Response to referee comment 2
(https://doi.org/10.5194/gmd-2024-208-RC2)

General comment

The paper by Matjaz Zupanci¢ Muc et al. (2025) presents a novel ML-based architecture,
which includes the combination of a Vision Transformer model with a U-Net, to reconstruct
satellite-derived sea surface temperature values not measured by infrared sensors, mostly
due to cloud coverage.

While the technical parts concerning the networks involved are mostly well explained and
exhaustive, | think there is a lack of attention when dealing with the datasets involved and
the presentation of the results. | suggest publication after addressing some majors concerns
explained in details below.

We thank the reviewer for their thoughtful and constructive feedback. Below, we provide a
detailed, comment-by-comment response addressing each point raised.

Specific comments:

Comment 1: Already in the abstract the authors refer to the difficulties “to accurately recover
high-frequency variability, particularly in SST gradients in ocean fronts, eddies, and filaments,
which are crucial for downstream processing and predictive tasks”, but there is no mention in
the paper to some evaluation of SST gradients or the scales that the network is able to resolve
(e.g., not a single plot of SST gradients or some spectra). Only RMSE is not sufficient, since it is
possible to improve the RMSE of a reconstruction only at large scales. | think the authors should
present some plots and some metrics that can show if the network effectively resolves the small
scales (i.e., submesoscale and mesoscale) of the ocean.

Response 1: We appreciate the reviewer's insightful comment regarding the need to evaluate
small-scale feature reconstruction. To address this, we've added a spatial spectral analysis
comparing Power Spectral Densities (PSD) of ground-truth SST fields against CRITER and
DINCAEZ2 reconstructions, following established methodologies (Fanelli et al., 2024; Goh et al.,
2024). Our analysis focuses on the lonian Sea - a relatively large region with significant SST
variability - using observation-rich target fields to compute ground truth PSDs. Through
systematic cloud mask sampling, we demonstrate that CRITER's PSD consistently aligns closer
to ground truth than DINCAEZ2, particularly for wavenumbers corresponding to small-scale
features.

These results are presented in a new Section 4.3.2 ("Spatial Spectral Analysis") with supporting
Figures 7. And Figure 8, which include: (i) target SST fields and reconstructed outputs, (ii)
corresponding gradient magnitude visualizations, (iii) PSD comparisons across scales and



sampled clouds. Additional analyses, including edge cases and failure scenarios, are provided
in Appendix C1 ("Extended Spatial Spectral Analysis").

265

270

4.3.2 Spatial Spectral Analysis

We conduct spatial spectral analysis by comparing the Power Spectral Density (PSD) of ground-truth observations against
reconstructions from CRITER and DINCAE2, focusing on the Ionian Sea region due to its significant SST variability.

First, we identify observation fields with maximum number of known measurements within the ROI (Region Of Interest)
and compute their PSDs over the ROI. Following Fanelli et al. (2024), we compute PSD using FFT with a Blackman-Harris
window. We then sample 30 cloud masks with distinct coverage over the ROI, with the fraction of missing values ranging from
50% to 98%. For each mask, we simulate missing data in the observation fields, reconstruct them using both methods, and
compute PSD over the reconstructed ROL

Figure 7 shows an observation sequence with few available easurements. Both methods maintain PSD values near the target
at low wavenumbers, indicating comparable low-frequency reconstruction. For wavenumbers k > 4%, however, CRITER’s
PSD remains closer to the target than DINCAE2’s, demonstrating its superior ability to resolve high-frequency components.
Figure 8 depicts a case with more measurements, where both methods generally align closer to the target. Nevertheless,

CRITER still outperforms DINCAE? at high wavenumbers (k > 5%‘:3). Additional results are provided in Appendix C1.
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Figure 7. Visualization of reconstruction performance: Row 1 shows the full fields (left-to-right: Masked SST, Target SST, CRITER recon-
struction, DINCAE?2 reconstruction) with the Region of Interest (ROI) marked by a black-dashed rectangle. Row 2 displays the corresponding
ROL fields: Target SST, CRITER reconstruction, and DINCAE? reconstruction. Row 3 presents gradient magnitudes within the ROI for tar-
get, CRITER, and DINCAE?2 outputs. Row 4 compares Power Spectral Densities: Target ROI (black), CRITER mean = std (orange band),
DINCAE2 mean =+ std (blue band), with solid orange and dotted blue lines showing CRITER’s and DINCAE2’s PSDs for the selected

example.
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Figure 8. Same as Figure 7, but for another sample.



415 Appendix C
C1 Extended Spatial Spectral Analysis

This section presents supplementary power spectral density (PSD) comparisons. Figure C1 shows a challenging case with

cycles

sparse measurements where CRITER’s PSD remains closer to the target (on average) for wavenumbers & > 4 deg - Figure
cycles

C2 depicts a high-measurement scenario featuring a failure case for CRITER: minor noise amplification beyond & > 5 P

420 A similar issue occurs with DINCAEZ2, but in a different wavenumber band: Figure C3 shows significant noise amplification

within & € [2,4] E%IS For a detailed discussion of the comparison, refer to Section 4.3.2.
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Figure C1. Same as Figure 7, but for a different sample.
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Figure C2. Same as Figure 7, but for a different sample.
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Figure C3. Same as Figure 7. but for a different sample.



