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Abstract. The high computational expense of complex climate models and their tendency to underestimate observational

records of Arctic sea ice sensitivity to anthropogenic forcers, challenge our ability to assess the magnitude of forcing that will

cause Arctic sea ice loss to cross critical thresholds. To address these limitations, we development an Arctic sea ice emulator,

that is calibrated to the response of sea ice area to global warming in physically-based CMIP6 models and constrained to

observations. Our constrained emulator reduces the remaining budget of CO2 that can be emitted to prevent seasonally ice-5

free conditions from 821GtCO2 by CMIP6 multi-model ensemble estimates to 380GtCO2. This suggests that limiting global

warming to 1.5�C is sufficient to prevent a seasonally ice-free Arctic Ocean, whereas 2�C proves insufficient. Our results

also provide insight into the future of winter sea ice over a greater ensemble range than previously possible, pinpointing the

emission threshold at which the ice pack detaches from land, after which the ice pack rapidly disappears to year-round ice free

conditions.10
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1 Introduction

Arctic sea ice forms a complex yet fundamental component of the Earth system and is a sensitive indicator of global climatic

changes. Since the satellite record began in 1979, the September ice pack has declined by more than 13% per decade in response

to anthropogenic greenhouse gas emissions (Serreze and Stroeve, 2015).

Global climate models (GCMs) used in the most recent (sixth) phase of the Coupled Model Intercomparison Project (CMIP),15

are the most comprehensive tools we have for predicting how Arctic sea ice will change in the future. Their projections

unanimously show continued year-round reductions in Arctic sea ice throughout the 21st century, with the majority of models

projecting a seasonally ice-free Arctic Ocean within the next 15 to 50 years, commonly defined as the first time SIA falls below

1 million km2 in a given month (SIMIP Community, 2020). Though models agree ice loss will persist into the future, there are

large uncertainties surrounding their projections (SIMIP Community, 2020). One conceptually convenient metric to measure20

changes in sea ice is the ‘sea ice sensitivity’, which is generally defined as the amount of sea ice area lost per degree of global

warming. However, GCMs tend to simulate a lower sensitivity of Arctic summer sea ice loss than has been observed (Mahlstein

and Knutti, 2012; Rosenblum and Eisenman, 2017; Niederdrenk and Notz, 2018; SIMIP Community, 2020). Models that

do simulate present day rates of sea ice loss also simulate considerably higher global warming than observations suggest

(Rosenblum and Eisenman, 2017). This is known as the ‘hot model’ problem and is used to describe models that project25

climate warming in response to CO2 emissions that is much larger than other lines of evidence suggest (Hausfather et al., 2022).

Recent observations report the Arctic Amplification, defined as the warming ratio between the Arctic and global temperature,

over the satellite period has warmed much faster than in CMIP6 models which tend to simulate a relatively constant Arctic

Amplification over the 21st century (Chylek et al., 2022; Rantanen et al., 2022; Douville, 2023; Chylek et al., 2023; Hay et al.,

2024).30

The majority of CMIP6 models limit runs to 2100 as they are too computationally expensive to analyse large numbers of

scenarios over multi-centennial timescales (Balaji et al., 2017). A few studies have utilised the limited number of extended

simulations, to analyse the winter sea ice response to warming, using the limited subset of available models with extended

simulations to 2300, with particular interest in the possibility of a rapid disappearance of winter sea ice (Armour et al., 2011;

Hezel et al., 2014; Bathiany et al., 2016; DeRepentigny et al., 2020; Hankel and Tziperman, 2021, 2023). These studies found35

that the linear decline of Arctic sea ice with cumulative CO2 emissions to ice-free conditions exhibited through the summer

months breaks down in winter. Arctic sea ice declines at a much slower rate in winter before reaching a threshold at which

the amount of sea ice loss per emitted ton of CO2 rapidly increases. A recent study from Ritschel (2024) attributes the rapid

loss of Arctic winter sea ice to the detachment of the ice pack from land. They ascertain that the detachment of the ice pack

from land is linked to the timing of geographic muting, a term introduced by Eisenman (2010) to describe the blocking of40

the ice pack’s expansion through the growth season, due to the presence of land masses surrounding the Arctic Ocean. This

mechanism explains the slow decline of winter sea ice initially, as the theoretical retreat of winter sea ice is masked by the

coastline. This causes the area of the coast bound ice to change minimally. Once the temperature becomes sufficiently high
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to prevent the ice pack expanding to the coastline, the ice pack has ‘detached’ from land and exhibits a higher sensitivity to

warming (Ritschel, 2024). As the timing of rapid winter ice loss tends to occur after the end of the 21st century, the lack of45

extended projections in CMIP6 models prevents a thorough analysis of winter ice loss.

This study therefore aims to address three key gaps in the literature. The first fundamentally seeks to build on and extend the

insights we gain from comprehensive, higher complexity model runs to emulate the CMIP6 response of Arctic sea ice area to

global warming in all months at a much smaller computational expense. In a second step we aim assess whether the calibration

of our parameterisations to CMIP6 models between 1850 and 2100, capture the non-linearity of winter sea ice when extended50

to 2300. Finally, this study aims to assess whether the sensitivity of sea ice loss to global warming can be constrained to match

the observed, through bias corrections to the global warming and Arctic Amplification trends. This approach aims to integrate

various lines of evidence to efficiently emulate plausible, long-term projections of SIA under a range of SSP scenarios.

