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Abstract. This paper describes the Python package JuWavelet, which implements the continuous wavelet transform

using the Morlet wavelet, which is a popular tool in the Geosciences to analyse wave-like phenomena. It closes a

gap in available software, which are typically focused on discrete transforms or lower dimensions than offered here.

The code implements the transform in 1-D, 2-D, and 3-D. In particular, not only the analysis, but also the synthesis

from a (modified) decomposition are available. It also provides a consistent implementation for both the original5

continuous wavelet transform and the derivative Stockwell transform
:::
and

:::::::
arguably

:::::::
superior

::
S
::::::::
-transform

:
popular in

atmospheric gravity wave analysis for all dimensions.

This paper documents the mathematics behind the implementation and offers several examples to showcase the

capabilities of the software including the code to generate the shown figures.

1 Introduction10

Since the introduction of the continuous wavelet transform (CWT) by Grossmann and Morlet (1984), it has been

used extensively in the geophysical sciences. In particular the Morlet wavelet, being a harmonic oscillation with a

Gaussian envelope is uniquely useful for the analysis of wave-like phenomena
::::::::::::::::::::
(e.g. Meyers et al., 1993). The papers

by Stockwell et al. (1996) and Torrence and Compo (1998) further popularized the transform in the atmospheric

::::::::::
geophysical sciences. Since then, the CWT and the special ’flavour’

:::::::
"flavour"

:
of CWT introduced by Stockwell15

labeled Stockwell transform
:
S

::::::::
-transform

:
(ST) have been mainstays in the analysis of atmospheric gravity waves (e.g.

Kaifler et al., 2015; Chen and Chu, 2017; Ghil et al., 2002; Hindley et al., 2019; Kaifler et al., 2023; Reichert et al.,

2024).
:::::
While

:::
not

:::::
named

:::
as

::::
such

::
by

:::
its

:::::::
inventor,

:::
the

::
S

::::::::
-transform

::
is

:::::::::
sometimes

::::
also

::::::
labeled

:::::::::::::::::
Stockwell-transform.

:

::
As

:::::::::
examplary

::::::::
structures

:::
for

:::
our

:::::::::
examples,

::
we

::::
use

::::::::::
atmospheric

:::::
GWs,

:::::
which

:::
are

:::::::
internal

::::
GWs

::
in

::
a

:::::
stably

:::::::
stratified

:::::::
medium

::::::::
reflecting

:::
the

:::::::
interplay

::::::::
between

::::::
gravity

:::
and

:::::::::
buoyancy

::::
force

:::::::::::::
(Nappo, 2012).

::::
Due

::
to

::::
their

::::
3-D

::::::::::
propagation20

:::
2-D

:::::::::
horizontal

:::::
cross

:::::::
sections

::
of

:::::::::::
temperature

:::::
fields,

::::::::
obtained

:::
for

:::::::
instance

:::
by

:::
the

:::::::::::
Atmospheric

::::::::
InfraRed

:::::::
Sounder

::::::
(AIRS)

::
or

::
by

:::::::::
numerical

::::::
models,

:::::
show

:::::::
spatially

::::::::
localized

::::
wave

:::::::
packets

:::
with

::::
only

::::
few

:::::::::
oscillations

::::::::::::::::::::::::::::::::::::
(e.g. Hindley et al., 2019; Jiang et al., 2019)

:
.
:::
But

::::
GW

::::::
packets

:::
are

::::
also

::::::::
localized

::
in

:::
the

::::::::
frequency

:::::::
domain

::::
since

:::::::
spectral

:::::::::
properties

:::
are

::::::::
functions

::
of

::::::::::
atmospheric

:::::::::
background

::::::::::
conditions

:::
that

::::
can

::::::
change

:::::::
quickly

::::::::::::::::::
(Reichert et al., 2024)

:
.
::::
This

::::::::
localized

::::::
nature

::
of

:::::
GWs

::::::::
requires

:
a
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::::::::::::
time-frequency

::
or

::::::::::::::::
space-wavenumber

:::::::
analysis

::::
tool

::::
such

::
as

:::
the

:::::
CWT

::
or

:::
ST.

::::::
While

:::
we

:::
use

::::
only

::::::::::
atmospheric

::::::
gravity25

:::::
waves

::::
and

::::::::
synthetic

::::
data

:::
for

::::
our

::::::::
examples,

::::
the

:::::::
method

::
is

::::
well

::::::
suited

:::
for

::::::::
analysing

::::
any

::::::
signal

::::
with

::::::::
localized

::::::::
wave-like

:::::::::
structures.

::::
This

::::::
paper

::::::
focuses

:::
on

::::
the

::::::
general

::::
and

::::
pure

::::::
CWT

::::::::
approach,

::::
but

::::::::
dedicated

:::::
tools

:::
for

::::
GW

::::::
analysis

:::::
have

::::
been

:::::::
created

:::::
using

::::::
similar

::::::::::
techniques.

:::
Of

::::::
recent

::::
note

:::
are

::::
the

:::
few

:::::
wave

:::::::::::::
decomposition

:::::
(S3D)

:::
by

::::::::::::::::::
Lehmann et al. (2012),

::::::
which

::
is

::::::
focused

:::
on

::::
high

::::::::::
performance

::::
3-D

:::::::
analysis

:::::
based

:::
on

::::::::
STFT-like

::::::::::
techniques,

:::
and

:::
the

::::::
Unified

::::::
Wave

::::::::::
Diagnostics

::
by

::::::::::::::::::::::::
Schoon and Zuelicke (2018)

:::::
based

::
on

:::
the

::::::
Hilbert

:::::::::
transform.

:
30

Wavelets can be defined in any number of dimensions, but most geophysical applications deal with only 1-D, 2-

D, or 3-D data. While literature and sometimes code for 1-D and
::::::::
describing

:::
the

::::::::
transform

::::
and

::::::::
analysing

::::
data

::
of

::::
these

:::::::::::::
dimensionalities

::
is

:::::::
available

::::
(e.g.

:::
the 2-D wavelets is readily available (e.g. Hindley et al., 2016; Chen and Chu, 2017)

, in particular code for the 3-D CWT is less accessible.

This paper describes
::::::
analysis

::
by

:::::::::::::::::::
Chen and Chu (2017)

:
or

:
a
::::
3-D

:::::::
analysis

::
by

:::::::::::::::::
Hindley et al. (2019)

:
),
::::::::
properly

:::::::
validated35

::::
code

::
is

::::
only

:::::
freely

:::::::
available

:::::::::
associated

::::
with

:::
the

:::::::::
publication

::
of

::::::::::::::::::::::::
Torrence and Compo (1998)

::::::::
providing

:::
the

:::
1-D

:::::
CWT

::::
only.

::::
This

:::::
paper

:::::
tries

::
to

:::::
close

:::
this

::::
gap

:::
by

:::::::::
describing

:
the open source JuWavelet package, which provides 1-D,

2-D, and 3-D implementations in the
::::::
widely

::::
used

:
Python programming language of the CWT using the Morlet

wavelet, as well as the associated ST.
::::::::
Following

:::
the

::::::::
equations

::::::::
provided

::
by

::::
this

:::::
paper

::::::
allows

::
to

::::
fully

:::::::
validate

::::
both

::
the

:::::::::
algorithm

:::
and

:::
the

:::::::::::::
implementation

::::
and

::::::
should

:::::
allow

:::
also

::::::::
building

::::::::
derivative

:::::
work

::::
such

:::
as,

::::
e.g.,

:
a
::::
4-D

:::::::
analysis,40

::
the

::::
use

::
of

::::::::
different

:::::::
wavelet

::::
basis

:::::::::
functions,

::
or

::::
the

:::::::::
translation

::
of

:::
the

:::::
code

::
in

::
a

:::::::
different

::::::::::::
programming

::::::::
language.

Earlier versions of this software were used in
::::::
already

:::::
used

:::
for the publications of (Geldenhuys et al., 2023) and

(Krasauskas et al., 2023)
::::::::::::::::::::
Geldenhuys et al. (2023)

:::
and

::::::::::::::::::::
Krasauskas et al. (2023).

::::
The

:::::
intent

::
is
:::

to
:::::
make

:::
this

:::::::
analysis

::::::
method

:::::
more

::::::
readily

:::::::
available

::::
and

::
to

::::::
provide

::
a

::::::
starting

:::::
point

::
for

::::::::::::
modifications

::
of

:::
the

::::::::
algorithm

::
to

::::
suit

::
the

::::::::
scientific

::::
need

::
at

::::
hand.45

We first introduce the Morlet wavelet and
::::::::::
mathematics

::::::
behind

:
the CWT and its discretisation in 1-Dand

:
.
:::
We

keep the higher-dimensional formulas in the appendix for brevity’s sake. The intent is to document the mathematical

background of the implementation. A comprehensive and rigorous treatise on wavelets in general can be found

in textbooks such as (e.g. Mallat, 1999)
::
as

::::::::
provided

:::
by,

::::
e.g.,

::::::::::::
Mallat (1999), the notation of which

:::::
whom we fol-

low here.
:::::::
Second,

::
we

::::::::
describe

:::
the

:::::
CWT

:::::
using

:::
the

::::::
Morlet

:::::::
wavelet

:::
and

:::
the

:::::::::::
S-transform

::
in

::::::
greater

:::::
detail

::::::::
including50

::::::
several

:::::::::
application

:::::
notes

::::::
helpful

:::
for

::::
users

:::
of

:::
the

:::::::
software

:::::::
package.

::::::
Third,

:::
we

:::::::::
exemplary

::::::
explain

:::
the

:::
call

:::
of

:::
the

:::
2-D

::::::::::::
decomposition

::
in

::::::
detail. Lastly, we give some examples on

::
of the use of the software packagefrom our previous

work. A particular highlight of the overdetermined CWT
::::
(and

::::
ST) is the ability to not only analyse the data for

signals of certain frequencies, but to also extract features from this. This requires the proper implementation of the

inversion of the transform documented below, which this software delivers as well.55
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2 Continuous wavelet transform

This section gives a very brief and mathematical introduction into the CWT and its inversion, here called recon-

struction.
::::::::
Emphasis

::
is

:::
put

:::
on

:::
the

:::::::::::
discretisation

::::::::
necessary

::
to
:::::

apply
::::

the
:::::::::
continuous

::::::::
transform

:::
on

:::::::
sampled

::::
data

:::
on

:
a

::::::::
computer.

:::::
Here,

:::
we

::::::
always

::::::
assume

:::
that

:::::
there

::
is

:
a
:::::::::
continuous

:::::::
function

::::::
behind

:::
the

::::::::
samples,

:::::
which

::
is

:::
our

:::::
actual

:::::
target

::
of

:::::::
interest. The basic idea behind all this

::
the

:::::
CWT

:
is to transform a signal (or more precise function )

:::::::
function from60

its original space into a
:::::::
function

::::::::
operating

:::
on

:
a higher dimensional space, which spans both the original spatial

::
(or

::::::::
temporal) dimension(s) and, in addition, dimensions of wavelength/period. This higher-dimensional space

::::::
function

then allows for the easier analysis and modification of the original signal. A comprehensive discussion of this for

1-D is given by Torrence and Compo (1998)
:::
First

:::
we

::::::
present

:::
the

:::::::::::
mathematics

::::::
behind

:::
the

:::::::::
transform,

::
its

:::::::
inverse,

:::
and

::
the

:::::::::
necessary

:::::::::::
discretisation

::::::::
employed

:::
for

:::
the

:::::::::::::
implementation

::
at

:::::
hand.

:::::
While

:::
the

:::::::
software

::::::::::
necessarily

::::
treats

:::::::
discrete65

::::
data,

:::
we

:::::
stress

::::
that

::::
both

:::::
inputs

::::
and

::::::
outputs

:::
of

:::
the

:::::::::::::
implementation

:::
are

::
to

:::
be

:::::::::
interpreted

::
as

:::::::
samples

:::
of

:::::::::
continuous

:::::::
functions.

Given an integrable
::::::::::::::
square-integrable function (typically complex

:::::::::::::
complex-valued) ψ with zero average and norm

:::::::
L2-norm

:
of 1, a wavelet dictionary can be constructed by translations and scaling of ψ:{

ψu,s(t) =
1√
s
ψ

(
t−u

s

)}
u∈R,s∈R+

.70

These atoms
::::
basis

::::::::
functions are normalized with ∥ψu,s∥= 1

:::::
(using

::::
here

::::
and

::::
later

:::
the

:::
L2

:::::
norm). The CWT Wf of

the function f ∈ L2(R) is then defined as

Wf(u,s) = ⟨f,ψu,s⟩=
∞∫

−∞

f(t)
1√
s
ψ∗

(
t−u

s

)
dt.

Wf(u,s) = ⟨f,ψu,s⟩=
∞∫

−∞

f(t)
1√
s
ψ∗

(
t−u

s

)
dt.

:::::::::::::::::::::::::::::::::::::::::

(1)75

This convolution
:::
The

:::::
CWT

:::
can

::
be

:::::::
defined

::
for

::::::::::::::
complex-valued

::::::::
functions

::
as

::::
well,

:::
but

:::
this

:::
has

::::
less

:::::::
practical

::::::::
relevance

::
for

::::
the

:::::::::
application

::
to
:::::::::::

geophysical
::::
data

::::
and

::
is

::::
thus

::::::::
neglected

:::::
here.

