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Abstract. The high computational expense of complex climate models and their tendency to underestimate observational

records of Arctic sea ice sensitivity to anthropogenic forcers, challenge our ability to assess the magnitude of forcing that will

cause Arctic sea ice loss to cross critical thresholds. To address these limitations, we develop a parameterisation framework ,

SASIEv.1, to emulate
::
for Arctic sea ice

:::::::::
emulation,

::::::::
SASIEv.1, that is calibrated to the response of sea ice area to global warming5

in physically-based CMIP6 models and constrained to observations. Our constrained framework reduces the remaining budget

of CO2 that can be emitted while preventing seasonally ice-free conditions from 821GtCO2 by CMIP6 multi-model ensemble

estimates to 380GtCO2. This suggests that limiting global warming to 1.5�C is sufficient to prevent a seasonally ice-free Arctic

Ocean, whereas 2�C proves insufficient. Our results also provide insight into the future of winter sea ice over a greater ensemble

range than previously possible, pinpointing the emission threshold at which the ice pack detaches from land, after which the10

ice pack rapidly disappears to year-round ice free conditions.
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1 Introduction

Arctic sea ice forms a complex yet fundamental component of the Earth system and is a sensitive indicator of global climatic

changes. Since the satellite record began in 1979, the September ice pack has declined by more than 13% per decade in response

to anthropogenic greenhouse gas emissions (Serreze and Stroeve, 2015).15

Global climate models (GCMs) used in the most recent (sixth) phase of the Coupled Model Intercomparison Project (CMIP),

are the most comprehensive tools we have for predicting how Arctic sea ice will change in the future. Their projections unan-

imously show continued year-round reductions in Arctic sea ice throughout the 21st century, with the majority of models

projecting a seasonally ice-free Arctic Ocean within the next 15 to 50 years, commonly defined as the first time sea ice area

(SIA) falls below 1 million km2 in a given month (SIMIP Community, 2020). Though models agree ice loss will persist into20

the future, there are large uncertainties surrounding their projections (SIMIP Community, 2020). One conceptually convenient

metric to measure changes in sea ice is the ‘sea ice sensitivity’, which is generally defined as the amount of sea ice area lost per

degree of global warming. However, GCMs tend to simulate a lower sensitivity of Arctic summer sea ice loss than has been

observed (Mahlstein and Knutti, 2012; Rosenblum and Eisenman, 2017; Niederdrenk and Notz, 2018; SIMIP Community,

2020). Models that do simulate present day rates of sea ice loss also simulate considerably higher global warming than obser-25

vations suggest (Rosenblum and Eisenman, 2017). This is known as the ‘hot model’ problem and is used to describe models

that project climate warming in response to CO2 emissions that is much larger than other lines of evidence suggest (Hausfa-

ther et al., 2022). Recent observations report the Arctic Amplification, defined as the warming ratio between the Arctic and

global temperature, over the satellite period has warmed much faster than in CMIP6 models which tend to simulate a relatively

constant Arctic Amplification over the 21st century (Chylek et al., 2022; Rantanen et al., 2022; Douville, 2023; Chylek et al.,30

2023; Hay et al., 2024).

The majority of CMIP6 models limit runs to 2100 as they are too computationally expensive to analyse large numbers of

scenarios over multi-centennial timescales (Balaji et al., 2017). A few studies have utilised the limited number of extended

simulations, to analyse the winter sea ice response to warming, using the limited subset of available models with extended

simulations to 2300, with particular interest in the possibility of a rapid disappearance of winter sea ice (Armour et al., 2011;35

Hezel et al., 2014; Bathiany et al., 2016; DeRepentigny et al., 2020; Hankel and Tziperman, 2021, 2023). These studies found

that the linear decline of Arctic sea ice with cumulative CO2 emissions to ice-free conditions exhibited through the summer

months breaks down in winter. Arctic sea ice declines at a much slower rate in winter before reaching a threshold at which

the amount of sea ice loss per emitted ton of CO2 rapidly increases. A recent study from Ritschel (2024) attributes the rapid

loss of Arctic winter sea ice to the detachment of the ice pack from land. They find that the detachment of the ice pack from40

land is linked to the timing of geographic muting, a term introduced by Eisenman (2010) to describe the blocking of the ice

pack’s expansion through the growth season, due to the presence of land masses surrounding the Arctic Ocean. This mechanism

explains the slow decline of winter sea ice initially, as the theoretical retreat of winter sea ice is masked by the coastline. This

causes the area of the coast bound ice to change minimally. Once the temperature becomes sufficiently high to prevent the ice
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pack expanding to the coastline, the ice pack has ‘detached’ from land and exhibits a higher sensitivity to warming (Ritschel,45

2024). As the timing of rapid winter ice loss tends to occur after the end of the 21st century, the lack of extended projections

in CMIP6 models prevents a thorough analysis of winter ice loss.

This study therefore has three key aims. First, we build on and extend insights gained from comprehensive, higher complexity

model runs to develop a parameterisation framework that emulates the CMIP6 response of seasonal Arctic sea ice area to

global warming at a much smaller computational expense. In a second step we evaluate whether the calibration of our parame-50

terisations to CMIP6 models between 1850 and 2100, capture the non-linearity of winter sea ice when extended to 2300. This

validation provides insight into the framework’s potential to emulate winter sea ice in models that lack projections beyond

2100. Finally, this study aims to investigate whether the sensitivity of sea ice loss to global warming can be constrained to

match observations, through bias corrections to the global warming and Arctic Amplification trends. This study therefore aims

to integrate various lines of evidence to efficiently emulate plausible, long-term projections of SIA under a range of scenarios.55

This approach does not intend to offer a model for “off-the-shelf” use, but a methodology by which we and other users can

efficiently investigate seasonal and long-term Arctic sea ice trends using the parameterisations presented.

2 Framework Overview

The SASIEv.1 (Seasonal Arctic Sea Ice Emulator version 1) framework is separated into two stages which are each comprised

of three steps (fig. 1). Stage one involves parameterisation development and calibration to CMIP6 data, while stage 2 con-60

strains our CMIP6 informed parameterisations to observations. Within each stage, step i emulates the Arctic Amplification,

converting the global annual mean temperature to the Arctic annual mean temperature (Sect. 4.2 and 4.2.1). Step ii emulates

the Arctic seasonal temperature cycle which converts our emulated Arctic mean temperature to the Arctic seasonal temperature

(Sect. 4.3) and is then input into the sea ice parameterisation in step iii (Sect. 4.4). In the second stage, we combine the MAG-

ICC global-mean temperature ensemble (Sect. 3), with our probabilistic constraint on Arctic Amplification in step ii (Sect.65

4.2.1), which we then pass through remaining steps to produce constrained, probabilistic projections of SIA to 2300. We use

the MATLAB programming software version R2024b to run the SASIEv.1 framework, training the parameterisations on the

CMIP6, MAGICC, RCMIP and observational datasets described in Sect. 3. Using this approach, the SASIEv.1 framework can

be applied without recalibration across all models listed in Table A1, along with their associated SSP
::::::
Shared

:::::::::::::
Socioeconomic

:::::::
Pathway

:::::
(SSP)

:
scenarios and ensemble members. The framework’s parameterisations can also be calibrated to accommodate70

CMIP6 models beyond those considered in this study. Given that we emulate the sea ice response with parameterisations that

smooth out year to year variability, our emulation framework therefore does not attempt to capture the year to year natural

variability of Arctic sea ice, rather the long-term median Arctic sea ice response.
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Figure 1. A work-flow of the parameterisation framework. Blue cylinders and boxes represent the calibration to CMIP6 models in Stage
1. Yellow cylinders and boxes represent the constraint to observational data in Stage 2. Cylinders represent the data that is used in each
parameterisation step, while boxes represent the output from each parameterisation step. Refer to Sections 4.2.1

::
4.2

:
and 4.2.1 for more

information on Step i. Refer to Section 4.3 for more information on Step ii. While section 4.4 provides more information on Step iii.
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3 Data Collection and Processing

In the first stage, parameterisations have been calibrated over the period 1850-2100 against the corresponding first ensemble75

member of 13 selected CMIP6 models (see Table A1) for the Shared Socioeconomic Pathway (SSP )
:::
SSP

:
scenarios SSP5-8.5,

SSP2-4.5 and SSP1-2.6 and their historical runs. We chose these scenarios and the calibration period based on the availability

of both CMIP6 temperature and SIA projections, where at least five models also contained projections to 2300. These five

models were selected for framework evaluation, presented in Sect. 5.1. By selecting scenarios that represent both the warmest

and coolest projected futures, we ensure that our calibrated parameterisations encompass the full range of SIA responses to80

temperature. This enables the framework to be applied to intermediate scenarios not explicitly used in calibration, that lie

within the bounds defined by the extremes. We also focus our calibration on the first ensemble member only, due to the small

long-term variability between ensemble members, we instead focus our calibration on a range of models and scenarios. In the

second stage, we use the MAGICC 600-member ensemble that has been constrained to represent the IPCC AR6 WG1 global

warming projections and their uncertainty (Cross-Chapter Box 7.1, IPCC (2021) AR6 WG1; Nicholls et al. (2021)). The85

observational temperature datasets used to analyse the observed Arctic Amplification were the NASA’s Goddard Institute for

Space Studies Surface Temperature version 4 (GISTEMP) with a 1200km smoothing radius (Lenssen et al., 2019), the Berkeley

Earth temperature dataset (BEST) (Rohde and Hausfather, 2020) and the Met Office Hadley Centre/Climatic Research Unit

version 5.0.1.0 (HadCRUT5) dataset (Morice et al., 2021). The HADCRUT temperature range was obtained from the 200

member ensemble. In these datasets, near-surface air temperature is based on a combination of 2m temperature observations90

over land and sea surface temperature (SST) observations over the ocean. The global mean temperature anomaly is defined as

the average temperature across the gridded dataset while the Arctic temperature anomaly counterpart is defined as the average

of the area poleward of 65°N. Arctic absolute seasonal temperature observations are downloaded as a time series from the

Berkeley product. The six observational northern hemispheric SIA datasets used include: the HadISST NSIDC monthly sea-

ice area; HadISST original monthly sea-ice area; Comiso-Bootstrap monthly sea-ice area; NASA-Team monthly sea-ice area;95

OSI-SAF monthly sea-ice area and the Walsh monthly sea-ice area. Finally, cumulative CO2 emission projections are taken

from the historical fossil fueland industrial
:
,
::::::::
industrial

:::
and

::::::::
LULUCF

:::::
(land

:::
use,

::::
land

:::
use

:::::::
change

:::
and

:::::::
forestry)

:
datasets that were

used for harmonising IPCC emissions scenarios from the AR6 WG3, RCMIP datasetes (IPCC, 2022; Nicholls et al., 2020). As

the cumulative CO2
:::
We

:::::::::::
acknowledge

:::
that

::::::::
different

:::::
Earth

::::::
System

::::::
Models

:::::::
(ESMs)

:::::
imply

:::::::
different

:::::::::
LULUCF

::::
CO2 :::::::::

emissions,
::
as

:::
they

:::::
often

::::
infer

:::::
these

::::::::
internally

::::
from

:::::::
land-use

:::::::
patterns

:::::
rather

::::
than

:::::
using

::::::::
prescribed

:::::::::
LULUCF

:::::::::
emissions.

