The input parameters for this model are location and time only, which makes it convenient for users. Here, we 

introduce the use of NGGTm. First, users need to find the window where they target points are in, extract the 5 model 310 

coefficients of Eq. (9) for the center point of the window, and input the 𝐷𝑂𝑌 to calculate 𝛾. Second, users need to find the 

four surrounding grid points, extract 10 model coefficients of the surface 𝑇𝑚 model (Eq. (11) and (12)) for each grid point, 

and input 𝐻𝑂𝐷 and 𝐷𝑂𝑌 into Eq. (11) and (12) to calculate the 𝑇𝑚 at the height of the grid points. Then the 𝑇𝑚 at the height  

of the grid points are vertically adjusted to the user height of target point using Eq. (10). Finally, the 𝑇𝑚  at the user's 

positiontarget point is obtained by inverse distance weighted interpolation using the four adjusted  𝑇𝑚. 315 

5 Validation of NGGTm 

5.1 Comparison to gridded 𝑻𝒎 data 
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In this section, to validate the accuracy of the new model, NGGTm model was used to calculate the 𝑇𝑚 values at all of the 

grid points at the global scale, which compared with the Bevis and GPT3 model. The surface gridded 𝑇𝑚  data with a 

temporal resolution of 1 hour derived from the ERA5 reanalysis data in 2017 were selected as reference values. We defined 320 

GPT3 model with two horizontal resolutions of 1°×1° and 5°×5° as GPT3-1 and GPT3-5, respectively, which makes it 

convenient to describe. The 𝑇𝑠 data required by the Bevis model to calculate 𝑇𝑚 were derived from the GPT3-1 model. The 

statistical results are shown in Table 2, Fig. 6 and Fig. 7. 

Table 2 The precision statistics of the bias and RMSE values of the four models tested using global surface-level 

gridded 𝑻𝒎 data from the ERA5 reanalysis product in 2017 (unit: k) 325 

Model 
Bias RMSE 

Minimum Maximum Mean Minimum Maximum Mean 

Bevis -9.11 9.64 0.66 0.58 9.78 3.34 

GPT3-5 -15.61 22.88 -0.30 0.73 23.12 3.02 

GPT3-1 -10.13 11.51 -0.28 0.68 12.88 2.90 

NGGTm -1.35 1.59 -0.09 0.72 6.33 2.84 

From Table 2, it can be seen that the mean bias of the Bevis model was 0.66 K, which indicated that the 𝑇𝑚 values 

calculated by the Bevis model were all larger than the reference values. The mean biases of the GPT3-5 model and the 

GPT3-1 model were -0.30 K and -0.28 K, respectively, which demonstrated that the 𝑇𝑚  values calculated by the GPT3 

model were slightly smaller than the reference values. The mean bias of the NGGTm model was only -0.09 K, which was the 

smallest absolute mean bias value among all the analyzed models. This result shows that the 𝑇𝑚 values calculated by this 330 

model were close to the reference values overall, which demonstrated that NGGTm model performed better than the other 

models. In terms of the variation ranges of the bias, the bias variation range of the GPT3-1 model shows improvement 

compared to that of the GPT3-5 model, which had the largest bias variation range. The main reason for the above results 

may be the GPT3 model did not consider the influence of elevation in its calculation of 𝑇𝑚, which resulted in the relatively 

large bias in the calculated 𝑇𝑚 values in high-elevation areas. The variation range of the bias for the GPT3-1 model was 335 

smaller than that of the GPT3-5 model, which indicated that improving the model resolution can help improve the stability of 

the model. Compared with the Bevis model, GPT3-5 model and GPT3-1 model, the variation range of the bias of the 

NGGTm model was extremely small, ranging from -1.35 K to 1.59 K, which indicated that the stability of the NGGTm 

model was better than those of the other analyzed models. In addition, the mean RMSE of the NGGTm model was only 2.84 