Comment 2: In the introduction | think the authors are missing several papers that have dealt
with the reconstruction of fine-scale features when satellite data are missing, mainly citing the
papers published by a limited number of researchers. In particular, | think it should be important
to consider at least:

Buongiorno Nardelli, B., Cavaliere, D., Charles, E., & Ciani, D. (2022). Super-resolving ocean
dynamics from space with computer vision algorithms. Remote Sensing, 14(5), 1159.

Fanelli, C., Ciani, D., Pisano, A., & Buongiorno Nardelli, B. (2024). Deep learning for the super
resolution of Mediterranean sea surface temperature fields. Ocean Science, 20(4), 1035-1050.

Lloyd, D. T., Abela, A., Farrugia, R. A., Galea, A., & Valentino, G. (2021). Optically enhanced
super-resolution of sea surface temperature using deep learning. IEEE Transactions on
Geoscience and Remote Sensing, 60, 1-14.

Martin, S. A., Manucharyan, G. E., & Klein, P. (2023). Synthesizing sea surface temperature and
satellite altimetry observations using deep learning improves the accuracy and resolution of
gridded sea surface height anomalies. Journal of Advances in Modeling Earth Systems, 15(5),
e2022MS003589.

Martin, S. A., Manucharyan, G. E., & Klein, P. (2024). Deep learning improves global satellite
observations of ocean eddy dynamics. Geophysical Research Letters, 51(17), e2024GL110059.

Young, C. C., Cheng, Y. C., Lee, M. A., & Wu, J. H. (2024). Accurate reconstruction of
satellite-derived SST under cloud and cloud-free areas using a physically-informed machine
learning approach. Remote Sensing of Environment, 313, 114339.

Moreover, | think authors should spend more words in the introduction explaining

which are the limits of infrared measurements for SST data and which are the limits

of using standard statistical techniques to reconstruct missing data in satellite images to
motivate their paper.

Response 2:

We’ve extended the introduction to cite the recommended papers. Please see the latexdiff
bellow:



These can be categorized into two groups: (i) extensions of the Optimal Interpolation (OI) scheme (Taburet et al., 2019),
(Ubelmann et al., 2021), and (ii) data-driven approaches fAdvera-Azefrate-et-al 2005 Barth-et- ol 20201 Barth-etal 2022
2H- atrehe 2023446 #k2024)-The latter includes methods based on Empirical Orthogo-

nal Functions (EOFs), such as DINEOF (Alvera-Azcdrate et al., 2005), and more recently, end-to-end deep learning techniques.

35 Notable deep learning methods include DINCAEL (Barth et al., 2020), JADRSR (Buongiorno Nardelli et al., 2022; Fanelli et al., 202

et al., 2024).
Traditional methods like DINEOF (Alvera-Azcirate et al., 2005) have been widely adopted, iteratively filling missing data
40 using truncated EOF decomposition. While effective for large-scale patterns, DINEOF struggles with fine-scale features,
mostly because of their transient nature. Deep learning approaches have since emerged, surpassing traditional methods” per-

formance. DINCAEI (Barth et al., 2020) introduced a UNet-based (Ronneberger et al., 2015) model with probabilistic output,

while 4DVarNet (Fablet et al., 2021) proposed an energy-based formulation for interpolation, achieving comparable SST re-

45

50 DINCAE2? (Barth et al., 2022), the current state-of-the-art and successor to DINCAELI, extended the original implementation
with an additional refinement UNet. It operates on temporally consecutive partial SST observations, gradually improving
central SST field reconstruction. However, its finite receptive field limits long-range spatio-temporal dependency exploitation,
resulting in oversmoothed reconstructions lacking high-frequency details. Recently, MAESSTRO (Goh et al., 2024) addressed
some limitations by adapting the Masked Autoencoder (MAE) (He et al., 2022) framework for SST reconstruction. It employs

55 a Vision Transformer (ViT) (Dosovitskiy et al., 2021) architecture to capture global spatial dependencies. However, its single-

timestep approach neglects temporal correlations, potentially compromising reconstruction quality for large, contiguous cloud

occlusions. Furthermore, MAESSTRO's random patch masking strategy during training and evaluation may inadequately

represent real cloud patterns, potentially yielding optimistic error estimates.

Comment 3: Section 2 starts stating that L3 SST observations will be used in the paper but
they were never defined. Even if it seems obvious, it is a good practice to explain what L3
images are and which are their characteristics.

Response 3:

Thank you for pointing this out. We have now included a brief description of the L3 products so
that the corresponding passage looks like this:

For our study we utilize Level 3 (L3) sea surface temperature (SST) satellite observation products. L3 level of product refers

to the satellite product where spatially sparse and irregular point observations of the ocean surface are gridded into a fixed

Moreover, there is no explanation on the motivation of the choices of the datasets, especially
about two things: (a) Why do the authors choose one Near Real Time (NRT) dataset and two



reprocessed/multi-years (MY) products? The processing chains behind these products can be
very different and the datasets can differ among them. (b) Why do the authors choose for the
Adriatic a different product with respect to the Mediterranean one (which includes entirely the
Adriatic Sea)?