::::
Due

::
to

:::
the

:::::::::::
convolution

:::::::
theorem,

::::
this

:
can be

computed more efficiently on a computer in Fourier-space as

Wf(u,s) =
1

2π

∞∫
−∞

f̂(ω)
√
s
[
ψ̂(sω)

]∗
eiωudω,

80

Wf(u,s) =

∞∫
−∞

f̂(ω)
√
s
[
ψ̂(sω)

]∗
ei2πωudω,

::::::::::::::::::::::::::::::::::::

(2)
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with
:̂̂
· denoting the Fourier transform of a function1. The ∗ denotes the complex conjugate.

::::
This

:::::::
function

::::
also

:::::::
explains

:::
best

:::
the

:::::::::::::
implementation

::
of
:::
the

:::::::::
transform

::
in

:::
the

::::::::
software,

::::
with

:::
the

::::::::
exception

::
of

:::::
being

:::::::::
discretized

:::
and

:::::
using

::
the

::::
Fast

:::::::
Fourier

::::::::
Transform

:::::::
instead

::
of

:::
the

:::::::::
continuous

::::
one.

Let ψ ∈ L2(R) be a complex wavelet with
:::::::::::
ψ ∈ L2(R,C)

:::
be

:
a
::::::::::::::
complex-valued

::::::
wavelet

::::
with

:
85

0<
:::

Cψ: =

∞∫
0

|ψ̂(ω)|2

ω
dω <∞.

Then W can be inverted (under certain
::::::
sensible assumptions on f ;

:::::::::::
Mallat, 1999) as

f(t) =
2

Cψ
Re

 ∞∫
0

∞∫
−∞

Wf(u,s)
1√
s
ψ

(
t−u

s

)
du
ds

s2

 .

This conserves also the energy of f :

∞∫
−∞

|f(t)|2 dt= 2

Cψ

∞∫
0

∞∫
−∞

|Wf(u,s)|2 duds
s2
.90

∞∫
−∞

|f(t)|2 dt= 2

Cψ

∞∫
0

∞∫
−∞

|Wf(u,s)|2 duds
s2
.

::::::::::::::::::::::::::::::::::::

(3)

In practice, a different, simpler reconstruction formula is used. Due to the redundancy of the CWT, also other

functions can be used instead of ψ for the reconstruction. Holschneider and Tchamitchian (1991) give the necessary

conditions for such a function and the proof. One typically uses the Dirac delta function δ as this greatly simplifies95

the computation of the reconstruction formula:

f(t) =
1

Cδ
Re

 ∞∫
0

Wf(t,s)
1√
s

ds

s


with Cδ =Re

(∫∞
0

ψ̂(ω)δ̂(ω)
ω dω

)
. It has the added advantage that only the wavelet transform evaluated at location t

is required to reconstruct f at this location, which is perfect keeping in mind that we can sample the CWT only at

discrete locations on a computer.100

So, to allow numerical fast execution on computers, we apply discretization. First, we discretize the scales s. The

data that we analyse is normally sampled and finite and thus band-limited, such that only a finite interval of scales is

relevant for the analysis at hand. It is also useful to sample the scales in a logarithmic fashion: s= s02
djj following

1Here, we follow the convention of f̂(ω) =
∫∞
−∞ f(t)e−iωtdt

:::::::::::::::::::
f̂(ω) =

∫∞
−∞ f(t)e−i2πωtdt

::::
and

f(t) =
∫∞
−∞

1
2π

f̂(ω)eiωtdω
:::::::::::::::::::
f(t) =

∫∞
−∞ f̂(ω)ei2πωtdω

::
as

:::
this

:::::
allows

:
a
:::::

closer
:::::::
alignment

::
of

:::
the

:::
code

:::::
using

:::::
discrete

::::::
Fourier

:::::::
transforms

:::
with

::
the

::::::::
continuous

:::
math

:::::::
described

:::
here,

:::::::
assuming

::::::
obviously

:::
that

:::
the

:::::
integral

:::
exist.
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Torrence and Compo (1998), with j ∈ R for the first step and a natural number in the second step in the following

equation. dj determines the sampling density and is often in the order of 1
8 to 1

2 . If we assume that only scales105

between s0 and s1 = s02
djJ , with J ∈ N

::::::::::::::
s1 = s02

dj(js−1),
::::
with

::::::
js ∈ N are of relevance

:::::
(e.g.,

::::::
because

:::
the

:::::::
original

:::::::
function

:
is
::::::::::::

band-limited), the reconstruction formula becomes thus by substitution

f(t) = 1
Cδ

Re

(∫∞
−∞Wf(t,s02

jdj )
dj ln2√
s02

jdj
dj

)

≈ 1
Cδ

Re

(∫ J
0
Wf(t,s02

jdj )
dj ln2√
s02

jdj
dj

)

≈ 1
Cδ

Re

(∑J
j=0Wf(t,s02

jdj )
dj ln2√
s02

jdj

)
.110

f(t)
:::

=
1

Cδ
Re

 ∞∫
−∞

Wf(t,s02
jdj )

dj ln2√
s02jdj

dj


:::::::::::::::::::::::::::::::::::

≈ 1

Cδ
Re

 js−1∫
0

Wf(t,s02
jdj )

dj ln2√
s02jdj

dj


:::::::::::::::::::::::::::::::::::

≈ 1

Cδ
Re

js−1∑
j=0

Wf(t,s02
jdj )

dj ln2√
s02jdj

 .

::::::::::::::::::::::::::::::::::

This formula can also be used to compute Cδ more easily as the equation also holds for f being the Dirac delta.115

With

Wδ(u,s) =
1

2π

∞∫
−∞

δ̂(ω)
√
s
[
ψ̂(sω)

]∗
eiωui2πωu

::::
dω =

1

2π

∞∫
−∞

√
s
[
ψ̂(sω)

]∗
eiωui2πωu

::::
dω

follows

δ(0) = 1 ≈ 1
Cδ

Re

(∑J
j=0

1
2π

∫∞
−∞

√
s02jdj

[
ψ̂(s02

jdjω)
]∗
eiω0dω

dj ln2√
s02

jdj

)

= 1
Cδ

Re
(∑J

j=0
dj ln2
2π

∫∞
−∞

[
ψ̂(s02

jdjω)
]∗
dω

)
120

δ(0) = 1
::::::

≈ 1

Cδ
Re

js−1∑
j=0

∞∫
−∞

√
s02jdj

[
ψ̂(s02

jdjω)
]∗
ei2πω0dω

dj ln2√
s02jdj


::::::::::::::::::::::::::::::::::::::::::::::::::::

=
1

Cδ
Re

js−1∑
j=0

dj ln2

∞∫
−∞

[
ψ̂(s02

jdjω)
]∗
dω


:::::::::::::::::::::::::::::::::::::
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and thus

Cδ =

J∑
j=0

dj ln2

2π
Re

 ∞∫
−∞

[
ψ̂(s02

jdjω)
]∗
dω

 .125

Cδ ≈
::::

dj ln2
::::

js−1∑
j=0

Re

 ∞∫
−∞

[
ψ̂(s02

jdjω)
]∗
dω

 .

::::::::::::::::::::::::::::

3 The Morlet wavelet and the Stockwell transform
:
S
::::::::::
-transform

In the field of geophysics the
:::
use

::
of

::
the

:
Morlet wavelet is very popular (e.g. Torrence and Compo, 1998; Chen et al., 2019)

:::::::::
historically

::::
very

::::::
popular

:::::
(e.g.,

::
in

:::
the

::::
fields

::
of

::::::::::
seismology

:::::::::::::::::::::::::
(Grossmann and Morlet, 1984),

::::::::::::
oceanography

::::::::::::::::::::::::::::::::::::::::
(Meyers et al., 1993; Torrence and Compo, 1998)130

:
,
:::
and

::::::::::
atmospheric

::::::
gravity

:::::
waves

::::::::::::::::
(Chen et al., 2019)). Strictly speaking, the Morlet wavelet is not admissible as it has

no
::
not

:
zero mean, which can be fixed mathematically with some tricks (e.g., using the Heaviside function), but for

a discretized analysis of functions of finite support it does not really
:::::::::
practically matter due to the band-limitedness

of the involved signals. The code uses the definition in Fourier space:

ψ̂s(ω) = 2

√
s

π0.25

√
2s 4

√
:::::

π
:
e−

1
2 (2πsω−k)

2

.135

In real space, it is a combination of a Gaussian envelope with a harmonic wave
:::::::::::::
complex-valued

::::::::
sinusoid.

:
A
::::::::
Gaussian

:
is
::
a
::::
good

:::::::
window

::::::
choice

::
as

::
it

::
is

:::::::
similarly

:::::
good

::::::::
localized

::::
both

::
in

:::::
spatial

::::
and

::::::::
frequency

:::::
space. The free parameter k

configures the
::::::
relation

:::::::
between

:::
the

:::::
scale

::::::::
parameter

::::
(and

:::
the

:
width of the Gaussian envelope.

:
)
::
to

:::
the

::::::
period

::
of

:::
the

:::::::::
oscillation.

:::
The

::::
full

:::::::
formula

::
for

:::
the

:::::
CWT

:::::
using

:::
the

::::::
Morlet

:::::::
wavelet

:
is
:

Wf(u,s) = ⟨f,ψu,s⟩=
∞∫

−∞

f(t)
1√
s

1
4
√
π
e−

1
2 (

t−u
s )

2

︸ ︷︷ ︸
Gaussian

e−ik
(t−u)

s︸ ︷︷ ︸
oscillation

dt.

::::::::::::::::::::::::::::::::::::::::::::::::::::

(4)140

:::
The

:::::
scale

:
s
:::::::::::

corresponds
::
to

:::
the

:::::::
standard

:::::::::
deviation

::
of

:::
the

::::::::
Gaussian

:::::::
window

::::
and

:::
the

::::::::
parameter

::
k
:::::::::
modulates

:::
the

:::::::::
wavelength

:::
of

:::
the

::::::::
harmonic

::::::::::
oscillation.

:::
For

::
a
:::::::::

parameter
::
of
:::::::
k = 2π

:::
the

::::::
length

:::
of

:::
one

::::::
period

:::
of

:::
the

:::::::::
oscillation

::::::::::
corresponds

::
to

::::
both

:::
the

::::::
scaling

::::::::
parameter

::::
and

:::
the

:::::::
standard

::::::::
deviation

::
of

:::
the

::::::::
Gaussian.

:

The Morlet wavelet is shown in Fig. 1 in both spatial and frequency space. It is visible how
::::
The

::::
scale

::
is

::::::
chosen

::
for

:::::
each

::::::
wavelet

::
to

:::::
have

:::
the

::::
same

::::::
period

::
in

::
its

:::::::::
oscillation

:::
of

:::::::
100 km:

:::::
under

:::
this

:::::::::
conditions,

:
k widens the Gaussian145

envelope allowing more periods of the oscillation to fit under it. This directly affects the spectral localization, i.e.

more repetitions under the envelope imply a higher spectral resolution and vice versa. The smaller k, the larger

ψ̂s(0) becomes, i.e. the "less" admissible it becomes in its unmodified form. Commonly used values are 6 or 2π.
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The default value for JuWavelet is 2π as this simplifies the handling of results
:::::::::::
interpretation

::
of

::::::
results;

::::
e.g.

:::
the

::::
scale

::::::::
parameter

:
s
::
is
::::::::
identical

::
to

:::
the

:::::::
analysed

:::::
wave

:::::
period

:::
for

:::
the

::::::
default

:::::
value.150

The ST is a variation of the CWT that allows a simpler interpretation of results. The ST S is defined as

Sf(u,s) =
√
se−isu ⟨f,ψu,s⟩=

∞∫
−∞

f(t)ψ∗
(
t−u

s

)
e−isudt

Sf(u,s)
::::::

=

√
2√

s 4
√
π
e−ik

u
s ⟨f,ψu,s⟩=

2

s
√
2π

∞∫
−∞

f(t)e−
1
2 (

t−u
s )

2

e−ki
t
s dt,

::::::::::::::::::::::::::::::::::::::::::::::::::

(5)

:::::::
typically

::::::::
choosing

:::::::
k = 2π;

::::
there

::
is
::

a
:::::::::
difference

::
of

::
a

:::::
factor

::
of

::
2
::
to

:::
the

:::::::::
definition

::
by

::::::::::::::::::::
Stockwell et al. (1996)

:
as

:::
we155

::::::
analyse

:::::::::
real-valued

:::
in

::::::
contrast

::
to
::::::::::::::
complex-valued

::::::::
functions.

::::::
Please

::::
note

:::
the

::::::::
similarity

::
of

:::
this

::::::::
equation

::
to

:::
Eq.

::
1;

:::
the

:::::::::
differences

:::
are

:::
the

:::::::::::::
scale-dependent

:::::::
scaling

::
of

::::::::::
coefficients

:::
and

:::
the

:::::::
location

:::::::::
dependent

:::::
phase

:::::::::
correction,

::::::
which

:::
can

::
be

::::
seen

::
in

:::
the

::::::::
harmonic

:::::
term.