2 Arctic Sea Ice Emulator Setup

2.1 Model Description Overview55

Our emulator setup is separated into two stages which are each comprised of three steps (fig. 1). Stage one involves param-

eterisation development and calibration to CMIP6 data, while stage 2 constrains our CMIP6 informed parameterisations to

observations. Within each stage, step i emulates the Arctic Amplification, converting the global annual mean temperature to

the Arctic annual mean temperature. Step ii emulates the Arctic seasonal temperature cycle which converts our emulated Arc-

tic mean temperature to the Arctic seasonal temperature and is then input into the sea ice parameterisation in step iii. In the60

first stage, parameterisations have been calibrated over the period 1850-2100 against the corresponding first ensemble member

of 12 selected CMIP6 models for the scenarios SSP5-8.5, SSP 2-4.5 and SSP1-2.6 and their historical runs. We chose these

scenarios and calibration period based on the availability of both CMIP6 temperature and SIA projections. In the second stage

we force our emulator with the MAGICC 600-member ensemble that has been constrained to represent the IPCC AR6 WG1

global warming projections and their uncertainty (Cross-Chapter Box 7.1, IPCC (2021) AR6 WG1; Nicholls et al. (2021)).65

We combine the MAGICC ensemble with our probabilistic constraint on Arctic Amplification in step ii, which we then pass

through remaining steps to produce constrained, probabilistic projections of SIA to 2300. Given that we emulate the sea ice

response with parameterisations that smooth out year to year variability, we prioritise the development of our emulator’s capa-

bility to represent structural variability. Our emulation approach therefore does not attempt to capture the year to year natural

variability of Arctic sea ice, rather the long-term median Arctic sea ice response. This is because the contribution from internal70

processes to the overall variability reduces in long-term sea ice projections, while the contribution from structural and scenario

variability contribute greater significance to the long-term sea ice projections (Bonan et al., 2021).
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Figure 1. Conceptual model of emulator development.
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2.2 Model Calibration

The calibration routine utilises the Nelder and Mead simplex optimisation method (Nelder and Meadf, 1965; Lagarias et al.,

1998), with a termination tolerance of 10�6 and a maximum iteration of 1000. We use the residual sum of the squared dif-75

ferences (RSS) for goodness-of-fit (GOF) diagnostics during the optimization process. This setup iteratively evaluates the

calibration factor values to ensure they result in an RSS global minimum between the CMIP6 data (with a running mean of 10

years applied) and the emulated data. The optimisation routine is initialised via a number of preliminary runs to generate a se-

ries of starting parameters, by randomly sampling values from a set of user-defined ranges for each parameter. Each calibrated

parameter in the final model-specific set is designed to control all months in each model.80

2.3 Step i: The Arctic Amplification Parameterisation
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Figure 2. Emulation of CMIP6 calibrated Arctic annual mean temperatures. The top row represents the calibrated temperature anomaly,
while the bottom row represents the calibrated absolute temperature. Red, yellow and blue shading represents the SSP5-8.5, SSP2-4.5 and
SSP1-2.6 likely (17th-83rd percentile) calibrated range, with darker solid lines representing the mean in each scenario. Light grey shading
represents the CMIP6 likely range and solid black lines represent the CMIP6 multi-model median.

In stage 1, we force our emulator with the global mean temperature anomaly from each of the CMIP6 models used in this study.

We split the emulation of the Arctic temperature into two parameterisations- annual (step i) and seasonal Arctic Amplification
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(step ii). Splitting these processes provides the basis for the observational constraint of annual Arctic Amplification in stage 2

of emulator development.85

We find that a simple linear regression between the global and Arctic annual mean temperature anomaly, tas(AAAB) = � ·
(tas(GAB)� tas(GREF )) + tas(AREF ), over the calibration period is sufficient to emulate the CMIP6 Arctic annual mean sur-

face temperature (fig. 2). Where tas(AAAB) is the output Arctic annual absolute temperature, tas(GAB) is the global absolute

temperature, tas(GREF ) is the average 1850-1900 global absolute temperature and tas(AREF ) is the average 1850-1900 Arctic

absolute temperature, (tas(GAB) - tas(GREF )) represents the global mean temperature anomaly and � is the regression coeffi-90

cient representing the Arctic Amplification factor with a range between 2.5 and 4 about a median of 3, and is derived from the

linear regression between the global mean and Arctic annual mean temperature anomaly. To generate the absolute tempera-

ture (tas(AAAB)), the 1850-1900 mean Arctic absolute temperature (tas(AREF )) for the first ensemble member of each CMIP6

model was added to the Arctic annual mean temperature anomaly (� · (tas(GAB)� tas(GREF ))), to produce CMIP6 absolute

temperatures.95

2.3.1 Observational Constraint on Arctic Amplification
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Figure 3. Our Arctic amplifications parameterisation as presented in Eq. (1). Light grey shading represents the ‘very likely’ (5th-95th
percentile) observational Arctic Amplification range, where the black solid line is the observational mean. Red shading represents the ‘very
likely’ CMIP6 calibrated Arctic Amplification range, where the red solid line is the CMIP6 calibrated multi-model mean. Blue shading
represents the final Arctic Amplification uncertainty range. We take 2012 as the final year of observations, as it is the last year a central point
can be taken with 10 years either side to calculate the 21-year trend without reducing the number of years in the trend, which could bias the
trend of the final years.

