
 

Response to referee comment 1 
(https://doi.org/10.5194/gmd-2024-208-RC1) 

Review of "CRITER 1.0: A coarse reconstruction with iterative refinement network for sparse 
spatio-temporal satellite data" by Matjaž Zupancic Muc, Vitjan Zavrtanik, Alexander Barth, Aida 
Alvera-Azcarate, Matjaž Licer, and Matej Kristan 

This manuscript is a description of a novel machine learning technique for gap filling of SST 
analysis in the presence of possibly significant missing (satellite) observational data.    The 
reconstruction method uses high resolution, multi-sensor, binned where observations exist, L3S 
SST products from Copernicus Marine Service, and then uses a two stage approach machine 
learning technique to both fill the true missing data as well as further missing data removed from 
the L3S product to be used for training and validation.  The analysis is then validated against 
this removed data, showing improvements over other methods -- primarily DINEOF of 
Alvera-Azcárate et al., (2005).   

Firstly, I am not an expert on machine learning techniques, and therefore will offer limited 
comment of the techniques involved, but rather a potential user of improved SST analysis, and 
therefore offer comments more aligned with that perspective.   This is one of my major points of 
commentary on the present manuscript:  The paper as a whole is a rather technical description 
of the proposed method -- and rightly so.  However, I believe some additional commentary on 
potential users of the system, and what benefits it might offer them should be addressed in the 
introduction.  As it stands now, this is only addressed very briefly and casually in literally the first 
4 lines of the introduction, after which the manuscript pivots to solely detailing the technical 
details.   My additional major comment would be to better describe some of the terminology in 
the manuscript.  The meaning of seemingly simple terminology, such as that used for variance, 
as well as deleted and visible regions, is likely inherently obvious to the authors, however, the 
interpretation of these terms by the reader could lead to some confusion.  Some more detailed 
descriptions with regards to the used terminology may be necessary, even if this seems painfully 
obvious to the authors.   

We thank the reviewer for their thoughtful and constructive feedback.Below, we provide a 
detailed, comment-by-comment response addressing each point raised. 

 

 

 
 
 
 
 
 



 

Major comments 
 
Comment 1: Not enough motivating background information in the introduction. Other than the 
first 4 lines of the introduction, no motivating information is provided as to why improved 
high-resolution SST reconstructions are necessary. While everyone would presumably like the 
best possible SST reconstruction, what applications would best benefit, and how might they 
benefit? Although more directed towards satellite capabilities than gap filling techniques, a 
review article such as "Observational Needs of  Sea Surface Temperature" 
(https://doi.org/10.3389/fmars.2019.00420) would seem a good starting point for building 
motivation. Other articles exploring the use of improving the resolution of SST boundary 
conditions for numerical weather prediction could also prove useful.  A quick search yielded me 
these two possibilities (10.1175/JCLI-3275.1, 10.5194/hess-24-269-2020).  Presumably a more 
detailed background search would yield more.   
 
Response 1: We thank the reviewer for pointing this out.  We have now expanded on the 
motivation for our work and now the introductory paragraph reads: 

 
 
We hope this addresses the reviewer’s concerns. 
 
 
 



 

Comment 2: Given that high resolution global NWP systems -- ECMWF's IFS is 9km (1/12o) -- 
better high resolution global SST products are also required.  The SST reconstructions pursued 
in this manuscript are all regional (Mediterranean, Adriatic, North Atlantic).  It is not mentioned 
whether it would be practical to scale the proposed technique to global domains, such as gap 
filling the Copernicus Marine Service 1/10o ODYSSEA L3 product.   
 
Response 2: We appreciate the reviewer’s critical point regarding the scalability of our method 
to global domains, such as the Copernicus Marine Service 1/10o ODYSSEA L3 product. While 
CRITER has demonstrated success in regional SST reconstruction, scaling to global resolutions 
is constrained by the memory demands of our model’s global spatio-temporal attention 
mechanism. An obvious but not always available solution is to get access to a GPU cluster with 
enough memory to accommodate global domain training. The limitation could be circumvented, 
by classical techniques (similar to the ones found in typical implementations of optimal 
interpolation) such as tilling the domain (e.g., into 256 x 256 pixel regions) and processing each 
independently, followed by post-processing to mitigate boundary artifacts (i.e., applying 
overlapping tiles). Although this limits the exploitation of all available global context, it offers a 
practical pathway for scaling CRITER. Developing a memory-efficient, and possibly spatially 
iterative CRITER variant for global applications remains a challenging but promising direction for 
our future work.  
 
Some terminology used in the manuscript, while seemingly obvious, on further contemplation 
the meaning and interpretation is not so obvious.  
 