Thank you for pointing this out. There are two main reasons for using different datasets. First,
we aimed for rigorous evaluation, analyzing CRITER’s generalization capabilities over various
datasets. Second, NRT products have higher resolution, while MY products have longer time
span. Especially time span of MY products was something we wanted to test separately to gain
access to a more significant training set, and - even more importantly - a larger test set, which
ensures results rigor.

To address the reviewer’'s comment, we now explicitly point out the difference in used products
and include the following passage into the revised manuscript:

1. Central Mediterranean: The SST_MED_SST _L3S _NRT _OBSERVATIONS _010 _ 012 _a (Med) dataset contains

uuuuuuuuuuuuuuuuu

(0.0625° x 0.0625°).

2. Adriatic: The SST_MED_PHY_L3S_MY_010 _042 (Pisano et al., 2016: Casey et al., 2010) dataset contains daily

multi-year reprocessed (MY) SST measurements over the Adriatic sea from August 25 1981 to December 31 2022, Fhe

DINCAE2, CRITER also generalizes well across various datasets of SST. Furthermore, multi-year reprocessed datasets come



Comment 4: In Sec. 2.2.1 authors introduce the choice to select sequences of three days to
construct the datasets for the training, can they explain the reason for this choice?

Response 4

The three-day sequence length is motivated by prior work (Barth et al. , 2020), which showed
that optimal SST reconstruction is achieved with sequences of three days. Additionally, we
found that three-day sequences optimize the performance-memory tradeoff of our method.
Specifically: (1) Single-day observations proved insufficient for accurate reconstruction,
especially in regions with large contiguous cloud cover; (2) three-day sequences provided
sufficient information while maintaining manageable GPU memory usage during training. This is
empirically supported by Table 5 (Performance of MAESSTRO and CRM), which shows that a
Vision Transformer (ViT), using a sequence of three observations, achieves a 44% lower
reconstruction error over deleted regions compared to the single-observation baseline. We have
added a reference to Barth et al. 2020 to direct the reader to the original paper for further details
on this manner.

Comment 5: In Sec. 2.2.2, it is not clear to me if the splitting between training/validation/test
datasets is in chronological order (i.e., the test is always the last 5% of the temporal series) or
they apply a shuffle before splitting the datasets.

Response 5: The datasets were split in strict chronological order, with the final 5% of the
temporal series reserved as the test set. This approach ensures that the model is evaluated on
future, unseen data (i.e., no temporal overlap between training and test phases), which is a
standard practice for time-series analysis (Hyndman & Athanasopoulos, 2021). To clarify this,
we have updated the text as seen on the latexdiff below.

2.2.2 Train, validation and test datasets

100 The filtered satellite SST observations are chronologically split into three subsets: the train set, which comprises the first 90%
of the samples, the validation set, which comprises the next 5% of the samples, and the test set, which consists of the last 5% of
the samples. The models are trained on the train set, the hyper-parameters are tuned on the validation set, and the performance
is assessed on the test set. This approach ensures evaluation on future, unseen data with no temporal overlap between training.

Comment 6: At the beginning of Sec. 3.3, authors state that the CRM part is “self-supervised”
but then they define a loss function based on an error between the reconstruction and a “ground
truth measurement”. If there is a target, then the network is not “self” supervised, but just
supervised.

Response 6: In machine learning, specifically in computer vision, “self-supervised” typically
refers to the fact that human-level-annotations are not required. For example, this is how
masked autoencoders are used to train general-purpose backbones. Or how the classical
DINOv2 backbone is trained (i.e., by automatically manipulating/perturbing data). In the context
of CRM training, blocks of data are synthetically removed (e.g., simulating cloud cover), and the
model is tasked with reconstructing the original, unobstructed data — the principle of
masked-autoencoders. We do acknowledge, however, that the term “self-supervised” might not



be well established in the domain of geophysics, thus we have replaced it with “supervised with
automatically generated targets” to avoid ambiguity.

Comment 7: Implementation details: How do authors choose N_IRM? And the number of
epochs?

Response 7: The number of refinement iterations N_IRM was determined through an ablation
study on the Mediterranean dataset (See Sec 5.4.4). We observed that increasing N_IRM from
1 to 3 reduced the reconstruction error by 8%. However, beyond three iterations, performance
degraded due to overfitting (since each additional iteration introduces a new residual estimation
network). We therefore fix N_IRM=3, as this was the highest number of iterations, while not yet
overfitting, and use it for all remaining datasets and experiments. To determine the number of
epochs, we monitored the validation loss and found that training for 600 epochs ensured a
consistent convergence across all three datasets. To clarify this, we have updated the text on
implementation details, where we refer the reader to the respective ablation study in Section
5.4 .4 for the choice of the number of iterations.