Given the disparity between simulated and observed Arctic Amplification trends, a more complex approach is required to

constrain model trends to align with observational data. We note that due to the poor signal to noise ratio, we require warming

to reach 0.45�C over a 20-year period before deriving Arctic Amplification from the observational record. As such, we focus
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our analysis on Arctic Amplification trends from 1970. The resultant parameterisation of our constraint on Arctic Amplification100

is as follows:

Arctic Amplificationr,p,s =
p

(1 + exp(s · (�r + 0.5)))
. (1)

Equation (1) is a sigmoid that initially assumes a linear increase of Arctic Amplification with global mean temperature at a

rate dictated by s, which progresses asymptotically towards a constant Arctic Amplification prescribed by the parameter p,

after which the amplification factor will remain constant as warming continues. r represents a randomly sampled MAGICC105

global mean temperature ensemble member, while its negative sign (�r) indicates that the sigmoid should increase rather than

decrease with warming. We add a fixed factor of 0.5 to the exponential term to control the temperature at which the Arctic

Amplification begins to increase, as the observed Arctic Amplification rises from a mean of approximately 1 as warming grades

rise above 0.45�C (fig. 3). The division of p with the non-linear exponential term on the denominator, (1+exp(s(�r) + 0.5)),

controls the sigmoidal increase of Arctic Amplification with global warming at a rate prescribed by observations, while re-110

maining constant thereafter to account for the modelled CMIP6 trend (see Supplementary Sect. S1.1).

2.4 Step ii: The Arctic Seasonal Temperature Parameterisation

We develop our seasonal temperature parameterisation to reflect three ‘key features’ of warming on the evolution of the seasonal

temperature cycle. The first is the asymmetric warming between summer and winter which gradually reduces the amplitude

of the seasonal temperature cycle over the calibration period (fig. 4). Secondly, the pre-industrial period (1850-1900) seasonal115

temperature cycle is relatively symmetrical as the rate of warming from winter to summer is similar in magnitude to the rate

of cooling back to winter. However, as the Arctic warms and sea ice declines, the temperature cycle widens at its peak as

the melt season lengthens and warm summer temperatures persist into the autumn months. Finally, we find the temperature

amplification is not linear in all months. From the mid-21st century the temperature amplification increases during the summer

months (June-August), declines in autumn and early winter (September-January), and remains relatively constant through120

late winter and spring (February-April) (Supplementary fig. S2). The likely cause of the seasonal amplification difference is

outlined by Dai et al. (2019), and is related to the seasonal exchange of fluxes between the ocean surface and atmosphere,

which respond differently to variations in the rate of sea ice loss to rising CO2 emissions. We represent these trends via a

nested, exponential cosine function that emulates the shape of the seasonal temperature curve in each year, and is controlled

by the Arctic annual mean temperature:125

P = f · (cos(m · g� e · exp(cos(ma)))), (2a)
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tas(AMAB) = P + h, (2b)

where tas(AAAB) is the Arctic annual mean temperature in degrees Celsius emulated in step i, m is an equally spaced value be-

tween 0 and 2⇡ representing each month of the year (0 and 2⇡ represent January of year t and January of year t+1 respectively)130

and f , g, and a are model-specific calibration parameters dependent on the Arctic annual mean temperature. f represents the

amplitude, g controls the wavelength, while a (Eq. 2c) is a simple cosine function that controls the change from a basic cosine

curve to a shallow, linear temperature decline, as warmer summer temperatures gradually pervade into September, October,

November and December (Supplementary fig. S3). e is a non-temperature dependent and non-model specific parameter with

a value of 0.3, that fixes the phase shift of the curve and therefore controls the rate of change from summer to winter tem-135

peratures. Finally, h (Eq. 2d) is a non-optimised parameter that moves the temperature curve vertically to ensure the emulated

Arctic annual mean temperature input at time t is equal to the mean of the parameterised monthly temperature curve and is

calculated at every time step. f and g are calculated from the calibration coefficients f1, f2, g1 and g2 that are optimised

through a series of simple linear regression dependent on the Arctic annual mean temperature; (f = (f1 ·tas(AAAB))+f2) and g

= (g1 · tas(AAAB))+g2, Supplementary table. S1) We acknowledge that while f and g are related, the complexity of the system140

did not allow us to find a functional form to capture their relationship. As such, we handle these two parameters separately.

a = cos((tas(AAAB) ·�a1)� a2) + a3, (2c)

h =
tas(AAAB)�P

f
. (2d)

The first key feature (see above) is encapsulated by parameter f , which reduces the amplitude of the curve with warming.

The second is satisfied by the exponent of the cosine exp(cos(ma)). This feature lengthens the summer season as the Arctic145

annual mean temperature increases. Although our function initially assumes a basic cosine curve at lower values of tas(AAAB),

this feature creates the increasingly asymmetric and broad peaked curve as tas(AAAB) rises, generating a left skewed curve at

higher Arctic annual mean temperatures. Finally, adding the exponent into the nested cosine (cos(m(cos(ma)))) prevents the

temperature in the autumn months rising as fast as the winter months, reducing the amplification from the mid-21st century

while simultaneously increasing the amplification during summer. The combined decline in amplitude (f ) and increase in150

wavelength (g) prevents the increase in summer amplification initially, however as the wavelength increases the curve becomes
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Figure 4. Emulation of the CMIP6 Arctic seasonal temperature cycle in 4 selected years and models. Each column represents our emulation
of one model, where the top, middle and bottom rows represent SSP5-8.5, SSP2-4.5 and SSP1-2.6 respectively. Solid lines represent our
emulation of a selected CMIP6 model and dashed lines of the same colour represent the CMIP6 data. Only emulation of the years 1850,
2000, 2050 and 2100 are are displayed for visualisation purposes, however calibration was conducted over each year between 1850 and 2100,
were one year represents one curve.

more left skewed causing the rate of July and August warming to increase. This satisfies the third key feature of the seasonal

temperature evolution we identify in CMIP6 models.