Comment 3: Uncertainty/Variance (σ2):  The uncertainty or variance outcome from the machine 
learning training process is introduced and summarized with the generic statement leading off 
section 3 in the opening 3 lines (ll. 82-84).  This statement represents the only description of 
how this quantity, which plays a large role in the analysis of the techniques performance and 
skill  over the rest of the manuscript.  If possible a more detailed description of how this term is 
output or diagnosed from the machine learning process would be warranted. From a naive 
aspect, I would assume this variance, or uncertainty is the range of SST values that would lead 
to the same best fit outcome in the training process, but obviously, not enough information is 
given to confirm this. Furthermore, as detailed in the paper on "Observational Needs of Sea 
Surface Temperature" given above, and the outcome of many workshops on the needs required 
of SST observations and analysis, there is a strong need for estimates of uncertainty to 
accompany estimates of SST.  The estimate of variance/uncertainty outcome from  this 
technique seems well posed to fulfill this requirement -- if its definition is an adequate measure 
of this. 
 
Response 3: We thank the reviewer for highlighting the need for a more detailed explanation of 
the uncertainty term "\sigma^2". We emphasize that the variance is not estimated as a fixed 
value during training. Rather, a network is trained to predict it from observations. In fact, we 
propose an iterative approach by the Iterative Refinement Module (IRM), whose two-channel 
output (reconstructed SST "\tilde{x}" and variance "\sigma^2"), is described in Section 3.2. At 
each pixel position "j" the IRM predicts a Gaussian distribution parametrized by the predicted 



 

mean "\tilde{x}_(j)", and standard deviation "\sigma_(j)", following the approach of Barth et al. 
(2020). The model is trained to maximize the likelihood of the ground truth SST values “x_(j)” 
hidden during training (see loss function in Equation 4). This leads to the model assigning a 
higher variance “\sigma_(j)^2” in areas of higher expected reconstruction error. Importantly, 
“\sigma_(j)^2” thus represents the model’s predictive uncertainty. The variance prediction quality 
is validated in Section 5.3, where we show that “\sigma_(j)” correlates with empirical errors, 
which confirms its reliability as an uncertainty measure. 
 
To clarify this, the following text (seen on the latexdiff below) has been added to Section 3.2, 
 

 
 
and the following to Section 3.3. 

 
 
 
Comment 4: The definition of variance becomes further confused with the introduction of scaled 
error (error divided by variance, l. 251, 3rd line of S5.3).  While the authors again use symbol σ 
for the scaled variance, or more precisely, σε, this is well identified.  The confusion (for me) was 
then when scaled variance , σε << 1 was compared with an idealized reconstruction where σε = 
1, this is casually referred to as an overestimate of the variance (ll. 261-262).  It took me more 
than a few moments to eventually realize this was the scaled variance, with the actual variance 
being a divisor to this scaled variance -- and therefore scaled variance ,  σε < 1, does indeed 
represent an overestimation of actual variance.   At the risk of insulting some all knowing 
readers, but lifting up some of the slower to comprehend readers, please somehow remind the 
readers that this is the scaled variance which is divided by the actual variance -- and therefore 
the statement does actually make sense.    
 



 

Response 4: We apologise for confusion and agree that the connection might not immediately  
be clear to even a skilled reader. To address the issue, we have added a sentence explaining 
how the value of standard deviation of the scaled error “\sigma_\epsilon” is interpreted before 
moving on to the analysis. Please see the corresponding latexdiff below. 

 
 
Comment 5: Visible and Deleted regions: The definition of deleted regions seem relatively 
obvious:  The regions where SST observations have artificially been removed from the L3 
product.  However, the definition of visible, sometimes referred to as observed, regions seems 
less definite:  Is it the fully observed region in the L3 SST before deletion, or the observed 
region in the L3 SST after removal of the deleted regions?  Please provide a precise definition 
of deleted and visible regions. 
 
Response 5: Thank you for pointing this out. Deleted regions correspond to observations in the 
L3 SST product that were artificially removed by simulated clouds and thus withheld during the 



 

training. Visible regions refer to the remaining observations in the L3 product after the removal 
of these deleted regions. To make this clearer, we have added the definition of these regions to 
Section 4.2 as shown on the latexdiff below. 

 

Typographic and style comments: 

Comment 6: Section 4 Results (l. 168) is empty? 

Response 6: Thank you for pointing out this oversight. The Results section was supposed to be 
followed by an Implementation details subsection. However, we've mistakenly labeled it as a 
section, which is why the results appeared empty. We’ve fixed this mistake as shown on the 
latexdiff below. 

 

Comment 7:  Figures 4-6, B1-B3:  Limits on σ and rmse.  The colour scale limits on  σ and 
rmse seem to be all automatically generated.  This is a hindrance to both comparing between 
techniques (CRITER/DINCAE2) and comparing over-dispersive and under-dispersive regions (σ 
vs rmse).  Although I realize this will often lead to regions of colour saturation, I would strive (at 



 

least for individual scenarios) to have the colour scale range identical between 
CRITER/DINCAE2 results and between σ and rmse (preferably with the zero value always 
represented). This would likely enhance your ability to discuss the results in the text, and by 
setting the scales for σ and rmse identically, it would then allow you to connect the results in 
Section 5.3 with the earlier results -- for instance, you would easily be able to identify regions 
where DINCAE2 has insufficient variance compared to RMSE, and vice versa for CRITER).   

