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Abstract. This research evaluates the performance of the CE-QUAL-W2 v4.5 sediment diagenesis model in simulating 

water temperature, dissolved oxygen, total phosphorus, total nitrogen, chlorophyll-a, and biochemical oxygen demand in a 

Portuguese reservoir over a six-year period (2016–2021). The model was calibrated using 35 observed profiles of 

temperature and dissolved oxygen, as well as six annual measurements of total nitrogen, total phosphorus, chlorophyll-a, and 10 

biochemical oxygen demand at multiple depths. To benchmark performance, three alternative sediment oxygen demand 

formulations—a Zero-order, First-order, and a Hybrid model combining both approaches—were also implemented and 

compared. All models achieved NSE and RMSE values within or near the ranges reported in the literature, effectively 

capturing the system's water quality dynamics. Among them, the Hybrid model yielded the best overall performance while 

maintaining a simpler structure (Water temperature - NSE: 0.96±0.18; RMSE: 1.09±0.23 ºC; Dissolved oxygen - NSE: 15 

0.76±0.30; RMSE: 1.87±0.72 mg/L). The sediment diagenesis model exhibited similar performance metrics (Water 

temperature - NSE: 0.95 ± 0.18; RMSE: 1.13 ± 0.28 °C; Dissolved oxygen - NSE: 0.71 ± 0.14; RMSE: 2.01 ± 0.59 mg/L). 

Overall, the results suggest that the diagenesis model may be better suited for capturing detailed process-based dynamics 

over extended timeframes, whereas simpler models, such as the Hybrid model, are more appropriate for short- to medium-

term applications or situations with limited data availability. Hopefully, the results of this study will help improve water 20 

management strategies by supporting more informed model selection tailored to the temporal scope and data constraints of 

reservoir monitoring programs. 

1 Introduction 

Modeling water quality plays a crucial role in managing lakes and reservoirs, providing essential insights into the dynamics 

of nutrients, organic matter, and phytoplankton within aquatic systems (Abbaspour et al., 2015; Whitehead et al., 2009). 25 

These models simulate the physical, chemical, and biological processes that influence water quality, with examples including 

widely-used tools like CE-QUAL-W2 (Wells, 2021), MIKE21 (Chapman, 1996), and DYRESM (Hamilton and Schladow, 

1997). The value of such modeling lies in its capacity to aid researchers and policymakers in understanding the complex 

interactions between various factors that impact the ecological health of water bodies (Varis et al., 1994; Loucks and Beek, 

2017). However, the intricacy of these systems, combined with the substantial data requirements, often presents significant 30 

challenges for those developing and applying water quality models. Effective inflow data characterization (quantity and 
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quality) is hard to obtain, both for major river branches and small tributaries, as is waterbody sediment characterization 

related to carbon and nutrients due to the significant cost associated with the sampling and laboratorial analysis process and 

the fact that water management stakeholders are still more focused on the classification of waterbody water quality rather 

than the collection of water quality forcing data. The absence of sediment initial particulate organic carbon (POC), 35 

particulate organic nitrogen (PON) and particulate organic phosphorus (POP) data can be decisive to the overall performance 

of a water quality model, in essence generating an imbalance right from the start of the simulation with regard to the 

sediment concentration of POC, PON and POP, which then has a considerable impact on the SOD and, consequently, the 

waterbody dissolved oxygen (DO). When calibrating the model, water quality modelers therefore need to plug this gap by 

evaluating the model performance considering: i) different initial sediment oxygen demand (SOD) where a zero-order model 40 

is applied, ii) different POC, PON and POP values where a predictive diagenesis model is considered. 

The main challenge with these modeling approaches is that the sources of DO depletion—such as the inflow of organic 

matter or algal mortality—can significantly influence DO dynamics, and these sources must be well characterized to ensure 

accurate predictions. While the baseline model can reproduce observed DO profiles with reasonable accuracy, its predictive 

reliability may be compromised if key DO sinks and sources are not well defined. 45 