Analysis of the few models with runs to 2300 (CanESM5), show the shape of the temperature curve doesn’t evolve significantly

past 2100. As such, we cap the evolution of our calibration parameters to ensure they remain constant past an Arctic annual155

mean temperature of 6�C (Supplementary fig. S4). Past this temperature, h (Eq. 2d) is the only parameter that continues to

change. We find the temperature parameterisation produces a plausible timeseries to 2300 using this method (Supplementary

fig. S5).
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2.4.1 Bias Corrections to Arctic Monthly Temperature Parameterisation

CMIP6 projections of the mean 1979-2020 Arctic summer (April-July) temperatures are on average warmer 2�C than observed160

(Supplementary fig. S6). To overcome this, we apply a constant offset to our CMIP6 calibrated temperature in each month,

which is we define as the difference between the 1979-2020 mean from observations and that of our emulation. We acknowledge

the 1979-2020 period is a short time frame and internal variability could be a large factor causing this difference. However,

as future observations become available and the impact of internal variability is better understood, this bias correction can be

updated in future versions of our emulator.165

CMIP6 models also project a weaker summer (July and August) warming trend than is observed (Supplementary fig. S6).

Simulated July and August temperatures increase slowly from 1980 to 2050 before rising significantly thereafter, whereas

observed temperatures rise rapidly from ⇠1980. We address this by forcing the calibration parameter ‘f ’, which represents

the amplitude of the temperature curve in each year in Eq. (2b), to remain constant until the annual mean Arctic temperature

reaches an absolute level of -8�C. Our bias correction ensures the summer temperatures increase at the observed rate, while170

protecting our emulation of the lengthening melt season (Serreze and Barry, 2011).

2.5 Step iii: The SIA Parameterisation

We parameterise the response of Arctic sea ice area to the seasonal Arctic warming trend, as this is ultimately the temperature

sea ice responds to (as opposed to global-average warming itself). As CMIP6 models reproduce the observed Arctic warming

trend well, this method also ensures our SIA projections respond to Arctic warming trends that match the observed, reducing175

the number of bias corrections in stage 2.

2.5.1 The Seasonal Melt and Growth Weighting Scheme

The response of Arctic sea ice to temperature is impacted by many different physical processes such as snow cover and ocean

heat content changes. Variations in sea ice thickness in particular offers insight into how the different rate of ice area growth

and melt can be incorporated into our emulator. During autumn freeze-up, a thin layer of sea ice will rapidly form over the180

Arctic Ocean. However, during the melt season, a greater thickness of ice needs to melt before the SIA is greatly affected. This

produces a differing inertia to temperature changes between the growth and melt of SIA, where for a given temperature change

the loss or gain of SIA will be greater in autumn compared to that of spring. We therefore apply a weighting scheme to the

emulated temperature that forces our SIA parameterisation, to account for the inertia in the sea ice system (Supplementary fig.
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S7). The updated temperature (‘tas’) therefore becomes a product of the current month, tas(m) and the previous month, and is185

computed via the following weighting scheme:

tas(new) =
(tas(m) ·w1) + (tas(m�1) ·w2)

w1 + w2
, (3a)

where tas(m) is the Arctic temperature at the monthly timestep m, tas(m�1) is the temperature from the previous month and

w and 1�w are the weightings applied to the current and previous month respectively.

When applying a greater weight to the previous month’s temperature in spring, the updated temperature is colder as a greater190

weight is placed on the colder winter temperatures (Supplementary fig. S7b). Spring SIA is therefore forced with a colder

temperature to express the slower decline of SIA for a given temperature change through the melt season. Whereas, the updated

temperature is higher in autumn as it becomes a function of the the previous warm summer month, to capture the faster growth

of sea ice for an equivalent temperature change through the growth season.

Due to the effect of ‘geographic muting’ described in Sect. 1, Arctic summer sea ice declines linearly with Arctic warming195

while the loss of winter sea ice accelerates with warming as the ice pack detaches from land (Ritschel, 2024). Given these

characteristics, we develop the following parameterisation to reflect the sigmoidal decline of SIA with Arctic warming:

SIA =
(SIAmax + d) · (1 + exp(tas(t=0)� b))� a(tas� tas(t=0))

(1 + exp(tas� b))
, (3b)

where SIAmax (Eq. 3c) is the seasonal SIA in 1850 and is optimised for each model, a, b and d are model dependent calibration

factors and ‘tas’ is the weighted Arctic seasonal temperature emulated in step ii.200

The resultant functional form initially assumes a slow linear decline of SIA with temperature, which progresses asymptotically

towards a constant SIA of 0 million km2 at higher temperatures (fig. 5). Our SIA parameterisation is therefore derived from the

division of a linear and non-linear (‘tas’) term. The linear response term on the numerator a(tas� tast=0) controls the initial

linear decline of SIA with temperature and is scaled via the subtraction of the ‘tas’ in 1850 from subsequent ‘tas’ in each year;

while the exponential ‘tas’ term (1+exp(tas� b)) on the denominator, controls the sigmoidal decline of SIA and therefore the205

increase in the sensitivity of sea ice loss to warming in the colder months. The starting term (SIAmax+d)·(1+exp(tas(t=0)� b))

fixes the initial SIA in each month, and is the maximum SIA susceptible to melting. SIAmax is vertically shifted via d to account

for the chaotic nature of pre-industrial sea ice fluctuations for small warming grades, and the imperfect nature of emulations. An

exponential ‘tas’ term is added for the timestep 0 to account for the increase in the exponent of ‘tas’ as the initial temperature

nears 0�C in the summer months, ensuring that the maximum SIA is equal to SIAmax+d in the summer months. The CMIP6210
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Figure 5. Emulation of the CMIP6 Arctic seasonal Sea Ice Area cycle in 4 selected models. Each column represents our emulation of the
SIA under three scenarios from one CMIP6 model, where the top, middle and bottom rows represent SSP5-8.5, SSP2-4.5 and SSP1-2.6
respectively. Solid lines represent our emulation of the CMIP6 SIA in each month, and dashed lines of the same colour represent the CMIP6
data.

seasonal cycle of SIA in 1850 contains a few key features that justify the more complex adapted sine function in Eq. (3c)

(Supplementary fig. S8) below:

SIAmax = f · (�exp(sin(mg · a� e))) + d, (3c)

e = (a · 0.8003) + 1.5016, (3d)215

where m is again an equally spaced value between 0 and 2⇡ representing each month of the year (0 and 2⇡ represent January

of year t and January of year t+1 respectively). Calibration factors a, f and d control the wavelength, amplitude and vertical
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shift respectively. The parameter e controls the phase shift and is a constant derived from a linear regression of a. The exponent

of the sine �exp(sin(mg)) is added to flatten the trough of the curve, as August and September have similar pre-industrial

values. Whereas the mg term modulates the roundness of the peaks, to ensure the SIA increases sharply from January to its220

peak in March. This term allows the wavelength to capture the slow transition from winter SIA to summer SIA, while capturing

the faster transition from summer SIA to winter SIA in 1850. Finally, we use a negative exponent to represent the decline in

SIA through the summer months. The parameter e then adds a small phase shift to adjust the phase to each specific model. The

SIAmax factor is first optimised and then input into the SIA calibration.

2.5.2 Bias Corrections to the Sea Ice Area Parameterisation225

Similarly to the Arctic seasonal temperature bias correction, we find the modelled 1979-2014 mean SIA between June and

September is on average 1.14 million km2 smaller than observations suggest (fig. S6). To address this, we adjust SIAmax in

each month by subtracting the difference between the 1979-2020 mean observed SIA and our emulated mean.

We also find that applying the bias-corrected temperature from Sect. 2.4.1 to our SIA parameterisation generates a much larger

sea ice loss per degree of warming than is indicated by both CMIP6 models and observations (Supplementary fig. S9). This230

is to be expected as our corrected temperatures rise at a faster rate between 1979 and 2050 than in CMIP6 projections, while

our calibrations representing the response of SIA to Arctic warming remain unchanged. This causes the sensitivity of SIA loss

to increase at a cooler temperature, as the sensitivity parameter ‘b’ (Eq. 3b), is reached much earlier than in our calibration.

To overcome this, we adjust ‘b’ by subtracting the difference in the mean 1979-2050 Arctic temperature produced from bias

correcting the calibration parameter ‘f ’, and the CMIP6 calibrated temperature where the calibration parameter ‘f ’ has not235

been bias corrected. This approach forces the sensitivity to increase at the calibrated temperature and year that CMIP6 models

suggest, while also allowing the temperatures to rise at the same rate as observations. The impact of this difference is minimal

in the colder months but more pronounced in the summer, as ‘b’ tends to be reached before 2050 through the summer months

while it is reach much later in winter.

3 Results240

3.1 Assessing the Performance of our Emulator to 2300

Through this section, we evaluate the ability of our CMIP6 emulator to reproduce the CMIP6 response of SIA to warming in

each month when extended to 2300, with particular focus on its ability to project the rapid disappearance of March sea ice. We

note that when referring to our ‘2100 calibration’ we refer to our calibration between 1850 and 2100, while our ‘out of sample’

test refers to emulator output when we force our 2100 calibrations with extended global warming projections to 2300.245
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We find our 2100 calibrations hold ‘out of sample’, projecting an ice-loss between 1850 and 2300 that aligns with the CMIP6

trend for each month and model, successfully capturing the rapid loss of March sea ice to both global and Arctic warming

(fig. 6 and Supplementary fig. S11). We evaluate the goodness of fit (GOF) between our emulation of SIA to 2300 with the

corresponding CMIP6 model using a weighted residual sum of squares (RMSE), divided by the number of calibrated model

years. The GOF statistics of the March sensitivity to Arctic warming show an RMSE correlation of 0.0037 and a correlation250

coefficient of 0.99, while the fit against global warming produces a RMSE fit of 0.07. Both statistics suggest the successful

performance of our emulator to 2300. We propose the slightly weaker fit to global warming is because this relationship carries

the uncertainties from all three steps of our emulator, while the relationship to Arctic warming only carries the uncertainties

from one step.

-40 -20 0
0

10

20
ACCESS-CM2

-40 -20 0
0
5

10
15

ACCESS-ESM1-5

-40 -20 0
0

10

CESM2-WACCM

-40 -20 0
0

10

20
IPSL-CM6A-LR

-40 -20 0
Arctic Temperature (°C)

0
5

10
15

Ar
ct

ic
 S

IA
 (m

illi
on

 k
m

2 )

MRI-ESM2-0

0 5 10
0

10

20
ACCESS-CM2

0 5 10
0
5

10
15

ACCESS-ESM1-5

0 5 10
0

10

CESM2-WACCM

0 5 10
0

10

20
IPSL-CM6A-LR

0 5 10
Global-Mean Temperature Anomaly

0
5

10
15

MRI-ESM2-0 December: CMIP6
May: CMIP6
March: CMIP6
December: Emulator
May: Emulator
March: Emulator
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Our results suggest that our calibration to 2100 is sufficient to project the non-linearity of winter sea ice loss, however, the255

majority of models analysed indicate that rapid March ice loss occurs after 2100. We attribute this ability of our emulator

to project the rapid March ice loss, despite it occurring outside the calibration range of our data, to the combination of the

sigmoidal nature of our SIA parameterisation (Eq. 3b), which inherently assumes the rate of ice loss will increase once the

threshold temperature controlled by ‘b’ is reached, and the temperature weighting scheme (Eq. 3a). Although March generally

does not warm enough to cause an increase in the rate of ice loss before 2100, the early winter and melt season months260

(November, December and May), show an increase in the sensitivity before 2100. While the specific temperature ‘threshold’

at which the sensitivity increases at varies between the months and models, it is our calibration of the sensitivity in the early

winter and melt season months that informs ice loss after 2100.

