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Abstract. Satellite observations of sea surface temperature (SST) are essential for accurate weather forecasting and climate

modeling. However, this data often suffers from incomplete coverage due to cloud obstruction and limited satellite swath

width, which requires development of dense reconstruction algorithms. The current state-of-the-art struggles to accurately

recover high-frequency variability, particularly in SST gradients in ocean fronts, eddies, and filaments, which are crucial

for downstream processing and predictive tasks. To address this challenge, we propose a novel two-stage method CRITER5

(Coarse Reconstruction with ITerative Refinement Network), which consists of two stages. First, it reconstructs low-frequency

SST components utilizing a Vision Transformer-based model, leveraging global spatio-temporal correlations in the available

observations. Second, a UNet type of network iteratively refines the estimate by recovering high-frequency details. Extensive

analysis on datasets from the Mediterranean, Adriatic, and Atlantic seas demonstrates CRITER’s superior performance over

the current state-of-the-art. Specifically, CRITER achieves up to 44% lower reconstruction errors of the missing values and10

over 80% lower reconstruction errors of the observed values compared to the state-of-the-art.

1 Introduction

Satellite sensors operating in the infrared spectrum are used to measure remotely sensed ocean variables, such as sea surface

temperature (SST). However, these measurements are often incomplete due to limited satellite swath dimensions and cloud

occlusion.15

Downstream applications often require complete, dense measurement fields, necessitating various reconstruction approaches.

These can be categorized into two groups: (i) extensions of the Optimal Interpolation (OI) scheme (Taburet et al., 2019), (Ubel-

mann et al., 2021), and (ii) data-driven approaches (Alvera-Azcárate et al., 2005), (Barth et al., 2020), (Barth et al., 2022),

(Fablet et al., 2021), (Beauchamp et al., 2023), (Goh et al., 2024). The latter includes methods based on Empirical Orthogonal

Functions (EOFs), such as DINEOF (Alvera-Azcárate et al., 2005), and more recently, end-to-end deep learning techniques.20
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Notable deep learning methods include DINCAE1 (Barth et al., 2020), DINCAE2 (Barth et al., 2022), 4DVarNet (Fablet et al.,

2021), 4DVarNet-SSH (Beauchamp et al., 2023), and MAESSTRO (Goh et al., 2024).

Traditional methods like DINEOF (Alvera-Azcárate et al., 2005) have been widely adopted, iteratively filling missing data

using truncated EOF decomposition. While effective for large-scale patterns, DINEOF struggles with fine-scale features,

mostly because of their transient nature. Deep learning approaches have since emerged, surpassing traditional methods’ per-25

formance. DINCAE1 (Barth et al., 2020) introduced a UNet-based (Ronneberger et al., 2015) model with probabilistic output,

while 4DVarNet (Fablet et al., 2021) proposed an energy-based formulation for interpolation, achieving comparable SST re-

construction performance to a convolutional autoencoder architecturally similar to DINCAE1. DINCAE2 (Barth et al., 2022),

the current state-of-the-art and successor to DINCAE1, extended the original implementation with an additional refinement

UNet. It operates on temporally consecutive partial SST observations, gradually improving central SST field reconstruction.30

However, its finite receptive field limits long-range spatio-temporal dependency exploitation, resulting in oversmoothed recon-

structions lacking high-frequency details. Recently, MAESSTRO (Goh et al., 2024) addressed some limitations by adapting

the Masked Autoencoder (MAE) (He et al., 2022) framework for SST reconstruction. It employs a Vision Transformer (ViT)

(Dosovitskiy et al., 2021) architecture to capture global spatial dependencies. However, its single-timestep approach neglects

temporal correlations, potentially compromising reconstruction quality for large, contiguous cloud occlusions. Furthermore,35

MAESSTRO’s random patch masking strategy during training and evaluation may inadequately represent real cloud patterns,

potentially yielding optimistic error estimates.

To address these limitations, we propose a two-stage Coarse Reconstruction with ITerative Refinement network (CRITER). A

transformer-based module first leverages long-range spatio-temporal dependencies to estimate a low-frequency reconstruction.

Subsequently, an iterative refinement module enhances high-frequency content. Unlike previous methods, which attempt full40

signal reconstruction in each block, CRITER decomposes the problem into a sequence of networks, each reducing the residual

error of its predecessor, thus optimizing network capacity for local error reduction.

The paper is structured as follows. Section 2 contains descriptions of employed datasets together with preprocessing steps

executed prior to the training. Section 3 describes the CRITER architecture, focusing on coarse reconstruction step in Sec-

tion 3.1, its iterative refinement in Section 3.2 and residual estimation network in Section 3.2.1. Training strategy is described45

in 3.3 and results are listed in Section 4, including an in-depth ablation study investigating the role of individual architectural

components (Section 5.4).

2 Input data: Sea surface temperature

2.1 Evaluation datasets

For our study we utilize Level 3 (L3) sea surface temperature (SST) satellite observation products. Specifically we consider50

the following three datasets corresponding to three different geographic regions:
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1. Central Mediterranean: The SST_MED_SST _L3S _NRT _OBSERVATIONS _010 _ 012 _a (Med) dataset contains

daily SST measurements over the Mediterranean sea from January 1, 2008 to December 31, 2021. The arc degree

resolution of the measurements is (0.0625◦× 0.0625◦).

2. Adriatic: The SST_MED_PHY_L3S_MY_010 _042 (Pisano et al., 2016; Casey et al., 2010) dataset contains daily55

SST measurements over the Adriatic sea from August 25 1981 to December 31 2022. The arc degree resolution of the

measurements is (0.05◦× 0.05◦).