For example, the model’s response to a reduction in external phosphorus loading is influenced by internal phosphorus release 

from sediments during anoxic periods. In CE-QUAL-W2, when a zero-order SOD model is used, the anoxic release of 

phosphate (PO₄) is modeled as a linear function of SOD: SOD [g O₂/m²day] × PO₄ release rate [g P/g O₂]. Thus, any error in 

the estimation of SOD will directly affect the predicted internal phosphorus loading, and by extension, the overall 

phosphorus balance in the waterbody. In contrast, when using the predictive sediment diagenesis model, internal phosphorus 50 

loading depends on the organic and nutrient inputs from particulate matter in the water column and the sediment’s 

biogeochemical response, which is highly influenced by the initial value of particulate organic carbon (POC). As a result, 

this approach introduces additional uncertainty when key particulate components are not adequately measured or constrained 

in both the water column and sediments. Calibrating other constituents, such as orthophosphate (P-PO₄), can help reduce 

uncertainty. P-PO₄ is released from sediments under anaerobic conditions, and its calibration can enhance the accuracy of 55 

DO modeling. Still, this release is influenced by multiple factors, including the initial sediment P-PO₄ concentration and the 

release rate (in the zero-order model), or the mineralization of POP (in the diagenesis model). In both cases, significant 

uncertainty remains without observed data for POC, PON, and POP in both the water column and sediments. Of these, POC 

has the most significant influence on SOD, making access to sediment POC data essential for improving model accuracy, 

even when PON and POP measurements are lacking. The CE-QUAL-W2 model has been widely used to simulate various 60 

water bodies and water quality scenarios, including reservoir physical and biochemical dynamics in response to warming 

projections (Mi et al., 2020; Mi et al., 2023). This model has also been used to predict DO in a number of water bodies 

worldwide, although the SOD has always been modeled with a zero-order and/or 1-order model (e.g. Park et al., 2014; 

Zouabi-Aloui et al., 2015; Terry et al., 2017; Sadeghian et al., 2018; Lindenschmidt et al., 2019). The bibliographic research 

conducted before and during this study suggests that the CE-QUAL-W2 sediment diagenesis model has not been applied to 65 
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any waterbodies other than the Wahiawa Reservoir in central Oahu (Berger and Wells, 2014). Moreover, no scientific 

publications on the evaluation of this model in other contexts have been identified, further highlighting the importance of the 

primary motivation for this study, namely, to evaluate the performance of the CE-QUAL-W2 model with its new sediment 

diagenesis component. This study benefited from having access to observed reservoir sediment total organic carbon (TOC) 

values, which are rare. Although, in theory, these values are typically higher than particulate organic carbon (POC) values, 70 

they provided an excellent starting point for this study. The methodological approach was, therefore, defined to evaluate the 

performance of the CE-QUAL-W2 model considering the new state-of the art sediment diagenesis model in modeling a 

reservoir, DO, Total Phosphorus (Total P); Total Nitrogen (Total N), Biochemical Oxygen Demand (BOD5), Chlorophyll-a 

(Chl-a) and SOD. 

To achieve this, the water quality of a highly productive reservoir was simulated over a six-year period (2016–2021) using 75 

the CE-QUAL-W2 v4.5 model. The simulation incorporated a Zero-order sediment model, a First-order model, a Hybrid 

model combining both approaches, and a sediment diagenesis model. The Zero-order, First-order, and Hybrid models were 

included to provide alternative representations of sediment oxygen demand, enabling comparative analysis and supporting 

the calibration and evaluation of the more complex sediment diagenesis model. In the case of water temperature and DO, the 

modeling results were compared with 35 water column profiles observed near the dam. The remaining parameters were 80 

calibrated using time series datasets collected at multiple depths, with six annual values available for each parameter. A 

sensitivity analysis was performed to evaluate the reservoir water quality response, namely DO, to the variation of POC, 

PON and POP concentration in the reservoir sediments. The results of this study will hopefully prove useful by helping to 

improve lake and reservoir water quality modeling and, therefore, the water management process from a practical 

perspective. 85 

2 Methods 

2.1 Site Location and Main Characteristics 

Portugal experiences a temperate maritime climate characterized by a wet, cool season and a dry summer. Despite most of 

the precipitation occurring during the winter months, there is significant inter-annual variability. Precipitation patterns are 

spatially and temporally heterogeneous, with annual maxima exceeding 2500 mm in the rugged highlands of the northwest, 90 

while the low-lying plains of the southeast receive around 400 mm per year (Cardoso et al., 2013; Soares et al., 2015) 