::
To

::::::
ensure

::::::::::
consistency,100

::
we

::::::
follow

::
a
::::::::
common

::::::::
approach

::::
also

::::
used

::
in

:::
the

:::::
AR6

:::::
IPCC

::::::
WG3,

::
by

:::::
using

::
a
::::::::::
harmonised

:::::::::
LULUCF

::::::::
emissions

::::
time

::::::
series

:::::
based

::
on

::::::::
historical

:::::::::::
bookkeeping

::::::::
estimates

::
of

::::::::::::
anthropogenic

:::::::::
emissions.

:::::
While

::::
this

:::::::::
introduces

::::
some

::::::::::
uncertainty,

::
it

:::::
allows

:::
for

::
a

::::::::
consistent

:::::::
estimate

::
of
::::::::::

cumulative
::::::::
emissions

:::::::
aligned

::::
with

:::::::::
established

::::::
carbon

::::::
budget

::::::::
methods.

:::::::
Finally,

::
as

:::
the

:::::::::
cumulative

:::::
CO2

emission projections begin in 1750, to analyse the remaining carbon budget from 2023 we simply subtract the cumulative CO2

::::
CO2 emission in 2023 from the total carbon budget in each ensemble.105
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4 Framework Calibration

The calibration routine utilises the Nelder and Mead simplex optimisation method (Nelder and Meadf, 1965; Lagarias et al.,

1998), with a termination tolerance of 10�6 and a maximum iteration of 1000. We use the residual sum of the squared dif-

ferences (RSS) for goodness-of-fit (GOF) diagnostics during the optimisation process. This setup iteratively evaluates the

calibration factor values to ensure they result in an RSS global minimum between the CMIP6 data (with a running mean of 10110

years applied) and the emulated data. The optimisation routine is initialised via a number of preliminary runs to generate a se-

ries of starting parameters, by randomly sampling values from a set of user-defined ranges for each parameter. Each calibrated

parameter in the final model-specific set is designed to control all months in each model. Tables listing calibrated parameter

values for all free variables can be found in the Supplementary (Table. A2 and Table. A3).

4.1 Parameterisation Framework115

4.2 Step i: The Arctic Amplification Parameterisation
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Figure 2. Emulation of CMIP6 calibrated Arctic annual mean temperatures. The top row represents the calibrated temperature anomaly,
while the bottom row represents the calibrated absolute temperature. Red, yellow and blue shading represents the likely (17th-83rd percentile)
calibrated model range for the scenarios SSP5-8.5, SSP2-4.5 and SSP1-2.6, with darker solid lines representing the mean in each scenario.
Light grey shading represents the CMIP6 likely range and solid black lines represent the CMIP6 multi-model median.
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In stage 1, we force our framework with the global mean temperature anomaly from each of the CMIP6 models used in this

study. We split the emulation of the Arctic temperature into two parameterisations- annual (step i) and seasonal Arctic Ampli-

fication (step ii). Splitting these processes provides the basis for the observational constraint of annual Arctic Amplification in

stage 2 of development.120

We find that a simple linear regression between the global and Arctic annual mean temperature anomaly over the calibration

period is sufficient to emulate the CMIP6 Arctic annual mean surface temperature (fig. 2):

tas(AAAB) = �AA · (tas(GAB)� tas(GREF ))+ tas(AREF ), (1)

where tas(AAAB) is the output Arctic annual absolute temperature, tas(GAB) is the global absolute temperature, tas(GREF )

is the average 1850-1900 global absolute temperature and tas(AREF ) is the average 1850-1900 Arctic absolute temperature,125

(tas(GAB) - tas(GREF )) represents the global mean temperature anomaly and �AA is the regression coefficient representing the

Arctic Amplification factor with a range between 2.5 and 4 about a median of 3, and is derived from the linear regression

between the global mean and Arctic annual mean temperature anomaly. To generate the absolute temperature (tas(AAAB)),

the 1850-1900 mean Arctic absolute temperature (tas(AREF )) for each CMIP6 model was added to the Arctic annual mean

temperature anomaly (�AA · (tas(GAB)� tas(GREF ))), to produce CMIP6 absolute temperatures.130

4.2.1 Observational Constraint on Arctic Amplification

Given the disparity between simulated and observed Arctic Amplification trends, a more complex approach is required to

constrain model trends to align with observational data. We note that due to the poor signal to noise ratio, we require warming

to reach 0.45�C over a 20-year period before deriving Arctic Amplification from the observational record. As such, we focus

our analysis on Arctic Amplification trends from 1970. The resultant parameterisation of our constraint on Arctic Amplification135

is as follows:

Arctic Amplificationr,p,sr,�,s
::

=
�constantAA

(1+ exp(SlinAA · (�rmagicc +0.5)))

�constantAA

1+ exp(SlinAA · (�rmagicc +0.5))
:::::::::::::::::::::::::::

. (2)

Equation (2) is a sigmoid that initially assumes a linear increase of Arctic Amplification with global mean temperature at a

rate dictated by SlinAA, which progresses asymptotically towards a constant Arctic Amplification prescribed by the parameter

�constantAA, after which the amplification factor will remain constant as warming continues. �constantAA represents randomly140

sampled values from the calibrated CMIP6 Arctic Amplification range (�AA) in Eq. 1, while SlinAA represents randomly
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Figure 3. Constrained Arctic Amplification from our parameterisation framework, as presented in Eq. 2. a and b) represent the probability
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the final constrained Arctic Amplification. Light grey shading represents the ‘very likely’ (5th-95th percentile) observed Arctic Amplification
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observations, as it is the last year a central point can be taken with 10 years either side to calculate the 21-year trend without reducing the
number of years in the trend, which could bias the trend of the final years.

sampled values from the Arctic Amplification observational range (we provide further details in Supplementary Sect. A1).

rmagicc represents a randomly sampled MAGICC global mean temperature ensemble member, while its negative sign (�rmagicc)

indicates that the sigmoid should increase rather than decrease with warming. We add a fixed factor of 0.5 to the exponential

term to control the temperature at which the Arctic Amplification begins to increase, as the observed Arctic Amplification145

rises from a mean of approximately 1 as warming grades rise above 0.45�C (fig. 3). The division of �constantAA with the

non-linear exponential term in the denominator, (1+ exp(SlinAA(�rmagicc)+ 0.5)), controls the sigmoidal increase of Arctic

Amplification with global warming at a rate prescribed by observations, while remaining constant thereafter to account for the

modelled CMIP6 trend.

4.3 Step ii: The Arctic Seasonal Temperature Parameterisation150

We develop our seasonal temperature parameterisation to reflect three ‘key features’ of warming on the evolution of the seasonal

temperature cycle. The first is the asymmetric warming between summer and winter which gradually reduces the amplitude

of the seasonal temperature cycle over the calibration period (fig. 4), (Bintanja and Linden, 2013; Zhang et al., 2021; Screen

et al., 2012). Secondly, the pre-industrial period (1850-1900) seasonal temperature cycle is relatively symmetrical as the rate

of warming from winter to summer is similar in magnitude to the rate of cooling back to winter. However, as the Arctic warms155

and sea ice declines, the temperature cycle widens at its peak as the melt season lengthens and warm summer temperatures
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persist into the autumn months. Finally, we find the temperature amplification is not linear in all months. From the mid-21st

century the temperature amplification increases during the summer months (June-August), declines in autumn and early winter

(September-January), and remains relatively constant through late winter and spring (February-April) (Supplementary fig. A2).

The likely cause of the seasonal amplification difference is outlined by Dai et al. (2019), and is related to the seasonal exchange160

of fluxes between the ocean surface and atmosphere, which respond differently to variations in the rate of sea ice loss to rising

CO2 emissions. We represent these trends via a nested, exponential cosine function that emulates the shape of the seasonal

temperature curve in each year, and is controlled by the Arctic annual mean temperature:

P = Famp · cos(m ·GwaveLen �EpShift · exp(cos(mAmeltLen))), (3a)

165

tas(AMAB) = P (1+hvertShift), (3b)

where tas(AMAB) is the seasonal Arctic mean temperature in degrees Celsius emulated in step i, m is an equally spaced value

between 0 and 2⇡ representing the average
:::::::
reference

:
point of each month of the year (0 and 2⇡ represent January of year t

and January of year t+1 respectively) and Famp, GwaveLen, and AmeltLen are model-specific calibration parameters dependent

on the Arctic annual mean temperature. Famp represents the amplitude, GwaveLen controls the wavelength, while AmeltLen (Eq.170

3c) is a simple cosine function that controls the change from a basic cosine curve to a shallow, linear temperature decline,

as warmer summer temperatures gradually pervade into September, October, November and December (Supplementary fig.

A3). EpShift is a non-temperature dependent and non-model specific parameter with a value of 0.3, that fixes the phase shift of

the curve and therefore controls the rate of change from summer to winter temperatures. Finally, hvertShift (Eq. 3d) is a non-

optimised, dimensionless function that modulates ‘P ’ by offsetting the temperature to ensure the emulated Arctic annual mean175

temperature input at time t is equal to the mean of the parameterised monthly temperature curve and is calculated at every time

step. Famp and GwaveLen are calculated from the calibration coefficients f1, f2, g1 and g2 that are optimised through a series

of simple linear regressions dependent on the Arctic annual mean temperature; (Famp = (f1 · tas(AAAB))+ f2) and (GwaveLen =

(g1 · tas(AAAB))+ g2), Supplementary table. A2. We acknowledge that while Famp and GwaveLen are related, the complexity of

the system did not allow us to find a functional form to capture their relationship. As such, we handle these two parameters180

separately.