:::
For

:::
the

:::::
CWT

:::
the

::::::::
harmonic

::::
term

::
is

::::::
shifted

::::
with

:::
the

:
u
:::::::
variable

:::::::
causing

:::
the

:::::::::
coefficients

::
to

:::::
rotate

::
in

:::::
phase

::::
space

:::::
when

::
u

::
is

:::::
varied,

:::::::
whereas

::
it
:::::::
remains

::::
fixed

::
in

:::
the

:::
ST.

::::
The

::::::
discrete

:::
ST

::
as

::::::::
originally

:::::::
defined

::
by

:::::::::::::::::::
Stockwell et al. (1996)

:::
uses

::::::
always

::
N

::::::
dyadic

:::::
scales

:::
for

::::
data

::
of

:::::
length

::
N

::::::::::
(effectively

::::
using

::
a
:::::::::::
discretisation

::::::::
parameter160

::::::
dj = 1),

::::::::
whereas

::
the

:::::
given

:::::::::::::
implementation

::
is
:::::
more

:::::::
flexible.

:::
On

:::
the

:::::::::
continuous

::::
side,

::::
they

:::
are

::::::::
identical.

::::
Both

:::
the

:::::
CWT

:
using the Morlet wavelet with a parameter value of k = 2π. Using it in this fashion, the wavelet

coefficient of scale s can
:::
and

::
the

:::
ST

:::
are

::::::
closely

::::::
related

::
to

:::
the

:::::
Gabor

:::::::::
transform,

:::::
which

::
is

:
a
:::::::::
Short-Time

::::::::::::::::
Fourier-Transform

::::
using

::
a
::::::::
Gaussian

:::::::
window

::::::::::::
(Gabor, 1946)

:
.
:::
The

:::::::
notable

:::::::::
difference

:::::::
between

:::
the

::::::
Gabor

::::::::
transform

::::
and

:::
the

:::
ST

::
is

:::
the

::::::::::::::::::
wavelength-dependent

::::::
scaling

::
of

:::
the

::::::::
window,

:::::
which

:::::
varies

:::
for

:::
the

:::
ST

::::
with

:::
the

:::::
scale

::::::::
parameter

::
s,

:::::::
whereas

::
it

::
is

::
of

:
a165

::::
fixed

::::
size

:::
for

:::
the

:::::
Gabor

:::::::::
transform.

::::
This

::::::
causes

:::
the

:::::::
spectral

::::::::
resolution

:::
of

:::
the

:::::
Gabor

:::::::::
transform

::
to

::::
vary

:::
for

:::::::
different

:::::
scales

:::
(i.e.

::
it

::
is

::::::::
spectrally

:::::
highly

::::::::
resolved

::
for

::::
high

:::::::::::
frequencies,

:::
but

::::::::
spectrally

:::::::
coarsely

:::::::
resolved

:::
for

:::
low

:::::::::::
frequencies),

:::::::
whereas

::
the

:::::
CWT

::::
(and

:::
its

::::::::
derivative

:::
the

::::
ST)

:::
has

:
a
:::::::
uniform

:::::::
spectral

:::::::::
resolution.

:::
The

::::::
scaling

::
of

:::
the

:::::
CWT

:::
by

:::::

√
s
−1

::::::
allows

:::
the

:::
ST

:::::::::
coefficients

:::
for

::::::
k = 2π

::
to
:
be directly interpreted as amplitude at

wavelength s (Stockwell et al., 1996); the proof of this is rather straightforward and will not be repeated here, as it has170

no relation to the implementation of the software package. This relationship can be proven
::::
holds

:
for an input signal

of
:::::::::
containing a harmonic oscillation of infinite extent, but

:::::::
whereas for smaller wave-packets, a dampening

:::::::
reduction

::
in

::::::
derived

::::::::
amplitude

:
may occur.

:::
The

:::::::::::::::
Morlet-parameter

:::
can

::
be

:::::
taken

::
as

:
a
:::::
rough

:::::::::
guideline:

:
if
:::
the

:::::::::::
wave-packet

:::
has

:::
less

::::::
periods

::::
than

:::
the

::::::
Morlet

:::::::::
parameter,

::
the

::::::::::
dampening

::::::
cannot

::
be

:::::::::
neglected.

:::
For

:::
the

:::
ST,

:::::
these

::
are

:::::::
roughly

::
6

:::
full

:::::::
periods.

A similar scheme
:
to

:::
the

:::
ST was developed by Chen and Chu (2017) lacking the phase correction. Without phase175

correction, the complex angle of the coefficients varies by 2π while been translated over one wavelength. The

JuWavelet code implements the pure CWT, the ST, and also the variation introduced by (Chen and Chu, 2017)

::::::::::::::::::
Chen and Chu (2017) by name of ’scaled’ as this variation only scales the coefficients to align with the amplitude

of a infinite monochromatic analysed signal.
:::
For

::::
1-D

::::
also

:
a
::::::::::::::
Gabor-transform

::
is
::::::::
available.

:
All relevant transform

7



methods have a mode parameter to select the desired transformation
::::::::
transform; by default, the Stockwell

:
S

::::::::
-transform180

variation is used, as this delivers the most useful coefficients. Please note that while the normal CWT transforms

Gaussian white noise
::
in

:::
the

::::
input

:::::
signal

:
to Gaussian white noise in the coefficients, that the ST introduces a colouring

of the noise due to the scaling of coefficients with scale such that coefficients of small periods are more "noisy" than

those of large periods. As the difference between the transforms is a linear scaling of coefficients, there is typically

no practical effect.185

All variations
::::
Both

:::
the

::::::::::::::
implementations

::
of

:::::
CWT

::::
and

:::
ST may use any parameter for the Morlet wavelet free pa-

rameter k.
:::::::::
Practically,

:::
this

:::::
tunes

:::
the

::::::::::
relationship

:::::::
between

:::::
spatial

::::
and

:::::::
spectral

::::::::
resolution

::
of

:::
the

::::::::::
transforms.

::
A

:::::
higher

::::::::
parameter

::
k

::::::
results

::
in

::
a
:::::
better

:::::::
spectral

:::::::::
resolution

::
at

:::
the

::::
cost

::
of

::::::
spatial

:::::::::
resolution

::
as
::::

the
:::::::::
Heisenberg

::::::::::
uncertainty

::::::
relation

:::::::
imposes

::::::
limits

::::::::::::::
(e.g. Weyl, 1931)

:
.
::::::
Smaller

::::::
values

::::
than

:::
2π

:::::
cause

:::
the

:::::::
wavelet

::
to
:::::::

become
:::::
"less

::::::::::
admissable"

::
as

::::
ever

:::::
more

::::::
energy

::::
leaks

::::
into

::::::::
negative

::::::::::
frequencies,

::::::
which

:::::::::
invalidates

:::::
some

::
of

:::
the

::::::
proofs

::::::::::
underlying

:::
the

:::::
CWT.190

:::::::::
Practically,

::::::
values

::
as

:::::
small

:::
as

:
5
::::
can

::
be

:::::
used

:::::::::::
(Farge, 1992)

:
;
::::::
smaller

::::::
values

::::::
would

::::::
require

:::::
some

::::::::::::
modifications

::
to

::
the

:::::::
wavelet

::::
(i.e.

::::::
setting

:::::::::::
non-positive

::::::::::
frequencies

::
to

:::::
zero)

:::
for

:::
the

::::::::::::
reconstruction

::
to
:::::

work
::::::::
properly

:::
and

:::::::::
associated

::::::::
correction

::::::
terms,

::::
e.g.,

::
in

:::
the

:::::::::
conversion

::::
from

:::::
scale

::
to

::::::
period.

:::::::
Several

::::::
studies

::::
have

::::::::
examined

:::
the

:::::
effect

:::
of

:::::::
differing

::::::::
trade-offs

:::
and

::::::::::::
configurations

:::
and

:::
we

::::
refer

::
to

::::
these

::::::
studies

:::
for

::::::
details

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Fritts et al., 1998; Pinnegar and Mansinha, 2003; Hindley et al., 2016, 2019)

:
. In case a value different from the default 2π

::::::
k = 2π is used, the Wavelet scale parameter of the transform and the195

period (or wavelength) of the associated wave in the analysed signal differ; the decomposition in the code always re-

turns both the scale and the period for all computed coefficients and the supplied period
::::::
period should be used for al-

most all purposes. W.r.t. reconstruction, the
:::::::
Different

::
k

:::::::::
parameters

::::::
require

:::::::
different

::::::::
constants

:::
for

:::
the

::::::::::::
reconstruction,

:
if
:::::::
desired.

::::
The code contains pre-computed values Cδ for the most sensible Morlet parameters (i.e. single-digit inte-

gers and multiples of π); for other values, it will be computed on-the-fly and stored
:::::
cached

:
for repeated use

:::::
within200

::
the

:::::
same

:::::::
program

:::::::::
execution.

The mathematics for the 2-D and 3-D transformation
:::::::::
transforms

:
are extensions of the formulas for the 1-D

transform and rather verbose due to the added dimensions. They are thus given in the appendices A1 and A2,

respectively. They do not introduce relevant new concepts aside the one or two angles rotating the wavelet in two or

three dimensions, respectively
:
,
:::
and

:::
the

::::::
aspect

::::
ratio

::::::::
described

::
in

:::
the

::::
next

:::::::::
paragraph.205

::
An

:::::::::
additional

::::::
feature

:::::
only

::::::::
available

:::
for

:::
the

::::
2-D

:::
and

::::
3-D

:::::::::
transforms

::
is
::::

the
:::::::
addition

::
of

:::
an

::::::
aspect

:::::
ratio,

:::::
which

::::::::
effectively

::::::
scales

:::
the

::::
axis

::
of

:::
the

::::
last

:::::::::
dimension

:::::
before

::::::::
applying

:::
the

:::::::::
transform,

:::::
which

:::::
does

:::
not

:::::
affect

::
or

::::::::
resample

::
the

::::
data

:::::
field.

::::
The

::::
basis

::::::::
functions

::
of

:::
the

:::::
CWT

::::
and

::
ST

:::
are

:::::::
defined

::
to

::
be

::::::::
isotropic.

::
If
:::
the

:::::::
analysis

::::
shall

:::
be

::::::::
employed

::::
using

::::::
actual

::::
units,

::::
e.g.

:::::::::
kilometres,

::::
this

:::
can

::::
pose

::
a

:::::::
problem

:::
for

::::::
vertical

::::::::::::
cross-sections

::
of

::::::::::
atmospheric

::::::
gravity

::::::
waves,

:::::
which

:::
are

:::::
often

::::::::
hundreds

:::::
times

:::::
wider

::::
than

::::
tall

:::
and

:::::
often

::::
only

:::::
have

:::
one

:::
or

:::
two

:::::::
periods.

::::::
Using

:
a
::::::

simple
::::

2-D
:::
ST210

:::
will

:::
use

:::::
basis

::::::::
functions,

::::::
which

::::::
extend

::::::::
vertically

::::::
beyond

:::
the

:::::
wave

::::::::
structure

:::
and

::::
thus

:::::
cause

:::
the

::::::
derived

::::::::::
coefficients

::
to

::
be

:::::
much

:::::::
smaller

::::
than

:::
the

:::::::::
amplitude

::
of
::::

the
::::::
present

::::::
waves,

:::
i.e.

::::
the

::::::
derived

::::::::::
amplitudes

:::
are

:::::::::
dampened.

:::::::
Scaling

::
the

::::
2-D

::::
field

:::::::::
vertically

::::
such

::::
that

:::
the

::::::::
measured

::::::
waves

:::
are

:::::
more

::::::::::
"quadratic"

::
or

:::::::
"cubic",

::::::::::
respectively

::::::::
resolves

:::
this

::::
issue

:::
(an

:::::::::
equivalent

::::::::::::
interpretation

::
of

::::
the

:::::::::::
mathematics

:::::
would

:::
be

:::::
using

::
a
:::::::
wavelet

:::::::::
condensed

::
in

::::
one

::::::::::
dimension).
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::::::::
JuWavelet

::
is
:::::::
capable

::
of

:::::::
scaling

:::
the

::::
axis

::
of

:::
the

:::
last

:::::::::
dimension

:::
by

::
a

:::::
scalar;

::::
this

:::
has

:::
no

:::::
effect

:::
on

:::
the

:::::::::::
mathematical215

::::::::
transform

:::::
itself,

::::::::
however,

:::
the

::::::::::
computation

:::
of

:::::::::
directional

::::::::::
wavelengths

::::::::
changes.

:::
For

::::
this

::::::
reason,

:::
the

::::::::::::
corresponding

:::::::::
directional

::::::::::
wavelengths

::
in
::::

the
:::
two

:::
or

:::::
three

:::::::::
dimensions

::::
are

:::::::
provided

:::
for

::::
the

:::::
higher

:::::
order

::::::::::
transforms.