K, which exhibited improvements of 0.5 K, 0.18 K and 0.06 K over the Bevis model, the GPT3-5 model and the GPT3-1 340 

model, respectively. These results show that the 𝑇𝑚 values calculated by the NGGTm model had the highest precision among 

all analyzed models. In terms of the variation ranges of RMSE, the variation ranges of RMSE for the GPT3-5 model and 
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GPT3-1 model were larger than those of the other models. The RMSE variation range of the GPT3-1 model was smaller than 

that of the GPT3-5 model. Compared with the other models, the RMSE of the NGGTm model had the smallest variation 

range, ranging from 0.72 K to 6.33 K, which demonstrated that the precision and stability of the NGGTm model were better 345 

than those of the other analyzed models. 

 

Figure 6 The bias distributions of the four models tested using global surface-level gridded 𝑻𝒎 data from the ERA5 

reanalysis product in 2017. (a) Bevis model. (b) GPT3-5 model. (c) GPT3-1 model. (d) NGGTm model. 

Figure 6 shows that the absolute bias values were relatively small for the Bevis model in the mid-latitude areas. The main 350 

reason for this result may be the Bevis model was developed based on radiosonde data in North America. Larger absolute 

bias values were observed for the GPT3-5 model in relatively high-elevation areas, such as the Qinghai-Tibet Plateau, 

western South America, and parts of Antarctica. The main reason for this result may be the GPT3 model did not take any 

vertical 𝑇𝑚 vertical correction into account. The absolute bias values of the GPT3-1 model were smaller than those of the 

GPT3-5 model in most parts of the world. Although relatively large absolute bias values were still shown for the GPT3-1 355 
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model in relatively high-elevation areas, a significant improvement can be seen. Therefore, the performance and stability of 

the model can be significantly improved by increasing the resolution of the model. The bias of the NGGTm model remained 

at approximately 0 K, significantly better than those of other models. In conclusion, the NGGTm model shows excellent 

stability and applicability at the global scale. 

 360 

Figure 7 The RMSE distributions of the four models tested using global surface-level gridded 𝑻𝒎 data from the 

ERA5 reanalysis product in 2017. (a) Bevis model. (b) GPT3-5 model. (c) GPT3-1 model. (d) NGGTm model. 

From Fig. 7, relatively large RMSEs obtained for the Bevis model are shown in some areas, which indicated that the Bevis 

model performed poorly in the Qinghai-Tibet Plateau, northeastern Asia, the coasts of western and southwestern Africa, the 

Arctic Ocean, and Antarctica. Relatively large RMSEs obtained for the GPT3-5 model are shown in western North America, 365 

western South America, and the Qinghai-Tibet Plateau. The GPT3-1 model had a certain accuracy improvement compared 

with the GPT3-5 model in these areas. Furthermore, increasing the resolution of the model can improve the model precision 

of calculating 𝑇𝑚. The NGGTm model had small RMSEs around the world, which demonstrated higher precision especially 
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at low latitudes. The NGGTm model performed significantly better than the Bevis model, the GPT3-5 model and GPT3-1 

model. 370 

5.2 Comparison to radiosonde data 

To further validate the performance of the NGGTm model, the 𝑇𝑚 data from 378 radiosonde stations around the world in 

2017 were selected as reference values. The precision of the NGGTm model when calculating 𝑇𝑚  at these stations was 

validated and compared with the other three models. The 𝑇𝑠 data required by the Bevis model to calculate 𝑇𝑚 were derived 

from the radiosonde stations. The statistical results are shown in Table 3, Fig. 8 and Fig. 9. 375 

Table 3 The precision statistics of bias and RMSE for the four models tested using global 𝑻𝒎 data from 378 

radiosonde stations in 2017 (unit: k) 

Model 
Bias RMSE 

Minimum Maximum Mean Minimum Maximum Mean 

Bevis -4.98 6.49 0.39 0.98 7.05 3.57 

GPT3-5 -13.79 4.48 -1.00 0.99 13.90 3.65 

GPT3-1 -5.66 4.49 -0.79 0.98 6.23 3.48 

NGGTm -4.31 3.78 0.10 0.99 5.17 3.30 

 

Figure 8 The bias distributions of the four models tested using global 𝑻𝒎 data from 378 radiosonde stations in 2017. 