AmeltLen = cos((tas(AAAB) ·�a1)� a2)+ a3, (3c)
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hvertShift =
tas(AAAB)�P

Famp
. (3d)
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Figure 4. Emulation of the CMIP6 Arctic seasonal temperature cycle in 4 selected years and models. Each column represents our emulation
of one model, where the top, middle and bottom rows represent SSP5-8.5, SSP2-4.5 and SSP1-2.6 respectively. Solid lines represent our
emulation of a selected CMIP6 model and dashed lines of the same colour represent the CMIP6 data. Only emulation of the years 1850,
2000, 2050 and 2100 are displayed for visualisation purposes, however calibration was conducted over each year between 1850 and 2100,
were one year represents one curve.

The first key feature (see above) is encapsulated by parameter Famp, which reduces the amplitude of the curve with warming.

The second is satisfied by the exponent of the cosine exp(cos(mAmeltLen)). This feature lengthens the summer season as the185

Arctic annual mean temperature increases. Although our function initially assumes a basic cosine curve at lower values of

tas(AAAB), this feature creates the increasingly asymmetric and broad peaked curve as tas(AAAB) rises, generating a left skewed

curve at higher Arctic annual mean temperatures. Finally, adding the exponent into the nested cosine (cos(m(cos(mAmeltLen))))

prevents the temperature in the autumn months rising as fast as the winter months, reducing the amplification from the mid-

21st century while simultaneously increasing the amplification during summer. The combined decline in amplitude (Famp) and190

increase in wavelength (GwaveLen) prevents the increase in summer amplification initially, however as the wavelength increases
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the curve becomes more left skewed causing the rate of July and August warming to increase. This satisfies the third key feature

of the seasonal temperature evolution we identify in CMIP6 models.

Analysis of the few models with runs to 2300 (CanESM5), show the shape of the temperature curve doesn’t evolve significantly

past 2100. As such, we cap the evolution of our calibration parameters to ensure they remain constant past an Arctic annual195

mean temperature of 6�C (Supplementary fig. A4). Past this temperature, hvertShift (Eq. 3d) is the only parameter that continues

to change. We find the temperature parameterisation produces a plausible timeseries to 2300 using this method (Supplementary

fig. A5).

4.3.1 Bias Corrections to Arctic Monthly Temperature Parameterisation

CMIP6 projections of the mean 1979-2020 Arctic summer (April-July) temperatures are on average 2�C warmer than observed200

(Supplementary fig. A6). To overcome this, we apply a constant offset to our CMIP6 calibrated temperature in each month,

which we define as the difference between the 1979-2020 mean from observations and that of our emulation. We acknowledge

the 1979-2020 period is a short time frame and internal variability could be a large factor causing this difference. However,

as future observations become available and the impact of internal variability is better understood, this bias correction can be

updated in future versions of the SASIE framework.205

CMIP6 models also project a weaker summer (July and August) warming trend than is observed (Supplementary fig. A6).

Simulated July and August temperatures increase slowly from 1980 to 2050 before rising significantly thereafter, whereas

observed temperatures rise rapidly from ⇠1980. We address this by forcing the calibration parameter ‘Famp’, which represents

the amplitude of the temperature curve in each year in Eq. (3b), to remain constant until the annual mean Arctic temperature

reaches an absolute level of -8
:::
�8�C. Our bias correction ensures the summer temperatures increase at the observed rate, while210

protecting our emulation of the lengthening melt season (Serreze and Barry, 2011).

4.4 Step iii: The SIA Parameterisation

We parameterise the response of Arctic sea ice area to the seasonal Arctic warming trend, as this is ultimately the temperature

sea ice responds to (as opposed to global-average warming itself). As CMIP6 models reproduce the observed Arctic warming

trend well, this method also ensures our SIA projections respond to Arctic warming trends that match the observed, reducing215

the number of bias corrections in stage 2.

4.4.1 The Seasonal Melt and Growth Weighting Scheme

The response of Arctic sea ice to temperature is impacted by many different physical processes such as snow cover and ocean

heat content changes. Variations in sea ice thickness in particular offer insight into how the different rate of ice area growth
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and melt can be incorporated into our framework. During autumn freeze-up, a thin layer of sea ice will rapidly form over the220

Arctic Ocean. However, during the melt season, a greater thickness of ice needs to melt before the SIA is greatly affected. This

produces a differing inertia to temperature changes between the growth and melt of SIA, where for a given temperature change

the loss or gain of SIA will be greater in autumn compared to that of spring (Ritschel, 2024; Eisenman, 2010). We therefore

apply a weighting scheme to the emulated temperature that forces our SIA parameterisation, to account for the inertia in the

sea ice system (Supplementary fig. A7). The updated temperature (‘tas’) therefore becomes a product of the current month,225

tas(m) and the previous month, and is computed via the following weighting scheme:

tas(new) =
(tas(m) ·w)+ (tas(m�1) · 1�w)

w+1�w

(tas(m) ·wm)+ (tas(m�1) · 1�wm)

wm +1�wm
:::::::::::::::::::::::::::::

, (4a)

where tas(m) is the Arctic temperature at the monthly timestep m, tas(m�1) is the temperature from the previous month and

w and 1�w
:::
wm :::

and
:::::::
1�wm are the weightings applied to the current and previous month respectively.

When applying a greater weight to the previous month’s temperature in spring, the updated temperature is colder as a greater230

weight is placed on the colder winter temperatures (Supplementary fig. A7b). Spring SIA is therefore forced with a colder

temperature to express the slower decline of SIA for a given temperature change through the melt season. Whereas, the updated

temperature is higher in autumn as it becomes a function of the the previous warm summer month, to capture the faster growth

of sea ice for an equivalent temperature change through the growth season.

Due to the effect of ‘geographic muting’ described in Sect. 1, Arctic summer sea ice declines linearly with Arctic warming235

while the loss of winter sea ice accelerates with warming as the ice pack detaches from land (Ritschel, 2024). Given these

characteristics, we develop the following parameterisation to reflect the sigmoidal decline of SIA with Arctic warming:

SIA =
(SIAmax + doffset) ·Sfix �LlinSIA(tas� tas(t=0))

(1+ exp(tas� bnonlinSIA))
, (4b)

Sfix = (1+ exp(tas(t=0)� bnonlinSIA)), (4c)

where SIAmax (Eq. 4d) is the seasonal SIA in 1850 and is optimised for each model, LlinSIA, bnonlinSIA and doffset are model240

dependent calibration factors and ‘tas’ is the weighted Arctic seasonal temperature emulated in step ii.

12



-30 -20 -10 0 10
0

5

10

15

Em
ul

at
ed

 S
IA

 (m
illi

on
 k

m
2 )

CNRM-CM6-1-HR

SSP-5.85

January
February
March
April
May
June
July
August
September
October
November
December

-30 -20 -10 0 10
0

5

10

15
ACCESS-ESM1-5

SSP-5.85
-30 -20 -10 0 10
0

10

20
 HadGEM3-GC31-LL

SSP-5.85
-30 -20 -10 0 10
0

5

10

15
MRI-ESM2-0

SSP-5.85

-30 -20 -10 0 10
0

5

10

15

SSP-2.45
-30 -20 -10 0 10
0

5

10

15

SSP-2.45
-30 -20 -10 0 10
0

10

20

SSP-2.45
-30 -20 -10 0 10
0

5

10

15

SSP-2.45

-30 -20 -10 0 10
Arctic Temperature (°C)

0

5

10

15

SSP-1.26
-30 -20 -10 0 10
0

5

10

15

SSP-1.26
-30 -20 -10 0 10
0

10

20

SSP-1.26
-30 -20 -10 0 10
0

5

10

15

SSP-1.26 Emulated
CMIP6

Figure 5. Emulation of the CMIP6 Arctic seasonal Sea Ice Area cycle in 4 selected models. Each column represents our emulation of the
SIA under three scenarios from one CMIP6 model, where the top, middle and bottom rows represent SSP5-8.5, SSP2-4.5 and SSP1-2.6
respectively. Solid lines represent our emulation of the CMIP6 SIA in each month, and dashed lines of the same colour represent the CMIP6
data.

The resultant functional form initially assumes a slow linear decline of SIA with temperature, which progresses asymptotically

towards a constant SIA of 0 million km2 at higher temperatures (fig. 5). Our SIA parameterisation is therefore derived from

the division of a linear and non-linear (‘tas’) term. The linear response term on the numerator LlinSIA(tas� tast=0) controls the

initial linear decline of SIA with temperature and is scaled via the subtraction of the ‘tas’ in 1850 from subsequent ‘tas’ in each245

year; while the exponential ‘tas’ term (1+exp(tas� bnonlinSIA)) on the denominator, controls the sigmoidal decline of SIA and

therefore the increase in the sensitivity of sea ice loss to warming in the colder months. The starting term (SIAmax+doffset) ·Sfix

fixes the initial SIA in each month, and is the maximum SIA susceptible to melting. SIAmax is offset via doffset to account for

the chaotic nature of pre-industrial sea ice fluctuations for small warming grades, and the imperfect nature of emulations. An

exponential ‘tas’ term is added for the timestep 0 to account for the increase in the exponent of ‘tas’ as the initial temperature250

nears 0�C in the summer months, ensuring that the maximum SIA is equal to SIAmax+doffset in the summer months. The

CMIP6 seasonal cycle of SIA in 1850 contains a few key features that justify the more complex adapted sine function in Eq.

(4d) (Supplementary fig. A8) below:
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SIAmax =Aamp · (�exp(sin(mCcrest ·WwaveLen �KpShift)))+VverShift, (4d)

255

Kpshift = (WwaveLen · 0.8003)+ 1.5016, (4e)

where m is again an equally spaced value between 0 and 2⇡ representing the average
:::::::
reference

:
point of each month of the year

(0 and 2⇡ represent January of year t and January of year t+1 respectively). Calibration factors WwaveLen, Aamp and VvertShift

control the wavelength, amplitude and vertical shift respectively. The parameter Kpshift controls the phase shift and is a constant

derived from a linear regression of wwaveLen. The exponent of the sine �exp(sin(mCcrest)) is added to flatten the trough of the260

curve, as August and September have similar pre-industrial values. Whereas the mCcrest term modulates the roundness of the

peaks, to ensure the SIA increases sharply from January to its peak in March. This term allows the wavelength to capture the

slow transition from winter SIA to summer SIA, while capturing the faster transition from summer SIA to winter SIA in 1850.