The Arctic temperature at which rapid ice loss occurs is relatively similar in November and December, whereas the threshold

temperature in May is much warmer (Supplementary fig. S7). We attribute this to the different paces in growth and melt of265

Arctic sea ice, discussed in Sect. 2.5.1, suggesting the temperature threshold at which the ice pack detaches from land, causing

rapid ice loss, will be cooler in the growth season than in the melt season (Ritschel, 2024). Our temperature weighting scheme

presented in Sect. 2.5.1, (Eq. 3a), parameterises this difference which subsequently updates the threshold temperature of rapid

ice loss. Without the weighting scheme, the sigmoidal nature of our parameterisation would cause the SIA to decline at the

same temperature in each month, at the value set by the sensitivity parameter ‘b’ (Supplementary fig. S7a). By calibrating to270

the rapid ice loss in the early growth (November and December) and melt season (May) months that exhibit rapid ice loss

before 2100, our calibration scheme understands the different temperature required to melt and grow ice in both seasons and

generates a single value for the weight and sensitivity parameters (w and b) to capture the seasonal cycle in each model. Our

SIA parameterisation then assumes that w and b will have the same effect on the months that don’t exhibit rapid ice loss before

2100 as the months that do over the calibrated period.275

3.2 Reproducing the Observed Sensitivity

Here we assess whether the constraints we apply to our emulator are sufficient to capture the observed sensitivity of sea ice loss

to global warming. To do so, we compare our emulator to the ‘plausible’ range defined by the SIMIP Community (2020), which

accounts for both the structural and internal variability, by taking two standard deviations of the multi-model CMIP6 ensemble

as the uncertainty range around the observed sensitivity of sea ice loss between 1979 and 2014. We take the sensitivity as the280

regression coefficient between the global temperature and SIA projections over the period 1979-2014 (fig. 7). Although our

emulator generates projections in all months, we focus on the September sensitivity as CMIP6 models tend to underestimate

the summer sensitivity while reproducing the winter trends relatively well.

When we constrain our emulator to address both the ‘hot model’ problem and the Arctic Amplification bias in our emulator, we

project a sensitivity than matches the ‘plausible’ range relatively well in most months. In September, our emulator projects that285

a median of -4.06 million km2 of sea ice is lost per degree of warming between 1979 and 2014, aligning with the ‘plausible’
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Figure 7. Comparison of the SIA sensitivity to global warming and CO2 emissions in March and September between our emulator, CMIP6
models and observations. For each month, dark red boxplots denote the sensitivity in CMIP6 models, dark grey boxplots denote the sensitivity
from observations, light blue boxes represent the ‘plausible’ range from observations, light pink boxplots show the sensitivity generated from
our observationally constrained emulator, dark blue boxes represent the sensitivity from Niederdrenk and Notz, (2018). All boxplots extend
from the lower to upper quartile values over the interquartile range, with a point at the median. Whiskers show the full range of values,
excluding outliers.

September sensitivity of -3.95 million km2/�C relatively well. Similarly, when assessing how well our projections aligns with

the ‘plausible’ amount of sea ice loss per metric ton of emitted CO2, we find our observationally constrained emulator projects

a sensitivity of -2.5m ± 0.95m2/t, which falls within the ‘plausible’ estimate of -2.73 ± 1.37m2/t. While our interquartile range

against global warming is slightly larger than the ‘plausible’, this is expected due to the probabilistic nature of our emulator290

and the influence of model uncertainty from CMIP6 multi-model calibration.

3.3 Application: What is the Temperature and Remaining Carbon Budget Necessary to Prevent Arctic Sea Ice Loss

Crossing Critical Thresholds?

Through the previous sections we have evidenced that our emulator can reproduce observed sensitivity trends, while also suc-

cessfully extending projections to 2300. This allows us to apply our emulator to answer key questions in the sea ice discourse.295

We separate our analysis into two regimes; a linear and non-linear regime. The linear decline of sea ice with cumulative CO2

emissions in July through to December, which we define as the linear regime, provides the basis for the calculation of a finite

remaining carbon budget, alongside and assessment of our current progress towards IPCC warming targets. In a second step, we

analyse the non-linear ice loss exhibited in extended projections between January and June, which we define as the non-linear

regime, to pinpoint the temperature and CO2 emission threshold at which winter sea ice detaches from land (Supplementary300
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fig. S13). While previous studies have assessed the global mean temperature threshold at which rapid winter ice loss occurs, to

the best of our knowledge this is the first study to pinpoint the CO2 emission at which this occurs, over a much wider ensemble

range than previously possible.

3.4 Linear Regime
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Figure 8. The carbon budget to prevent a seasonally ice-free Arctic Ocean in the linear mode months (July-December) and the carbon budget
to prevent rapid ice loss occurring in the non-linear mode months (January-June). Light pink boxplots represent the remaining carbon budgets
from 2024, calculated from our emulator. Red boxplots show the remaining carbon budget calculted from the CMIP6 models used in this
study. Grey boxplots in the bottom panel compare our results with the remaining carbon budget to prevent Paris Agreement warming targets.
The dashed line in the bottom panel compares our emulator’s budget for a 50% chance of preventing ice-free conditions in September with
the remaining carbon budget to prevent a 1.5�C warming target. Finally, grey vertical shading represents carbon emissions that would exceed
the budget to prevent an ice-free ocean or to prevent non-linear ice loss in the winter months. Boxplots represent the interquartile range of
the data with the median shown through the black and white dot.