Response 7:  

We thank the reviewer for the helpful suggestion. We have updated the figures accordingly: a 
common color scale is now used for both σ and RMSE, and across CRITER and DINCAE2 
results. However, we encountered challenges due to the significantly different distributions of the 
two methods. To improve readability, we limited the color scale to the 0th–90th percentile of the 
data and selected a new colormap. We have also reduced the number of samples displayed 
and increased the size of each image to better highlight differences in the SST fields. 

These adjustments provide a clearer visual comparison for the Adriatic and Atlantic datasets. 
However, for the Mediterranean dataset, DINCAE2's σ values are confined to a narrow range, 
and as a result, the image appears nearly uniform due to color scale saturation. Unfortunately, 
we were unable to resolve this without compromising comparability across the other scenarios. 

Please see the updated figures below. 



 

 



 

 

 

 

 

 

 

 



 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 
Comment 8: l. 263 :  in order of 10−2◦ or lower. Not sure what is meant by to the power of -2o?  
Possible typographical error.  "In order of" is more conventionally referred to as "Of the order of" 
 
Response 8: Thank you for catching this. We’ve added the missing “C” symbol for Celsius in 
line 263 and corrected the phrasing to the conventional “of the order of”. 

 



 

Further Comments: 

Comments outside scope of manuscript that may be worthy of at least some discussion. 

Comment 9: As already mentioned, I do not know much about technical details of machine 
learning techniques.  But what I do know is that the techniques are relatively agnostic to the 
physical relationship between the inputs and outputs. In this study, one inputs binned 
temperature observations and outputs the full field temperatures.  The input L3S products used 
in the study have undergone a variety of processing (radiance algorithms, bias corrections) to 
produce a binned multi-sensor temperature.  Would this technique be generalizable to the 
underlying radiances, complicated by requiring different training for each instrument?   The 
advantage might, however, be better instrument bias corrections and a further reduction in 
error? 

Response 9: We appreciate the reviewer’s insight into the potential benefits of applying 
CRITERIA to raw radiances. CRITER is designed for gridded SST data (L3/L3S products) 
structured as matrices representing spatially binned measurements. Raw radiances, however, 
are non-gridded. Adapting CRITER would require significant architectural modifications; for 
instance, replacing convolutional and transformer-based modules with methods suited for 
irregularly sampled data (e.g., point cloud networks).  

However, even if gridded radiances product would have been available, the training objective 
could be twofold:  

(i) radiance reconstruction: if the model is trained on raw radiances, its output would typically be 
reconstructed radiance, not SST  

(ii) temperature estimation: to instead produce SST estimates, the training data must include 
paired radiance-temperature samples. However, in the latter case, if temperature is derived from 
radiance via fixed equations, any errors in this transformation would be learned by the model, 
potentially propagating and amplifying biases. While using direct temperature measurements 
(e.g., in situ data) as targets could resolve this, obtaining sufficient amounts of independent in 
situ data would be very challenging. Therefore, although adapting CRITER to raw radiances 
might leverage fine-grained information and reduce reconstruction errors, these architectural 
and data challenges currently render the approach infeasible. 

All these trajectories are relevant for future work and we have amended the Conclusions of the 
paper to include these research possibilities. 

 

 

 

 



 

Comment 10: As mentioned in Major Comment #1: Is this scalable to a global analysis?  

Response 10: As mentioned in Response 2: We appreciate the reviewer’s critical point 
regarding the scalability of our method to global domains, such as the Copernicus Marine 
Service 1/10o ODYSSEA L3 product. While CRITER has demonstrated success in regional SST 
reconstruction, scaling to global resolutions is constrained by the memory demands of our 
model’s global spatio-temporal attention mechanism. An obvious but not always available 
solution is to get access to a GPU cluster with enough memory to accommodate global domain 
training. The limitation could be circumvented, by classical techniques (similar to the ones found 
in typical implementations of optimal interpolation) such as tilling the domain (e.g., into 256 x 
256 pixel regions) and processing each independently, followed by post-processing to mitigate 
boundary artifacts (i.e., applying overlapping tiles). Although this limits the exploitation of all 
available global context, it offers a practical pathway for scaling CRITER. Developing a 
memory-efficient, and possibly spatially iterative CRITER variant for global applications remains 
a challenging but promising direction for our future work.  

Comment 11: It could be interesting to apply a (spatial) spectral analysis on the results and 
underlying inputs, which admittedly would likely require large cloud free areas, at least for 
analyzing the spectral characteristics of the inputs.  Do the wavelength characteristics of the 
CRITER and DINCAE2 results differ, and how do they compare to the original wavelength 
characteristics of the binned SST L3S products:  Are certain wavelengths removed and/or 
enhanced? 