3.4 Implementation details

CRM (Section 3.1) consists of 12 encoder and decoder transformer blocks, with 3 multi-head attention (MHA) heads, a token
190 dimension of D; =192, and a patch size of 3 x 8 x 8, where 3 denotes the number of chanels, while 8 x 8 represents the
width and height, respecitvely. IRM (Section 3.2) consists of a CNN-based encoder with 3 double conv blocks, each followed
by a 2 x 2 max pooling operation. The double conv block is composed of two 3 x 3 convolutional layers, each followed by a
batch normalization layer and a ReLU activation function. The number of convolutional kernels in each block is 32, 64, and 128,
respectively. This is followed by another double conv block, with 256 kernels, at the bottleneck of the network, a Feature Fusion
195 Module (FFM), and a decoder with 3 transpose convolution layers, each followed by a concatenation based skip connection and
a double conv block. The number of kernels in each block is 128,64, and 32, respectively. IRM utilizes Ngy = 3 refinement
iterations — this value is selected based on the results of the ablation study in Section 4.5.4 . Hyperparameters #; and f, are set
as ), = In(Nigm) + 6, and f; = Nipabl to ensure that the variance o2 is bounded between 1/exp(#,) and 1/85 for an arbitrary

number of refinement iterations Ngy > 1.

Comment 8: Regarding the performances: why do authors compute the average of the RMSE
only for 10 reconstruction?

Response 8: Thank you for raising this important point. To clarify, the RMSE values in Table 1
are computed over the entire test sets—specifically, 256, 390, and 172 SST fields for the
Mediterranean, Adriatic, and Atlantic datasets, respectively. To enhance the metric stability, we
sample 10 distinct cloud masks for each test SST field, simulating realistic observational
variability. We thus evaluate the performance on 2560, 3900, and 1720 masked SST fields for
the respective regions, ensuring robust statistical validation. Our preliminary analysis showed
that the performance measures are stable with even fewer cloud samples, but we used 10 for
redundancy. We've updated the text (as shown on the latexdiff below) to make this more
explicit.



The reconstruction error of visible regions is defined as
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235 where |M; ® M; ® M,,| is the number of visible ground truth measurements. Fe-

binary-masks M To enhance the metric stability, we sample 10 distinct cloud masks for each test SST field, simulating realistic

crions, g obes st vlidetion.
Comment 9: Row 204: Authors state that DINCAEZ2 is the “best SST reconstruction method” but

it seems to me that this is more of an opinion and that they have not tested all the methods
available in the literature to state something like that.

Response 9: We appreciate the reviewer’'s comment and agree that our original wording may
have conveyed an unintended sense of overgeneralization. In interest of modesty and to avoid a
possible overstatement, we have rephrased the text to: “DINCAE?Z2 is a well-known and highly
competitive SST reconstruction method, serving as a widely recognized benchmark in recent
studies (Barth et al., 2024).”

Comment 10: Rows 210-212: It is not clear to me how authors can assess that the MAESSTRO
network is limited due to the single step approach, can you please elaborate this sentence?

Response 10: The limitation arises because a single time step (single-day) input provides
insufficient context to infer missing SST values in regions with large contiguous cloud cover. For
example, if clouds obscure >75% of the region, the sparse remaining measurements make
reconstruction highly ambiguous. By extending the input to a three-day sequence, the model
gains access to additional spatio-temporal patterns from adjacent days. This multi-day approach
increases the available information, as demonstrated in Table 5 (“Performance of MAESSTRO
and CRM”"): switching from single-day to three-day inputs reduces reconstruction error by 44%.
Furthermore, this limitation is observed by the authors of MAESSTRO (Goh et al. 2024). Please
refer to Figure 11 in https://doi.org/10.5194/0s-20-1309-2024, which shows a significant
degradation in reconstruction quality in the presence of a large realistic cloud.



https://doi.org/10.5194/os-20-1309-2024

Comment 11:1 do not understand the difference between the “RMSE_all” of Table 1 and row
225 (it seems to me that it is calculated over the entire tested dataset) and the “RMSE_all”
above the plots in Figs. 4, 5, 6 and the analogous in Appendix. There has to be different
definitions since the values are different but, therefore, the name should change. It is also
strange that all the values “RMSE_all” in the plots are larger than the average in Table 1, are the
authors showing the worst outcomes? Moreover, in general Sec. 5.2.1 presents some issues:
there are a lot of small panels and only 10 lines of comments of what the images are revealing. |
suggest choosing fewer samples and enlarging the size of the images that are significant in
order to appreciate the differences between SST fields. Moreover, | suggest changing the
colormap for the variance and the RMSE since it is almost impossible to appreciate the
variations.

Response 11: Thank you for identifying this ambiguity. You are correct that the term “RMSE_all”
appears in multiple contexts with different values. The exact definition of RMSE_all is given in
Sec 5.1 (Performance measures). In Table 1 the mean RMSE_all (computed over the entire test
set) is reported, while in Figures 4, 5, and 6 (and Appendix) the RMSE_all for the selected SST
fields is shown. We have updated the table caption to explicitly state that presented metrics are
averaged over the entire test set.