:::::::::
Generally,

::
the

:::::::::::::
decomposition

::::::
results

::::
vary

:::::::::
depending

:::
on

:::
the

::::
units

:::
of

:::
the

::::::::
employed

::::
axis

::::
and

:
a
::::::::::::::
"normalisation"

::
of

:::
the

::::
data

::
to

:
a
:::::::
sensible

::::::::::
relationship

::
is
::::::
useful

:::
for

:
a
::::::::::

meaningful
::::::::

analysis.
:::::
Both

:::::
CWT

:::
and

:::
ST

::::
will

::::::
always

:::
be

:::::::::
invertible,

:::
but

:::
the

:::::::::::
interpretation

::
of

::::::
results

::
is
:::::::
simpler,

::
if
:::
the

::::
axis

:::
of

:::
the

::::
data

::::
field

:::
are

::::::
scaled

::
in
::

a
:::::::::
reasonable

::::::::
fashion;

::::::::
otherwise

:::
the220

::::::
derived

::::::::::
coefficients

:::
will

:::::
more

:::::::
strongly

::::::
deviate

::::
from

:::
the

:::::::
desired

::::
local

::::::::::
amplitudes.

4
:::
The

::::
2-D

:::::::::::::
decomposition

::
In

:::
this

:::::::
section,

:::
we

:::::::
describe

:::
the

:::
call

:::
of

:::
the

:::
2-D

:::::::::::::
decomposition

::
as

:::::
some

::
of

::
its

::::::::::
parameters

:::
are

:::
not

::::
very

::::::::
intuitive.

:::
The

:::
1-D

:::
and

::::
3-D

:::::::::
transforms

:::
are

::::
very

:::::::
similar.

:::
The

::::::::
signature

::
of

:::
the

::::
2-D

::::::::
transform

::
is

::
as

:::::::
follows:

:

225
1:

::::
def

::::::::::::::
decompose2d

:
(

2:
::::::::::

data
:
,

:::
dx

::
,

:::
dy

:
,
::::
s0

:
,
::::
dj

:
,
::::
js

:
,

:::
jt

::
,

::::::::
aspect

::::
=1,

3:
:::::::::::

nxpad
:
=
:::::
None

:
,
:::::::
nypad

:
=
:::::
None

:
,
::::::
opts

::
=

::::
None

::
,

::::::
filt

:
=

:::::
None

:
,

4:
::::::::::

mode
::
="

:::::::::::
stockwell

::
",

:::::::
dtype

::
=

::
np

:
.
::::::::::::
complex128

:::
):230

:::
The

::::
first

:::::::::
parameter

:::::
data

:::::
refers

::
to

:::
the

::::
2-D

:::::::
NumPy

:::::
array

:::::::::
containing

:::
the

:::::
data

::
to

:::
be

::::::::
analysed.

::
It

:::::
needs

:::
to

::
be

:::::::
regularly

:::::::
sampled

::::
and

:::
the

::::::::
sampling

:::::::
distance

::
in

::
x

:::
and

::
y

:::::::
direction

:::
are

:::::
given

:::
by

:::
the

:::
dx

:::
and

:::
dy

:::::::::
parameters.

::::
The

:::
2-D

::::
CWT

:::::::
handles

:::
the

:::::::
analysis

:::
of

:::
data

:::::::
defined

:::
on

::
an

::::::
infinite

::::::
plane.

:::::
Here,

:::
we

::::
have

::
a

::::
finite

:::
set

::
of

::::::::
sampled

::::
data

:::
and

:::
the

:::::::::::::
implementation

:::::::
assumes

:::
that

:::
the

::::
data

::
is

::::::
defined

::
as

::::::
"zero"

::::::
outside

:::
the

:::::
given

:::::::
samples.

::
If

:::
the

:::
data

::
is
:::
not

::::::::
naturally

::::
zero,

:
it
::
is

::::::::
advisable

::
to

:::::::
employ

:
a
::::::::::::
preprocessing

:::
step

::
to

:::::::
subtract

:::
an

::::::::
hopefully

:::::::::::
uninteresting

::::::
average

::::::
value,

:::
e.g.,

:::
by

:::::
using

::
an235

:::::::::::
appropriately

::::
sized

:::::::
median

::::
filter.

::::::::
Another

:::::
option

::
is

::
a

::
so

:::::
called

::::::::
tapering,

:::::
which

:::::::::
surrounds

:::
the

::::
data

::::
with

:
a
::::::::
boundary

:::::
region

::
in

:::::
which

::
it
::
is

::::::::
smoothly

::::::
brought

:::
to

:::
zero

::
to
::::::
reduce

:::
the

:::::
effect

::
of

:::::::
ringing

::
in

::
the

:::::::
analysis

::::
due

::
to

:::::::::::
discontinuity

:::
that

:::::
would

::::::::
otherwise

:::
be

::::::
present

::
at
:::
the

:::::::
border.

::
A

::::::
simple

:::::::
tapering

:::::::
function

::::::
called

:::::::::::::::
smooth_edges

::
is

::::::::
contained

::
in

:::
the

::::::
utils

:::::::::
submodule.

:::
The

::::::::
aspect

::::::::
parameter

:::::::::
effectively

:::::
scales

:::
the

:::
dy

::::::::
parameter

::::
with

:::
the

:::::::::
difference

:::
that

::::
the

::::::::::::
decomposition

::::::
returns240

::
the

:::::::::
directional

:::::::::::
wavelengths

:::
for

:::
the

::::::
correct

:::::::
sampling

::::::::
distance.

:::
The

::::::::
provided

:::::::::
directional

::::::::::
wavelength

:::::::
assumes

:::
that

:::
the

:::
unit

::
of

:::
the

::
x
::::
and

:
y
::::
axis

::
is

::::::::
identical.

::
In

::::
case

::::
they

:::::
have

:::::::
different

:::::
units

::::
such

::
as

::::::
length

:::
and

:::::
time,

:::
the

:::::::::::
interpretation

::
is

::::::::
obviously

:::::
more

:::::::
difficult

:::
and

::::::
cannot

:::
be

:::::::::
automated.

::::::
Values

::
of

::
1
:::
for

::::
both

:::
dx

:::
and

:::
dy

:::
can

::
be

:::::
used

::
as

::::
well

::
to

:::::
have

:
a

::::
fully

::::::
unitless

::::::::
analysis.

:::
The

:::::
CWT

::
is
:::::::

defined
:::
for

:::
all

:::::::::::
non-negative

::::::
scales.

:::
For

::::::::
practical

:::::::
reasons,

::::
only

::
a
:::::
finite

::::::
amount

:::
of

:::::
these

:::::
scales

::
is245

::::::::
evaluated

::
by

:::
the

::::::::::::::
implementation;

:::
the

:::::::
available

::::
data

::::
field

::
is
::::
also

:::::::::
necessarily

:::::::::::
band-limited

:::
due

:::
to

::
its

:::::::
sampled

::::::
nature.

:::
The

:::
s0

::::::::
parameter

::::::
defines

:::
the

:::::::
smallest

:::::
scale

::
to

:::
be

::::::::
analysed.

::
A

:::::
value

:::::::
resulting

:::
in

::
an

::::::::
analysed

::::::
period

::::::
smaller

::::
than

::::
both

:
2
:::
dx

:::
and

::
2

::
dy

:::
will

::::::::
obviously

::::
not

::::::
deliver

:::::
useful

::::::
results

::::
due

::
to

:::
the

:::::::
Nyquist

:::::::::
frequency.

:::
js

:::::
defines

:::
the

:::::::
number

9



::
of

:::::
scales

:::
to

::
be

:::::::::
analysed.

::::
The

:::::::
runtime

::
of

:::
the

:::::::::
transform

::::::::
increases

:::::::
linearly

:::::
with

:::
the

:::::::
number

::
of

::::::::
analysed

::::::
scales.

:::::::
Towards

:::
the

::::::
longer

::::::
scales,

:::::
values

::::::::
resulting

::
in

:::::::
wavelet

::::
basis

:::::::::
functions

::
of

:
a
::::
size

::::::
similar

::
to
::::

the
::::::
dataset

:::
will

:::::::
provide250

:::
ever

:::::
more

:::::::::
dampened

::::::
values

:::
due

::
to
::::

the
::::::::
increasing

:::::::
overlap

:::::::
between

:::::::::
analysing

::::::
wavelet

:::::
basis

:::::::
function

::::
and

:::
the

::::
zero

:::::
region

::::::
around

:::
the

::::::::
supplied

::::
data.

::::
The

:::
dj

::::::::
parameter

:::::::::
configures

:::
the

::::::::
sampling

::
of

:::
the

::::::
scales

::
to

::
be

::::::::
analysed

::::
with

:::
the

::::::
formula

:::
of

:::::::::::::::::::::::

{
s02

jdj |j ∈ [0, . . . , js− 1]
}

.
::
A

:::::::::
reasonable

:::::
value

:::
for

:::
dj

:
is
::::::::

typically
::::
1/4

::::::::::::::::::::::::
(Torrence and Compo, 1998),

:::
but

::
an

::::::::::
exploratory

:::::::
analysis

:::::::
benefits

::::
from

:::
the

:::::::
speedup

::
of

::
a
:::::
value

::
of

::
1

::
in

::::::::::
combination

::::
with

::
a
::::::
smaller

:::
js

::::::::
parameter.

:::
The

:::
jt

::::::::
parameter

::::::
defines

:::
the

:::::::
number

::
of

::::::
angles

::
to

::
be

::::
used

:::
in

:::
the

:::::::
analysis.

::::
The

:::
2-D

:::::::
Morlet

::::::
wavelet

::::
can

::
be

::::::
rotated255

::
by

::
an

:::::
angle

::
θ
::::
with

::::::
values

:::::
within

:::
the

:::::::::
half-open

::::::
interval

:::
of

:::::
[0,π).

::
A

:::::
good

::::::
starting

:::::
value

::::::
would

::
be

:::::::::
something

::
in

:::
the

::::
order

::
of

:::
12.

:::::
More

::::::
angles

:::::
allow

:
a
:::::
better

:::::::::::
identification

::
of

:::::
wave

:::::::::
parameters,

:::
but

:::
the

:::::::
runtime

::::::::
increases

::::::
linearly

::::
with

:::
the

::::::::
examined

::::::
angles.

:::
The

:::::
opts

::::::::
parameter

::
is

:
a
::::::
Python

:::::::::
dictionary

:::::::
allowing

::
to
:::::::::
configure

::
the

::
k
:::::::::
parameter

::
of

:::
the

::::::
Morlet

::::::
wavelet

:::
for

::::
both

::
the

::::::::::::
Morlet-CWT

:::
and

:::
ST

:::::::::
transform.

:::::
E.g.,

:::::::::::::::::
opts={"param":

::::
5}

:::::::::
configures

:
a
:::::
value

:::
of

::
5,

:::::::
allowing

:::
for

::
a
:::::
better260

:::::
spatial

:::::::::
resolution

::
at

:::
the

:::
cost

::
of
:::::::
spectral

:::::::::
resolution

::
in

::::::::::
comparison

::
to

:::
the

::::::
default

::::
value

:::
of

:::
2π.

:::
The

:::::
filt

::::::::
parameter

:
is
::
a
::::::
Python

::::::::
dictionary

::::::::
allowing

::
to

:::
skip

:::
the

:::::::::::
computation

::
of

:::::::
selected

:::::::::
directional

:::::::::
wavelength

::
to

:::::
speed

::
up

:::
the

:::::::::::
computation.

:::
The

:::::::
possible

::::
keys

::::
vary

:::::::::
depending

::
on

:::
the

::::::::
employed

:::::::::
transform.

:::
The

::::
2-D

::::::::
transform

:::::::
supports

::
the

::::
keys

::::::::::::::::::::
min_wavelength_x

:
,
:::::::::::::::::::
max_wavelength_x

:
,
:::::::::::::::::::
min_wavelength_y

:
,
:::::::::::::::::::
max_wavelength_y

:
,
:::::::::::
min_theta,

:::
and

:::::::::::
max_theta

:
.
:::
For

:::::::
example

::::::::::::::::::::::::::::::
filt={"min_wavelength_x":

:::::
10,

::::::::::::::::::::::::
"max_wavelength_x":

::::::
100}

::::::::
computes265

::::
only

:::::::::
coefficients

:::::::::
associated

::::
with

:::::::::
directional

:::::::::
wavelength

:::::
along

:::
the

:::::
x-axis

:::::::
between

:::
10

:::
and

::::
100.

::::::::::
Coefficients

::::::::
associated

::::
with

::::::::::
wavelengths

::::::
outside

::::
this

:::::
range

:::
will

:::
be

::::
filled

::::
with

:::::
NaN

::::::
values.

:::
The

:::::::
padding

::::::::::
parameters

::::::
nxpad

:::
and

::::::
nypad

::::
allow

::
to

::::::::
manually

:::::::::
configure

:::
the

:::::::
padding

::::::::
necessary

::
to

:::::::
perform

:::
the

:::::::::
convolution

::
in
:::::::
Fourier

:::::
space.

::::
The

:::::::::
underlying

::::
Fast

::::::
Fourier

:::::::::
Transform

:::::
(FFT)

:::::::
assumes

::::
data

::
to

::
be

:::::::
periodic

::
in

:::
all

:::::
spatial

::::::::
directions,

::::::
which

:
is
:::
not

:::
an

:::::::::
assumption

:::::::::
underlying

:::
the

:::::
CWT.