Finally, we use a negative exponent to represent the decline in SIA through the summer months. The parameter Kpshift then

adds a small phase shift to adjust the phase to each specific model. The SIAmax factor is first optimised and then input into the265

SIA calibration.

4.4.2 Bias Corrections to the Sea Ice Area Parameterisation

Similarly to the Arctic seasonal temperature bias correction, we find the modelled 1979-2014 mean SIA between June and

September is on average 1.14 million km2 smaller than observations suggest (fig. A6). To address this, we adjust SIAmax in

each month by subtracting the difference between the 1979-2020 mean observed SIA and our emulated mean.270

We also find that applying the bias-corrected temperature from Sect. 4.3.1 to our SIA parameterisation generates a much larger

sea ice loss per degree of warming than is indicated by both CMIP6 models and observations (Supplementary fig. A9). This is

to be expected as our corrected temperatures rise at a faster rate between 1979 and 2050 than in CMIP6 projections, while our

calibrations representing the response of SIA to Arctic warming remain unchanged. This causes the sensitivity of SIA loss to

increase at a cooler temperature, as the sensitivity parameter ‘bnonlinSIA’ (Eq. 4b), is reached much earlier than in our calibration.275

To overcome this, we adjust ‘bnonlinSIA’ by subtracting the difference in the mean 1979-2050 Arctic temperature produced from

bias correcting the calibration parameter ‘Famp’, and the CMIP6 calibrated temperature where the calibration parameter ‘Famp’

has not been bias corrected. This approach forces the sensitivity to increase at the calibrated temperature and year that CMIP6

models suggest, while also allowing the temperatures to rise at the same rate as observations. The impact of this difference is

minimal in the colder months but more pronounced in the summer, as ‘bnonlinSIA’ tends to be reached before 2050 through the280

summer months while it is reached much later in winter.

14



5 Results

5.1 Evaluating the CMIP6 Framework’s Performance in Capturing Rapid Ice Loss

Through this section, we evaluate the ability of our CMIP6 calibrated parameterisations to reproduce the CMIP6 response of

SIA to warming in each month when extended to 2300, with particular focus on its ability to project the rapid disappearance285

of March sea ice. This approach aligns with our aim to emulate long-term winter sea ice loss using only information available

within the 19th, 20th and 21st centuries. This provides insight into the framework’s potential to emulate winter sea ice in models

that lack projections beyond 2100. While multiple evaluation strategies are possible, we focus on this method as it directly tests

the long-term generalisability of our parameterisation framework. Two additional evaluation approaches are provided in the

Supplementary information (fig. A11 and fig. A12) to provide an evaluation of our framework on a non-calibrated scenario290

and ensemble member. However here, we focus on the performance of long-term sea ice reproduction. We note that our use

of the term ‘2100 calibration’ refers to our calibration between 1850 and 2100, while our ‘out of sample’ test refers to output

produced by forcing this calibration with extended global warming projections to 2300.

We find our 2100 calibrations hold ‘out of sample’, projecting an ice-loss between 1850 and 2300 that aligns with the CMIP6

trend for each month and model, successfully capturing the rapid loss of March sea ice to both global and Arctic warming295

(fig. 6 and Supplementary fig. B1). We evaluate the goodness of fit (GOF) between our emulation of SIA to 2300 with the

corresponding CMIP6 model via the root mean squared error (RMSE), dividing by the number of calibrated model years.

The GOF statistics of the March sensitivity to Arctic warming show an RMSE of 0.0037 and a correlation coefficient of

0.99, while the fit against global warming produces a RMSE of 0.07. Both statistics suggest the successful performance of

our parameterisations to 2300. We propose the slightly weaker fit to global warming is because this relationship carries the300

uncertainties from all three steps of our framework, while the relationship to Arctic warming only carries the uncertainties from

one step. While the GOF statistics suggest a successful fit in most months, May in IPSL-CM6A-LR shows a slightly weaker fit

(fig. 6). While our weighting scheme accounts for the lag in the response of sea ice to temperature between the growth and melt

seasons, May technically requires a larger weight (w
:::
wm) than the growth months. However, our parameterisation only uses

a single weight across all SSPs and timescales (1850–2100) to reduce the number of free parameters, missing this variation.305

Despite a weaker melt-season fit, it remains sufficient for emulation.

Our results suggest that our calibration to 2100 is sufficient to project the non-linearity of winter sea ice loss, however, the

majority of models analysed indicate that rapid March ice loss occurs after 2100. We attribute this ability of our parameterisa-

tions to project the rapid March ice loss, despite it occurring outside the calibration range of our data, to the combination of

the sigmoidal nature of our SIA parameterisation (Eq. 4b), which inherently assumes the rate of ice loss will increase once the310

threshold temperature controlled by ‘bnonlinSIA’ is reached, and the temperature weighting scheme (Eq. 4a). Although March

generally does not warm enough to cause an increase in the rate of ice loss before 2100, the early winter and melt season months

(November, December and May), show an increase in the sensitivity before 2100. While the specific temperature ‘threshold’
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Figure 6. Comparison of the winter sea ice response to Arctic and global warming trends in ’out of sample’ extended runs between our
emulation framework and CMIP6 data. The left column shows the SIA response to Arctic warming in extended projections between 1850
and 2300, while the right panel shows the SIA response to global warming in extended projections over the same period. Each row represents
one of the five CMIP6 models analysed for each warming trend. Solid lines represent our emulation of the CMIP6 response while scatter
points represent the CMIP6 model response. We only show three months here for clarity.

at which the sensitivity increases at varies between the months and models, it is our calibration of the sensitivity in the early

winter and melt season months that informs ice loss after 2100.315

The Arctic temperature at which rapid ice loss occurs is relatively similar in November and December, whereas the threshold

temperature in May is much warmer (Supplementary fig. A7). We attribute this to the different paces in growth and melt of

Arctic sea ice, discussed in Sect. 4.4.1, suggesting the temperature threshold at which the ice pack detaches from land, causing

rapid ice loss, will be cooler in the growth season than in the melt season (Ritschel, 2024). Our temperature weighting scheme

presented in Sect. 4.4.1, (Eq. 4a), parameterises this difference which subsequently updates the threshold temperature of rapid320

ice loss. Without the weighting scheme, the sigmoidal nature of our parameterisation would cause the SIA to decline at the same
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temperature in each month, at the value set by the sensitivity parameter ‘bnonlinSIA’ (Supplementary fig. A7a). By calibrating

to the rapid ice loss in the early growth (November and December) and melt season (May) months that exhibit rapid ice loss

before 2100, our calibration scheme understands the different temperature required to melt and grow ice in both seasons and

generates a single value for the weight and sensitivity parameters (w
:::
wm:

and bnonlinSIA) to capture the seasonal cycle in each325

model. Our SIA parameterisation then assumes that w
:::
wm:

and bnonlinSIA will have the same effect on the months that don’t

exhibit rapid ice loss before 2100 as the months that do over the calibrated period.

Through this section, we have evaluated the performance of the SASIEv.1 framework by assessing its ability to capture the

abrupt loss of winter sea ice, outside of the calibration period. Two additional evaluation approaches are also provided in the

Supplementary information (fig. A11. Here, we first applied the calibration parameters from the first ensemble member of330

each emulation model to the non-calibrated scenario SSP4-6.0, to consider the out-of-sample performance. We additionally

applied these parameters to the full suite of ensemble members from a test case model, CanESM5. We find our parameteri-

sations reproduce SSP4-6.0 and the majority of ensemble members tested well, indicating that our approach provides a good

approximation of the ensemble range and can be applied to scenarios beyond those calibrated. While a large aim of framework

development involved capturing the rapid loss of winter sea ice, the framework is also designed for broader application. Future335

work could explore its performance across a wider range of experiments, such as overshoot pathways where we expect our

SIA parameterisation to respond to temperature recovery, as seen in SSP1-2.6 (Supplementary Fig. S14). Assessing its ability

to emulate experiments beyond the temporal and structural assumptions of the calibrated ESMs would be valuable for future

framework application.

5.2 Evaluating the Framework’s Performance in Capturing the Observed Sensitivity340

Here we evaluate whether the constraints we apply to our parameterisations in stage 2, are sufficient to capture the observed

sensitivity of sea ice loss to global warming. To do so, we compare our emulator to the ‘plausible’ range defined by the SIMIP

Community (2020), which accounts for both the structural and internal variability, by taking two standard deviations of the

multi-model CMIP6 ensemble as the uncertainty range around the observed sensitivity of sea ice loss between 1979 and 2014.

We take the sensitivity as the regression coefficient between the global temperature and SIA projections over the period 1979-345

2014 (fig. 7). Although our emulator generates projections in all months, we focus on the September sensitivity as CMIP6

models tend to underestimate the summer sensitivity while reproducing the winter trends relatively well.

When we constrain our parameterisations to address both the ‘hot model’ problem and the Arctic Amplification bias, we

project a sensitivity that matches the ‘plausible’ range relatively well in most months. In September, our framework projects

that a median of -4.06
:::::
�4.06

:
million km2 of sea ice is lost per degree of warming between 1979 and 2014, aligning with350

the ‘plausible’ September sensitivity of -3.95
:::::
�3.95

:
million km2/�C relatively well. Similarly, when assessing how well our

projections aligns with the ‘plausible’ amount of sea ice loss per metric ton of emitted CO2, we find our observationally

constrained emulator projects a sensitivity of -2.5
::::
�2.5

:
± 0.95m2/tCO2, which falls within the ‘plausible’ estimate of -2.73
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Figure 7. Comparison of the SIA sensitivity to global warming and cumulative CO2 emissions from 1850 in March and September between
our framework output, CMIP6 models and observations. For each month, dark red boxplots denote the sensitivity in CMIP6 models, dark
grey boxplots denote the sensitivity from observations, light blue boxes represent the ‘plausible’ range from observations, light pink boxplots
show the sensitivity generated from our observationally constrained emulator, dark blue boxes represent the sensitivity from Niederdrenk and
Notz, (2018). All boxplots extend from the lower to upper quartile values over the interquartile range, with a point at the median. Whiskers
show the full range of values, excluding outliers.