The higher RMSE values in the figures compared to Table 1 reflect our intentional focus on most
challenging examples (as the reviewer correctly assumed), where reconstruction is inherently
difficult. These cases were selected to highlight scenarios where CRITER’s improvements over
DINCAEZ2 are most pronounced.

We thank the reviewer for the valuable suggestion. In response, we have revised the figures to
reduce the number of samples and enlarge the most significant images, improving the visibility
of differences in the SST fields. Additionally, we have updated the colormaps for both variance
(o) and RMSE to enhance perceptual clarity.

Please see an example of the new figures below. Other figures along with a more detailed
account of the changes, including how we addressed the issue of comparability and color scale
saturation, is provided in our response to Reviewer 1, Comment 7.
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Figure 5. Same as Figure 4, but for the Adriatic domain.

Comment 12: In general Fig. 4,5, 6 and similar (after a very big zoom) shows a not
homogeneous SST field, where the changes in the effective resolution of the SST field due to
the network's reconstruction is very clear. Can authors please comment on this issue?

Response 12: The inhomogeneity in spatial resolution (i.e., the difference in sharpness)
between cloud-free and cloud-obscured regions is an expected outcome of our reconstruction
framework. In cloud-free regions the model preserves fine details, ensuring minimal distortion of
the original input data. In contrast, obscured regions require the model to infer missing SST
values using spatio-temporal context from adjacent days / pixels. These reconstructed regions
exhibit reduced sharpness due to the inherent uncertainty caused by sparse observations. Our
model, therefore, better preserves the original data from visible regions and more accurately



reconstructs the missing observations compared to DINACE2 and MAESSTRO. We've updated
the text in Section 4.3.1. (as shown on the latexdiff below) explaining the reason behind this
observation.

4.3.1 Qualitative comparison

For further insights we visualize the CRITER and DINCAE?2 reconstructions in Figure 4 and Figure 5. We showcase exam-
ples from the Mediterranean and the Adriatic test set, respectively, highlighting the masked SST (x; © M,,,), target SST (x;),
265 full reconstruction (x), W#%IMWWM), and RMSE computed over the entire target (RMSEy). Nete-that

ERITER-Notice that CRITER preserves fine details in cloud-free regions, ensuring minimal distortion of the original input

data. In contrast, obscured (deleted) regions require the model to infer missing SST values using spatio-temporal context from

adjacent days / pixels. These reconstructed regions exhibit reduced sharpness as a result of the inherent uncertainty caused
by sparse observations. However, CRITER demonstrates an excellent ability to reconstruct high-frequency components of the
270 target SST under deleted regions compared to DINCAE2. Additionally, CRITER proves robust to clouds of arbitrary shape,
whether small and scattered (Figure 4, first and last comparison) or large and contiguous (Figure 4, second and third compar-
isons). Similar observations can be drawn from the comparisons on the Adriatic dataset presented in Figure 5. On the Atlantic
test set, both models face challenges in reconstructing high-frequency components under deleted regions, as illustrated in Fig-
ure 6. However, we observe that CRITER is able to preserve the SST measurements over visible regions whereas DINCAE2

275 introduces significant smoothing. Additional comparison Figures are shown in the Appendix (Figures B1, B2 and B3).



Comment 13: Throughout the paper, the significance interval for errors is missing. Please,
show them to ensure that the differences between methods are relevant.

Response 13: We thank the reviewer for raising this important point. Following Barth et al.
(2021), we now report both the mean error and the 10%/90% percentiles of the error
distribution, providing a more comprehensive characterization of the expected error range.
Specifically, we have updated Table 1 (“Comparison with state-of-the-art”) and Figure 9
(“Comparison under different cloud coverage levels”), as seen on the latediffs below.

Table 1. Comparison of CRITER, DINCAE2 and MAESSTRO. We report the overall reconstruction error (RMSE,;), as well as the error

over deleted (RMSE,;;) and observed regions (RMSE,;;), where the two numbers in parentheses correspond to the 10% and 90% percentiles

of the error.

Dataset Model RMSE,; (°C) RMSE i, (°C) RMSE, (°C)
Mediterranean  MAESSTRO ~ 0.487 (0,320, 0.657)  0.607 (0,394, 0.856)  0.434 (0.299, 0.564)
DINCAE2 0.209 (0.140,0.300)  0.319(0.226,0.418)  0.148 (0.112, 0.184)
CRITER (ours)  0.127 (0.037,0.235)  0.255 (0.168,0.352)  0.017 (0.013, 0.021)

Adriatic MAESSTRO  0.456 (0.296,0.635)  0.583 (0,362, 0.844)  0.392 (0.261, 0.539)
DINCAE2 0.270 (0.111,0.522) 0433 (0.203,0.769)  0.106 (0.087, 0.129)
CRITER (ours) 0.130 (0.045,0.222) 0243 (0.140,0358)  0.021 (0014, 0.030)
Adantic MAESSTRO  0.802(0508,1239) 0.832(0.514,1.301) 0764 (0,479, 1.137).
DINCAE2  0.444(0332,0.581)  0.525(0.396,0.692) 0302 (0.236,0364)