Response 11: We thank the reviewer for the suggestion and have added Section 4.3.2 (“Spatial 
Spectral Analysis”), and Appendix C1 (“Extended Spatial Spectral Analysis”) comparing the 
Power Spectral Density (PSD) of ground-truth observations against reconstructions from 
CRITER and DINCAE2. Please see the latex below. 

 



 

 



 

 



 

 



 

 

 

 



 

 

 

 

 

 

 

 

 
 



 

Response to referee comment 2 
(https://doi.org/10.5194/gmd-2024-208-RC2) 

General comment 
 
The paper by Matjaž Zupančič Muc et al. (2025) presents a novel ML-based architecture, 
which includes the combination of a Vision Transformer model with a U-Net, to reconstruct 
satellite-derived sea surface temperature values not measured by infrared sensors, mostly 
due to cloud coverage. 
While the technical parts concerning the networks involved are mostly well explained and 
exhaustive, I think there is a lack of attention when dealing with the datasets involved and 
the presentation of the results. I suggest publication after addressing some majors concerns 
explained in details below. 
 

We thank the reviewer for their thoughtful and constructive feedback. Below, we provide a 
detailed, comment-by-comment response addressing each point raised. 

 
Specific comments: 
 
Comment 1: Already in the abstract the authors refer to the difficulties “to accurately recover 
high-frequency variability, particularly in SST gradients in ocean fronts, eddies, and filaments, 
which are crucial for downstream processing and predictive tasks”, but there is no mention in 
the paper to some evaluation of SST gradients or the scales that the network is able to resolve 
(e.g., not a single plot of SST gradients or some spectra). Only RMSE is not sufficient, since it is 
possible to improve the RMSE of a reconstruction only at large scales. I think the authors should 
present some plots and some metrics that can show if the network effectively resolves the small 
scales (i.e., submesoscale and mesoscale) of the ocean. 
 
Response 1: We appreciate the reviewer's insightful comment regarding the need to evaluate 
small-scale feature reconstruction. To address this, we've added a spatial spectral analysis 
comparing Power Spectral Densities (PSD) of ground-truth SST fields against CRITER and 
DINCAE2 reconstructions, following established methodologies (Fanelli et al., 2024; Goh et al., 
2024). Our analysis focuses on the Ionian Sea - a relatively large region with significant SST 
variability - using observation-rich target fields to compute ground truth PSDs. Through 
systematic cloud mask sampling, we demonstrate that CRITER's PSD consistently aligns closer 
to ground truth than DINCAE2, particularly for wavenumbers corresponding to small-scale 
features. 
 
These results are presented in a new Section 4.3.2 ("Spatial Spectral Analysis") with supporting 
Figures 7. And Figure 8, which include: (i) target SST fields and reconstructed outputs, (ii) 
corresponding gradient magnitude visualizations, (iii) PSD comparisons across scales and 



 

sampled clouds. Additional analyses, including edge cases and failure scenarios, are provided 
in Appendix C1 ("Extended Spatial Spectral Analysis"). 
 

 



 

 



 

 



 

 



 

 



 

 

 

 

 

 

 

 

 

 
 



 

Comment 2: In the introduction I think the authors are missing several papers that have dealt 
with the reconstruction of fine-scale features when satellite data are missing, mainly citing the 
papers published by a limited number of researchers. In particular, I think it should be important 
to consider at least: 
 
Buongiorno Nardelli, B., Cavaliere, D., Charles, E., & Ciani, D. (2022). Super-resolving ocean 
dynamics from space with computer vision algorithms. Remote Sensing, 14(5), 1159. 
 
Fanelli, C., Ciani, D., Pisano, A., & Buongiorno Nardelli, B. (2024). Deep learning for the super 
resolution of Mediterranean sea surface temperature fields. Ocean Science, 20(4), 1035-1050. 
 
Lloyd, D. T., Abela, A., Farrugia, R. A., Galea, A., & Valentino, G. (2021). Optically enhanced 
super-resolution of sea surface temperature using deep learning. IEEE Transactions on 
Geoscience and Remote Sensing, 60, 1-14. 
 
Martin, S. A., Manucharyan, G. E., & Klein, P. (2023). Synthesizing sea surface temperature and 
satellite altimetry observations using deep learning improves the accuracy and resolution of 
gridded sea surface height anomalies. Journal of Advances in Modeling Earth Systems, 15(5), 
e2022MS003589. 
 
Martin, S. A., Manucharyan, G. E., & Klein, P. (2024). Deep learning improves global satellite 
observations of ocean eddy dynamics. Geophysical Research Letters, 51(17), e2024GL110059. 
 
Young, C. C., Cheng, Y. C., Lee, M. A., & Wu, J. H. (2024). Accurate reconstruction of 
satellite-derived SST under cloud and cloud-free areas using a physically-informed machine 
learning approach. Remote Sensing of Environment, 313, 114339. 
 
