
 

Response to referee comment 1 
(https://doi.org/10.5194/gmd-2024-208-RC1) 

Review of "CRITER 1.0: A coarse reconstruction with iterative refinement network for sparse 
spatio-temporal satellite data" by Matjaž Zupancic Muc, Vitjan Zavrtanik, Alexander Barth, Aida 
Alvera-Azcarate, Matjaž Licer, and Matej Kristan 

This manuscript is a description of a novel machine learning technique for gap filling of SST 
analysis in the presence of possibly significant missing (satellite) observational data.    The 
reconstruction method uses high resolution, multi-sensor, binned where observations exist, L3S 
SST products from Copernicus Marine Service, and then uses a two stage approach machine 
learning technique to both fill the true missing data as well as further missing data removed from 
the L3S product to be used for training and validation.  The analysis is then validated against 
this removed data, showing improvements over other methods -- primarily DINEOF of 
Alvera-Azcárate et al., (2005).   

Firstly, I am not an expert on machine learning techniques, and therefore will offer limited 
comment of the techniques involved, but rather a potential user of improved SST analysis, and 
therefore offer comments more aligned with that perspective.   This is one of my major points of 
commentary on the present manuscript:  The paper as a whole is a rather technical description 
of the proposed method -- and rightly so.  However, I believe some additional commentary on 
potential users of the system, and what benefits it might offer them should be addressed in the 
introduction.  As it stands now, this is only addressed very briefly and casually in literally the first 
4 lines of the introduction, after which the manuscript pivots to solely detailing the technical 
details.   My additional major comment would be to better describe some of the terminology in 
the manuscript.  The meaning of seemingly simple terminology, such as that used for variance, 
as well as deleted and visible regions, is likely inherently obvious to the authors, however, the 
interpretation of these terms by the reader could lead to some confusion.  Some more detailed 
descriptions with regards to the used terminology may be necessary, even if this seems painfully 
obvious to the authors.   

We thank the reviewer for their thoughtful and constructive feedback.Below, we provide a 
detailed, comment-by-comment response addressing each point raised. 

 

 

 
 
 
 
 
 



 

Major comments 
 
Comment 1: Not enough motivating background information in the introduction. Other than the 
first 4 lines of the introduction, no motivating information is provided as to why improved 
high-resolution SST reconstructions are necessary. While everyone would presumably like the 
best possible SST reconstruction, what applications would best benefit, and how might they 
benefit? Although more directed towards satellite capabilities than gap filling techniques, a 
review article such as "Observational Needs of  Sea Surface Temperature" 
(https://doi.org/10.3389/fmars.2019.00420) would seem a good starting point for building 
motivation. Other articles exploring the use of improving the resolution of SST boundary 
conditions for numerical weather prediction could also prove useful.  A quick search yielded me 
these two possibilities (10.1175/JCLI-3275.1, 10.5194/hess-24-269-2020).  Presumably a more 
detailed background search would yield more.   
 
Response 1: We thank the reviewer for pointing this out.  We have now expanded on the 
motivation for our work and now the introductory paragraph reads: 

 
 
We hope this addresses the reviewer’s concerns. 
 
 
 



 

Comment 2: Given that high resolution global NWP systems -- ECMWF's IFS is 9km (1/12o) -- 
better high resolution global SST products are also required.  The SST reconstructions pursued 
in this manuscript are all regional (Mediterranean, Adriatic, North Atlantic).  It is not mentioned 
whether it would be practical to scale the proposed technique to global domains, such as gap 
filling the Copernicus Marine Service 1/10o ODYSSEA L3 product.   
 
Response 2: We appreciate the reviewer’s critical point regarding the scalability of our method 
to global domains, such as the Copernicus Marine Service 1/10o ODYSSEA L3 product. While 
CRITER has demonstrated success in regional SST reconstruction, scaling to global resolutions 
is constrained by the memory demands of our model’s global spatio-temporal attention 
mechanism. An obvious but not always available solution is to get access to a GPU cluster with 
enough memory to accommodate global domain training. The limitation could be circumvented, 
by classical techniques (similar to the ones found in typical implementations of optimal 
interpolation) such as tilling the domain (e.g., into 256 x 256 pixel regions) and processing each 
independently, followed by post-processing to mitigate boundary artifacts (i.e., applying 
overlapping tiles). Although this limits the exploitation of all available global context, it offers a 
practical pathway for scaling CRITER. Developing a memory-efficient, and possibly spatially 
iterative CRITER variant for global applications remains a challenging but promising direction for 
our future work.  
 
Some terminology used in the manuscript, while seemingly obvious, on further contemplation 
the meaning and interpretation is not so obvious.  
 