:::::
�2.73

:
± 1.37m2/tCO2. While our interquartile range is slightly larger than the ‘plausible’ against global warming, and slightly

smaller than the ‘plausible’ against CO2 emissions, this is expected due to the probabilistic nature of our framework constraints355

and the influence of model uncertainty from CMIP6 multi-model calibration.

5.3 Application: What is the Temperature and Remaining Carbon Budget Necessary to Prevent Arctic Sea Ice Loss
Crossing Critical Thresholds?

Through the previous sections we have evidenced that our SASIEv.1 parameterisation framework can reproduce observed

sensitivity trends, while also successfully extending projections to 2300. Here we apply the framework to understand the impact360

of its constraints and extension on key questions within the sea ice discourse. We separate our analysis into two regimes; a

linear and non-linear regime. The linear decline of sea ice with cumulative CO2 emissions- measured from 1850- in July

through to December, which we define as the linear regime, provides the basis for the calculation of a finite remaining carbon

budget, alongside an assessment of our current progress towards IPCC warming targets. In a second step, we analyse the

non-linear ice loss exhibited in extended projections between January and June, which we define as the non-linear regime, to365

pinpoint the temperature and CO2 emission threshold at which winter sea ice detaches from land (Supplementary fig. B3).

While previous studies have assessed the global mean temperature threshold at which rapid winter ice loss occurs, to the best
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of our knowledge this is the first study to pinpoint the CO2 emission at which this occurs, over a much wider ensemble range

than previously possible. This approach also highlights the flexibility of our framework to investigate sea ice change beyond

temperature comparisons, and to situate results within broader climate mitigation benchmarks.370

5.4 Linear Regime
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Figure 8. The carbon budget to prevent a seasonally ice-free Arctic Ocean in the linear mode months (July-December) and the carbon budget
to prevent rapid ice loss occurring in the non-linear mode months (January-June). Light pink boxplots represent the remaining carbon budgets
from 2024, calculated from our emulator. Red boxplots show the remaining carbon budget calculted from the CMIP6 models used in this
study. Grey boxplots in the bottom panel compare our results with the remaining carbon budget to prevent Paris Agreement warming targets.
The dashed line in the bottom panel compares our emulator’s budget for a 50% chance of preventing ice-free conditions in September with
the remaining carbon budget to prevent a 1.5�C warming target. Finally, grey vertical shading represents carbon emissions that would exceed
the budget to prevent an ice-free ocean or to prevent non-linear ice loss in the winter months. Boxplots represent the interquartile range of
the data with the median shown through the black and white dot.

When translating the constrained sensitivity from the emulation framework into the remaining carbon budget, we estimate that

there is a 50% chance Arctic September sea ice will be lost for an additional 380 Gigatonnes (Gt) of CO2 emissions from

2024 (fig. 8) (IQR: -14GtCO
::::::::
�14GtCO2 and 940 GtCO2). Our estimate is smaller than CMIP6 projections, which suggest

a median of 821GtCO2 (IQR: 500GtCO2 and 1220GtCO2) will cause a seasonally ice-free Arctic Ocean. If we assume the375
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average current emission trends of 38Gt of CO2 per year will continue into the future (Lamboll et al., 2023), our updated limit

of 380GtCO2 will be reached within the next decade.
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Figure 9. The probability of ice-free conditions in each month, year and global mean temperature by 2300 generated from our observationally
constrained parameterisations. The probability in each year under SSP5-8.5, SSP2-4.5 and SSP1-2.6 are given in the upper three panels. The
probability as a function of global temperature is shown in the bottom panel, and is calculated from the likelihood of ice-free conditions
at each global temperature under all three scenarios combined. Darker blue patches represent increasingly ice-free conditions, while whiter
patches indicate years and temperatures where a high percentage of emulator ensemble members project high ice cover above 1 million
square kilometers. The right panel represents the cumulative probability of the global mean temperature at which the SIA falls below 1
million km2 for the first time in our observationally constrained parameterisations. Red, yellow and blue represent SSP5-8.5, SSP2-4.5 and
SSP1-2.6 respectively. Errorbars and scattered shapes represent probability ranges from other studies.
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Our analysis indicates that, at the lower bound, we have surpassed the remaining carbon budget by -14Gt
:::::
�14Gt

:
of CO2,

implying that sufficient carbon has already been emitted to cause a seasonally ice-free Arctic Ocean. However, observational

data suggests this is an overestimate as the Arctic Ocean has not yet exhibited seasonally ice-free conditions. We attribute380

the overestimate to the broader range of our emulator’s 2024 SIA projections compared to the more constrained observed

values. Although our emulator considers the full range of observed data, its range is larger than the observed as the 2024 SIA

shows very little variation across the available observational datasets. This variance likely arises because our framework is

calibrated to the 1850–2100 period over the CMIP6 multi-model range, rather than specifically to the year 2024. Calculating

the remaining carbon budget using the same sensitivity and the lower bound of our projected 2024 SIA will produce a smaller385

budget than the same sensitivity applied to a larger 2024 observed SIA value. This could explain why the lower limit of our

emulated range overestimates the carbon budget although the sensitivities align. If we had calibrated our parameterisations to

match the observed SIA in September 2023 (3.8 million km2), our sensitivity range would suggest a remaining 235GtCO2 -

1737GtCO2 could be emitted before ice-free conditions occur.

Further assessment
::
of our carbon budgets against IPCC warming targets reveal that the median remaining carbon budget to390

prevent an ice-free Arctic Ocean in September is larger than the budget for limiting global warming to 1.5�C (275 GtCO2),

yet smaller than the budget limiting warming to 2�C (1150 GtCO2) (fig. 9) (Friedlingstein et al., 2023; Lamboll et al., 2023).

Under a high and medium emission scenario (SSP5-8.5 and SSP2-4.5), our emulator framework projects SIA will likely (IPCC

likelihood scale defined in Sect. A5) become ice-free at 1.9�C, whereas only 38% of ensembles project an ice-free Arctic Ocean

in September at 1.5�C. Interestingly, the probability of an ice-free ocean under a low emission scenario (SSP1-2.6) significantly395

increases when constraining the sensitivity. Although the probability does not become likely by the IPCC definition of 66%,

the probability peaks at 59% in 2068 before declining as SIA recovers (fig. 9).

5.5 Non-linear Regime

Our SASIEv.1 framework suggests that March sea ice declines slowly with CO2 initially, at a rate of -0.75
:::::
�0.75m2/tCO2 (IQR:

-0.6 to -0.91
::::
�0.6

::
to

::::::
�0.91m2/tCO2) per emitted ton of CO2 up to a threshold emission of approximately 10,000 Gigatonnes400

of CO
::::::::
000GtCO2 (GtCO2) from 2024 (IQR: 7156GtCO2 to 13,596 GtCO2), after which the sensitivity increases to a rate of

-2.2
::::
�2.2m2/tCO2 (IQR: -1.75 to -2.93

::::::
�1.75

::
to

:::::
�2.93m2/tCO2) (fig. 8). The emission threshold we identify corresponds to

a median global mean temperature of 5.42�C (IQR: 4.349�C – 6.62�C) (fig. 9). Once the emission/ temperature threshold is

exceeded, the Arctic ice pack will detach from land year-round, increasing the sensitivity at which sea ice is lost to cumulative

carbon emissions. After this threshold has been reached the Arctic Ocean opens up rapidly.405

While SIA tends to decline with CO2 emissions at the same rate across all scenarios, rapid ice loss only occurs under the high-

emission scenario (SSP5-8.5), while the emission reductions in other scenarios prevent the majority of ensembles reaching the

thresholds we identify.
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6 Discussion

In this study, we present an parameterisation framework that efficiently emulates long-term probabilistic projections of Arctic410

sea ice that capture current trends and the latest physical understanding of the sea ice system from CMIP6 models. We have

demonstrated how our framework uses a comparatively simple set of parameterisations to empirically capture the key features

of SIA loss with global warming, compared to the complexity, detailed physics and computational costs of CMIP6 models on

which it was trained. Building on this foundation, we show that applying constraints to address the ‘hot model’ problem and

underestimation of Arctic Amplification in CMIP6 models, enables our framework to generate SIA projections that reproduce415

the ‘plausible’ (observationally derived) sensitivity well. We highlight that our observational constraint on Arctic Amplification

is key to aligning the SASIEv.1 framework’s sensitivity with observations, as the sensitivity generated from projections forced

by the MAGICC temperature and the CMIP6 calibrated Arctic Amplification do not align with observational data. This suggests

that the degree of Arctic amplification in climate models may be key to understanding the future of Arctic sea ice.

Our constrained parameterisations reduce the remaining carbon budget to prevent a seasonally ice-free Arctic Ocean from420

CMIP6 estimates by 441GtCO2 from 2024 at its median. This suggests that limiting global warming to 1.5�C (275 GtCO2) is

sufficient to prevent a seasonally ice-free Arctic Ocean, whereas 2�C (1150 GtCO2) proves insufficient. These findings indicate

greater emission reductions may be required than current policy solutions suggest. While earlier studies have constrained the

timing of an ice-free ocean, most recalibrate the modelled Arctic sea ice output, linearly extrapolate observations to ice-free

conditions, or select climate models based on their ability to reproduce the observed rate of sea ice loss (Winton, 2011;425

Niederdrenk and Notz, 2018; Wang et al., 2021; Sigmond et al., 2018; Kim et al., 2023; Jahn et al., 2024; Poltronieri et al.,

2022). These methods conclude that ice-free conditions in September are likely at 1.8�C with a range between 1.3�C and 2.9�C

of global warming (9). Our results agree well with these approaches projecting a likely ocean at 1.89�C.