(a) Bevis model. (b) GPT3-5 model. (c) GPT3-1 model. (d) NGGTm model. 380 
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From Table 3, the mean bias of the NGGTm model was only 0.10 K, with the smallest absolute value among the analyzed 

models. The bias range of the NGGTm model was also the smallest, ranging from -4.31 K to 3.78 K, which demonstrated 

that the NGGTm model performed better than the other models. In addition, the mean RMSE of the NGGTm model was 

only 3.30 K, which exhibited improvements of 0.27 K (8%), 0.35 K (11%) and 0.18 K (5%) over the Bevis model, GPT3-5 

model and GPT3-1 model, respectively. The RMSE range of the NGGTm model was the smallest, ranging from 0.99 K to 385 

5.17 K, indicating that the NGGTm model had the best precision and stability at the global scale. 

From Fig. 8, the Bevis model showed relatively obvious negative biases in low latitudes and obvious positive biases in 

middle and high latitudes, with a trend of increasing absolute biases from low latitudes to high latitudes. The GPT3-5 model 

and GPT3-1 model performed similarly, with relatively large absolute bias values on the Qinghai-Tibet Plateau and in 

western North America because the GPT3 model did not consider the relationship between 𝑇𝑚 and elevation. The absolute 390 

bias values of the NGGTm model were relatively small at the global scale, with values of approximately 0 K. These results 

demonstrated that the stability of the NGGTm model was better than those of the other analyzed models at the global scale. 

 

Figure 9 The RMSE distributions of the four models tested using global 𝑻𝒎 data from 378 radiosonde stations in 2017. 

(a) Bevis model. (b) GPT3-5 model. (c) GPT3-1 model. (d) NGGTm model. 395 

Figure 9 shows all models exhibited relatively small RMSEs at low latitudes and relatively large RMSE values at high 

latitudes, with a trend of increasing RMSEs from low latitudes to high latitudes. The main reason for this result may be the 

seasonal variation in 𝑇𝑚 is strengthened with increasing latitude. In addition, the GPT3-5 model showed relatively large 

RMSEs at a few radiosonde stations on the Qinghai-Tibet Plateau, whereas the GPT3-1 model exhibited a certain 
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improvement for the reasons mentioned above. The NGGTm model still had a significant improvement compared with other 400 

models at the global scale, which demonstrated that the NGGTm model had the best precision and stability. 

Since there are strong correlations between 𝑇𝑚 and both elevation and latitude, to further analyze the relationship between 

the precision of 𝑇𝑚 calculated by the four models and the elevation variation, the 378 radiosonde stations around the world 

were divided into five intervals with an elevation span of 500 m for each interval. The bias and RMSE values at these 378 

radiosonde stations around the world were then calculated according to the above intervals. The results are shown in Fig. 10. 405 

 

Figure 10 The bias and RMSE distributions within different elevation intervals for the four models tested using 

global 𝑻𝒎 data from 378 radiosonde stations in 2017. (a) bias. (b) RMSE. 

From Fig. 10, the Bevis model exhibited a positive correlation between bias and elevation. The main reason for the above 

result may be the Bevis model was developed by using radiosonde data collected in low-elevation North America, which 410 

leading the poor applicability in relatively high-elevation areas. The GPT3-5 model and GPT3-1 model exhibited negative 

biases in all elevation intervals. Whereas the NGGTm model exhibited relatively small absolute biases in all elevation 

intervals, especially those below 2000 m. Therefore, the NGGTm model exhibited extremely significant stability in all 

elevation intervals compared with other models at the global scale. In addition, the Bevis model performed smaller RMSEs 

than the GPT3-5 model at elevations below 1500 m. The RMSEs of the GPT3-1 model were smaller than those of the GPT3-415 

5 model at all elevation intervals, which further indicated that increasing the resolution of the model can improve the 
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precision and stability of the results. The RMSEs of the NGGTm model were smaller than those of the Bevis model, GPT3-5 

model and GPT3-1 model in all elevation intervals. In conclusion, the NGGTm model showed the best precision and 

stability compared with the other analyzed models in all elevation intervals. 