Comment 3: Uncertainty/Variance (σ2):  The uncertainty or variance outcome from the machine 
learning training process is introduced and summarized with the generic statement leading off 
section 3 in the opening 3 lines (ll. 82-84).  This statement represents the only description of 
how this quantity, which plays a large role in the analysis of the techniques performance and 
skill  over the rest of the manuscript.  If possible a more detailed description of how this term is 
output or diagnosed from the machine learning process would be warranted. From a naive 
aspect, I would assume this variance, or uncertainty is the range of SST values that would lead 
to the same best fit outcome in the training process, but obviously, not enough information is 
given to confirm this. Furthermore, as detailed in the paper on "Observational Needs of Sea 
Surface Temperature" given above, and the outcome of many workshops on the needs required 
of SST observations and analysis, there is a strong need for estimates of uncertainty to 
accompany estimates of SST.  The estimate of variance/uncertainty outcome from  this 
technique seems well posed to fulfill this requirement -- if its definition is an adequate measure 
of this. 
 
Response 3: We thank the reviewer for highlighting the need for a more detailed explanation of 
the uncertainty term "\sigma^2". We emphasize that the variance is not estimated as a fixed 
value during training. Rather, a network is trained to predict it from observations. In fact, we 
propose an iterative approach by the Iterative Refinement Module (IRM), whose two-channel 
output (reconstructed SST "\tilde{x}" and variance "\sigma^2"), is described in Section 3.2. At 
each pixel position "j" the IRM predicts a Gaussian distribution parametrized by the predicted 



 

mean "\tilde{x}_(j)", and standard deviation "\sigma_(j)", following the approach of Barth et al. 
(2020). The model is trained to maximize the likelihood of the ground truth SST values “x_(j)” 
hidden during training (see loss function in Equation 4). This leads to the model assigning a 
higher variance “\sigma_(j)^2” in areas of higher expected reconstruction error. Importantly, 
“\sigma_(j)^2” thus represents the model’s predictive uncertainty. The variance prediction quality 
is validated in Section 5.3, where we show that “\sigma_(j)” correlates with empirical errors, 
which confirms its reliability as an uncertainty measure. 
 
To clarify this, the following text (seen on the latexdiff below) has been added to Section 3.2, 
 

 
 
and the following to Section 3.3. 

 
 
 
Comment 4: The definition of variance becomes further confused with the introduction of scaled 
error (error divided by variance, l. 251, 3rd line of S5.3).  While the authors again use symbol σ 
for the scaled variance, or more precisely, σε, this is well identified.  The confusion (for me) was 
then when scaled variance , σε << 1 was compared with an idealized reconstruction where σε = 
1, this is casually referred to as an overestimate of the variance (ll. 261-262).  It took me more 
than a few moments to eventually realize this was the scaled variance, with the actual variance 
being a divisor to this scaled variance -- and therefore scaled variance ,  σε < 1, does indeed 
represent an overestimation of actual variance.   At the risk of insulting some all knowing 
readers, but lifting up some of the slower to comprehend readers, please somehow remind the 
readers that this is the scaled variance which is divided by the actual variance -- and therefore 
the statement does actually make sense.    
 



 

Response 4: We apologise for confusion and agree that the connection might not immediately  
be clear to even a skilled reader. To address the issue, we have added a sentence explaining 
how the value of standard deviation of the scaled error “\sigma_\epsilon” is interpreted before 
moving on to the analysis. Please see the corresponding latexdiff below. 

 
 
Comment 5: Visible and Deleted regions: The definition of deleted regions seem relatively 
obvious:  The regions where SST observations have artificially been removed from the L3 
product.  However, the definition of visible, sometimes referred to as observed, regions seems 
less definite:  Is it the fully observed region in the L3 SST before deletion, or the observed 
region in the L3 SST after removal of the deleted regions?  Please provide a precise definition 
of deleted and visible regions. 
 
Response 5: Thank you for pointing this out. Deleted regions correspond to observations in the 
L3 SST product that were artificially removed by simulated clouds and thus withheld during the 



 

training. Visible regions refer to the remaining observations in the L3 product after the removal 
of these deleted regions. To make this clearer, we have added the definition of these regions to 
Section 4.2 as shown on the latexdiff below. 

 

Typographic and style comments: 

Comment 6: Section 4 Results (l. 168) is empty? 

Response 6: Thank you for pointing out this oversight. The Results section was supposed to be 
followed by an Implementation details subsection. However, we've mistakenly labeled it as a 
section, which is why the results appeared empty. We’ve fixed this mistake as shown on the 
latexdiff below. 

 

Comment 7:  Figures 4-6, B1-B3:  Limits on σ and rmse.  The colour scale limits on  σ and 
rmse seem to be all automatically generated.  This is a hindrance to both comparing between 
techniques (CRITER/DINCAE2) and comparing over-dispersive and under-dispersive regions (σ 
vs rmse).  Although I realize this will often lead to regions of colour saturation, I would strive (at 



 

least for individual scenarios) to have the colour scale range identical between 
CRITER/DINCAE2 results and between σ and rmse (preferably with the zero value always 
represented). This would likely enhance your ability to discuss the results in the text, and by 
setting the scales for σ and rmse identically, it would then allow you to connect the results in 
Section 5.3 with the earlier results -- for instance, you would easily be able to identify regions 
where DINCAE2 has insufficient variance compared to RMSE, and vice versa for CRITER).   