3. Atlantic: SST_ATL_PHY_L3S_MY_010 _038 (Pro) dataset contains daily SST measurements from January 1, 1982 -

January 1, 2022. The arc degree resolution of the measurements is (0.05◦× 0.05◦).

The geographic areas of the three datasets are shown in Figure 1.60
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Figure 1. The map shows the spatial extent of the Central Mediterranean, Adriatic, and Atlantic datasets, highlighting the distinct geographic

areas covered by each dataset.

2.2 Input data preprocessing

2.2.1 Filtering of occluded observation days

The Satellite products corresponding to Level 3 (L3) SST are provided on a fixed grid but are spatially sparse over a subset

of spatial locations (mainly due to clouds and land pixels). For training and evaluation of the method in this work, additional

missing values need to be simulated to test network performance on values which are hidden to the network but are otherwise65

known. If the original SST observation field already contains a large amount of missing measurements, it becomes difficult

to effectively simulate additional missing data. Consequently, to ensure that the dataset is suitable for training and evaluating

models, observations that are too sparse need to be filtered out. In the preprocessing stage, we first construct sequences of three
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temporally consecutive days of observed SST fields. The observation sequences are then filtered. Specifically, any three-day

observation sequence is discarded according to the following rule: if the cloud coverage, defined as the fraction of pixels that70

are missing in the central observation field, relative to the total number of pixels belonging to the sea, is greater than or equal to

a certain threshold, the corresponding observation sequence is discarded. The appropriate threshold is selected by considering

the total number of samples in each dataset. Specifically, we use a threshold of 100% for the Mediterranean dataset, resulting

in a total of 5114 samples. For the Adriatic dataset, we apply a threshold of 60%, which yields 7800 samples. Finally, we use

a threshold of 75% for the Atlantic dataset, resulting in 3454 samples.75

2.2.2 Train, validation and test datasets

The filtered satellite SST observations are split into three subsets: the train set, which comprises the first 90% of the samples,

the validation set, which comprises the next 5% of the samples, and the test set, which consists of the last 5% of the samples.

The models are trained on the train set, the hyper-parameters are tuned on the validation set, and the performance is assessed

on the test set.80

3 CRITER – Coarse Reconstruction with ITerative Refinement network

Given a sequence of spatially-sparse sea surface temperature observations Xm = [xt−∆t , . . . ,xt, . . . ,xt+∆t ], where xt ∈ R1×W×H

is the potentially sparse observation field at time step t and [t−∆t, t + ∆t] defines the observed time interval, the task is to

estimate the dense reconstruction x̃ at time-step t and the uncertainty specified by the variance σ2. Following Barth et al.

(2022), we set the temporal horizon to ∆t = 1 d, thus in reconstruction of x̂t, the days before and after day t are considered.85

The proposed Coarse Reconstruction with ITerative Refinement network (CRITER) is a two-stage method composed of

a Coarse Reconstruction Module (CRM), described in Section 3.1 and an Iterative Refinement Module (IRM), described in

Section 3.2. An overview of the architecture is provided in Figure 2.
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Figure 2. Given observations for three consecutive days [xt−1,xt,xt+1], CRITER densely reconstructs xt in two phases. A coarse recon-

struction x̂t is estimated by the CRM module and then iteratively refined by the IRM module into the final reconstruction x̃ and uncertainty

σ2. The dashed lines in IRM indicate the iterative refinement process, while the index in REN(i) indicates the change in network parameters

in each iteration.

3.1 Coarse reconstruction module (CRM)

The coarse reconstruction module (CRM, Figure 2) follows the ViT encoder-decoder architecture (Dosovitskiy et al., 2021),90

similar to spatio-temporal MAE (Feichtenhofer et al., 2022). The input observation fields Xm = [xt−1,xt,xt+1] ∈ R3×1×W×H

are first fed to a tokenization process. To encode information about the yearly temperature cycle, each observation field

xt is concatenated channel-wise with a day-of-the-year auxiliary tensor at = [sin(dt
2π
365 ),cos(dt

2π
365 )] ∈ R2×W×H , proposed

by Barth et al. (2020), where the two channels contain constants and dt is the numerical day of year index (between 1 and

365). The resulting fields are split into non-overlapping 3×8×8 patches which are then flattened and linearly projected into a95

1×Dt dimensional token, thus creating the list of tokens T = {Tr,Tc}. Tokens Tr correspond to patches in xt with at least

one unobserved pixel, and thus have to be reconstructed. Tokens Tc are the remaining tokens and they are used as a context for

reconstruction. To encode the extent of missing values in a token, all tokens in xt are summed with their corresponding mask

tokens. These are obtained by splitting the binary mask indicating missing pixels Mt ∈ {0,1}W×H into 8×8 non-overlapping

patches, which are then flattened and projected into mask tokens of shape 1×Dt. To maintain the necessary spatio-temporal100

location of each token, all tokens in T are summed with a spatio-temporal positional embedding as in Feichtenhofer et al.

(2022).

After obtaining tokens T, the context tokens Tc are encoded by a ViT (Dosovitskiy et al., 2021) encoder EViT into TEc
(Figure 2). Then, the list of tokens Tr requiring reconstruction is concatenated with the list of the encoded tokens TEc . The

set of all tokens is again summed with the spatio-temporal positional embedding and passed through a ViT decoder DViT,105

producing the decoded tokens TD. The decoded tokens not corresponding to the central observation xt are removed from TD,

5

https://doi.org/10.5194/gmd-2024-208
Preprint. Discussion started: 6 February 2025
c© Author(s) 2025. CC BY 4.0 License.



resulting in TDt . Tokens in TDt are then linearly projected into 1× 82 vectors and reshaped into a 8× 8 patches. Finally, the

patches are reassembled into a grid to form the coarse reconstruction x̂t. All pixel values corresponding to land areas are set to

zero using the land mask Ml ∈ {0,1}W×H that accompanies the data.