To further analyze the relationship between the precision of four models and the latitude variation , the 378 radiosonde 420 

stations around the world were divided into several intervals with a latitude interval of 15 degrees. Few radiosonde stations 

are located at high latitudes. The high-latitude areas in the Northern and Southern Hemispheres were divided into intervals 

with latitude intervals of 15 degrees. The bias and RMSE values corresponding to the 378 radiosonde stations around the 

world were calculated according to the above intervals. The results are shown in Fig. 11. 

 425 

Figure 11 The bias and RMSE distributions in different latitude ranges obtained for the four models tested using 𝑻𝒎 

data recorded at 378 radiosonde stations globally in 2017. (a) bias. (b) RMSE. 

From Fig. 11, the Bevis model obtained relatively large absolute biases in most latitude ranges, which exhibited 

significantly positive biases in high latitudes and significantly negative biases in low latitudes. The GPT3-5 and GPT3-1 

models exhibited negative biases with relatively small absolute values at most latitudes and negative biases with relatively 430 

large absolute values in the high-latitude areas of the Southern Hemisphere, which can be observed especially for the GPT3-

5 model. The NGGTm model exhibited small absolute biases in all latitude ranges. In addition, all models showed small 

RMSEs in low-latitude areas but relatively large RMSEs in high-latitude areas. The RMSEs gradually increased with 
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increasing latitude for all models. Compared to the other models, the NGGTm model had the best accuracy in all latitude 

ranges, especially in the high-latitude areas of the Southern Hemisphere. In summary, the NGGTm model showed a high 435 

accuracy and stability for calculating Tm at all latitudes. 

6 Conclusion 

𝑇𝑚 is the key parameter of GNSS PWV inversion tasks and in the detection of PWV changes. Developing a real-time and 

high-precision 𝑇𝑚 lapse rate model is necessary for 𝑇𝑚 vertical correction. By analyzing the relationship between 𝑇𝑚 and 

elevation, an approximately linear relationship between 𝑇𝑚 and elevation can be found in the near-Earth space. Therefore, a 440 

linear function was used to fit the lapse rate of 𝑇𝑚. Based on an in-depth analysis of the detailed temporal variations in the 

𝑇𝑚 lapse rate, a sliding-window algorithm was introduced to develop the NGGTm-H model with horizontal resolutions of 

0.5°×0.5°, 1°×1° and 2°×2°. The user can obtain the corresponding vertically corrected 𝑇𝑚 value by providing only the 

coordinate information of any position and the day of the yearDOY. The NGGTm-H model can achieved excellent results in 

the precision verification performed by combining ERA5 reanalysis data and radiosonde data that were not involved in the 445 

modeling process. 

Based on the development of the 𝑇𝑚  lapse rate model and taking into account the impacts of the detailed temporal 

characteristics of 𝑇𝑚 , NGGTm model was developed. The accuracy and applicability of the NGGTm model were then 

verified by global radiosonde data and ERA5 reanalysis data that were not involved in the modeling process, which 

compared with those of the Bevis model and GPT3 model. The results show that the NGGTm model had the best 450 

performance and stability among the tested models. Compared to the Bevis model and GPT3 model, with increasing 

elevation, the performance improvement of the NGGTm model was more significant. The accuracy of the NGGTm model 

was also significantly improved with increasing latitude. In general, the NGGTm model can provide real-time and high-

precision 𝑇𝑚 information without requiring the input of measured meteorological parameters at the global scale. This model 

has broad application prospects in real-time GNSS PWV detection research. 455 

This study only verifies the stability and applicability of the NGGTm model, whereas the model has not yet been applied 

to GNSS PWV retrieval tasks. Therefore, the effectiveness of the NGGTm model in retrieving atmospheric PWV will be 

further investigated in future study. 
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