When translating the constrained sensitivity from our emulator into the remaining carbon budget, we estimate that there is a305

50% chance Arctic September sea ice will be lost for an additional 380 Gt of CO2 emissions from 2024 (fig. 8) (IQR: -14GtCO2

and 940 GtCO2). Our estimate is smaller than CMIP6 projections, which suggest a median of 821GtCO2 (IQR: 500GtCO2 and

1220GtCO2) will cause a seasonally ice-free Arctic Ocean. If we assume the average current emission trends of 38Gt of CO2
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per year will continue into the future (Lamboll et al., 2023), our updated limit of 380GtCO2 will be reached within the next

decade.310
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Figure 9. The probability of ice-free conditions in each month, year and global mean temperature by 2300 generated from our observation-
ally constrained emulator. The probability in each year under SSP5-8.5, SSP2-4.5 and SSP1-2.6 are given in the upper three panels. The
probability as a function of global temperature is shown in the bottom panel, and is calculated from the likelihood of ice-free conditions
at each global temperature under all three scenarios combined. Darker blue patches represent increasingly ice-free conditions, while whiter
patches indicate years and temperatures where a high percentage of emulator ensemble members project high ice cover above 1 million
square kilometers. The right panel represents the cumulative probability of the global mean temperature at which the SIA falls below 1
million km2 for the first time in our observationally constrained emulator. Red, yellow and blue represent SSP5-8.5, SSP2-4.5 and SSP1-2.6
respectively. Errorbars and scattered shapes represent probability ranges from other studies.
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Our analysis indicates that, at the lower bound, we have surpassed the remaining carbon budget by 14Gt of CO2, implying that

sufficient carbon has already been emitted to cause a seasonally ice-free Arctic Ocean. However, observational data suggests

this is an overestimate as the Arctic Ocean has not yet exhibited seasonally ice-free conditions. We attribute the overestimate

to the broader range of our emulator’s 2024 SIA projections compared to the more constrained observed values. Although

our emulator considers the full range of observed data, its range is larger than the observed as the 2024 SIA shows very315

little variation across the available observational datasets. This variance likely arises because our model is calibrated to the

1850–2100 period over the CMIP6 multi-model range, rather than specifically to the year 2024. Calculating the remaining

carbon budget using the same sensitivity and the lower bound of our projected 2024 SIA will produce a smaller budget than

the same sensitivity applied to a larger 2024 observed SIA value. This could explain why the lower limit of our emulator range

overestimates the carbon budget although the sensitivities align. If we had calibrated our emulator to match the observed SIA in320

September 2023 (3.8 million km2), our sensitivity range would suggest a remaining 235GtCO2 - 1737GtCO2 could be emitted

before ice-free conditions occur.

Assessing our carbon budgets against IPCC warming targets reveals that the median remaining carbon budget to prevent an

ice-free Arctic Ocean in September is larger than the budget for limiting global warming to 1.5�C (275 GtCO2), yet smaller

than the budget limiting warming to 2�C (1150 GtCO2) (fig. 9) (Friedlingstein et al., 2023; Lamboll et al., 2023). Under a325

high and medium emission scenario (SSP5-8.5 and SSP2-4.5), our emulator projects SIA will likely (IPCC likelihood scale

defined in the Supplementary material, Sect. S2.2) become ice-free at 1.9�C, whereas only 38% of ensembles project an ice-

free Arctic Ocean in September at 1.5�C. Interestingly, the probability of an ice-free ocean under a low emission scenario

(SSP1-2.6) significantly increases when constraining the sensitivity. Although the probability does not become likely by the

IPCC definition of 66%, the probability peaks at 59% in 2068 before declining as SIA recovers (fig. 9).330

3.5 Non-linear Regime

Our emulator suggests that March sea ice declines slowly with CO2 initially, at a rate of -0.75m2/t (IQR: -0.6 to -0.91m2/t)

per emitted ton of CO2 up to a threshold emission of approximately 10,000GtCO2 from 2024 (IQR: 7156GtCO2 to 13,596

GtCO2), after which the sensitivity increases to a rate of -2.2m2/t (IQR: -1.75 to -2.93m2/t) (fig. 8). The emission threshold

we identify corresponds to a median global mean temperature of 5.42�C (IQR: 4.349�C – 6.62�C) (fig. 9). Once the emission/335

temperature threshold is exceeded, the Arctic ice pack will detach from land year-round, increasing the sensitivity at which sea

ice is lost to cumulative carbon emissions. After this threshold has been reached the Arctic Ocean opens up rapidly.

While SIA tends to decline with CO2 emissions at the same rate across all scenarios, rapid ice loss only occurs under the high-

emission scenario (SSP5-8.5), while the emission reductions in other scenarios prevent the majority of ensembles reaching the

thresholds we identify.340
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4 Discussion

In this study, we present an Arctic sea ice emulator that efficiently generates long-term probabilistic projections of sea ice that

capture current trends and the latest physical understanding of the sea ice system from CMIP6 models. We have demonstrated

how our emulator uses a comparatively simple set of parameterisations to empirically capture the key features of SIA loss with

global warming, compared to the complexity, detailed physics and computational costs of CMIP6 models. Building on this345

foundation, we show that applying constraints to address the ‘hot model’ problem and underestimation of Arctic Amplification

in CMIP6 models, enables our emulator to generate SIA projections that reproduce the ‘plausible’ (observationally derived)

sensitivity well. We highlight that our observational constraint on Arctic Amplification is key to aligning our emulator’s sen-

sitivity with observations, as the sensitivity generated from projections forced by the MAGICC temperature and the CMIP6

calibrated Arctic Amplification do not align with observational data. This suggests that the degree of Arctic amplification in350

climate models may be key to understanding the future of Arctic sea ice.