3.2 Iterative refinement module (IRM)110

To improve the reconstruction accuracy, the coarse reconstruction x̂t is refined by an iterative refinement module (IRM, Fig-

ure 2) through a sequence of residual improvements. Let x̃(i) and σ2(i) be the reconstruction of the observation field xt and

its estimated uncertainty at i-th refinement iteration. An iteration of IRM proceeds as follows. The input observation fields

Xm = [xt−1,xt,xt+1] ∈ R3×W×H and the refined estimates [x̃(i),σ2(i)] ∈ R2×W×H from the previous iteration are concate-

nated channel-wise and passed to a residual estimation network REN(i) (detailed in Section 3.2.1) alongside the tokens TDt115

produced by CRM, to produce a two-channel output Y(i) = [Y(i)
1 ,Y(i)

2 ] ∈ R2×W×H . Following the formulation of Barth et al.

(2020), Y(i) = [Y(i)
1 ,Y(i)

2 ] are decoded into reconstruction δ(i)
x and uncertainty δ

(i)
σ2 residuals:

δ
(i)
σ2 =

1

max(exp(min(Y(i)
1 ,θ1)),θ2)

, (1)

δ(i)
x = Y(i)

2 ⊙ δ
(i)
σ2 , (2)120

where ⊙ denotes element-wise tensor multiplication (the Hadamard product), while θ1 and θ2, θ1 > θ2 > 0 are hyperparam-

eters ensuring training stability. The reconstruction and uncertainty estimates at iteration i = 0 are initialized with the coarse

reconstruction x̃(0) = x̂t and a zero σ2(0) = 0. The reconstruction and uncertainty estimated at the (i + 1)-th refinement iter-

ation are thus x̃(i+1) = x̃(i) + δ(i)
x and σ2(i+1) = σ2(i) + δ

(i)
σ2 , respectively. IRM runs for NIRM iterations, with each REN(i)

having its own set of trained parameters, allowing each to specialize to its respective residual estimation, finally producing the125

refined reconstruction x̃ and uncertainty σ2.

3.2.1 Residual estimation network (REN)

The residual estimation network REN(i) is a UNet-type architecture (Ronneberger et al., 2015). The encoder EREN takes

the reconstruction and uncertainty estimates [x̃(i),σ2(i)] as well as the observation fields Xm = [xt−1,xt,xt+1] as input and

produces the latent features z(i) with an 8-fold reduction in spatial resolution compared to the input. The latent features are then130

enriched with spatio-temporally aggregated features TDt from CRM. Specifically, the tokens TDt (see Figure 2) are spatially

reshaped and bilinearly upsampled to match the dimensions of z(i). The two tensors are concatenated and fused by the feature

fusion module (FFM) (Yu et al., 2018), yielding the enriched bottleneck features z̃(i).

The resulting features are then input in the decoder DREN and decoded to the same dimensions as the input [x̃(i),σ2(i)]

via convolutional and upsampling blocks, while incorporating intermediate encoder features at multiple scales through UNet135

6

https://doi.org/10.5194/gmd-2024-208
Preprint. Discussion started: 6 February 2025
c© Author(s) 2025. CC BY 4.0 License.



skip connections. The resulting decoded features are transformed with two 1×1 convolutional layers to produce a two-channel

output Y(i) ∈ R2×W×H .

3.3 Training strategy

CRITER is trained in two stages to train both CRM and IRM modules. First, self-supervised learning is used to train CRM.

In this setup, part of the input signal is deleted and the network is trained to reconstruct the entire input signal. The input140

training samples are created by sampling triples of consecutive observations [xt−1,xt,xt+1], and deleting parts of the central

observation xt resulting in [xt−1,xt⊙Mm,xt+1], where Mm ∈ {0,1}W×H is a generated binary mask with 0 corresponding

to missing values. Following Barth et al. (2022), the masks Mm are generated by copying clouds from a random day not

included in the triplet to maintain mask simulation realism. CRM is trained to minimize the following reconstruction error:

LCRM =
1

|Mt⊙Ml|
∑N

i=1

[
(xt(i)− x̂t(i))2Mt(i)Ml(i)

]
, (3)145

where x̂t is the coarse reconstruction generated by CRM, mask Mt has zeros at locations where ground truth measurements

within the observation field xt are missing, while Ml has zeros at spatial locations belonging to land, |Mt⊙Ml| denotes the

number of ground truth measurements that are not on land. The summation goes over the N pixels in each of xt, x̂t, Mt and

Ml. (·)(i) is an indexing operator that indexes the i-th element of a matrix. The consecutive observations used as the model

input and the masks Mt, Ml, Mm used in the training process are visualized in Figure 3.150

In the second stage, the parameters of CRM are fixed and only the parameters of IRM are trained. The training samples are

generated as in CRM training, but since IRM produces the mean and variance of the reconstruction, the following negative

log-likelihood loss is minimized as in DINCAE (Barth et al., 2020, 2022):

LIRM =
1

|Mt⊙Ml|
∑N

i=1

[
(xt(i)− x̃(i))2

σ2
(i)

+ log(σ2
(i))

]
Mt(i)Ml(i), (4)

where x̃ and σ2 are the reconstruction and variance estimated after the last iteration in IRM, the summation goes over the155

N pixels in each of x̃, σ2 and xt.
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Figure 3. (Top row) A sequence of three consecutive observation fields xt−1,xt,xt+1 and the central observation xt⊙Mm, with additional

missing values, deleted by the sampled mask Mm. (Bottom row) The land mask Ml with zeros at land locations, the missing data mask Mt

with zeros at locations with missing measurements in xt, and Mm, which is a randomly sampled Mt from an observation field not included

in the input.