Moreover, I think authors should spend more words in the introduction explaining 
which are the limits of infrared measurements for SST data and which are the limits 
of using standard statistical techniques to reconstruct missing data in satellite images to 
motivate their paper. 
 
Response 2: 
 
We’ve extended the introduction to cite the recommended papers. Please see the latexdiff 
bellow: 



 

 
 
Comment 3: Section 2 starts stating that L3 SST observations will be used in the paper but 
they were never defined. Even if it seems obvious, it is a good practice to explain what L3 
images are and which are their characteristics.  
Response 3: 
Thank you for pointing this out. We have now included a brief description of the L3 products so 
that the corresponding passage looks like this: 

 
 
Moreover, there is no explanation on the motivation of the choices of the datasets, especially 
about two things: (a) Why do the authors choose one Near Real Time (NRT) dataset and two 



 

reprocessed/multi-years (MY) products? The processing chains behind these products can be 
very different and the datasets can differ among them. (b) Why do the authors choose for the 
Adriatic a different product with respect to the Mediterranean one (which includes entirely the 
Adriatic Sea)? 
 
Thank you for pointing this out. There are two main reasons for using different datasets. First, 
we aimed for rigorous evaluation, analyzing CRITER’s generalization capabilities over various 
datasets. Second, NRT products have higher resolution, while MY products have longer time 
span. Especially time span of MY products was something we wanted to test separately to gain 
access to a more significant training set, and - even more importantly - a larger test set, which 
ensures results rigor.  
 
To address the reviewer’s comment, we now explicitly point out the difference in used products 
and include the following passage into the revised manuscript: 

 
 
 
 



 

Comment 4: In Sec. 2.2.1 authors introduce the choice to select sequences of three days to 
construct the datasets for the training, can they explain the reason for this choice? 
 
Response 4 
The three-day sequence length is motivated by prior work (Barth et al. , 2020), which showed 
that optimal SST reconstruction is achieved with sequences of three days. Additionally, we 
found that three-day sequences optimize the performance-memory tradeoff of our method. 
Specifically: (1) Single-day observations proved insufficient for accurate reconstruction, 
especially in regions with large contiguous cloud cover; (2) three-day sequences provided 
sufficient information while maintaining manageable GPU memory usage during training. This is 
empirically supported by Table 5 (Performance of MAESSTRO and CRM), which shows that a 
Vision Transformer (ViT), using a sequence of three observations, achieves a 44% lower 
reconstruction error over deleted regions compared to the single-observation baseline. We have 
added a reference to Barth et al. 2020 to direct the reader to the original paper for further details 
on this manner. 
 
Comment 5: In Sec. 2.2.2, it is not clear to me if the splitting between training/validation/test 
datasets is in chronological order (i.e., the test is always the last 5% of the temporal series) or 
they apply a shuffle before splitting the datasets. 
 
Response 5: The datasets were split in strict chronological order, with the final 5% of the 
temporal series reserved as the test set. This approach ensures that the model is evaluated on 
future, unseen data (i.e., no temporal overlap between training and test phases), which is a 
standard practice for time-series analysis (Hyndman & Athanasopoulos, 2021). To clarify this, 
we have updated the text as seen on the latexdiff below. 

 
Comment 6: At the beginning of Sec. 3.3, authors state that the CRM part is “self-supervised” 
but then they define a loss function based on an error between the reconstruction and a “ground 
truth measurement”. If there is a target, then the network is not “self” supervised, but just 
supervised. 
 
Response 6: In machine learning, specifically in computer vision, “self-supervised” typically 
refers to the fact that human-level-annotations are not required. For example, this is how 
masked autoencoders are used to train general-purpose backbones. Or how the classical 
DINOv2 backbone is trained (i.e., by automatically manipulating/perturbing data). In the context 
of CRM training, blocks of data are synthetically removed (e.g., simulating cloud cover), and the 
model is tasked with reconstructing the original, unobstructed data – the principle of 
masked-autoencoders. We do acknowledge, however, that the term “self-supervised” might not 



 

be well established in the domain of geophysics, thus we have replaced it with “supervised with 
automatically generated targets” to avoid ambiguity. 
 
Comment 7: Implementation details: How do authors choose N_IRM? And the number of 
epochs? 
 
Response 7: The number of refinement iterations N_IRM was determined through an ablation 
study on the Mediterranean dataset (See Sec 5.4.4). We observed that increasing N_IRM from 
1 to 3 reduced the reconstruction error by 8%. However, beyond three iterations, performance 
degraded due to overfitting (since each additional iteration introduces a new residual estimation 
network). We therefore fix N_IRM=3, as this was the highest number of iterations, while not yet 
overfitting, and use it for all remaining datasets and experiments. To determine the number of 
epochs, we monitored the validation loss and found that training for 600 epochs ensured a 
consistent convergence across all three datasets. To clarify this, we have updated the text on 
implementation details, where we refer the reader to the respective ablation study in Section 
5.4.4 for the choice of the number of iterations. 
 