Our constrained emulator reduces the remaining carbon budget to prevent a seasonally ice-free Arctic Ocean from CMIP6

estimates by 441GtCO2 from 2024 at its median. This suggests that limiting global warming to 1.5�C (275 GtCO2) is sufficient

to prevent a seasonally ice-free Arctic Ocean, whereas 2�C (1150 GtCO2) proves insufficient. These findings indicate greater

emission reductions may be required than current policy solutions suggest. While earlier studies have constrained the timing of355

an ice-free ocean, most recalibrate the modelled Arctic sea ice output, linearly extrapolate observations to ice-free conditions,

or select climate models based on their ability to reproduce the observed rate of sea ice loss (Winton, 2011; Niederdrenk and

Notz, 2018; Wang et al., 2021; Sigmond et al., 2018; Kim et al., 2023; Jahn et al., 2024; Poltronieri et al., 2022). These methods

conclude that ice-free conditions in September are likely at 1.8�C with a range between 1.3�C and 2.9�C of global warming

(9). Our results agree well with these approaches projecting a likely ocean at 1.89�C.360

Another crucial insight has been the ability of our emulator to capture the rapid loss of winter sea ice to warming outside of

the calibration period, from a more extensive ensemble than CMIP6 models are currently able to achieve. We find there is a

50% chance of sea ice detaching from land in March for the emission of a remaining 10,000GtCO2 from 2024, corresponding

to a global mean temperature of 5.42�C (IQR: 3.9�C - 6.3�C). When comparing to previous findings, our emulator identifies

a threshold that is slightly higher than found by Meccia et al. (2020), who use computationally efficient stochastic physics365

schemes to project rapid winter sea ice loss will occur at 4 ± 0.35�C of global warming. Whereas our threshold falls within

the lower range from Drijfhout et al. (2015), who use five CMIP5 model simulations (due to the lack of extended runs past

2100) to suggest the threshold occurs at a global mean temperature ranging between 4.5�C and 8.2�C. Our results add to this

body of work by providing a more thorough assessment of winter ice loss backed by a wider range of CMIP6 models and

observations, which potentially accounts for the slightly different threshold global temperature from our emulator, than the two370

studies discussed here.
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While our constraint on Arctic Amplification assumes the ratio will remain constant through the simulation period, some

CMIP6 models suggest that the Arctic Amplification will decline as sea ice retreats (Dai et al., 2019; Holland and Landrum,

2021). As the amount of remaining sea ice is usually low or ice-free before it impacts the Arctic Amplification in summer,

the feedback mechanism would have minimal influence on our model’s projections during this season. Whereas in winter, the375

rate of sea ice loss after the ice pack detaches from land is so high that changes to the Arctic Amplification past this time have

little impact on our SIA projections. While we have shown our constrained Arctic Amplification trend increases the likelihood

of an ice-free ocean at lower emission levels compared to CMIP6 estimates, its future is uncertain. It is possible our emulator

projects a conservative estimate of future Arctic Amplification if current trends continue to persist. If so, the Arctic Ocean could

become ice-free earlier than our current projections suggest. In addition, recent studies suggest a non-negligable portion of sea380

ice loss is a result of internal tropical-polar teleconnections, that CMIP6 models and therefore our emulator don’t currently

capture (Baxter and Ding, 2022; Topál and Ding, 2023). It would be interesting for further work to investigate the contribution

of polar-tropical teleconnections to sea ice variability in long-term projections, to determine if this could increase the remaining

carbon budget we project will prevent ice-free conditions.

5 Conclusions385

This study has presented a novel method of probabilistic sea ice projection through the development and application of an

Arctic sea ice emulator. Our emulator’s ability to efficiently extend future seasonal SIA based on the present sensitivity to

global temperatures while also considering the range of knowledge within CMIP6 models, proves its use as a tool to answer

prominent questions regarding the future of Arctic sea ice. This method fills the gap in the literature between complex CMIP6

projections, recalibration of model output, and the simple linear extrapolation of sea ice area with anthropogenic forcing. The390

results from the application of our emulator bring into question whether mitigation efforts are stringent enough to prevent

critical ice loss, while also providing useful information regarding regime changes in sea ice loss that could cause ice-free

conditions to occur rapidly year-round.

Code availability. https://doi.org/10.5281/zenodo.14020702

Data availability. The observational Arctic Amplification evolution is analysed through three datasets. NASA’s Goddard Institute for Space395

Studies Surface Temperature version 4 (GISTEMP) with a 1200km smoothing radius (Lenssen et al. (2019)), the Berkeley Earth temperature

dataset (BEST) (Rohde and Hausfather (2020)) and the Met Office Hadley Centre/Climatic Research Unit version 5.0.1.0 (HadCRUT5)

dataset (Morice et al. (2021)). The HADCRUT temperature range was obtained from the 200 member ensemble. In these datasets, near-

surface air temperature is based on a combination of 2m temperature observations over land and sea surface temperature (SST) observations

over the ocean. The global mean temperature anomaly is defined as the average temperature across the gridded dataset while the Arctic400
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temperature anomaly counterpart is defined as the average of the area poleward of 65°N. Arctic absolute seasonal temperature observations

are downloaded as a time series from the Berkeley product. Observational Northern hemispheric SIA datasets are those from the University

of Hamburg (UHH) Sea Ice Area Product (Doerr et al. (2021)). The six products used include: the HadISST NSIDC monthly sea-ice area;

HadISST original monthly sea-ice area; Comiso-Bootstrap monthly sea-ice area; NASA-Team monthly sea-ice area; OSI-SAF monthly sea-

ice area and the Walsh monthly sea-ice area. Cumulative CO2 emission projections are taken from the historical fossil fuel and industrial405

datasets that were used for harmonising IPCC emissions scenarios (IPCC (2022), AR6 WG3; Nicholls et al. (2020), RCMIP datasetes). As

the cumulative CO2 emission projections begin in 1750, to analyse the remaining carbon budget from 2023 we simply subtract the cumulative

CO2 emission in 2023 from the total carbon budget in each ensemble.
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