CRITER (ours) 0.391 (0.249,0.542) 0518 (0.386,0.692)  0.036 (0.019, 0.046)
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Figure 9. Reconstruction error comparison between CRITER and DINCAE? across different cloud coverage groups (low, moderate, and
high) on the Mediterranean, Adriatic, and Atlantic test sets. The three rows correspond to the RMSE computed over: (1) all ground truth

measurements, (2) missing measurements, and (3) observed measurements. The error bars indicate the 10% percentile, mean, and 90%,
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We hope this addresses the reviewer’s concerns.



Technical corrections

Comment 14: Rows 18-19 page 1: Eliminate after “...approaches” the references
“(Alvera-Azcarate et al., 2005), (Barth et al., 2020), (Barth et al., 2022), (Fablet et al., 2021),
(Beauchamp et al., 2023), (Goh et al., 2024)”. Authors already recall all of those, specifying the
techniques used, in next rows.

Response 14: As suggested, we have removed the redundant references on page 1 (lines
18-19).

Comment 15: Section 2.1: (a) The way to present the datasets is incorrect. There is a standard
way to cite products from the Copernicus Marine Service that can be found here:
https://help.marine.copernicus.eu/en/articles/4444611-how-to-cite-copernicus-marine-products-a
nd-services. (b) The sentence “The arc degree resolution of the measurements...” is incorrect
for two reasons. First, the L3S products are merged multi-sensors products which are not at the
original resolution of the data measured by the sensors, but remapped on a grid at a chosen
resolution. Therefore, the products’ resolutions are 0.0625° or 0.05°, not the measurements.
Moreover, it is redundant to say “arc degree resolution”, it is “spatial resolution” or “0.05°
resolution”. (c) Authors state that product X “contains” from day Y to day Z. Actually, all the
products used include temporal series longer (and spatial coverage bigger) than the one stated
in this section, so authors should either present the whole temporal series (coverage) or explain
why they chose only that temporal (spatial) part.

Response 15:
Thanks for these remarks. The manuscript has been revised accordingly to address points (a)
and (b).

Regarding point (c), we limited the spatial and temporal coverage of each dataset primarily due
to memory constraints during model training. The choice of datasets was partly determined by
the following considerations. Adriatic basin was chosen because it is the basin the authors are
familiar with and because it is an elongated semi-enclosed basin with consequently poorer
satellite coverage. This yields Adriatic basin as a challenging reconstruction problem.
Furthermore, this basin - together with the central Mediterranean - is the region of training of the
original DINCAE 2.0 paper (Barth et al., 2021), which is why we cropped the Mediterranean
Sea - High Resolution and Ultra High Resolution L3S Sea Surface Temperature dataset to
focus on the Central Mediterranean region. Additionally, the selected region contains areas with
distinct dynamical behaviors—from northern Adriatic with persistent zonal temperature and
salinity fronts and meriodional mesoscale temperature gradients to the much deeper lonian Sea
shows high variability between its eastern and western parts (Fanelli et al., 2024).

European North West Shelf/lberia Biscay Irish Seas — High Resolution ODYSSEA Sea Surface
Temperature Multi-sensor L3 Observations dataset was restricted to the Northwestern Ireland /
North Atlantic region because this region of essentially open Atlantic ocean is substantially


https://help.marine.copernicus.eu/en/articles/4444611-how-to-cite-copernicus-marine-products-and-services
https://help.marine.copernicus.eu/en/articles/4444611-how-to-cite-copernicus-marine-products-and-services

different from the enclosed central Mediterranean and Adriatic basin. Furthermore, its frequent
cloud cover poses a significant challenge for reconstruction methods.

This approach allowed us to manage computational demands while concentrating on relevant
and oceanographically distinct regions. The regions could also be chosen from other parts of
the global ocean but we believe that the choice of the regions in this paper is adequate to
demonstrate that CRITER generalizes well to quite different regimes of surface temperatures.
We hope this clarifies our rationale.

We've updated the manuscript to reflect these points. Please see the corresponding latexdif
below.



2 Input data: Sea surface temperature
2.1 Evaluation datasets

70 For our study we utilize Level 3 (L3) sea surface temperature (SST) satellite observation products. L3 level of product refers

observed quantity.

Specifically we consider the following three datasets corresponding to three different geographic regions:

75 1. Central Mediterranean: The SST_MED_SST _L3S _NRT _OBSERVATIONS _010 _ 012 _a (Med) dataset contains

(0.0625° x 0.0625°).