 
 
Comment 8: Regarding the performances: why do authors compute the average of the RMSE 
only for 10 reconstruction? 
 
Response 8: Thank you for raising this important point. To clarify, the RMSE values in Table 1 
are computed over the entire test sets–specifically, 256, 390, and 172 SST fields for the 
Mediterranean, Adriatic, and Atlantic datasets, respectively. To enhance the metric stability, we 
sample 10 distinct cloud masks for each test SST field, simulating realistic observational 
variability. We thus evaluate the performance on 2560, 3900, and 1720 masked SST fields for 
the respective regions, ensuring robust statistical validation. Our preliminary analysis showed 
that the performance measures are stable with even fewer cloud samples, but we used 10 for 
redundancy. We’ve updated the text (as shown on the latexdiff below) to make this more 
explicit. 



 

 

 
Comment 9: Row 204: Authors state that DINCAE2 is the “best SST reconstruction method” but 
it seems to me that this is more of an opinion and that they have not tested all the methods 
available in the literature to state something like that. 
 
Response 9: We appreciate the reviewer’s comment and agree that our original wording may 
have conveyed an unintended sense of overgeneralization. In interest of modesty and to avoid a 
possible overstatement, we have rephrased the text to: “DINCAE2 is a well-known and highly 
competitive SST reconstruction method, serving as a widely recognized benchmark in recent 
studies (Barth et al., 2024).” 

Comment 10: Rows 210-212: It is not clear to me how authors can assess that the MAESSTRO 
network is limited due to the single step approach, can you please elaborate this sentence? 

Response 10: The limitation arises because a single time step (single-day) input provides 
insufficient context to infer missing SST values in regions with large contiguous cloud cover. For 
example, if clouds obscure >75% of the region, the sparse remaining measurements make 
reconstruction highly ambiguous. By extending the input to a three-day sequence, the model 
gains access to additional spatio-temporal patterns from adjacent days. This multi-day approach 
increases the available information, as demonstrated in Table 5 (“Performance of MAESSTRO 
and CRM”): switching from single-day to three-day inputs reduces reconstruction error by 44%. 
Furthermore, this limitation is observed by the authors of MAESSTRO (Goh et al. 2024). Please 
refer to Figure 11 in https://doi.org/10.5194/os-20-1309-2024, which shows a significant 
degradation in reconstruction quality in the presence of a large realistic cloud. 

 

 

 

 

https://doi.org/10.5194/os-20-1309-2024


 

Comment 11:I do not understand the difference between the “RMSE_all” of Table 1 and row 
225 (it seems to me that it is calculated over the entire tested dataset) and the “RMSE_all” 
above the plots in Figs. 4, 5, 6 and the analogous in Appendix. There has to be different 
definitions since the values are different but, therefore, the name should change. It is also 
strange that all the values “RMSE_all” in the plots are larger than the average in Table 1, are the 
authors showing the worst outcomes? Moreover, in general Sec. 5.2.1 presents some issues: 
there are a lot of small panels and only 10 lines of comments of what the images are revealing. I 
suggest choosing fewer samples and enlarging the size of the images that are significant in 
order to appreciate the differences between SST fields. Moreover, I suggest changing the 
colormap for the variance and the RMSE since it is almost impossible to appreciate the 
variations. 

Response 11: Thank you for identifying this ambiguity. You are correct that the term “RMSE_all” 
appears in multiple contexts with different values. The exact definition of RMSE_all is given in 
Sec 5.1 (Performance measures). In Table 1 the mean RMSE_all (computed over the entire test 
set) is reported, while in Figures 4, 5, and 6 (and Appendix) the RMSE_all for the selected SST 
fields is shown. We have updated the table caption to explicitly state that presented metrics are 
averaged over the entire test set. 

The higher RMSE values in the figures compared to Table 1 reflect our intentional focus on most 
challenging examples (as the reviewer correctly assumed), where reconstruction is inherently 
difficult. These cases were selected to highlight scenarios where CRITER’s improvements over 
DINCAE2 are most pronounced. 
 
We thank the reviewer for the valuable suggestion. In response, we have revised the figures to 
reduce the number of samples and enlarge the most significant images, improving the visibility 
of differences in the SST fields. Additionally, we have updated the colormaps for both variance 
(σ) and RMSE to enhance perceptual clarity.  

Please see an example of the new figures below. Other figures along with a more detailed 
account of the changes, including how we addressed the issue of comparability and color scale 
saturation, is provided in our response to Reviewer 1, Comment 7. 

 



 

 

 
 
Comment 12: In general Fig. 4,5, 6 and similar (after a very big zoom) shows a not 
homogeneous SST field, where the changes in the effective resolution of the SST field due to 
the network's reconstruction is very clear. Can authors please comment on this issue? 
 