:::
To

::::
avoid

::::::
effects

::
of

:::
this

::::::::::
periodicity

:::::::
affecting

:::
the

:::::::
analysis,270

::
the

::::
data

::
is
:::::::
padded

::::
with

:::::
zeros,

::::::::
applying

:
a
::::::::
different

::::::::::
assumption

::
of

:::
the

::::
data

:::::
being

::::
zero

::::::
outside

:::
the

::::::::
supplied

::::
data.

::
If

::
the

::::
data

::
is
::::::::

actually
:::::::
periodic,

::::
this

:::
can

:::
be

::::::::
exploited

:::
by

::::::
setting

:::
the

:::::::
padding

:::::::::
parameters

:::
to

::::
zero.

::
It
::::::
should

::::::::
normally

::
be

:::
left

::
to

:::
its

::::::
default

::::::
values,

::::::
which

::::::::
guarantee

::::::
correct

::::::
results,

:::::
albeit

::
at
:::::::::
increased

:::::::
runtime.

::
In

:::
the

::::
case

::::
that

:::
the

:::::
data

::::
field

:
is
:::::::

already
:::::::::
sufficiently

:::::::
padded

::::
with

:::::
zeros

::::
(e.g.

:::
due

::
to
::::::::

tapering
::
or

::::::
similar

::::::::::::
preprocessing

:::::
steps),

::
it
::::::
should

::
be

:::
set

:::::::::::
appropriately

::
to

::::
save

:::::::
memory

:::
and

:::::::
runtime.

:
275

:::
The

::::::
mode

::::::::
parameter

:::::::::
configures

:::
the

::::
type

::
of

:::::::::
transform

::
to

::
be

:::::
used.

::::
The

::::::
default

:::::
value

::
of

::::::::::
"stockwell"

::::
uses

:::
the

:::
ST

::::
while

:::::
"cwt"

::::
uses

:::
the

::::::::::::
Morlet-CWT.

:::
The

::::
final

:::::::::
parameter

:::::::
dtype

::::::
defines

:::
the

:::::::::
numerical

::::::
format

::
to

:::::
store

:::
the

::::::::::
coefficients

:::
in.

::::
The

:::::::::::
computation

::::
uses

::::::::
internally

:::
the

::::::
double

::::::
format

::
to

::::::
reduce

:::::
error

:::::::::::
propagation,

:::
but

:::
the

::::::
results

:::
can

:::
be

::::::
stored

::
in

:::::
lower

::::::::
accuracy

::
to

::::
save

:::::::
memory.

::::
The

:::::
default

::::::
format

::
is

::::::::::::
complex128

::
for

:::
the

:::
1-D

::::
and

:::
2-D

::::::::
transform

:::
and

::::::::::::
complex64

::
for

:::
the

::::
3-D

::::::::
transform.280
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5 Examples

This section gives several examples demonstrating the power
:::::::::
capabilities

::::
and

:::::::::
application

:
of the available analysis

tool.

5.1 1-D analysis on synthetic data

The first example2 serves to showcase the ability of the CWT to analyse a signal for individual components and285

highlight the differences between the implemented method. Figure 2 shows a signal consisting of three subsignals in

panel (a). The individual signals
::::::::
subsignals

:
are shown in panel (e). One signal

::::::::
subsignal decreases linearly in ampli-

tude, one changes its frequency and one is only present in the second half, which would be typically time or space in

geophysical data. The CWT (panels (b)and (f)
:::::
signal

::
is

:
a
::::
1-D

::::
array

::::
with

:::::
2048

::::::
entries

::::::
(8 kB).

:::
We

::::
first

:::::
apply

:::
the

:::
1-D

::::
CWT

:::
to

::
the

::::::
signal

:::::
using

::::::
dx= 1,

:::::::
s0= 2,

:::::::::
dj= 1/8,

::::::::
js= 56,

:::
and

:::::::
k = 2π.

:::::
Panel

::
(b) shows nicely in its magnitude290

the presence and period of the signals
::::
how

:::
the

:::::::::
subsignals

:::
are

:::::::
reflected

::
in

:::::
peaks

:::
of

:::
the

:::::::::
magnitude. The phase signal

:::::
(panel

:::
(f))

:
is difficult to interpret, as it changes linearly during the signal. Here, we showcase as comparison the re-

sult of a Gabor short-time-Fourier-transform (STFT; Allen, 1977; Mallat, 1999, e.g
::::
e.g.,

:::::::::::::::::::::
Allen, 1977; Mallat, 1999

), which here uses a fixed window of length 100. The transform is similar to the CWT with the Morlet wavelet,

the major difference being the Gaussian envelope being replaced by a rectangular boxcar window
:::
has

::
an

::::::::
analysing295

:::::::
function

:::::
using

:
a
::::::::
Gaussian

:::::::
envelope

::::
with

::
a
::::
fixed

::::::::
standard

:::::::
deviation

:
of length 100. In panels (c) and (g), one can see

that the results are similar to the CWT, but that the spectral resolution is better for small periods and worse for large

periods. This is a direct consequence of the changing number of periods in the basis function due to the envelope of

fixed size. The last panelsof
::::::
Finally,

:::
we

:::::
apply

:::
the

::::
1-D

::
ST

::
to

:::
the

:::::
signal

:::::
using

:::
the

:::::
same

:::::::::
parameters

::
as

::
in

:::
the

:::
1-D

:::::
CWT

::::
case.

::::::
Results

:::
are

::::::
shown

::
in

:::::
panels

:
(d) and (h)show the result of the ST. The magnitude of the coefficients corresponds300

to the magnitude of the original signals, as expected. Another difference can be spotted in the phase plot. The phase

stays constant in the analysis at the correct period length, which gives another indication of the "correctly" identified

period length. Due to evaluating only a discrete set of scales on a computer, one seldom really analyses the correct

period and is much more likely to look at one "close" to the correct one, where the phase still changes albeit, slowly.

Also, many real-life signals vary slightly in frequency, so this makes the phase difficult to interpret even for the ST.305

On a more practical note, please observe that the results of the CWT get more "fuzzy" on the edge for larger

scales. This is due to the increasing extent of the wavelet basis functions, which extend beyond the original signal,

where the algorithm assumes a signal of "zero". This can cause a variety of artifacts in the coefficients close to

the border; here, the magnitude decreases, but for data that isn’t "zero" at the boundaries, also ringing-like artifacts

will appear. To avoid this as much as possible, it is suggested to use tapering, i.e. bringing the signal to zero in a310

controlled fashion, and be generally aware of this when interpreting the coefficients. Torrence and Compo (1998)

2
::
See

:::::::::::::::::::::::
examples/decompose1d.py

::::
within

::::::::
JuWavelet.
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provides
::::::
provide

:
a "cone of influence" for 1-D data, which can be computed in the juwavelet.utils module

:::::
found

::
in

::
the

:::::::
utils

:::::::::
submodule

:
for 1-D decomposition

::::::::::::
decompositions.

5.2 1-D analysis of SST

As second example3, we’d like to reproduce a figure from
::
by

:
Torrence and Compo (1998) analysing an actual series315

of sea surface temperatures
::::
(SST)

:
as measure of the amplitude of the El Niño–Southern Oscillation. The software

and data used by Torrence and Compo (1998) for this 1-D analysis is readily available (see Acknowledgements). The

analysis is
:::
SST

::::
data

::
is

:
a
::::
1-D

::::
array

::::
with

::::
504

::::::
entries

::::::
(3 kB).

:::
We

:::::
apply

:::
our

::::
1-D

::::
CWT

::
to
:::
the

::::
SST

::::
time

:::::
series

:::::
using

:::
the

::::::::
following

::
set

:::
of

::::::::::
parameters:

:::::::::
dx= 0.25,

::::::::
s0= 0.5,

:::::::::
dj= 1/4,

::::::::
js= 37,

::::::
k = 6.

::::::
Results

::
of

:::
the

:::::::
analysis

:::
are

:
shown in

Fig. 3. The
::::
SST time series shows obvious "high-frequency" oscillations of short time scales of a few years plus less320

obvious long-term features. The power spectrum (i.e. the squared absolute values of the coefficients of the CWT)

are shown in Fig. 3b. The power relates to the variance of the original signal explained by the indicated periods and

time frames. The hatched region indicates here roughly the coefficients, where the relevant support of the wavelet

extends beyond the region of available data . The third panel c
:::::
(cone

::
of

:::::::::
influence).

::::::
Please

::::
note

::::
that

:::
the

:::::
CWT

::
of

::::::::
Juwavelet

::::::
retains

:::
the

::::::
energy

::
of

:::
the

:::::::::
continuous

:::::
signal

:::
as

::::::::
described

::
in

:::
Eq.

:::
(3),

::::::::
whereas

:::::::::::::::::::::::
Torrence and Compo (1998)325

::::::
defined

::::
there

:::::::::
transform

::
to

:::::::
conserve

:::
the

::::::::
variance

::
of

:::
the

:::::::
sampled

::::::
signal,

:::::
which

::::::
causes

:::
the

::::::::
spectrum

::
to

::::::
change

::
if
:::
the

:::::::
sampling

:::::::
distance

::::::
varies;

::::
this

:::::
causes

::
a

:::::::::
discrepance

:::
of

:
a
:::::
factor

::
of

::
4

:::::::
between

::::
their

:::
and

::::
our

:::::
figure.

:::::
Panel

:::
(c) shows the

absolute value of the ST, which directly relates to the amplitude in the original signal. While the values are similar

(except for the squaring) close to a period of "1", they decrease comparatively
:::::
Please

::::
note

::::
how

:::
the

:::
ST

:::::::
reduces

::
the

:::::::::
coefficient

::::::::::
magnitude for longer periods . The wavelets of JuWavelet are slightly differently normed (real vs.330

complex integral)such that a scaling factor was necessary for replicating the power spectrum shown in Fig. 3
:::
and

::::::
elevates

::::::
values

:::
for

::::::
smaller

:::::::
periods

::::
(and

:::
thus

::::
also

::::::::
amplifies

:::::
noise).

5.3 2-D analysis on synthetic data

The 2-D Morlet wavelet is shown in Fig. 4 for differing scales and angles. It is used to analysea synthetic 4
:
a

:::::::
synthetic

::::
2-D

:
field containing several wave packets depicted in Fig. B

:
a. The synthetic field

::
is

:::::::
similarly

::::::::
designed335

::
as

:::
the

::::::::
synthetic

:::::
wave

::::
field

::::::
shown

::
in

::::::::::::::::::::::::::::::
Hindley et al. (2016, therein Fig. 2)

::
and

:
contains eight partially overlapping

waves. All waves have an amplitude of one, but differing envelopes. One example uses a circular pattern similar

to gravity waves induced by point sources. The
::::
field

::
is

::
an

:::::
array

::::
with

:::::::::
200× 200

::::::
entries

:::
and

:::::
takes

:::
up

:
a
::::
disc

:::::
space

::
of

:::::::
0.3 MB.

::::
The CWT transforms this 2-D field into a 4-D field with added dimensions of scale (or period) and

angle.
:::
The

::::
disc

:::::
space

::::::::
occupied

::
by

:::
the

::::
4-D

::::
array

::::::::
increases

:::::::
linearly

::::
with

:::
the

::::::
number

::
of

:::::
scales

::::
and

:::::::
rotation

::::::
angles.

::
So340

::::
does

:::
the

::::::::::
computation

:::::
time.

:::
For

:::
the

:::::::
wavelet

:::::::
analysis

::
of

:::
the

::::::::
synthetic

::::
wave

:::::
field,

:::
we

::::
used

::::::::::::
dx= dy= 1,

:::::::::
s0= 2dx,

:::::::::
dj= 1/16,

:::::::::
js= 106,

::::::::
jt= 18,

::::::
k = 4,

::::
and

::
an

::::::
aspect

::::
ratio

:::
of

:
1
::::::::
resulting

::
in

:::
an

::::
array

:::
of

::::
size

::::::
1.4 GB.

::::::
Please

::::
note

3
::
See

:::::::::::::::
examples/sst.py

::::
within

::::::::
JuWavelet.

4
::
See

::::::::::::::::::::::
examples/separate2d.py

::::
within

::::::::
JuWavelet.
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:::
that

::::
due

::
to

::
an

:::::::::
ambiguity

::
of

::
π,

::::
the

::
18

::::::
angles

:::
are

::::::
equally

::::::::::
distributed

::
in

:::
the

:::::
range

:::::
[0,π].

:
This 4-D information field

is difficult to visualise, so
::::::::
following

::::::::::::::::::
Hindley et al. (2016) we collapse the 4-D field by selecting for each spatial

sample the coefficient with the largest amplitude and select the associated wavelength and angle. This gives again345

2-D fields. Figure Bb shows
:::
and

::
c
:::::
show

:::
the

::::::::::::
reconstruction

::
of

::::
the

::::::::
dominant

::::::
modes

::::
and the resulting amplitude

field. The ,
:::::::::::
respectively.