3.4 Implementation details

CRM (Section 3.1) consists of 12 encoder and decoder transformer blocks, with 3 multi-head attention (MHA) heads, a token

dimension of Dt = 192, and a patch size of 3× 8× 8, where 3 denotes the number of chanels, while 8× 8 represents the

width and height, respecitvely. IRM (Section 3.2) consists of a CNN-based encoder with 3 double conv blocks, each followed160

by a 2× 2 max pooling operation. The double conv block is composed of two 3× 3 convolutional layers, each followed by

a batch normalization layer and a ReLU activation function. The number of convolutional kernels in each block is 32,64,

and 128, respectively. This is followed by another double conv block, with 256 kernels, at the bottleneck of the network, a

Feature Fusion Module (FFM), and a decoder with 3 transpose convolution layers, each followed by a concatenation based

skip connection and a double conv block. The number of kernels in each block is 128,64, and 32, respectively. IRM utilizes165

NIRM = 3 refinement iterations. Hyperparameters θ1 and θ2 are set as θ̃1 = ln(NIRM) + θ1 and θ̃2 = NIRMθ2 to ensure that the

variance σ2 is bounded between 1/exp(θ1) and 1/θ2 for an arbitrary number of refinement iterations NIRM ≥ 1.

4 Results

5 Implementation details

CRITER is implemented using the PyTorch library (Paszke et al., 2017) and trained on an NVIDIA Tesla V100 GPU. CRM170

block is trained with batch size of 8 using the AdamW optimizer with a learning rate α = 3e− 4, β1 = 0.9 and β2 = 0.95 for

60 epochs (warm-up period), then with a cosine decay scheduler (Loshchilov and Hutter, 2016) with step size 30 for another

140 epochs. In the next phase IRM block is trained using the pre-trained CRM with fixed parameters. We train IRM using the
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Adam optimizer, with α = 3e−4, β1 = 0.9, and β2 = 0.999 for 300 epochs, using a step learning rate scheduler with step size

50 and multiplicative factor γ = 0.5.175

MAESSTRO is trained with batch size of 8 using the AdamW optimizer with a learning rate α = 3e− 4, β1 = 0.9 and

β2 = 0.95 for 100 epochs (warm-up period), then with a cosine decay scheduler (Loshchilov and Hutter, 2016) with step size

50 for another 300 epochs.

Hyperparameters of the DINCAE2 differ slightly between the datasets. On the Mediterranean and Atlantic DINCAE2 is

trained using the Adam optimizer, with an initial learning rate of α = 4e− 3, β1 = 0.90, and β2 = 0.999, and a batch size of180

8 for a total of 1000 epochs, using a step learning rate scheduler with a step size of 100 epochs and a multiplicative factor of

γ = 0.5. On the Adriatic we use an initial learing rate of α = 7e− 3 and a step size of 150, all other hyperparameters remain

unchanged.

5.1 Performance measures

The performance of CRITER is assessed on an independent test set. We consider triplets of consecutive observations, and185

delete parts of the middle observation, i.e., [xt−1,xt⊙Mm,xt+1], where Mm is a binary mask, with 0 corresponding to

missing values. The mask Mm is sampled from a random day not included in the triplet.

Reconstruction quality is computed in terms of root-mean-squared error (RMSE) between the ground truth xt and the

reconstruction x̃. In particular, the overall reconstruction error RMSEall is defined as

RMSEall =

√∑N
i=1

[
(xt(i)− x̃(i))2Mt(i)Ml(i)

]

|Mt⊙Ml|
, (5)190

where Mt is a binary mask with zeros at locations where ground truth measurements in the observation field xt are missing, Ml

is a binary mask with zeros at locations belonging to land, and |Mt⊙Ml| denotes the number of ground truth measurements

that are not on land.

For additional insights we also compute the RMSE separately on deleted and on the visible regions in xt as follows. The

reconstruction error of deleted regions is defined as195

RMSEmis =

√∑N
i=1

[
(xt(i)− x̃(i))2Mt(i)Ml(i)(1−Mm(i))

]

|Mt⊙Ml⊙ (1−Mm)| , (6)

Mm is the mask of deleted regions, and |Mt⊙Ml⊙ (1−Mm)| denotes the number of deleted ground truth measurements.

The reconstruction error of visible regions is defined as

RMSEvis =

√∑N
i=1

[
(xt(i)− x̃(i))2Mt(i)Ml(i)Mm(i)

]

|Mt⊙Ml⊙Mm|
, (7)

where |Mt⊙Ml⊙Mm| is the number of visible ground truth measurements. To improve the stability of the measures, all200

RMSE measures are computed as the average of the RMSEs computed for 10 reconstructions obtained by sampling ten different

binary masks Mm.
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5.2 Comparison with state-of-the-art

We compare CRITER with currently the best SST reconstruction method DINCAE2 (Barth et al., 2022) and with the recently

presented MAESSTRO (Goh et al., 2024) on the three datasets from Section 2.1. We reimplemented both DINCAE2 (originally205

in Julia) following Barth et al. (2022) and MAESSTRO (public implementation unavailable) following Goh et al. (2024) in

Pytorch. Both methods were trained under the same conditions as CRITER to ensure a fair evaluation.