2. Adriatic: The SST_MED_PHY_L35_MY_010 _042 (Pisano et al., 2016; Casey et al., 2010) dataset contains daily

80 multi-year reprocessed (MY) SST measurements over the Adriatic sea from August 25 1981 to December 31 2022. Fhe
are-degreetesolution-of-the-measurements—is-The dataset is provided on a remapped grid with a spatial resolution of

ments from January 1, 1982 - January 1, 2022. Fhe-are-degreevesolutionof-the-measurementsis-The dataset is provided
85 on a remapped grid with a spatial resolution of (0.05° x 0.05°).
3

Atlantic_region is essentially an open ocean region, very different from the Adriatic. These regions should demonstrate
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Comment 16: The word “occluded” in the title of Section 2.2.1 sounds strange, the common
way to define it is “missing” or similar.

Response 16: We agree that 'occluded' was suboptimal terminology. The section title has been
revised to 'Filtering out days with excessive cloud coverage' for greater precision.

Comment 17: At row 82, authors introduce W and H as dimensions but they never defined
them.

Response 17: Thank you for pointing this out. We’ve added a sentence defining width (W) and
height (H).

Comment 18: Fig. 2: the caption should explain every variable in the image.

Response 18: As suggested, we updated the caption to explain all variables involved. For
convenience, we paste the figure here.

tokenize
detokenize

X = [xe—1,X¢, Xpp1]

Figure 2. Given observations for three consecutive days [X¢—1,X¢, X¢+1] and a binary mask M, indicating missing pixels, CRITER densely
reconstructs X, in two phases. First, the CRM module estimates a coarse reconstruction X, which the IRM module then iteratively refines
to produce the final reconstruction % and uncertainty o>. CRM tokenizes the input into tokens requiring reconstruction T, and contextual
tokens T'.. These contextual tokens are encoded by a ViT-based encoder into T'¢, combined with T, and decoded by a ViT-based decoder
into decoded tokens TP, which are finally mapped to %;. In the IRM module, dashed lines indicate the iterative refinement process. At each
2(

iteration #, the current reconstruction estimate %% and uncertainty estimate o %) are refined by adding the predicted residuals: reconstruction

residual 5,(5 ) and uncertainty residual § 2 . The index in REN indicates the change in network parameters in each iteration.

Comment 19: Row 94: The use of trigonometric functions for the day of the year is a common
procedure to take into account the seasonality of SST, it was not proposed by Barth et al.
(2020).

Response 19: Thank you, we have removed the citation.

Comment 20: Row 96: Authors never define D_t.



Response 20: We have revised Section 3.1 (as seen on latexdiff below) to explicitly define
“‘D_t" as the dimension of the tokens used in the Vision Transformer (ViT) blocks.

3.1 Coarse reconstruction module (CRM)

115 The coarse reconstruction module (CRM, Figure 2) follows the ViT encoder-decoder architecture (Dosovitskiy et al., 2021),
similar to spatio-temporal MAE (Feichtenhofer et al., 2022). The input observation fields X, = [x;_1,%¢, Xt 1] € R3x1xWxH
are first fed to a tokenization process. To encode information about the yearly temperature cycle, each observation field
x; is concatenated channel-wise with a day-of-the-year auxiliary tensor a; = [sin(d; 2% ), cos(d; 2% )] € R** Wl praposed
by-Barth-et-al+2020%-where the two channels contain constants and d; 1s the numerical day of year index (between 1 and 365).

120 The resulting fields are split into non-overlapping 3 x 8 x 8 patches which are then flattened and linearly projected into atokens
of shape 1 x D, dimensionat-tokens, where D, is the dimension of tokens used in ViT blocks. thus creating the list of tokens
T = {T,,T.}. Tokens T, correspond to patches in x; with at least one unobserved pixel, and thus have to be reconstructed.
Tokens T are the remaining tokens and they are used as a context for reconstruction. To encode the extent of missing values
in a token, all tokens in x; are summed with their corresponding mask tokens. These are obtained by splitting the binary mask

125  indicating missing pixels M, € {0,1}"# into 8 x 8 non-overlapping patches, which are then flattened and projected into
mask tokens of shape 1 x D;. To maintain the necessary spatio-temporal location of each token, all tokens in T are summed

with a spatio-temporal positional embedding as in Feichtenhofer et al. (2022).

6

Comment 21: Row 107: To be consistent throughout the paper, “1 x 822" should be “1 x 8 x 8”.

Response 21: The original shape “1 x 822" of the output (flattened) token was intentional, since
tokens are vectors; in this case of dimension “1 x 64”. At the output, they are reshaped into
spatial “1 x 8 x 8” grids (patches).

Comment 22: Row 148: When authors state “...number of ground truth measurements “that are
not on land”, it confuses me. By definition, if we are talking about SEA surface temperature
measurements, they are not on land

Response 22: We apologize for the lack of clarity in this sentence. You are absolutely correct
that SST measurements are, by definition, recorded over the ocean and not on land. The
phrase ‘“that are not on land” was redundant and unintentionally confusing. We have removed it.

Comment 23: Row 149: “M_I| (-)_(i)” should be “M_I(i) (*)".
Response 23: We recognize that the original formatting created ambiguity between the mask

“‘M_I" and the indexing operator “(-)_(i)”. To resolve this, we have restructured the text to
explicitly separate the two notations. Please see the latexdif below.