::::::
Please

:::::
note,

:::
that

:::
we

:::::
used

:::
the

::::::
scaled

:::::::
version

:::::::::::::
(mode=’scaled’)

::::::
which

::::::
yields

:::
the

::::::
correct

:::::::::
amplitudes

::
of

:::
the

::::::
signal.

:::::
While

:::
the

::::::::
structure

::
of

:::
the

::::
wave

::::
field

::
is
::::::
nicely

:::::::::::
reconstructed,

:::
the

:
amplitudes are all strictly

smaller than one
:
1, as the relationship between wavelet coefficients and amplitude of original waves holds only for

monochromatic waves of infinite extent and the employed examples are all comparatively small. The CWT uses350

here the Morlet parameter of 2π. A smaller parameter would deliver more accurate amplitudes at the cost of a worse

spectral resolution
::::
k = 4

::::::
which

:
is
::::::
chosen

::::
due

::
to

:::
the

:::::
strong

::::::::::
localization

::
of

:::
the

::::
wave

:::::::
packets

::
in

:::::
space. The wavelength

:::
and

:::::::::
wavefront

::::::::::
orientations associated with the dominant coefficients is

:::
are depicted in panel (c). The wavelength

of the synthetic wave packets is well reproduced. The direction of the wavefronts is shown in panel (d). While the

amplitudes are almost all underestimated, the identified wavelengths
::
d)

:::
and

::::
(e).

::
In

::::::::
addition,

:::
we

::::::
oppose

:::::
input

:::
and355

:::::
output

:::::::::::
wavelengths

:::
and

:::::
wave

::::::::::
orientations

:::
in

:::
Fig.

::::
Bf.

:::::
While

:::::::::
wavefront

::::::::::
orientations

:::
are

::
in
:::::::

perfect
:::::::::
agreement,

:::
we

:::::
notice

::
an

::::::::::::::
underestimation

::
of

:::
the

::::::::::
wavelength

:::
for

:::::
wave

::::::
packet

:
6
:
and directions match perfectly with the employed

synthetic waves
:
7.

::::
The

:::::
reason

:::
for

:::
this

::::::::::::::
underestimation

:::::
might

::
be

::::
their

::::
large

:::::::::::
wavelengths

::
in

:::::::::
comparison

::
to

:::
the

:::::::
physical

:::::
extend

::
of

:::::
their

::::::::
envelopes.

:::::::
Another

:::::::::::
contributing

:::::
factor

:::::
might

::
be

:::
the

:::::::
vicinity

::
of

::::
wave

:::::::
packets

:
6
::::
and

:
7
::
to

:::
the

::::::::
boundary

::
of

:::
the

::::::
domain.360

5.4 2-D reconstruction

The supplied code can not only compute the decomposition, but also reconstruct the original field from the CWT.

This allows the manipulation of coefficients for a wide variety of purposes. Figure 6 shows several examples5

thereof. Please note that the physical dimensions of the data are widely different. While vertically, the measured

data covers about 50 km, horizontally about a thousand are covered. Also the gravity waves in the data have often365

much larger horizontal than vertical wavelengths. To facilitate the analysis here, we implemented a simple feature

to align the wavelet basis more with the waves present in the data. The library allows to vertically stretch the data

by a constant factor before analysis via an optional
::::
make

::::
use

::
of

:::
the aspect parameter

:::::
feature

:::::::::
described

:::::
above. Here,

an aspect of 40 was employed, which delivered reasonable results and did not leave the computed coefficients for

most angles empty (as is the case for the default aspect of 1). Using this feature requires some care in computing370

horizontal and vertical wavelengths (please see panel titles in App. ??).

The data is a down sampled
::
set

::
is

:
a
::::::::::::
down-sampled

:
version of the temperature data measured by the ALIMA lidar

(Kaifler et al., 2017) analysed and discussed by Geldenhuys et al. (2023) using an earlier version of this software.

The
:::::::::
temperature

::::
field

::::
(see

::::
Fig.

:::
6a)

:
is
::
a
:::
2-D

:::::
array

::::
with

:::::::
89×110

::::::
entries

::::::::
(244 kB).

:::
We

:::::
apply

:::
the

:::
2-D

:::::
CWT

::
to
:::
the

::::
data

::::
using

:::
the

::::::::
following

::::::::::
parameters:

::::::::::
dx= 8.46,

::::::::
dy= 0.4,

::::::::
s0= 20,

::::::::::
dj= 1/45,

:::::::
js= 20,

::::::::
jt= 18,

:::::::::::::
aspect= 40,

:::
and375

5
::
See

:::::::::::::::::::::::
examples/decompose2d.py

:
in
::::::::
JuWavelet.
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::::::
k = 2π.

::::
The

:
coefficients provided by the CWT can be filtered, i.e.

:
,
:
practically "undesired" coefficients are set to

zero before performing a reconstruction. In this manner one can filter out components according to angle and thus

separate the original field into left- (Fig. 6b) or right-slanted waves (Fig. 6c), which here likely corresponds also

to downward or upward propagation direction, respectively. A low pass filter can be finely configured by removing

undesired small scales
:::::
setting

:::::::
wavelet

::::::::::
coefficients

::
to
::

0
::::::
where

::::::
periods

:::
are

:::::::
smaller

::::
than

:::::::
100 km

:
(Fig. 6d) or vice380

versa. It is also possible to extract individual wave packets. A simple clustering algorithm contained in the software

package identifies different wave packets and the associated CWT coefficients.
::::
Due

::
to

:::
the

::::
finite

:::::::
spectral

:::
and

::::::
spatial

::::::::
resolution

::
of

::::
the

::::::::
employed

:::::
basis,

::::
the

::::
basis

::::::::
function

::::::
closest

::
in

::::::::::
parameters

::
to

:::
the

::::
true

:::::
wave

::::::
packet

:::
will

::::::::
typically

::::
have

:::
the

::::::
largest

:::::::::
coefficient,

:::
but

::::::::
spectrally

::::::::::::
neighbouring

::::
basis

::::::::
functions

::::
will

::::
still

::::
have

::::
large

::::::
values

:::::::::
decreasing

::::
with

::::::::
"distance"

::
in
::::

the
::::::
wavelet

::::::
space.

::::::::
Including

:::::
these

:::
in

:::
the

::::::::::::
reconstruction

::
is

::::::::
important

:::
to

:::::
retain

:::
the

:::::::::
amplitude

::
of

:::
the385

::::::
packet.

:::
The

:::::::::
algorithm

:::::::
assumes

:::
that

::::::::::
overlapping

:::::
wave

:::::::
packets

:::
are

::::::::
separable

::
in

:::::::
spectral

:::::
space

::
by

::::::::::
coefficients

:::::
below

:
a
::::::::::
configurable

:::::::::
threshold.

::::
Due

::
to

:::
the

::::
high

:::::::::::::
dimensionality

::
of

:::
the

:::::
CWT

::::::::::
coefficients,

::::
this

:
is
::

a
:::::::::
reasonable

::::::::::
assumption.

:::
The

::::::::
algorithm

::::
then

::::::::
identifies

:::
the

::::::
largest

:::::::::
coefficient

:::
not

:::
part

:::
of

::
an

::::::::
identified

::::::
cluster

:::
and

::::
first

::::::::
identifies

:::
the

:::::
scales

:::
and

:::::
angles

:::::::::
associated

::::
with

:::
this

::::::
cluster

:::
by

:::::::
looking

:::
for

:::::::::::
neighbouring

:::::
scales

::::
and

:::::
angles

::
at
::::
this

::::
point

::::::
above

:::
the

::::::::
threshold.

::
In

:
a
:::::::

second
::::
step,

:::
the

::::::
spatial

::::::
extent

::
is

::::::::
explored

::
in

:::
the

:::::
same

:::::
way,

::::::
starting

:::::
from

:::
the

:::::::::
identified

:::::
scales

::::
and

::::::
angles.390

:::
The

::::::::
algorithm

:::::::
repeats

::::
until

:::
no

::::::
further

:::::
cluster

::::
can

::
be

::::::::::
constructed

:::::
from

::::::::
remaining

:::::::::::
coefficients. By only using these

coefficients
::
the

::::::::::
coefficients

::
of

::
a
:::::
single

::::::
cluster

:
in the reconstruction, individual wave packets can be identified and

analysed w.r.t. wavelength, direction and amplitude. The two major features of the field are given in Figs 6e and f.

:::
The

:::::::::
directional

:::::::::::
wavelengths

:::::
given

::
in

:::
the

::::
panel

::::::::
headings

::
fit

::::
well

::
to

:::
the

:::::::::
observable

::::::::
structure

:::::
close

::
to

:::
the

:::::::::
highlighted

:::::
center

::
of

:::
the

:::::
wave

::::::
packet.

::::::
Further

:::::
away,

:::
the

:::::::::
agreement

::
is

:::::
worse;

::::
here

:::
the

:::::::
supplied

:::::::::
automatic

::::::::
clustering

::::::::
algorithm

::
is395

:::::
unable

::
to
:::::::
identify

:::::::
properly

:::
the

::::::
cluster

::::::::::
boundaries.

:::
We

::::::
suggest

:::::
using

:::
the

:::::::::
automatic

::::::::
algorithm

::::::
mostly

:::
for

:::::::::
exploratory

:::::::
analysis.

5.5 2-D separation of two mountain waves

In general, gravity waves overlap in the atmosphere
:::::
waves

:::
can

:::::::
overlap. However, most studies focus on analyzing

wave parameters with dominant amplitudes at spatial samples (such as done in Sec. 5.3
:
;
:::
see

:::
also

::::::::::::::::::::::::::::::::::::::
Hindley et al., 2016, 2019; Wright et al., 2021400

). In this section
:::::::
example6, we present a horizontal cross-section through a vertical wind field created by a numerical

simulation. During the simulated flow over a wide and a narrow mountain, two mountain waves are generated,

which overlap
:::::::::::
superposition

:::
of

:
a
::::::
simple

:::::::::
large-scale

:::::
plane

:::::
wave

::::
and

:
a
::::::::::

small-scale
::::::
Kelvin

:::::
wake

::::::
pattern. Figure 7a

shows the simulated wave field
::::
wave

:::::
field

::::
with

::::::::
640× 480

::::::
entries

::::::::
(1.2 MB). We compute the 2-D CWT of the wave

field using 58 scales from 4 km to 560
::::::::::::
dx= dy= 0.1 kmas well as 9 angles distributed between 0 and π ,

:::::::::
s0= 2dx,405

::::::::
dj= 1/8,

::::::::
js= 58,

:::::::
jt= 9,

::::::
k = 4,

:::
and

::
an

::::::
aspect

::::
ratio

::
of

::
1 and obtain a 4-D array of wavelet coefficients

:::::::
(memory

:::::
space:

:::::::
2.8 GB,

:::::::
runtime:

::::::
2.8 min

::
(2

:::::::
physical

:::::
cores,

::::
i.e.,

:
4
::::::
logical

:::::
CPUs

:::
via

:::::
2-way

::::::::::::::
hyperthreading)). Subsequently, we

use the watershed function from the skimage.segmentation package in Python to label the wavelet coefficients. For

6
::
See

:::::::::::::::::::::
examples/segment2d.py

::::
within

::::::::
JuWavelet.
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this, we calculate the power spectrum and invert it. The watershed function then segments regions in the spectrum

that are separated by a minimum. In this example we find two major segments that are associated with the small-410

and the large-scale mountain wave. To reconstruct the small-scale wave, all wavelet coefficients corresponding to

the large-scale wave are set to zero and vice versa. The reconstruction of the small- and large-scale mountain wave is

shown in Fig. 7b, and
:
c. To represent the respective amplitudes, wavelengths, and orientations, we take the adjusted

wavelet coefficients and collapse the modified 4-D array of coefficients by saving the parameters that are associated

with the amplitude maximum at each spatial sample. The result is shown in Figs 7d, e, f, g, h,
:::
d–i.

::
In

:::::::
contrast

::
to415

::
the

::::::::
example

::
in

::::::
Section

:::
5.3

:::
the

::::
two

::::
wave

:::::
fields

::
in

::::
this

:::::::
example

::::::
cannot

::
be

::::::::
separated

:::
by

::::::
simply

::::::
looking

:::
for

::::::::
dominant

:::::::::
amplitudes

:::
but

:::
we

::::
must

:::::
make

:::
use

::
of

::::
their

:::::::
different

::::::
scales.

:::::
Here,

:::
we

:::
find

::::
that

::
the

:::::::::
watershed

:::::::
function

:::::
nicely

::::::::
separates

::
the

::::
two

::::::
waves.

:::
Not

::::
only

:::
the

:::::
wave

:::::
fields

:::
can

::
be

:::::::::::
reconstructed

:::::::::
separately,

:::
but

::::
also

:::
the

::::::
wave’s

:::::::
spectral

::::::::
properties

::::
such

::
as

:::::::::
amplitude,

:::::::::
wavelength

::::
and

:::::::::
orientation

::::
can

::
be

::::::
studied

:::::::::
separately.