Another crucial insight has been the ability of our emulation framework to capture the rapid loss of winter sea ice to warming

outside of the calibration period, from a more extensive ensemble than CMIP6 models are currently able to achieve. We find430

there is a 50% chance of sea ice detaching from land in March for the emission of a remaining 10,000GtCO2 from 2024,

corresponding to a global mean temperature of 5.42�C (IQR: 3.9�C - 6.3�C). When comparing to previous findings, we project

a threshold that is slightly higher than found by Meccia et al. (2020), who use computationally efficient stochastic physics

schemes to project rapid winter sea ice loss will occur at 4 ± 0.35�C of global warming. Whereas our threshold falls within the

lower range from Drijfhout et al. (2015), who used five CMIP5 model simulations (due to the lack of extended runs past 2100)435

to suggest the threshold occurs at a global mean temperature ranging between 4.5�C and 8.2�C. Our results add to this body of

work by providing a more thorough assessment of winter ice loss backed by a wider range of CMIP6 models and observations,

which potentially accounts for the slightly different threshold global temperature from our emulation framework, than the two

studies discussed here.
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While our constraint on Arctic Amplification assumes the ratio will remain constant through the simulation period, some440

CMIP6 models suggest that the Arctic Amplification will decline as sea ice retreats (Dai et al., 2019; Holland and Landrum,

2021). As the amount of remaining sea ice is usually low or ice-free before it impacts the Arctic Amplification in summer, the

feedback mechanism would have minimal influence on our model’s projections during this season. Whereas in winter, the rate

of sea ice loss after the ice pack detaches from land is so high that changes to the Arctic Amplification past this time have little

impact on our SIA projections. While we have shown our constrained Arctic Amplification trend increases the likelihood of445

an ice-free ocean at lower emission levels compared to CMIP6 estimates, its future is uncertain. It is possible our framework

projects a conservative estimate of future Arctic Amplification if current trends continue to persist. If so, the Arctic Ocean

could become ice-free earlier than our current projections suggest.

7 Conclusions

This study has presented a novel method of probabilistic sea ice projection through the development and application of a450

parameterisation framework for Arctic sea ice emulation. Our frameworks
::::::::::
framework’s

:
ability to efficiently extend future

seasonal SIA based on the present sensitivity to global temperatures while also considering the range of knowledge within

CMIP6 models, proves its use as a tool to understand the key gaps in current Arctic sea ice projections outlined in Sect. 1.

This method fills the gap in the literature between complex CMIP6 projections, recalibration of model output, and the simple

linear extrapolation of sea ice area with anthropogenic forcing. The results from the application of the SASIEv.1 emulation455

framework bring into question whether mitigation efforts are stringent enough to prevent critical ice loss, while also providing

useful information regarding regime changes in sea ice loss that could cause ice-free conditions to occur rapidly year-round.

Code availability. The scripts containing the CMIP6 parameterisations, observationally constrained parameterisations, framework setup,

application and the scripts used for calibration, have been archived by Zenodo at https://doi.org/10.5281/zenodo.15252962.

Data availability. The CMIP6 Earth System Model (ESM) output data for both temperature and sea ice area were initially collected from the460

Earth System Grid Federation (ESGF, 715 https://esgf-node.llnl.gov/projects/cmip6/, last accessed in Jan 2024). The observational temper-

ature datasets were collected from from NASA’s Goddard Institute for Space Studies Surface Temperature version 4 (GISTEMP),(Lenssen

et al. (2019)), the Berkeley Earth temperature dataset (BEST) (Rohde and Hausfather (2020)) and the Met Office Hadley Centre/Climatic

Research Unit version 5.0.1.0 (HadCRUT5) dataset (Morice et al. (2021)). Observational Northern hemispheric SIA datasets were collected

from the University of Hamburg (UHH) Sea Ice Area Product (Doerr et al. (2021)). The six products used include: the HadISST NSIDC465

monthly sea-ice area; HadISST original monthly sea-ice area; Comiso-Bootstrap monthly sea-ice area; NASA-Team monthly sea-ice area;

OSI-SAF monthly sea-ice area and the Walsh monthly sea-ice area. Cumulative CO2 emission projections are taken from the historical
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Supplementary A: Methods

A1 Observational Constraint on Arctic Amplification Supplementary590
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Figure A1. Contribution of each parameter to the observationally constrained Arctic Amplification between 1970 and 2100. a and b) show the
two initial distributions for parameters SlinAA and �constantAA before they are averaged and normalised. The solid line reflects our assumptions
of current and future Arctic Amplification, while the dashed line reflects actual trends from both observations and CMIP6 models.

We generate values for SlinAA and �constantAA by averaging two distributions for each parameter (fig. A1a-b). The Bayesian

nature of our approach allows us to inform our routine with expert judgement, the first distribution is generated from our

assumptions of future and current Arctic Amplification trends. Whereas the second is informed from observational and CMIP6

data. This approach considers CMIP6 data and observations while accounting for the uncertain future of Arctic Amplification

due to model biases. For �constantAA we first generate a right skewed poisson distribution that applies a greater weight to higher595

Arctic Amplification possibilities, as it is plausible that Arctic Amplification will continue to increase into the future given

observed trends (Rantanen et al. (2022); Chylek et al. (2022)). The amplification factor is also physically unlikely to be less

than one as this would cause the Arctic to warm at a slower rate than the global mean. For SlinAA, we generate a uniform

distribution, as the observational datasets used in this analysis suggest that the rate of increase in Arctic Amplification per

degree of warming is generally uniformly spread across its range. The second distribution describes the probability of SlinAA600

and �constantAA based on available observational and model data. For �constantAA, we generate a Gaussian distribution from

the standard deviation and mean of the average 2012-2100 CMIP6 Arctic Amplification. Similarly, we set up the second

distribution for SlinAA by generating a Gaussian distribution from the mean and standard deviation of the observed rate of

Arctic Amplification increase with global warming. We then average and normalise the two distributions for each parameter to

generate a single distribution (fig. 3c-d). Our resultant �constantAA distribution follows a right skewed distribution with a broad605

peak ranging between 3.5 and 3.8. Whereas our SlinAA distribution is a simple normal distribution about 4.8. This process

aims to derive a more realistic description of the key features of Arctic Amplification evolution through distributions informed

from observations, models and our best understanding of future trends. We randomly sample values from the final distributions

of SlinAA, �constantAA and rmagicc and input these values into Eq. (2), to generate the constrained range of probabilistic Arctic

Amplification projections shown in figure 3.610
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To generate the Arctic annual temperature anomaly, we multiply ‘rmagicc’ with a randomly sampled Arctic Amplification

ensemble member. To convert the anomalies into absolute temperatures, we add the mean 1850-1900 observed absolute Arctic

annual temperature to our emulated anomaly projections. We iteratively repeat this process to generate a 600-ensemble member

Arctic annual mean temperature ensemble, which is input into our seasonal temperature parameterisation in the next step (step

ii).615

A2 Additional Figures: CMIP6 Calibration

Figure A2. Comparison of the seasonal Arctic Amplification with the rate of SIA loss to 2300. Dark red lines show the mean rate of sea ice
loss in each month per year, while lighter red lines show the rate from each of the 5 models used in this analysis. The rate is calculated here
as the difference in SIA between each year for each month. Dark blue lines show the mean Arctic Amplification evolution to 2300 in each
month, while lighter blue lines show the temperature amplification in each model. The seasonal Arctic Amplification is calculated from the
division of the seasonal Arctic temperature by the global mean temperature.
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Figure A3. Visualisation of the role of each calibration parameter in our seasonal Arctic temperature parameterisation (Eq. 3b). Each
box denotes the evolution of each calibration parameter in our seasonal temperature parameterisation, and how they change with annual
temperature. All other parameters in each parameterisation are kept at default values while the parameter of note is varied with temperature.
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Figure A4. CMIP6 Arctic seasonal temperature cycle 1850-2300. Black lines indicate the 1850-2100 period, while red lines indicate the
2100-2300 period, highlighting the lack of change in shape of the Arctic seasonal temperature cycle after 2100. Box a-c show the temperature
dependence of calibration parameters Famp, GwaveLen and AmeltLen, where grey vertical lines indicate the lack of change in these parameters
after the Arctic annual temperature reaches 6�C, where they are forced to remain constant with changes to the Arctic annual temperature
to prevent further change to the emulated seasonal cycle. The second grey vertical line in the calibration parameter ‘Famp’ box indicates the
Arctic annual temperature ‘Famp’ is forced to remain constant until to allow summer temperatures to increase at a similar rate to the observed.
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Figure A6. Timeseries of the mean 1979-2014 summer Arctic temperature and SIA bias between CMIP6 models and observations. Shading
represents the CMIP6 17th-83rd (likely) percentile range, while black lines represent the mean. Left) Arctic monthly surface temperature,
observations in red. Right) SIA observations in blue.
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Figure A7. Effect of the weighting scheme on our SIA parameterisation. a) Projections of SIA loss with Arctic warming between October
and May without a weighting scheme applied to our SIA parameterisation. b) Projections from the same model as a) when the weighting
scheme has been applied. We highlight the warmer temperature of rapid sea ice loss in the melt season than in the growth season.
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Figure A10. Visualisation of the role of each calibration parameter in our SIA parameterisation (Eq: 5). Each box denotes the evolution of
each calibration parameter in our SIA parameterisation, and how they change with temperature. All other parameters in each equation are
kept at default values while the parameter of note is varied with temperature.
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Figure A11. Emulator validation of the CanESM5 on non-calibrated ensemble members. Black dashed lines indicate the CMIP6 ensemble
projections, while red dashed lines depict our emulation of each ensemble member.
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Figure A12. Validation of the emulated structural uncertainty of sea ice loss using the first ensemble member of the uncalibrated SSP4-6.0
scenario. Green shading represents the emulated structural uncertainty of SSP4-6.0, using the parameters generated from our calibration to
SSP5-8.5, SSP1-2.6 and SSP2-4.5. Grey shading represents the CMIP6 structural uncertainty of SIA loss for the SSP4-6.0 scenario. Green
solid lines represent the emulated SSP4-6.0 mean, while black solid lines indicate the CMIP6 mean projections for the same scenario.

36



A3 Supplementary Tables

Model Names Ensemble
ACCESS-CM2 r1i1p1f1
ACCESS-ESM1-5 r1i1p1f1
CESM2-WACCM r1i1p1f1
CESM2 r1i1p1f1
CNRM-CM6-1-HR r1i1p1f1
CanESM5 r1i1p1f1
FGOALS-g3 r1i1p1f1
HadGEM3-GC31-LL r1i1p1f1
IPSL-CM6A-LR r1i1p1f1
MIROC-ES2L r1i1p1f1
MIROC6 r1i1p1f1
MPI-ESM1-2-LR r1i1p1f1
MRI-ESM2-0 r1i1p1f1

Table A1. A list of all CMIP6 models and their respective ensembles used during the calibration of our paramterisations, in Sections 4.2, 4.3
and 4.4).