Results in Table 1 demonstrate CRITER’s consistent superior performance across all datasets. Compared to the current state-

of-the-art DINCAE2, CRITER achieves error reductions in deleted and visible regions of 20% and 89% for the Mediterranean,

44% and 80% for the Adriatic, and 1% and 88% for the Atlantic dataset, respectively. MAESSTRO’s significantly lower210

performance is attributed to its single time step reconstruction approach. This hypothesis is confirmed by our ablation study,

detailed in Section 5.4, which examines the importance of modeling spatio-temporal data dependencies.

The relative improvements of CRITER compared to the related methods vary across the datasets. This can be attributed to the

differing amounts of information available for reconstruction, which is inversely proportional with the extent of missing values.

Our analysis of missing values (Appendix A1) reveals that the datasets can be ranked by the average amount of information215

available in each observation triplet, from highest to lowest: Mediterranean, Adriatic, and Atlantic. Notably, the Adriatic

dataset shows the greatest decrease in reconstruction error, suggesting that CRITER achieves optimal improvement when

the available information is moderate. In contrast, the Atlantic dataset, with the lowest amount of available information, likely

requires additional data to be effectively reconstructed. To address this, we propose increasing the temporal horizon ∆t and

incorporating supplementary or proxy variables, such as chlorophyll a and surface winds. We leave the exploration of this220

approach to future work.

Table 1. Comparison of CRITER, DINCAE2 and MAESSTRO. We report the overall reconstruction error (RMSEall), as well as the error

over deleted (RMSEmis) and observed regions (RMSEvis).

Dataset Model RMSEall (◦C) RMSEmis (◦C) RMSEvis (◦C)

Mediterranean MAESSTRO 0.487 0.607 0.434

DINCAE2 0.209 0.319 0.148

CRITER (ours) 0.127 0.255 0.017

Adriatic MAESSTRO 0.456 0.583 0.392

DINCAE2 0.270 0.433 0.106

CRITER (ours) 0.130 0.243 0.021

Atlantic MAESSTRO 0.802 0.832 0.764

DINCAE2 0.444 0.525 0.302

CRITER (ours) 0.391 0.518 0.036
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5.2.1 Qualitative comparison

For further insights we visualize the CRITER and DINCAE2 reconstructions in Figure 4 and Figure 5. We showcase ex-

amples from the Mediterranean and the Adriatic test set, respectively, highlighting the masked SST (xt⊙Mm), target SST

(xt), full reconstruction (x̃), variance (σ2), and RMSE computed over the entire target (RMSEall). Note that CRITER demon-225

strates an excellent ability to reconstruct high-frequency components of the target SST compared to DINCAE2. Additionally,

CRITER proves robust to clouds of arbitrary shape, whether small and scattered (Figure 4, first and last comparison) or large

and contiguous (Figure 4, second and third comparisons). Similar observations can be drawn from the comparisons on the

Adriatic dataset presented in Figure 5. On the Atlantic test set, both models face challenges in reconstructing high-frequency

components under deleted regions, as illustrated in Figure 6. However, we observe that CRITER is able to preserve the SST230

measurements over visible regions whereas DINCAE2 introduces significant smoothing. Additional comparison Figures are

shown in the Appendix (Figures B1, B2 and B3).
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Figure 4. Comparison of sea surface temperature (SST) reconstructions generated by CRITER and DINCAE2 on the Mediterranean dataset.

The columns display: (1) the original SST field with simulated missing values, (2) the original SST field, (3, 4) full reconstruction of the SST

field and the associated standard deviation, and (5) the absolute error map, highlighting the differences between the original and reconstructed

fields. All panel values are in ◦C. 12
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Figure 5. Same as Figure 4, but for the Adriatic domain.
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Figure 6. Same as Figure 4, but for the Atlantic domain.

14

https://doi.org/10.5194/gmd-2024-208
Preprint. Discussion started: 6 February 2025
c© Author(s) 2025. CC BY 4.0 License.



5.2.2 Comparison under different cloud coverage levels

The qualitative results presented in Section 5.2.1 suggest that CRITER is robust to clouds of various size. To test this, we com-

pare the reconstruction error of CRITER and DINCAE2 on images with different coverage levels. The cloud coverage is given235

by the fraction of pixels that are missing or deleted relative to the total number of pixels belonging to the sea. Specifically, we

categorize clouds into three distinct groups based on their coverage: low coverage (0%,60%], moderate coverage (60%,75%],

and high coverage (75%,100%). We then compute the reconstruction error within each group to assess the performance of

both models under varying cloud conditions.