Response 7:  

We thank the reviewer for the helpful suggestion. We have updated the figures accordingly: a 
common color scale is now used for both σ and RMSE, and across CRITER and DINCAE2 
results. However, we encountered challenges due to the significantly different distributions of the 
two methods. To improve readability, we limited the color scale to the 0th–90th percentile of the 
data and selected a new colormap. We have also reduced the number of samples displayed 
and increased the size of each image to better highlight differences in the SST fields. 

These adjustments provide a clearer visual comparison for the Adriatic and Atlantic datasets. 
However, for the Mediterranean dataset, DINCAE2's σ values are confined to a narrow range, 
and as a result, the image appears nearly uniform due to color scale saturation. Unfortunately, 
we were unable to resolve this without compromising comparability across the other scenarios. 

Please see the updated figures below. 



 

 



 

 

 

 

 

 

 

 



 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 
Comment 8: l. 263 :  in order of 10−2◦ or lower. Not sure what is meant by to the power of -2o?  
Possible typographical error.  "In order of" is more conventionally referred to as "Of the order of" 
 
Response 8: Thank you for catching this. We’ve added the missing “C” symbol for Celsius in 
line 263 and corrected the phrasing to the conventional “of the order of”. 

 



 

Further Comments: 

Comments outside scope of manuscript that may be worthy of at least some discussion. 

Comment 9: As already mentioned, I do not know much about technical details of machine 
learning techniques.  But what I do know is that the techniques are relatively agnostic to the 
physical relationship between the inputs and outputs. In this study, one inputs binned 
temperature observations and outputs the full field temperatures.  The input L3S products used 
in the study have undergone a variety of processing (radiance algorithms, bias corrections) to 
produce a binned multi-sensor temperature.  Would this technique be generalizable to the 
underlying radiances, complicated by requiring different training for each instrument?   The 
advantage might, however, be better instrument bias corrections and a further reduction in 
error? 

Response 9: We appreciate the reviewer’s insight into the potential benefits of applying 
CRITERIA to raw radiances. CRITER is designed for gridded SST data (L3/L3S products) 
structured as matrices representing spatially binned measurements. Raw radiances, however, 
are non-gridded. Adapting CRITER would require significant architectural modifications; for 
instance, replacing convolutional and transformer-based modules with methods suited for 
irregularly sampled data (e.g., point cloud networks).  

However, even if gridded radiances product would have been available, the training objective 
could be twofold:  

(i) radiance reconstruction: if the model is trained on raw radiances, its output would typically be 
reconstructed radiance, not SST  

(ii) temperature estimation: to instead produce SST estimates, the training data must include 
paired radiance-temperature samples. However, in the latter case, if temperature is derived from 
radiance via fixed equations, any errors in this transformation would be learned by the model, 
potentially propagating and amplifying biases. While using direct temperature measurements 
(e.g., in situ data) as targets could resolve this, obtaining sufficient amounts of independent in 
situ data would be very challenging. Therefore, although adapting CRITER to raw radiances 
might leverage fine-grained information and reduce reconstruction errors, these architectural 
and data challenges currently render the approach infeasible. 

All these trajectories are relevant for future work and we have amended the Conclusions of the 
paper to include these research possibilities. 

 

 

 

 



 

Comment 10: As mentioned in Major Comment #1: Is this scalable to a global analysis?  

Response 10: As mentioned in Response 2: We appreciate the reviewer’s critical point 
regarding the scalability of our method to global domains, such as the Copernicus Marine 
Service 1/10o ODYSSEA L3 product. While CRITER has demonstrated success in regional SST 
reconstruction, scaling to global resolutions is constrained by the memory demands of our 
model’s global spatio-temporal attention mechanism. An obvious but not always available 
solution is to get access to a GPU cluster with enough memory to accommodate global domain 
training. The limitation could be circumvented, by classical techniques (similar to the ones found 
in typical implementations of optimal interpolation) such as tilling the domain (e.g., into 256 x 
256 pixel regions) and processing each independently, followed by post-processing to mitigate 
boundary artifacts (i.e., applying overlapping tiles). Although this limits the exploitation of all 
available global context, it offers a practical pathway for scaling CRITER. Developing a 
memory-efficient, and possibly spatially iterative CRITER variant for global applications remains 
a challenging but promising direction for our future work.  

Comment 11: It could be interesting to apply a (spatial) spectral analysis on the results and 
underlying inputs, which admittedly would likely require large cloud free areas, at least for 
analyzing the spectral characteristics of the inputs.  Do the wavelength characteristics of the 
CRITER and DINCAE2 results differ, and how do they compare to the original wavelength 
characteristics of the binned SST L3S products:  Are certain wavelengths removed and/or 
enhanced? 

Response 11: We thank the reviewer for the suggestion and have added Section 4.3.2 (“Spatial 
Spectral Analysis”), and Appendix C1 (“Extended Spatial Spectral Analysis”) comparing the 
Power Spectral Density (PSD) of ground-truth observations against reconstructions from 
CRITER and DINCAE2. Please see the latex below. 

 



 

 



 

 



 

 



 

 

 

 



 

 

 

 

 

 

 

 

 
 