Model Names f1 f2(�C) g1(C�1) g2 a1 a2 a3
ACCESS-CM2 0.49 -8.43 -0.0063 0.931 -0.07 -0.58 0.10
ACCESS-ESM1-5 0.56 -7.16 -0.0071 0.93 -0.03 0.14 0.13
CESM2-WACCM 0.63 -6.08 -0.0031 0.97 -0.09 -0.63 0.11
CESM2 0.58 -6.29 -0.0042 0.96 -0.09 -0.64 0.11
CNRM-CM6-1-HR 0.42 -7.78 -0.0007 0.97 -0.06 -0.08 0.13
CanESM5 0.54 -7.47 -0.0076 0.95 -0.09 -0.32 0.01
FGOALS-g3 0.35 -11.4 -0.0009 1.03 -0.01 0.64 0.36
HadGEM3-GC31-LL 0.49 -8.33 -0.0062 0.94 -0.09 -0.54 0.07
IPSL-CM6A-LR 0.41 -8.88 -0.008 0.885 -0.044 -0.363 -0.066
MIROC-ES2L 0.45 -9.01 -0.0040 0.98 -0.09 -0.45 0.08
MIROC6 0.44 -8.09 -0.0057 0.95 -0.11 -0.37 0.09
MPI-ESM1-2-LR 0.56 -6.48 -0.0016 0.99 -0.02 0.94 0.57
MRI-ESM2-0 0.52 -7.35 -0.0036 0.96 -0.09 -0.50 0.09

Table A2. Calibration results of the 7 free parameters in the Arctic seasonal parameterisation (step ii, Eq: 3a) for the available 12 CMIP6
models, given to 3 significant figures. Calibration parameters are introduced in Section 4.3. If no units are specified, take the parameter to be
dimensionless.
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Model Names LlinSIA doffset w bnonlinSIA Aamp Ccrest WwaveLen Kpshift Vvertshift
ACCESS-CM2 0.38 0.39 0.54 -1.32 4.42 0.78 1.51 2.71 17.4
ACCESS-ESM1-5 0.40 -0.04 0.55 -0.98 4.26 0.726 1.62 2.79 16.7
CESM2-WACCM 0.29 0.06 0.21 -4.44 3.49 0.84 1.32 2.56 15.7
CESM2 0.29 -0.13 0.13 -4.43 3.57 0.94 1.05 2.35 15.6
CNRM-CM6-1-HR 0.41 -0.01 1.00 -0.77 4.08 0.82 1.37 2.59 17.1
CanESM5 0.40 0.54 0.55 0.66 4.51 0.76 1.53 2.73 17.6
FGOALS-g3 0.35 -0.14 0.45 0.65 4.46 0.68 1.76 2.91 20.3
HadGEM3-GC31-LL 0.32 0.45 0.27 -0.99 4.28 0.83 1.36 2.59 16.9
IPSL-CM6A-LR 0.36 0.39 0.53 -1.28 4.43 0.69 1.71 2.87 18.5
MIROC-ES2L 0.32 -0.47 0.49 -1.11 3.93 0.76 1.62 2.80 15.2
MIROC6 0.26 0.20 0.00 -1.36 2.55 0.73 1.62 2.80 13.1
MPI-ESM1-2-LR 0.39 -0.44 0.00 -1.71 4.34 0.697 1.66 2.83 16.9
MRI-ESM2-0 0.38 0.09 0.19 -1.83 4.56 0.762 1.52 2.72 16.9
Units mill Km

::
km2/ �C DimLess Dimless �C mill Km

::
km2 Dimless Dimless Dimless mill Km

::
km2

Table A3. Calibration results of the 9 free parameters in the SIA parameterisation (step iii, Eq: 4b) for the available 12 CMIP6 models, given
to 3 significant figures. Calibration parameters are introduced in Section 4.4. If no units are specified, take the parameter to be dimensionless.
’mill’ represents million and DimLess implies the parameter is dimensionless, both are shortened to fit all units within the table

Months AMST: Standard Deviation AMST: Mean
CE: Emulation CMIP6 CE: Emulation CMIP6

January 5.58 5.74 -19.2 -18.5
February 5.51 5.55 -20.4 -20.4

March 4.68 4.88 -20.9 -19.6
April 3.57 3.75 -15.8 -5.08
May 2.43 2.61 -6.50 -4
June 1.65 1.36 -0.48 -0.19
July 1.41 1.02 0.99 0.93

August 1.75 1.77 1.53 1.03
September 2.82 3.18 -0.56 -0.43

October 4.51 5.21 -5.24 -3.67
November 6.25 6.19 -9.04 -8.73
December 7.02 6.28 -13.5 -14.6

Mean 3.93 3.96 9.09 -8.61

Table A4. Table of the mean and standard deviation of the average 2080-2100 emulated (CE) Arctic seasonal temperature (AMST) multi-
model range in each month. (I extract the 2080-2100 range in model, find the mean in each model, and then calculate the mean and std across
all of the models to find the multi-model mean and std). The mean response of the calibration data is given at the bottom of the table. All
values are rounded to three significant figures.
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Months SIA: Standard Deviation SIA: Mean
CE: Emulation CMIP6 CE: Emulation CMIP6

January 1.83 1.69 9.10 10.8
February 1.78 1.58 11.3 12.1
March 1.68 1.51 12.1 12.4
April 1.49 1.45 11.8 11.9
May 1.26 1.49 10.9 10.3
June 1.52 1.74 8.24 7.77
July 2.09 2.16 3.49 4.36

August 1.89 2.10 2.00 1.99
September 2.09 2.07 1.33 1.51

October 2.34 2.42 2.36 2.76
November 1.75 2.31 5.23 5.57
December 1.83 1.83 7.12 8.77

Mean 1.79 1.86 7.09 7.53

Table A5. Table of the mean and standard deviation of the average 2080-2100 emulated (CE) SIA multi-model range in each month. (I
extract the 2080-2100 range in model, find the mean in each model, and then calculate the mean and std across all of the models to find the
multi-model mean and std). The mean response of the calibration data is given at the bottom of the table. All values are rounded to three
significant figures.

Months SSP5-8.5 SIA: RMSE SSP2-4.5 SIA: RMSE SSP1-2.6 SIA: RMSE
March Sept March Sept March Sept

ACCESS-CM2 0.262 0.288 0.246 0.222 0.249 0.232
ACCESS-ESM1-5 0.0971 0.056 0.085 0.079 0.096 0.097
CESM2-WACCM 0.331 0.430 0.342 0.325 0.360 0.345

CESM2 0.394 0.318 0.629 0.292 0.786 0.229
CNRM-CM6-1-HR 0.193 1.08 0.163 0.970 0.086 1.05

CanESM5 0.253 0.094 0.204 0.196 0.133 0.300
FGOALS-g3 0.395 1.52 0.401 0.697 0.441 0.521

HadGEM3-GC31-LL 0.425 0.201 0.328 0.342 0.273 0.461
IPSL-CM6A-LR 0.236 0.231 0.142 0.342 0.247 0.081
MIROC-ES2L 0.135 0.324 0.134 0.445 0.074 0.467

MIROC6 0.245 0.743 0.306 0.985 0.269 1.24
MPI-ESM1-2-LR 0.218 0.139 0.085 0.215 0.098 0.268

MRI-ESM2-0 0.483 0.176 0.182 0.247 0.082 0.361
Mean 0.286 0.448 0.259 0.418 0.246 0.465

Table A6. Table of the RMSE between the emulated and CMIP6 SIA in each model for March and September. The mean RMSE is given at
the bottom of the table. All values are rounded to three significant figures.
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Months SSP5-8.5 SIA: R2 SSP2-4.5 SIA: R2 SSP1-2.6 SIA: R2

March Sept March Sept March Sept
ACCESS-CM2 0.98 0.97 0.97 0.98 0.94 0.98

ACCESS-ESM1-5 0.98 0.99 0.97 0.99 0.95 0.99
CESM2-WACCM 0.94 0.97 0.93 0.98 0.82 0.98

CESM2 0.94 0.99 0.92 0.99 0.82 0.99
CNRM-CM6-1-HR 0.98 0.91 0.97 0.93 0.97 0.95

CanESM5 0.99 0.99 0.99 0.98 0.98 0.98
FGOALS-g3 0.91 0.98 0.87 0.96 0.74 0.94

HadGEM3-GC31-LL 0.99 0.97 0.99 0.96 0.97 0.95
IPSL-CM6A-LR 0.93 0.98 0.99 0.93 0.97 0.94
MIROC-ES2L 0.99 0.94 0.98 0.91 0.95 0.93

MIROC6 0.97 0.92 0.98 0.89 0.95 0.90
MPI-ESM1-2-LR 0.95 0.98 0.95 0.97 0.95 0.98

MRI-ESM2-0 0.95 0.98 0.95 0.97 0.96 0.97
Mean 0.96 0.96 0.95 0.96 0.92 0.96

Table A7. Table of the R2 corelation coefficient between the emulated and CMIP6 SIA in each model for March and September. The mean
R2 value is given at the bottom of the table. All values are rounded to two significant figures.
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A4 Calculating the Carbon Budget

Here we outline how we calculate the remaining carbon budget in both the linear mode and non-linear mode months. We first

focus on the carbon budget to prevent a seasonally ice-free Arctic Ocean in the linear mode months. To quantify the remaining620

carbon budget in the linear mode months, we simply extract the cumulative CO2 emission in the first year SIA falls below 1

million km2. Whereas for those ensembles that do not reach 1 million km2 by 2300, we interpolate over the linear period to

diagnose the cumulative CO2 emission at 1 million km2, assuming the linear relationship persists. Additionally, SIA recovers

in the low emission scenario (SSP1-2.6) due to its reliance on net negative CO2 emissions, in particular on BECCS (biomass

with carbon sequestration and storage). We therefore do not include ensembles that show SIA recovery in our analysis of the625

carbon budget in the linear mode months.