::::::
Please

::::
note

::::
that

:::
the

:::::::
retrieved

:::::::::
large-scale

:::::
wave

::::::::
amplitude

::
is

::::::
weaker

:::
at

:::
the

::::::::
boundary

::
of

:::
the

:::::::
domain

:::
due

:::
to

:::
the

::::::::
enhanced

:::::::
overlap

::
of

:::
the

::::
2-D

:::::::
wavelet

::::
with

::::::
padded420

::::
zeros

::::::
outside

:::
the

:::::::
domain.

:::
We

:::::
apply

:::
the

:::::
same

:::::::::
watershed

:::::::
function

::
to
::::

the
::::::
wavelet

::::::
power

::::::::
spectrum

:::::
from

:::::::
Section

:::
5.3

:::
and

::::::::::
reconstruct

::::::
almost

::
all

::::::::
synthetic

:::::
wave

::::::
packets

:::::::::
separately

::::
(see

::::
Fig.

::::
A1).

:::::
Only

:::
the

::::::::
location,

:::::
scales

::::
and

::::::::::
orientations

::
of

:::::
wave

:::::::
packets

:
4

and i.This example
:
7
:::
are

:::
to

::::::
similar

:::
and

::::::
hence

::::
these

::::
two

:::::
wave

::::::
packets

::::::
cannot

:::
be

::::::::
separated

:::
by

:::
the

::::::::
algorithm

::::
(see

:::
Fig.

:::::
A1b).425

:::::
These

::::::::
examples demonstrates the power of combining the 2-D CWT with an appropriate segmentation algorithm.

5.6 3-D analysis on numerical simulation
::
of

::::::::
synthetic

::::
data

Figure 8 shows the 3-D spatial structure of a mountain wavesimulated with EULAG. It is the same V-shape

small-scale mountain wave that horizontal cross-section is shown in Fig. 7b.
::::
For

:::
this

::::::::
example7

:::
we

:::::::
compute

:::
the

::::::
vertical

:::::::::::
displacement

::::
(see

::::
Eq.

::
20

::
in
::::::::::::

Smith (1980))
::::::

given
:
a
::::::::::
bell-shaped

::::::::
mountain

::::::::::::
(h= 1000m,

::::::::::::
a= 25000m)

::
as430

:::
well

:::
as

:
a
:::::
static

:::::::
stability

::
of

:::::::::::
N = 0.02s−1

::::
and

:
a
:::::::::
horizontal

::::
wind

::::::
speed

::
of

:::::::::::
u= 10ms−1.

::::
The

::::
data

:
is
::
a
:::
3-D

:::::
array

::::
with

::::::::::::
250× 300× 40

::::::
entries

:::::::::
(11.4 MB). The 3-D CWT is applied to the wave field using 6 azimuth angles distributed

between 0 and π, 7 zenith angles distributed between −π/2 and π/2, and 14 scales ranging from 20
:::
the

::::::::
following

:::::::::
parameters:

:::::::::::::::
dx= dy= 2 km,

:::::::::
dz= 0.25 kmto 62,

::::::
s0= 4 km. The aspect ratio is chosen to be

:
,
::::::::
dj= 1/4,

::::::::
js= 16,

::::::
jt= 6,

:::::::
jp= 7,

::::::
k = 4,

:::
and

::
an

::::::
aspect

::::
ratio

::
of 10. As a result of the 3-D CWT we get a 6-D object containing wavelet435

coefficients for all three spatial, one scale, and two angle dimensions
:::::::
(memory

::::::
space:

:::::::
13.5 GB,

::::::::
runtime:

:::::
0.74 h

:::
(16

:::::::
physical

:::::
cores,

:::
i.e.

:::
32

::::::
logical

:::::
CPUs

::::
via

:::::
2-way

::::::::::::::
hyperthreading)). In order to illustrate the amplitude of the wave

field, we collapse the 6-D CWT into a 3-D object containing the maximum amplitude for each spatial sample. We

then choose to illustrate the isosurface connected to an amplitude of 0.025ms−1
::::
70 m

::
of
:::::::
vertical

:::::::::::
displacement. The

structure of the amplitude isosurface reveals the discrete nature of the 3-D CWT . Since we use only 6 azimuth and440

7
::
See

:::::::::::::::::::::::
examples/decompose3d.py

:
in
::::::::
JuWavelet.
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7 zenith angles, the smoothly varying V-shape structure of the small-scale MW is represented by three
:::::
agrees

:::::
nicely

::::
with

::
the

:
3-D wavelets that differ only in their azimuth angle.

::::
wave

::::
field

::
in

:::
the

:::
left

::::::
panel.

6 Implementation

:::
The

::::::::
sampling

::
of

:::
the

:::::
CWT

:::::
draws

::::::
heavily

:::
on

:::
the

::::
Fast

::::::
Fourier

:::::::::
Transform

::::::
(FFT).

:::
We

:::::::::
effectively

::::::::
discretize

:::
Eq.

:::
(2)

:::
and

:::
use

:::
the

::::
FFT

::
to

:::::::
compute

::
f̂
::::
and

:::
the

::::::
inverse

:::::::::
continuous

:::::::
Fourier

:::::::::
transform.

::::
This

::::::::
computes

:::
the

:::::
CWT

:::
for

:::
all

:::::::
sampled445

:::::
values

::
of

::
u
:::::::::::::
(corresponding

::
to

:::
the

::::::::
sampling

::
of

:::
the

:::::::
supplied

::::
data

::::
set)

:::
and

::::
one

:::::
scale.

::::::::::
Effectively,

:::
one

::::
FFT

::
is

::::::
needed

::
for

::::
each

:::::
scale,

::::::
which

:::::::::
determines

::::::
largely

:::
the

::::::::::::
computational

::::::::::
complexity.

The software package is available in the Python programming language. It leverages heavily the NumPy library

for its computational needs, which also takes care of leveraging multiple cores if available.
:
.
:::
For

:::
the

:::
1-D

:::::::::
transform,

::
let

:::
ns ::

be
:::
the

:::::::
number

::
of

::::::
scales

:::
and

:::
nx:::

the
::::::
length

::
of

:::::
data.

::::
One

::::
FFT

::
is

::::::
needed

:::
for

::::::::
analysing

:::
the

::::
data

::::
and

::
ns:::::

FFTs450

::
for

:::::::::
computing

::::
the

::::::::::
coefficients.

:::::
Then

:::
the

:::
1-D

:::::::::
transform

::
is

::
of

:::::::::
complexity

::::::::::::::
O(nsnx lognx):::::::::

neglecting
::::::::
constants

:::
and

::::::
smaller

:::::
terms8.

:::::
With

:::
ny :::

and
:::
nz::::

and
::
nθ::::

and
:::
nϕ:::

the
::::::
length

::
of

::::::
higher

::::::::::
dimensions

:::
and

:::::::
number

::
of

::::::::
analysed

::::::
angles,

::::::::::
respectively,

:::
the

::::::::::
complexity

::
of

:::
the

::::
2-D

:::::::::
transform

:::
can

:::
be

::::::::
estimated

::
to
:::

be
::::::::::::::::::::::
O (nsnθnxny log(nxny)) :::

and
:::
the

::::
3-D

::::::::
transform

::
is

::
in

:::
the

:::::
order

:::
of

::::::::::::::::::::::::::::
O (nsnθnϕnxnynz log(nxnynz)),:::::

again
::::::::::

depending
::
on

::::
the

::::::
number

:::
of

::::
2-D

:::
and

::::
3-D

:::::
higher

::::::::::
dimensional

:::::
FFTs

::::::::::
evaluations.

:
455

As almost all computation time is spent doing fast Fourier transforms
::::
FFTs, support for the FFTW3

::::
both

:::
the

::::
Intel

:::::
Math

:::::
kernel

:::::::
library

:::
and

:::
the

:::::::
FFTW library (Frigo and Johnson, 2005) is availablevia the Python interface

pyFFTW . This library offers much better multiprocessing support than the standard numpy routines ,
::::::
which

::::::
provide

:::::
highly

:::::::::
optimized

:::
and

::::::::::
parallelized

::::::::::::::
implementations

:::::::
thereof.

::::
This

:::::::
requires

:::
the

::::::
mkl_fft

::
or
::::::::

pyFFTW
:::::::
Python

:::::::
package,

::::::::::
respectively.

:::
By

:::::::
default,

:::::::::
JuWavelet

::::
tries

:::
for

::::
first

:::::
MKL

::::
and

::::
then

:::::::
FFTW,

:::
but

:::
the

:::::::::
employed

:::::::
routines

::::
can

::::
also

::
be460

:::::::::
configured

::::::
during

::::::
runtime

::::::
using

:::
the

::::::::
functions

::
of

::::
the

::::
fft

::::::::
submodule. Further parallelization, in particular over

multiple nodes of a supercomputer, can be simply realized by distributing individual scales onto different processes

and/or machines
:
or

:::::
using

::::::::
selective

:::::
filters and aggregating the results.

7 Conclusions

The presented software package closes a gap by providing readily-available 1-D, 2-D, and 3-D CWTs using the465

Morlet wavelet
:::
STs

::::
and

::::::::::::
Morlet-CWTs. Both analysis and reconstruction formulas are implemented such that also

the filtering of signals for individual wave packets is possible. The software has been used successfully for the

published analysis of temperature measurements and is ready to use
::
but

::
is
:::::

well
:::::
suited

:::
for

::::
the

:::::::
analysis

::
of

:::::
other

:::::::
localised

::::::::
wavelike

:::::::::
phenomena

::
in
::::::::::
Geophysics.

8
::
The

::::::::
complexity

::
of

::
the

:::
FFT

::
of

:
a
:::
data

::
set

::
of

::::
length

::
n
:
is
::::::::
O(n logn).
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Code and data availability. The software is available on both the long-term available Zenodo archive (?, https://doi.org/10.5281/470

zenodo.16574693) under the AGPL V3 license and a git repository, which is located at https://jugit.fz-juelich.de/j.ungermann/

juwavelet from where the current version can be installed using, e.g., pip install git+https://jugit.fz-juelich.de/j.ungermann/juwavelet.

Appendix A: Mathematical description of 2-D and 3-D transformations
::::::::::
transforms

A1 2-D

The definition for the 2-D Morlet wavelet is
:
in

::::::
Fourier

:::::
space

::
is
:

475

ψ̂s,θ(ωx,ωy) =
√
8π2

√
π

:::
se−

1
2 ((2πsωx−k cos(θ))2+(2πsωy−k sin(θ))2)

with θ ∈ [0,π] denoting the angle of the wavelet. The transform is given by

Wf(u,v,s,θ) =
1

(2π)2

∞∫
−∞

∞∫
−∞

f̂(ωx,ωy)s
[
ψ̂(sωx,sωy)

]∗
eiωxui2πωxu

:::::
eiωyvi2πωyv

:::::
dωxdωy.

With the same discretisation of s as in the 1-D case, and a regular sampling of θ in π
K ::

π
jt:

steps, the reconstruction

formula is480

f(x,y)≈ 1

Cδ

∑
j=0

Jjs−1
:::

∑
k=0

K π

K
jt−1 π

jt
:::::

Re

Wf

x,y,s02jdj jdj::
,
kπ

K

kπ

jt
::

 dj ln2

s02jdj

with

Cδ ≈
J∑
j=0

K∑
k=0

π

K

π

jt
::

dj ln2
1

(2π)2

js−1∑
j=0

jt−1∑
k=0

:::::::

Re

 ∞∫
−∞

∞∫
−∞

[
ψ̂(s02

jdjωx,s02
jdjωy)

]∗
dωxdωy

 .

A2 3-D

The definition for the 3-D Morlet wavelet is
:
in

::::::
Fourier

:::::
space

::
is
:

485

ψ̂s,θ,ϕ(ωx,ωy,ωz) =
4π
4
√
π

√
2
3
π

4
√
π

:::::

s3/2e−
1
2 ((2πsωx−k cos(ϕ)cos(θ))2+(2πsωy−k cos(ϕ)sin(θ))2+(2πsωz−k sin(ϕ))2)

with θ ∈ [0,π] denoting the horizontal turning (azimuth angle) of the wavelet and ϕ ∈ [−π/2,π/2] the vertical

rotation (zenith angle). The transform is given by

Wf(u,v,w,s,θ,ϕ) =
1

(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

f̂(ωx,ωy,ωz)s
3/2

[
ψ̂(sωx,sωy,sωz)

]∗
eiωxui2πωxu

:::::
eiωyvi2πωyv

:::::
eiωzwi2πωzw

:::::
dωxdωydωz.
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With the same discretisation of s as in the 1-D case, and a regular sampling of θ and ϕ, the reconstruction formula is490

f(x,y,z)≈ 1

Cδ

∑
j=0

J js−1
:::

∑
k=0

Kjt−1
:::

∑
l=0

L π

K

π

L
jp−1 π

js

π

jp
::::::::

cos(ϕ)

 (l+0.5)π

jp
− π

2
::::::::::::

Re

Wf

x,y,z,s02jdj , kπ
K

kπ

js
::

,
lπ

L

(l+0.5)π

jp
− π

2
::::::::::::

 dj ln2

(s02jdj )3/2

 .