On the Mediterranean test set, the cloud coverage ranged from a minimum of 8.7% to a maximum of 99%. CRITER out-240

performed DINCAE2 across all cloud coverage groups, achieving significant reductions in reconstruction error over deleted

regions. Specifically, the error was reduced by 21% in the low-coverage group, 18% in the moderate-coverage group, and 16%

in the high-coverage group. Similarly, on the Adriatic test set, the cloud coverage ranged from a minimum of 3.4% to a max-

imum of 93%. Here, CRITER substantially reduced the reconstruction error over deleted regions by 38% in the low-coverage

group, 49% in the moderate-coverage group, and 54% in the high-coverage group. Finally, on the Atlantic test set, the cloud245

coverage ranged from a minimum of 37% to a maximum of 97%. CRITER achieved a 4% decrease in the low coverage group,

and around 1.3% decrease in moderate and high coverage groups.
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Figure 7. Reconstruction error comparison between CRITER and DINCAE2 across different cloud coverage groups (low, moderate, and

high) on the Mediterranean, Adriatic, and Atlantic test sets. The three rows correspond to the RMSE computed over: (1) all ground truth

measurements, (2) missing measurements, and (3) observed measurements.
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5.3 Uncertainty estimation and bias analysis

CRITER and DINCAE2 estimate both the reconstruction of missing values and the associated uncertainty (i.e., the standard

deviation) for each pixel. To assess the reliability of the estimated standard deviation, we employ the scaled error metric250

ϵ(i) = (x(i)− x̃(i))/σ(i), as proposed by Barth et al. (2020). This metric quantifies the difference between the ground truth

observation x(i) and the reconstruction x̃(i), normalized by the estimated standard deviation σ(i). We calculate the mean,

µϵ, and standard deviation, σϵ, of the scaled error over the entire test set. Furthermore, we compute the bias, defined as the

(non-normalized) mean difference between the ground truth observations and reconstructions. An ideal reconstruction method

would thus have the bias equal to zero (i.e., predicted values are not globally under or over estimated) and σϵ = 1. (i.e., per-pixel255

disparities match the predicted uncertainties).

Figure 8 displays the histogram of the scaled error metric ϵ(i) for each test set, along with the corresponding Gaussian

distribution, characterized by the estimated mean µϵ and standard deviation σϵ. The mean (µϵ), standard deviation (σϵ), and

the bias for each dataset are provided in Table 2. Notably, CRITER moderately underestimates the standard deviation, with

σϵ values of 1.116,1.082, and 1.156 on the Mediterranean, Adriatic, and Atlantic datasets, respectively, ranging from 8% to260

16%. In contrast, on average, DINCAE2 significantly overestimates the standard deviation, with σϵ values of 0.334,0.996, and

0.801 across the three datasets. The over-estimation thus ranges from as little as 0.4% to substantial over-estimates of 66%.

CRITER consistently exhibits a very low bias (in order of 10−2◦ or lower) over all datasets. Furthermore, CRITER exhibits a

significantly smaller bias on the Mediterranean and Adriatic datasets than DINCAE2, whereas DINCAE2 achieves a smaller

bias on the Atlantic dataset. Note that, on the Adriatic dataset, DINCAE2 exhibits 18× larger bias than CRITER.265

Table 2. Comparison of CRITER and DINCAE2 on each test set, showing the mean of the scaled error (µϵ), standard deviation of the scaled

error (σϵ) — both dimensionless and bias in ◦C.

Dataset Model µϵ (◦C) σϵ (◦C) bias (◦C)

Mediterranean DINCAE2 -0.060 0.334 -0.060

CRITER (ours) -0.022 1.116 -0.007

Adriatic DINCAE2 0.198 0.996 0.128

CRITER (ours) 0.041 1.082 0.007

Atlantic DINCAE2 -0.017 0.801 -0.006

CRITER (ours) 0.118 1.156 0.047
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Figure 8. Histograms of the scaled error ϵ(i) for the Mediterranean, Adriatic, and Atlantic datasets, overlaid with the corresponding Gaussian

distributions, which are characterized by the estimated mean (µϵ) and standard deviation (σϵ). Additionally, an ideal model is shown in black.

5.4 Ablation study

We analyze the proposed CRITER architecture by ablating or replacing individual parts. All model variants are trained for a

total of 500 epochs (CRM and IRM are trained for 200 and 300 epochs, respectively) using the hyper-parameters described in

the Implementation details Section (5). The variants are evaluated on the Mediterranean dataset.

5.4.1 Importance of the coarse reconstruction stage270

We evaluate CRITERCRM, a variant without CRM. In this configuration, IRM is initialized with an uninformative prior x̃(0) = 0

and operates without FFM. Consequently, the first Residual Estimation Network (REN) assumes responsibility for the low-

frequency reconstruction, a task previously performed by the transformer-based CRM. Table 3 demonstrates that incorporating

CRM reduces the error over deleted and visible regions by 24% and 87%, respectively, validating the use of a transformer-based

model for estimating the low frequency components.275
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Table 3. Performance of CRITER and CRITERCRM which doesn’t utilize CRM.

Variant RMSEall (◦C) RMSEmis (◦C) RMSEvis (◦C)

CRITERCRM 0.205 0.336 0.129

CRITER 0.127 0.255 0.017

5.4.2 Architectural design of CRM

Vision transformer-based backbone. CRM (Section 3.1) utilizes a vision transformer-based architecture to compute a coarse

reconstruction. The main argument for the transformer-based design is to allow direct information flow from all observed

measurements into all corresponding tokens and the final coarse reconstruction. To evaluate the transformer design choice, we

replace it by a convolutional counterpart, which maintains the same spatial reduction as the original CRM.280

The convolutional variant, denoted with CRITERCNN, utilizes a CNN-based CRM which accepts the same input as the

original CRM, and reduces the spatial resolution 8× by three double conv blocks, each followed by a 2× 2 max pooling

operation. The number of convolutional kernels in each block is 64,128 and 256, respectively. This is followed by a bottleneck

layer, consisting of a double conv block with 512 convolutional kernels. The output latent features are upsampled to the

original spatial resolution by applying 3 transpose convolution layers, each followed by a double conv block. The number of285

convolutional kernels in each block is 256,128, and 64, respectively. Finally, a single 1× 1 convolutional layer computes the

coarse reconstruction, which is passed to the IRM along with the latent features.