We estimate the threshold cumulative CO2 emissions at which the rapid loss of Arctic sea ice occurs through the non-linear

mode months by doubling the value of parameter ‘bnonlinSIA’, as this provides the temperature of rapid SIA loss to Arctic

warming. We first double the seasonal Arctic temperature dictated by ‘bnonlinSIA’, then extract the year in which the seasonal

Arctic temperature occurs in each non-linear mode month. From this, we then extract the MAGICC cumulative CO2 emission630

at the same index, to determine the threshold CO2 value at which rapid sea ice loss occurs. While the sensitivity of sea ice loss

increases after this threshold, the relationship remains linear to ice-free conditions. We therefore calculate the sensitivity over

the second linear period as the SIA loss per emitted ton of CO2 that occurs between the threshold CO2 emission of rapid ice

loss, and the first time each ensemble drops below 1 million km2. As the cumulative CO2 emission projections begin in 1750,

to analyse the remaining carbon budget from 2024 we simply subtract the cumulative CO2 emission in 2024 from the total635

carbon budget in each ensemble.

As the scenarios SSP1-2.6 and SSP2-4.5 show significant emissions reductions, the temperature in the majority of ensembles in

both scenarios does not rise significantly enough for sea ice to detach from land causing rapid ice loss. As such, we focus mainly

on SSP5-8.5 when pinpointing this threshold. Within this scenario itself, a few ensembles do not reach ice-free conditions

by 2300 due to the probabilistic nature of our observationally constrained Arctic Amplification. This is because there is the640

possibility of randomly sampling a cooler global mean temperature ensemble in combination with a small Arctic Amplification

ensemble when calculating the Arctic annual mean temperature. In the ensembles that exhibit rapid ice loss but do not reach

ice-free conditions by the simulations end, we estimate the sensitivity by interpolating over the available data. We therefore

interpolate the sensitivity after rapid ice loss begins if the SIA continues to decline for at least 10 years after the sensitivity has

increased. We therefore assume the constant linear decline of rapid ice loss holds until ice-free conditions occur. We find this645

to be sufficient as there is little year to year variability in the decline of SIA in our projections. The sensitivity over the 10 years

after rapid ice loss begins is therefore also equal to the sensitivity 50 years after it begins.
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A5 Calculating the Probability of an Ice-free Arctic Ocean

We calculate the likelihood of an ice-free Arctic Ocean occurring in each year as the ratio of the number of ensemble members

projecting a SIA of 1 million km2 or less in each year, to the total number of ensemble members used. Additionally, we650

calculate the probability of an ice-free ocean occurring at IPCC warming targets via a cumulative distribution function of the

global temperature at which sea ice falls below 1 million km2 for the first time, across the multi-model ensemble. We make use

of the IPCC likelihood scale where “very unlikely” equates to a probability of 0%–10%, “unlikely” equates to 10%–33%, “as

likely as not” equates to 33%–66%, “likely” equates to 66%–90%, and “very likely” equates to 90%–100%. A 100% probability

of an Arctic ice-free ocean is produced when the entire multi-model ensemble projects a SIA below 1 million km2.655
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Supplementary B: Results

B1 Assessing the Performance of our Emulator to 2300
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Figure B1. Emulated seasonal Arctic SIA between 1850-2300. Red shading represents the emulated SSP5-8.5 likely range from our CMIP6
emulator, while grey shading represents the SSP5-8.5 CMIP6 likely range. Red solid lines represent the emulated mean, and solid black line
represents the CMIP6 multi-model median.
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Figure B2. Emulated likely range of the monthly Arctic SIA over the time period 1850-2300 when our emulator is forced with the MAG-
ICC 600-member ensemble global mean temperature anomaly. Red, yellow and blue shading represents SSP5-8.5, SSP2-4.5 and SSP1-2.6
respectively. Darker shading represents the projections from our observationally constrained emulator, and lighter shading represents the
projections when forcing our emulator with the CMIP6 calibrated (linear) Arctic Amplification. The dashed and solid lines represent the
mean SIA from each set of projections respectively. The black line spanning 1850-2020 represents observational data.
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Figure B3. The seasonal decline of Arctic sea ice with cumulative CO2 emissions. We highlight the difference between linear-mode (July-
December) and non-linear mode months (January-June). Light red shading represents the SIA sensitivity to CO2 emissions over the period
between SIA falling below 10% of the pre-indsutrial mean and SIA reaching ice-free conditions (<1 million km2). The ‘linear period’ is
represented through dark red shading, while grey shading represents SIA outside of the ‘linear period’. Red, yellow and blue solid lines
represent the SSP5-8.5, SSP2-4.5 and SSP1-2.6 mean respectively.
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SSPs March September
Year GMST(�C) Year GMST(�C)

SSP5-8.5 2178 7.7 2037 1.89
SSP2-4.5 N/A N/A 2046 1.89
SSP1-2.6 N/A N/A N/A N/A

Table B1. Probability of a likely ice-free Arctic Ocean in September and March from our OC emulator. N/A implies the probability of an
ice-free Arctic Ocean never becomes likely in this scenario.
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B2 How Well Does Our CMIP6 Emulator Reproduce CMIP6 Data?

We test the ability of our emulator to reproduce the CMIP6 Arctic Amplification, Arctic seasonal temperature and SIA response

to global warming for the CMIP6 models used in the calibration process.660
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Figure B4. Comparison of our CMIP6 calibrated Arctic annual temperature cycle (top row) and Arctic SIA annual cycle (bottom row) from
our CMIP6 calibrations with the equivalent CMIP6 range. Red, yellow and blue shading represents the 2080-2100 mean likely range from
SSP5-8.5, SSP2-4.5 and SSP1-2.6 respectively. Grey shading represents the CMIP6 likely range. Solid red, yellow and blue lines represent
the mean of our CMIP6 calibrated range. Dashed lines represent the CMIP6 calibrated very likely range.

When comparing the likely (17-83%) range of our emulated Arctic annual mean temperatures (stage i) with the likely range

of their CMIP6 counterparts (fig. 2), it is clear a simple linear regression produces a relatively sufficient fit as all calibrated

models and scenarios fall within the 95% confidence band of the CMIP6 counterpart.

Further statistical analysis shows that our emulator yields well calibrated parameter sets to replicate the CMIP6 seasonal Arctic

temperature and SIA in SSP scenarios SSP1-2.6, SSP2-4.5 and SSP5-8.5 (fig. B4). The mean of the 2080-2100 CMIP6 multi-665

model distribution of the seasonal Arctic temperature cover the range -20.4�C (March) to 1.03�C (August), with a standard

deviation range between 1.02 and 6.27 (Supplementary tables. A4 and A5). In comparison the sample mean produced from

our emulation over the same period covers the range -20.9�C (March) to 1.12�C (August), with a standard deviation between

1.50 and 6.79. For our SIA parameterisation, our emulated mean covers the range 12.1 million km2 at its maximum in March

to 1.33 million km2 at its minimum in September, with a standard deviation range between 2.34 and 1.49. The CMIP6 model670

distribution matches our emulation well with a range of mean SIA over this time between 12.4 million km2 (March) and
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1.51 million km2 (September), with a standard deviation range between 2.42 and 1.45. Both ranges of the mean and standard

deviation of our emulator significantly overlap their CMIP6 counterpart in both the temperature and SIA parameterisation,

suggesting that our model’s emulation is reasonably accurate in capturing the variability seen in the CMIP6 multi-model

distribution. To evaluate the significance of the seasonal variances between our emulation of both variables and the CMIP6675

counterpart, we use the Levene’s test on the standard deviation of both the emulated and CMIP6 2080-2100 multi-model

distribution (Supplementary tables. A4 and A5). When doing so we generate a p-value of 0.95 and 0.6, and an F-value of

0.0036 and 0.3 for our Arctic seasonal temperature and SIA emulations respectively.

The nuances between CMIP6 models suggest that our emulation of some models perform better than others in terms of how

well they reproduce their CMIP6 counterpart. In both the seasonal temperature and SIA calibration, the models ACESSS_CM2680

and CESM2 show a slightly degraded quality in terms of fit, especially in the month May. In general, we find May to be the

worst fitting month in terms of both temperature and SIA, as our emulated May temperature does not increase as fast as its

CMIP6 counterpart and therefore simulates too little SIA lost per degree of warming. When we remove May from our statistical

evaluation, the p and F-values from our SIA projections change to 0.9 and 0.02 respectively, indicating a significantly increased

fit when May is not accounted for. However overall, all other months fall within the 95% confidence band of the CMIP6685

counterpart, when simply comparing the average 2080-2100, very likely (5-95%) and likely (17-83%) range. The emulated

median of both variables also closely matches the CMIP6 counterpart with an R-squared value of 0.9, indicating our calibration

produces a near-optimal emulation of the first ensemble CMIP6 multi-model range of all SSP scenarios.
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B3 How well Our Emulator Reproduces Current Seasonal Temperature Trends?

Seasonal Arctic Temperature
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Figure B5. Comparison of our observationally constrained Arctic annual temperature cycle (top panel) and Arctic SIA annual cycle (bottom
panel), with the ‘plausible range’ from observations. Red shading shows our calibrated 1979-2014 mean likely range. Dashed red lines denote
the very likely calibrated range. Solid red lines denote the calibrated median. Grey shading represent the mean 1979-2014 likely range from
observations. Dashed black lines denote individual observations and solid black lines denote the observational mean.

After constraining our emulator to observations, we find that our emulator is able to sufficiently capture the observed Arctic690

seasonal temperature cycle, when comparing the 1979-2014 very likely (5-95%) and likely (17-83%) emulated range with

the observed (fig. B5). The unconstrained median 1979-2014 temperature cycle shows a positive bias between January and

August with temperatures on average 1.92�C higher than the observed over this time (fig. B6). After applying the observational

constraints, these biases reduce to 0.063�C, where the observed and constrained median Arctic seasonal temperature cycle show

an R-squared correlation of 0.98 and an RSS goodness of fit value of 0.0636. When specifically comparing the emulated July695

and August temperatures to the observed, we find that after adding the bias corrections to our temperature parameterisation

Eq. (3b), our summer temperatures increase at the same rate as the observed median. We therefore find that our projections

reproduce the observational Arctic warming in all months, within the 95% confidence of observations.
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Figure B6. Comparison of the median 1979-2014 observationally constrained seasonal Arctic temperature cycle with our unconstrained
CMIP6 calibrated median 1979-2014 seasonal Arctic temperature cycle. Red solid lines represent our unconstrained CMIP6 calibration, blue
solid lines represent our observationally constrained emulator and black dashed lines show its comparison to observations.
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