Please note the factor of cos(ϕ) necessary for integrating the rotation over the unit sphere. The factor
:::::::
sampling

::
of

:
ϕ
::
is
::::::
shifted

:::
by

::::
half

:
a
:::::::
sample

::
to

:::::
avoid

:::
the

:::::
value

::
of

:::::
−π/2

::::
and

::::
π/2

:::::
where

::::
the

:::::::::
coefficients

:::
do

:::
not

:::::::::
contribute

::
to

:::
the

:::::::::::
reconstruction

::::
and

:::
the

:::::
value

::
of

:
θ
:::
has

:::
no

:::::
effect

::
on

:::
the

:::::::
wavelet.

::::
The

:::::
factor

:
Cδ can be computed as

Cδ ≈
J∑
j=0

K∑
k=0

L∑
l=0

π

K

π

L

dj ln2

(2π)3
Re

 ∞∫
−∞

∞∫
−∞

∞∫
−∞

[
ψ̂(s02

jdjωx,s02
jdjωy,s02

jdjωz)
]∗
dωxdωydωz

 .495

Cδ ≈
π

js

π

jp
dj ln2

js−1∑
j=0

js−1∑
k=0

jp−1∑
l=0

Re

 ∞∫
−∞

∞∫
−∞

∞∫
−∞

[
ψ̂(s02

jdjωx,s02
jdjωy,s02

jdjωz)
]∗
dωxdωydωz

 .

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Appendix B: Example code

This section shows the code used for the 2-D example of Fig. 6 as an example of the ease of use. A more comprehensive

version can be found in the software in ’examples/decompose2d.py’. The code for Fig. 2 is given in the file500

’examples/decompose1d.py’. The code for Fig. 3 is given in the file ’examples/sst.py’. The code for Fig. B is given

in the file ’examples/separate2d.py’.

1: import os

2: import matplotlib.pyplot as plt505

3: import numpy as np

4: -

5: from juwavelet import transform, utils

6: -

7: -510

8: storage = np.loadtxt(os.path.join(os.path.dirname(__file__), "alima.txt"))

9: xs, ys, wave = storage[0, 1:], storage[1:, 0], storage[1:, 1:].T

10: xs -= xs[0]

11: -

12: dx = np.diff(xs).mean()515

13: dy = np.diff(ys).mean()

14: cwt = transform.decompose2d(

15: wave, dx=dx, dy=dy,

18



16: s0=20, dj=0.25, js=20, jt=18, aspect=40)

17: -520

18: amps, idxs, iwave = utils.identify_cluster2d(

19: cwt, min_amp=2.0, thr=1.0)

20: -

21: decomposition, period, theta = [

22: cwt[_x] for _x in ["decomposition", "period", "theta"]]525

23: -

24: orig = decomposition.copy()

25: -

26: fig, axs = plt.subplots(2, 3)

27: axs = axs.T530

28: opts = {"cmap": "RdBu_r", "vmin": -5, "vmax": 5, "rasterized": True}

29: -

30: axs[0, 0].set_title("original")

31: axs[0, 0].pcolormesh(xs, ys, wave.T, **opts)

32: -535

33: decomposition[:] = orig

34: decomposition[:, (np.pi / 2 < theta)] = 0

35: rec = transform.reconstruct2d(cwt)

36: axs[1, 0].set_title("left slanted")

37: axs[1, 0].pcolormesh(xs, ys, rec.T, **opts)540

38: -

39: decomposition[:] = orig

40: decomposition[:, (theta < np.pi / 2)] = 0

41: rec = transform.reconstruct2d(cwt)

42: axs[2, 0].set_title("right slanted")545

43: axs[2, 0].pcolormesh(xs, ys, rec.T, **opts)

44: -

45: decomposition[:] = orig

46: decomposition[period < 100, :] = 0

47: rec = transform.reconstruct2d(cwt)550

48: axs[0, 1].set_title("low pass")

49: axs[0, 1].pcolormesh(xs, ys, rec.T, **opts)

50: -
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51: decomposition[:] = orig

52: decomposition[iwave != 1] = 0555

53: idx = idxs[1]

54: rec = transform.reconstruct2d(cwt)

55: axs[1, 1].set_title(

56: f"$\lambda_x$={period[idx[0]]/np.cos(theta[idx[1]]):3.0f}km "

57: f"$\lambda_z$={period[idx[0]]/(cwt['aspect']*np.sin(theta[idx[1]])):3.1f}km")560

58: axs[1, 1].pcolormesh(xs, ys, rec.T, **opts)

59: decomposition[:] = orig

60: decomposition[iwave != 7] = 0

61: idx = idxs[7]

62: rec = transform.reconstruct2d(cwt)565

63: axs[2, 1].set_title(

64: f"$\lambda_x$={period[idx[0]]/np.cos(theta[idx[1]]):3.0f}km "

65: f"$\lambda_z$={period[idx[0]]/(cwt['aspect']*np.sin(theta[idx[1]])):3.1f}km")

66: axs[2, 1].pcolormesh(xs, ys, rec.T, **opts)

67: -570

68: for ax in axs[:, 1]:

69: ax.set_xlabel("distance (km)")

70: for ax in axs[0, :]:

71: ax.set_ylabel("altitude (km)")

72: -575

73: plt.show()
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Figure 1. The Morlet wavelet in spatial and frequency space. The Morlet parameter influences the number of wave crests within

the envelope and thus the localization in frequency space.

A replication of the analysis of the Niño3 SST index from Torrence and Compo (1998). Panel (a) shows the index itself, while

panel (b) shows the power spectrum of the 1-D CWT analysis using a Morlet wavelet (with parameter 2π). The hatched region

indicates untrustworthy values where the relevant wavelet support extends over the region where data is available. Panel (c)

shows the amplitudes derived from the ST for comparison.
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Figure 2. An analysis of a combination of three signals, which each vary in a different quantity (amplitude, frequency, location).

Panel (a) shows the assembled signal while panel (e) shows the individual signals. Panel (b) and (f) show the magnitude and the

phase of the CWT coefficients. Panel (c) and (g) show the magnitude and phase of the Gabor STFT coefficients. Panels (d) and

(h) show the magnitude and phase of the ST coefficients.
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Figure 3.
:
A

::::::::
replication

::
of
:::

the
:::::::
analysis

::
of

::
the

::::::
Niño3

:::
SST

:::::
index

::::
from

:::::::::::::::::::::
Torrence and Compo (1998).

:::::
Panel

:::
(a)

:::::
shows

:::
the

::::
index

::::
itself,

:::::
while

::::
panel

:::
(b)

::::
shows

:::
the

:::::
power

:::::::
spectrum

::
of

:::
the

:::
1-D

:::::
CWT

::::::
analysis

:::::
using

:
a
::::::
Morlet

::::::
wavelet

::::
(with

::::::::
parameter

::::
2π).

:::
The

::::::
hatched

:::::
region

::::::
indicates

:::::::::::
untrustworthy

:::::
values

:::::
where

::
the

::::::
relevant

::::::
wavelet

::::::
support

::::::
extends

::::
over

::
the

:::::
region

:::::
where

:::
data

::
is

:::::::
available.

::::
Panel

::
(c)

::::
shows

:::
the

::::::::
amplitudes

::::::
derived

::::
from

:::
the

::
ST

:::
for

:::::::::
comparison.
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Figure 4. The 2-D Morlet wavelet. The three panels showcase variations when changing the rotation or the scale parameter.
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This example shows the capabilities of reconstructing a data set from a modified set of coefficients. Panel (a) shows a simulated

superposition of two MWs, one of large-scale and one of small-scale. Panels (b) and (c) show filtered reconstructions of the

small-scale and large-scale MWs. The sum of (b) and (c) gives the original data. Panels (d)
::::::::
wavelength,

::::
panel (e) , and (f) show

the amplitude, wavelength, and
::::::::::
corresponding

:
orientationof the small-scale MW. Panels (g), (h),

::
and

:::::
panel (i

:
f) show the

amplitude,
::::::
opposes

::::
input wavelength , and orientation of the large-scale MWs

:
to
::::::::
estimated

:::::::
quantities.

This example shows the capabilities of reconstructing a data set from a modified set of coefficients. Panel (a)

shows a simulated superposition of two MWs, one of large-scale and one of small-scale. Panels (b) and (c) show

filtered reconstructions of the small-scale and large-scale MWs. The sum of (b) and (c) gives the original data. Panels

(d)
:::::::::
wavelength,

:::::
panel (e) , and (f) show the amplitude, wavelength, and

::::::::::::
corresponding orientationof the small-scale

MW. Panels (g), (h),
:::
and

::::
panel

:
(i

:
f) show the amplitude,

:::::::
opposes

::::
input

:
wavelength , and orientation of the large-scale

MWs
::
to

::::::::
estimated

::::::::
quantities.

Figure 5. An example of a 2-D CWT analysis. Panel (a) shows the synthetic field containing several waves. A CWT analyses this

field and the "dominant" wavelet, i.e., the wavelet with the largest coefficient is identified for each spatial sample. Panel (b) shows

the resulting amplitude
::::::::::
reconstruction

::
of

:::
the

:::::::
dominant

:::::
mode, panel (c) the corresponding wavelength and

::::::
resulting

::::::::
amplitude,

panel (d) the corresponding orientation.

This example shows the capabilities of reconstructing a data set from a modified set of coefficients. Panel (a) shows a simulated

superposition of two MWs, one of large-scale and one of small-scale. Panels (b) and (c) show filtered reconstructions of the

small-scale and large-scale MWs. The sum of (b) and (c) gives the original data. Panels (d)
::::::::
wavelength,

::::
panel (e) , and (f)

show the amplitude, wavelength, and
::::::::::
corresponding orientationof the small-scale MW. Panels (g), (h),

:::
and

::::
panel

:
(i
:
f) show the

amplitude,
::::::
opposes

::::
input

:
wavelength , and orientation of the large-scale MWs

::
to

:::::::
estimated

:::::::
quantities.
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Figure 6. This example shows the capabilities of reconstructing a data set from a modified set of coefficients. Panel (a) shows

the original data field. Panel (b) shows a filtered reconstruction allowing only left slanted waves while panel (c) shows the right

slanted waves. The sum of (b) and (c) gives the original data. Panel (d) shows the effect of discarding the small scales, effectively

a low pass. Panels (e) and (f) show reconstructions containing only coefficients from the vicinity of two local maxima in the

CWT corresponding to two wave packets, which can be identified in this manner with wavelengths of 381 km horizontally and

5.5km vertically for panel (e) and 248 km horizontally and 7.4 km vertically for panel (f).
:::
The

:::::
spatial

::::::
location

::
of
:::

the
::::::::
coefficient

:::
with

:::
the

:::::
largest

::::::::
amplitude

:
is
:::::
given

::
by

:
a
:::::
white

:::::
circle.

Figure 7.
::::
This

::::::
example

:::::
shows

:::
the

::::::::
capabilities

::
of
:::::::::::
reconstructing

:
a
::::
data

::
set

::::
from

::
a

::::::
modified

:::
set

::
of

:::::::::
coefficients.

:::::
Panel

::
(a)

:::::
shows

:
a

:::::::
simulated

::::::::::
superposition

::
of

:::
two

::::::
waves,

:::
one

::
of

::::::::
large-scale

:::
and

:::
one

::
of

:::::::::
small-scale.

:::::
Panels

::
(b)

::::
and

::
(c)

::::
show

::::::
filtered

:::::::::::
reconstructions

:
of
:::
the

::::::::
large-scale

:::
and

:::::::::
small-scale

:::::
waves.

:::
The

:::
sum

::
of

:::
(b)

:::
and

::
(c)

::::
gives

:::
the

::::::
original

::::
data.

:::::
Panels

:::
(d),

::
(e),

:::
and

::
(f)

:::::
show

::
the

::::::::
amplitude,

:::::::::
wavelength,

:::
and

::::::::
orientation

::
of

:::
the

::::::::
large-scale

:::::
wave.

:::::
Panels

:::
(g),

:::
(h),

:::
(i)

::::
show

:::
the

::::::::
amplitude,

:::::::::
wavelength,

:::
and

::::::::
orientation

::
of
:::

the

::::::::
small-scale

:::::
wave.
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Figure 8. An example of a 3-D CWT analysis. The left panel shows a simulated
:::::::
modelled mountain wave field

:::::::
following

::::::::::
Smith (1980). Isosurfaces are drawn for w =±0.04

:::::::
η =±70ms−1

:
m. A CWT analyses this field and the "dominant" wavelet,

i.e., the wavelet with the largest coefficient is identified for each spatial sample. The right panel shows the isosurface for an

amplitude of 0.025
:
70 ms−1

:
m.
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Figure A1.
:::::::::::
Reconstruction

::
of

::::::::
individual

::::
wave

:::::
pakets

::::
from

:::
the

:::::::
synthetic

::::
wave

::::
field

::::
from

::::::
Section

::::
5.3.

:::::::
Mapping

::
of

:::::
panels

:::
and

::::
wave

:::::
pakets

:
is
::
as
:::::::
follows:

::::
(a)-5,

::::::
(b)-4/7,

::::
(c)-3,

:::::
(d)-6,

::::
(e)-1,

::::
(f)-8,

:::::
(g)-2.
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