180 by copying clouds from a random day not included in the triplet to maintain mask simulation realism. CRM is trained to
minimize the following reconstruction error:

c B 1
CRM = M, & M|

N o 2
Zi:l [(x10) = %ei)) " My Mugy | 3
where %, is the coarse reconstruction generated by CRM, mask M, has zeros at locations where ground truth measurements
within the observation field x; are missing, while M, has zeros at spatial locations belonging to land, |M; ® M;| denotes the

185 number of ground truth measurements that-are-not-ontand-The summation goes over the N pixels in each of x;, X;, M, and

M;. The operator (-)(;) is-an-indexing-operator thatindexes the i-th element of a matrix. The consecutive observations used as

the model input and the masks M, M;, M,,, used in the training process are visualized in Figure 3.

Comment 24: Fig. 3: Colorbar are missing, even if it is not the intent of the image to show
specific values of SST, they should be included, especially for the masks

Response 24: As suggested, we added the colorbar to SST and mask images in Figure 3.

Xt+4+1 Xt © Mm
3

Xt
1

M,

Figure 3. (Top row) A sequence of three consecutive observation fields x;_1,X¢,X;+1 and the central observation x; ® M,,,, with additional
missing values, deleted by the sampled mask M,,,. (Bottom row) The land mask IM; with zeros at land locations, the missing data mask M
with zeros at locations with missing measurements in x;, and IM,,,, which is a randomly sampled M, from an observation field not included

in the input.

Comment 25: Rows 185-187: This sentence has been already stated before, no need to
repeat. Also all the definitions of the matrices.

Response 25: Thank you for spotting this redundancy. We have removed the duplicate
sentence in rows 185-187.

Comment 26: Row 207: Please specify what does it mean “under the same conditions”, i.e.,
datasets, hyperparameters, number of epochs...

Response 26: The phrase “under the same conditions” means that all models were trained
using the same dataset splits, with hyperparameters tuned on the validation set, and the same
loss function computed over the same regions as CRITER. In the case of MAESSTRO, some
architectural modifications were necessary to ensure comparability. Specifically, we replaced
MAESSTRO'’s original random patch masking with sampled real cloud masks to align with our



evaluation protocol. Additionally, all models were evaluated on the identical test set using the
same set of sampled cloud masks. These procedures and settings are fully detailed in Appendix
C1 (Implementation Details of Baseline Models), to which we have added a cross-reference for
clarity and reproducibility. We have updated the text to clarify this. Please see the latexdiff
below.

4.3 Comparison with state-of-the-art

We compare CRITER with eurrently-the-best DINCAE2 (Barth et al., 2022), a well-known and highly competitive SST recon-

250 struction methodDINCAE2(Barth-et-al2022)-, serving as a widely recognized benchmark in recent studies (Barth et al., 2024
. .and with the recently presented MAESSTRO (Goh et al., 2024) on the three datasets from Section 2.1. We reimplemented

both DINCAE2 (originally in Julia) following Barth et al. (2022) and MAESSTRO (public implementation unavailable) fol-
lowing Goh et al. (2024) in Pytorch. Beth-To ensure a fair evaluation, both methods were trained under-the-same-eonditions
as-CRITERto-ensure-afairevaluation—using the same dataset splits, with tuned hyperparameters, and employed the same loss

255 function computed over identical regions to CRITER. For MAESSTRO, architectural modifications were necessary to ensure
comparability. Please refer to Appendix D1 for the implementation details of baseline models.

Comment 27: Row 263: | think a “C” is missing when referring to degree Celsius.

Response 27: Thank you for catching this oversight. We have updated the text to include the
missing “C” for Celsius in line 263.

Comment 28: Caption of Table 2: what authors mean with “both dimensionless and bias in °C”.
What is dimensionless?

Response 28: Thank you for your question — the term was used incorrectly. We meant
unitless. By “dimensionless” we meant to indicate that the scaled error metric “\epsilon_i” lacks
physical units as they cancel out. Consequently, its mean (“\mu_{\epsilon_i}") and standard
deviation (“\sigma_{\epsilon_i}") are unitless. We have thus changed the term “dimensionless”
into “unitless”. Furthermore, we identified an error in Table 2 where the units for
“‘mu_{\epsilon_i}" and “\sigma_{\epsilon_i}” were incorrectly specified. This has been corrected
by denoting these unitless quantities with a “/” in the table’s unit column. Please see the latexdif
below.

Table 2. Comparison of CRITER and DINCAE?2 on each test set, showing the mean of the scaled error (i), standard deviation of the scaled
both dimenstentess-unitless and bias in °C.

error (o¢)

Dataset Model fe ((€/) 0 (2€/) bias (°C)
Mediterranean DINCAE?2 -0.060 0.334 -0.060
CRITER (ours) -0.022 1.116 -0.007
Adriatic DINCAE2 0.198 0.996 0.128
CRITER (ours) 0.041 1.082 0.007
Atlantic DINCAE2 -0.017 0.801 -0.006

CRITER (ours) 0.118 1.156 0.047