Results in Table 4 show that using CRITERCNN leads to a substantial increase in reconstruction error over deleted and visible

regions. This verifies the importance of the transformer-based design of CRM and suggests that global information flow plays

an important role in obtaining good latent features and the coarse reconstruction.290

Table 4. Performance of CRITER variants with different backbones. CRITERCNN utilizes a CNN-based CRM, while CRITER utilizes the

proposed ViT-based CRM.

Variant RMSEall (◦C) RMSEmis (◦C) RMSEvis (◦C)

CRITERCNN 0.203 0.345 0.115

CRITER 0.127 0.255 0.017

Modeling spatio-temporal data dependencies. We next inspect the importance of using spatio-temporal information in

the coarse reconstruction. For this reason we remove the IRM module from CRITER, leading to only using our proposed

spatio-temporal masked-auto-encoder-based CRM architecture for reconstruction. We compare the reconstruction capabilities

of CRM with the recent MAESSTRO (Goh et al., 2024), which also employs a Vision Transformer (ViT) (Dosovitskiy et al.,

2021) and is based on masked autoencoder (He et al., 2022). In fact, the major difference is that CRM utilizes three temporally295

consecutive SST fields to reconstruct the central field, while MAESSTRO uses only the central field.
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Table 5 demonstrates that CRITERIRM reduces reconstruction error by 44% and 56% over deleted and visible regions, respec-

tively, compared to MAESSTRO. These results confirm the CRM modeling capability of spatio-temporal data dependencies,

which considerably improves reconstruction performance.

Table 5. Performance of MAESSTRO and CRM.

Model RMSEall (◦C) RMSEmis (◦C) RMSEvis (◦C)

MAESSTRO 0.487 0.607 0.434

CRITERIRM 0.242 0.337 0.190

5.4.3 Importance of the refinement stage300

To investigate the importance of refinement, we compare CRITER with two variants. The first variant, CRITERIRM does not

utilize refinement and takes the output of CRM as the final reconstruction. The second variant CRITERres modifies IRM to

estimate the full reconstruction at each iteration (in contrast to the proposed IRM that estimates a sequence of residuals).

Table 6 shows that utilizing refinement consistently leads to improved reconstruction. In particular the proposed IRM reduces

CRM reconstruction error by 24% and 91% over deleted and visible regions, respectively. Furthermore, the results confirm that305

our proposed approach of consecutive residual estimation leads to lower errors than when the full signal is reconstructed at each

refinement step. We hypothesise two reasons for this result. First, residual estimation approach better exploits the individual

REN networks in IRM, allowing each network to dedicate the full capacity for correction of the errors from the previous REN,

thus gradually focusing on the high-frequency content reconstruction. Secondly, since the final reconstruction is obtained by

summing the residuals, this enables a better gradient flow directly to each REN, thus enabling better training.310

Table 6. Performance of CRITER variants using different refinement approaches. CRITERIRM does not utilize refinement, CRITERres mod-

ifies IRM to estimate the full reconstruction at each iteration, while CRITER, utilizes the proposed IRM.

Variant RMSEall (◦C) RMSEmis (◦C) RMSEvis (◦C)

CRITERIRM 0.242 0.337 0.190

CRITERres 0.156 0.286 0.062

CRITER 0.127 0.255 0.017

5.4.4 Influence of refinement iteration steps

We next investigate the impact of varying the number of refinement steps in IRM (Section 3.2) on the reconstruction quality.

Figure 9 shows results of CRITER retrained with different number of steps in IRM. The lowest reconstruction error is reached

at three refinement steps. In particular the RMSEall is reduced by 8% compared to using a single refinement step. Using more

refinement steps does not improve performance, but leads to increased error. This is likely due to the parameter increase, since315

each refinement step introduces a new REN network, which makes training less efficient on the limited dataset size. We defer

explorations of more resilient IRM architectures to future work.
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Figure 9. Performance of CRITER variants with increasing number of refinement iterations.

5.4.5 Importance of the CRM latent features

In IRM (Section 3.2), the latent features computed by CRM are fused with the bottleneck features to improve injection of

global coarse information in the refinement steps. To evaluate the importance of this, we retrained CRITER without the coarse320

latent features fusion in IRMs – this variant is denoted as CRITERfus.

Results in Table 7 show that the reconstruction error over deleted and visible regions of CRITER with feature fusion reduces

by 1.9% and 19%, respectively compared to the feature fusion free counterpart.

Table 7. Comparison of CRITER, which utilizes latent features computed by CRM, with CRITERfus, which does not.

Variant RMSEall (◦C) RMSEmis (◦C) RMSEvis (◦C)

CRITERfus 0.130 0.260 0.021

CRITER 0.127 0.255 0.017

5.4.6 Importance of time auxiliary features

CRM (Section 3.1) takes as input a sequence of consecutive observation fields, that are concatenated with auxiliary features,325

particularly the cosine and sine of the day-of-the-year that encode the yearly cycle of SST. The auxiliary features offer addi-

tional information which CRM can incorporate when computing the latent features and generating the coarse reconstruction.

To evaluate the importance of this, we train a CRM variant which does not leverage auxiliary features, denoted by CRITERaux.

Results in Table 8 show that augmenting the input with auxiliary features leads to a 1.5% and 26% decrease in reconstruction

error over deleted and visible regions, respectively.330
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Table 8. Comparison of CRITER, which utilizes auxiliary features (cosine and sine of the day-of-the-year), with CRITERaux, which does

not.