Response 12: The inhomogeneity in spatial resolution (i.e., the difference in sharpness) 
between cloud-free and cloud-obscured regions is an expected outcome of our reconstruction 
framework. In cloud-free regions the model preserves fine details, ensuring minimal distortion of 
the original input data. In contrast, obscured regions require the model to infer missing SST 
values using spatio-temporal context from adjacent days / pixels. These reconstructed regions 
exhibit reduced sharpness due to the inherent uncertainty caused by sparse observations. Our 
model, therefore, better preserves the original data from visible regions and more accurately 



 

reconstructs the missing observations compared to DINACE2 and MAESSTRO.  We’ve updated 
the text in Section 4.3.1. (as shown on the latexdiff below) explaining the reason behind this 
observation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Comment 13: Throughout the paper, the significance interval for errors is missing. Please, 
show them to ensure that the differences between methods are relevant. 
 
Response 13: We thank the reviewer for raising this important point. Following Barth et al. 
(2021), we now report both the mean error and the 10%/90% percentiles of the error 
distribution, providing a more comprehensive characterization of the expected error range. 
Specifically, we have updated Table 1 (“Comparison with state-of-the-art”) and Figure 9 
(“Comparison under different cloud coverage levels”), as seen on the latediffs below. 

 

 
 
We hope this addresses the reviewer’s concerns. 



 

Technical corrections 
 
Comment 14: Rows 18-19 page 1: Eliminate after “...approaches” the references 
“(Alvera-Azcarate et al., 2005), (Barth et al., 2020), (Barth et al., 2022), (Fablet et al., 2021), 
(Beauchamp et al., 2023), (Goh et al., 2024)”. Authors already recall all of those, specifying the 
techniques used, in next rows. 
 
Response 14: As suggested, we have removed the redundant references on page 1 (lines 
18–19). 
 
Comment 15: Section 2.1: (a) The way to present the datasets is incorrect. There is a standard 
way to cite products from the Copernicus Marine Service that can be found here: 
https://help.marine.copernicus.eu/en/articles/4444611-how-to-cite-copernicus-marine-products-a
nd-services. (b) The sentence “The arc degree resolution of the measurements…” is incorrect 
for two reasons. First, the L3S products are merged multi-sensors products which are not at the 
original resolution of the data measured by the sensors, but remapped on a grid at a chosen 
resolution. Therefore, the products’ resolutions are 0.0625° or 0.05°, not the measurements. 
Moreover, it is redundant to say “arc degree resolution”, it is “spatial resolution” or “0.05° 
resolution”. (c) Authors state that product X “contains” from day Y to day Z. Actually, all the 
products used include temporal series longer (and spatial coverage bigger) than the one stated 
in this section, so authors should either present the whole temporal series (coverage) or explain 
why they chose only that temporal (spatial) part. 
 
Response 15: 
Thanks for these remarks. The manuscript has been revised accordingly to address points (a) 
and (b).  
 
Regarding point (c), we limited the spatial and temporal coverage of each dataset primarily due 
to memory constraints during model training. The choice of datasets was partly determined by 
the following considerations. Adriatic basin was chosen because it is the basin the authors are 
familiar with and because it is an elongated semi-enclosed basin with consequently poorer 
satellite coverage. This yields Adriatic basin as a challenging reconstruction problem. 
Furthermore, this basin - together with the central Mediterranean - is the region of training of the 
original DINCAE 2.0 paper (Barth et al., 2021), which is why we cropped the  Mediterranean 
Sea - High Resolution and Ultra High Resolution L3S Sea Surface Temperature  dataset to 
focus on the Central Mediterranean region.  Additionally, the selected region contains areas with 
distinct dynamical behaviors—from northern Adriatic with persistent zonal temperature and 
salinity fronts and meriodional mesoscale temperature gradients to the much deeper Ionian Sea 
shows high variability between its eastern and western parts (Fanelli et al., 2024). 
 
European North West Shelf/Iberia Biscay Irish Seas – High Resolution ODYSSEA Sea Surface 
Temperature Multi-sensor L3 Observations dataset was restricted to the Northwestern Ireland / 
North Atlantic region because this region of essentially open Atlantic ocean is substantially 

https://help.marine.copernicus.eu/en/articles/4444611-how-to-cite-copernicus-marine-products-and-services
https://help.marine.copernicus.eu/en/articles/4444611-how-to-cite-copernicus-marine-products-and-services


 

different from the enclosed central Mediterranean and Adriatic basin. Furthermore, its frequent 
cloud cover poses a significant challenge for reconstruction methods. 

This approach allowed us to manage computational demands while concentrating on relevant 
and oceanographically distinct regions. The regions could also be chosen from other parts of 
the global ocean but we believe that the choice of the regions in this paper is adequate to 
demonstrate that CRITER generalizes well to quite different regimes of surface temperatures. 
We hope this clarifies our rationale.  