Variant RMSEall (◦C) RMSEmis (◦C) RMSEvis (◦C)

CRITERaux 0.130 0.259 0.023

CRITER 0.127 0.255 0.017

6 Conclusions

This study introduced CRITER, a novel two-stage model for reconstructing sea surface temperature (SST) from sparse satellite

observations. High performance of the CRITER method stems from a Coarse Reconstruction Module (CRM) utilizing a vision

transformer (ViT) architecture for initial reconstruction, followed by an Iterative Refinement Module (IRM) to refine the

reconstruction with a focus on high-frequency information. Global receptive field of the ViT enables modeling of long-range335

dependencies in the data, while iterative refinement allows each network to focus its full capacity on modeling high-frequency

corrections. This combination leads to significant enhancements in overall performance. The introduction of CRM’s ViT global

attention mechanism proved crucial for effective long-range dependency modeling, addressing limitations of convolutional

architectures.

Our results show that CRITER surpasses the state-of-the-art DINCAE2 model by a significant margin across three diverse340

SST datasets: Mediterranean, Adriatic, and Atlantic. Notably, CRITER achieves substantial reductions in reconstruction error,

with improvements of up to 89% in observed regions and up to 44% in missing regions.

The iterative refinement process of IRM, focusing on residual estimation, further enhanced reconstruction accuracy by

efficiently utilizing model capacity for high-frequency variability in the SST observations. Ablation studies confirmed the

importance of CRM’s transformer-based design, the effectiveness of iterative residual estimation in IRM, and the utility of345

incorporating auxiliary features such as the day-of-year encoding.

Overall, CRITER sets a new benchmark for SST reconstruction, providing a robust framework that leverages the strengths

of both transformer and convolutional architectures to deliver superior performance. Future work will explore extending

CRITER’s applicability by incorporating additional environmental variables and increasing the temporal horizon for even

more accurate sparse data reconstructions.350

Code and data availability. Implementation of CRITER and the code to train and evaluate the model are available in the GitHub repository:

https://github.com/Matjaz12/CRITER. We also include CRITER weights pretrained on the Mediterranean, Adriatic and Atlantic datasets.

The persistent version of our GitHub repository containing code is available at https://doi.org/10.5281/zenodo.13923157. We publish all

three datasets at https://doi.org/10.5281/zenodo.13923189.
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Appendix A355

A1 Analysis of missing values in evaluation datasets

We analyze the extent of missing values in each dataset described in Section 2.1. To quantify the amount of missing data, we

define the cloud coverage At of an observation xt as:

At =
|1−Mt|
|Ml|

, (A1)

where Mt ∈ {0,1}W×H is the missing data mask corresponding to observation xt, and Ml ∈ {0,1}W×H is the land mask.360

Cloud coverage is computed as the fraction of pixels that are missing relative to the number of pixels belonging to sea areas.

We then calculate the mean cloud coverage over ∆t = 3 consecutive observation fields as A = 1
3 (At−1+At+At+1). Note that

the proportion of available information in the entire observation triplet is thus given by 1−A. Figure A1 presents a histogram

of the mean cloud coverage A for all three filtered datasets. The results show that the datasets can be ranked by the average

amount of available information in each observation triplet, from highest to lowest: Mediterranean, Adriatic, and Atlantic.365
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Figure A1. Histogram (100 bins) of cloud coverage for all three (filtered) datasets.

Appendix B

B1 Additional qualitative analysis figures

This section presents additional reconstructions generated by CRITER and DINCAE2 ((Barth et al., 2022)). For a detailed

discussion of the qualitative comparison, refer to Section 5.2.1.
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Figure B1. Same as Figure 4, on different samples.
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Figure B2. Same as Figure 4, but for the Adriatic domain.
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Figure B3. Same as Figure 4, but for the Atlantic domain.
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Appendix C370

C1 Implementation details of baseline models

MAESSTRO (Goh et al., 2024) is trained using mean squared error loss, as described in Section 3.3, for consistency in our

comparison. The model processes only the current time step SST field without auxiliary features. We modified MAESSTRO’s

original random patch masking to inject sampled real cloud masks, enhancing real-world applicability. An SST patch is masked

if its corresponding cloud mask patch contains any zero values. MAESSTRO employs a ViT-Tiny backbone with 12 encoder375

and decoder layers, 3 multi-head attention (MHA) heads, a token dimension of Dt = 192, layer-norm epsilon of 1e− 12, and

patch size of 8× 8. MAESSTRO is trained with batch size of 8 using the AdamW optimizer with a learning rate α = 3e− 4,

β1 = 0.9 and β2 = 0.95 for 100 epochs (warm-up period), then with a cosine decay scheduler (Loshchilov and Hutter, 2016)

with step size 50 for another 300 epochs.

DINCAE2 (Barth et al., 2022) is trained using the negative log-likelihood loss, as described in Section 3.3, to maintain380

consistency in our comparison. The model utilizes a sequence of three temporally consecutive SST fields, along with day-

of-the-year auxiliary features, to reconstruct the central SST field. Hyperparameters of the re-implemented DINCAE2 differ

slightly between the datasets. On the Mediterranean and Atlantic DINCAE2 is trained using the Adam optimizer, with an initial

learning rate of α = 4e− 3, β1 = 0.90, and β2 = 0.999, and a batch size of 8 for a total of 1000 epochs, using a step learning

rate scheduler with a step size of 100 epochs and a multiplicative factor of γ = 0.5. On the Adriatic we use an initial learing385

rate of α = 7e− 3 and a step size of 150, all other hyperparameters remain unchanged.
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