We’ve updated the manuscript to reflect these points. Please see the corresponding latexdif 
below. 

 



 

 

 
 



 

Comment 16: The word “occluded” in the title of Section 2.2.1 sounds strange, the common 
way to define it is “missing” or similar. 
 
Response 16: We agree that 'occluded' was suboptimal terminology. The section title has been 
revised to 'Filtering out days with excessive cloud coverage' for greater precision. 
 
Comment 17: At row 82, authors introduce W and H as dimensions but they never defined 
them. 
 
Response 17: Thank you for pointing this out. We’ve added a sentence defining width (W) and 
height (H). 
 
Comment 18: Fig. 2: the caption should explain every variable in the image. 
 
Response 18: As suggested, we updated the caption to explain all variables involved. For 
convenience, we paste the figure here. 

 
 
Comment 19: Row 94: The use of trigonometric functions for the day of the year is a common 
procedure to take into account the seasonality of SST, it was not proposed by Barth et al. 
(2020). 
 
Response 19: Thank you, we have removed the citation. 
 
Comment 20: Row 96: Authors never define D_t. 



 

 
Response 20: We have revised Section 3.1 (as seen on latexdiff below) to explicitly define 
“D_t” as the dimension of the tokens used in the Vision Transformer (ViT) blocks. 
 

 
Comment 21: Row 107: To be consistent throughout the paper, “1 x 8^2” should be “1 x 8 x 8”. 
 
Response 21: The original shape “1 x 8^2” of the output (flattened) token was intentional, since 
tokens are vectors; in this case of dimension “1 x 64”. At the output, they are reshaped into 
spatial “1 x 8 x 8” grids (patches). 
 
Comment 22: Row 148: When authors state “...number of ground truth measurements “that are 
not on land”, it confuses me. By definition, if we are talking about SEA surface temperature 
measurements, they are not on land 
 
Response 22: We apologize for the lack of clarity in this sentence. You are absolutely correct 
that SST measurements are, by definition, recorded over the ocean and not on land. The 
phrase “that are not on land” was redundant and unintentionally confusing. We have removed it. 
 
Comment 23: Row 149: “M_l (·)_(i)” should be “M_l(i) (·)”. 
 
Response 23: We recognize that the original formatting created ambiguity between the mask 
“M_l” and the indexing operator “(·)_(i)”. To resolve this, we have restructured the text to 
explicitly separate the two notations. Please see the latexdif below. 
 



 

 
 
Comment 24: Fig. 3: Colorbar are missing, even if it is not the intent of the image to show 
specific values of SST, they should be included, especially for the masks 
 
Response 24: As suggested, we added the colorbar to SST and mask images in Figure 3. 

 
 
Comment 25: Rows 185-187: This sentence has been already stated before, no need to 
repeat. Also all the definitions of the matrices. 
 
Response 25: Thank you for spotting this redundancy. We have removed the duplicate 
sentence in rows 185–187. 
 
Comment 26: Row 207: Please specify what does it mean “under the same conditions”, i.e., 
datasets, hyperparameters, number of epochs… 
 
Response 26: The phrase “under the same conditions” means that all models were trained 
using the same dataset splits, with hyperparameters tuned on the validation set, and the same 
loss function computed over the same regions as CRITER. In the case of MAESSTRO, some 
architectural modifications were necessary to ensure comparability. Specifically, we replaced 
MAESSTRO’s original random patch masking with sampled real cloud masks to align with our 



 

evaluation protocol. Additionally, all models were evaluated on the identical test set using the 
same set of sampled cloud masks. These procedures and settings are fully detailed in Appendix 
C1 (Implementation Details of Baseline Models), to which we have added a cross-reference for 
clarity and reproducibility. We have updated the text to clarify this. Please see the latexdiff 
below. 

 
 
Comment 27: Row 263: I think a “C” is missing when referring to degree Celsius. 
 
Response 27: Thank you for catching this oversight. We have updated the text to include the 
missing “C” for Celsius in line 263. 
 
Comment 28: Caption of Table 2: what authors mean with “both dimensionless and bias in °C”. 
What is dimensionless? 
 
Response 28: Thank you for your question — the term was used incorrectly. We meant 
unitless. By “dimensionless” we meant to indicate that the scaled error metric “\epsilon_i” lacks 
physical units as they cancel out. Consequently, its mean (“\mu_{\epsilon_i}”) and standard 
deviation (“\sigma_{\epsilon_i}”) are unitless. We have thus changed the term “dimensionless” 
into “unitless”. Furthermore, we identified an error in Table 2 where the units for 
“\mu_{\epsilon_i}” and “\sigma_{\epsilon_i}” were incorrectly specified. This has been corrected 
by denoting these unitless quantities with a “/” in the table’s unit column. Please see the latexdif 
below.

 