(Fig.1). The Torrão dam, located in the northern region of mainland Portugal in the Tâmega River, is a significant hydraulic 

structure designed for multiple purposes, including water supply, irrigation, and hydroelectric power generation. The 

reservoir has a substantial storage capacity, contributing to regional water management and flood control. This infrastructure 

plays a crucial role in the socio-economic development of the region, balancing resource management and environmental 95 

preservation. However, it is also important to note that the reservoir was classified as eutrophic for all the simulated years, a 

condition that can lead to persistent water quality issues. 
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Table 1: Main features of Torrão dam and reservoir 

Full supply 

volume 

(hm3) 

Mean 

inflow 

(m3/s) 

Average 

annual 

inflow 

(local 
basin) 

Active 

storage 

volume 

(hm3) 

Surface 

area at 

FLV 

(km2) 

Structural 

height (m) 

Max 

depth 

(m) 

Turbine 

number/power 

Hydraulic 

residence 

time (days) 

Watershed 

area (km2) 

Trophic state 

(2016 -

2021)(1) 

123.9 76.98 2 147 40.4 6.5 70 58 2 reversible 

pump-
turbines/146 

(MW) 

13.59  3 252 Eutrophic 

(1) Classification according to OECD Trophic State limits (OECD, 1982) 

 100 

2.2. CE-QUAL-W2 v4.5 model  

This study employed the latest version of CE-QUAL-W2 (Version 4.5), a model originally developed in 1975 by the US 

Army Corps of Engineers and written in Fortran. Since its inception, the model has undergone regular updates and 

enhancements, primarily by researchers at Portland State University (Cole and Wells, 2006). CE-QUAL-W2 is a two-

dimensional, laterally averaged hydrodynamic and water quality model capable of simulating free surface elevation, 105 

hydrostatic pressure, density, horizontal and vertical velocities, as well as constituent concentrations. The model uses the 

finite difference method to solve key equations, including mean transverse momentum in the x- and z-directions, the 

continuity equation, state equations, and water surface elevation equations (Tavera-Quiroz et al., 2024; Wells, 2021).  This 

model represents SOD through four distinct approaches: (i) a user-defined zero-order formulation that is decoupled from the 

water column, (ii) a simple predictive first-order model, (iii) a hybrid approach combining the zero- and first-order methods, 110 

and (iv) a comprehensive sediment diagenesis model. The zero-order model is not a predictive approach, as, other than 

variations resulting from the temperature dependence of the decay rate, the rates remain constant over time (Wells, 2021). 

Additionally, under anoxic conditions in the water column, SOD is disabled in the model. The first-order sediment model 

does not function as a full sediment diagenesis model, as it lacks the capability to track the fate of organic nutrients delivered 

to the sediments, their breakdown, and the release of byproducts into the water column under low-oxygen conditions. 115 

However, it does represent the deposition of particulate organic matter and dead algal biomass, along with the resulting 

oxygen demand imposed on the water column. By including this first-order sediment process, the model becomes sensitive 

to increased organic loading to the sediment, which in turn influences sediment oxygen demand.  A combination of the zero 

and first order model can be considered where organic materials accumulate and decay in the sediments under aerobic 

conditions and are released based on the SOD zero-order decay rate under anaerobic conditions.  In contrast, the sediment 120 

diagenesis model simulates kinetic processes occurring within the sediment and at the sediment–water interface. This 

module originally developed for application in oil sand pit lakes, has been adapted for application in other aquatic 

environments and integrated into version 4.0 (Vandenberg et al., 2015). The conceptual framework of the model has been 

elaborated in works by Prakash et al. (2014), Berger and Wells (2014), and Vandenberg et al. (2015). It is important to note 

that significant enhancements to the sediment diagenesis module were introduced in version 4.5 of the model, as detailed in 125 
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the User Manual (Wells, 2021). These improvements mark a substantial advancement over the initial version 4, which was 

more limited in its capabilities. The CE-QUAL-W2 model has demonstrated its utility in simulating hydrodynamic and 

ecological processes—such as stratification, internal waves, DO dynamics, and phytoplankton blooms—in lakes and 

reservoirs worldwide (Zhang et al., 2015; Chuo et al., 2019; Kobler et al., 2018; Uhlmann, 2017; Terry et al., 2017; Mi et al., 

2020). Additional details about the model's structure, algorithms, and historical applications can be found in the user manual 130 

(Wells, 2021). 

 

2.2.1 Model Setup  

The bathymetry of the Torrão reservoir was initially defined using a Digital Elevation Model (DEM) provided by Energies 

of Portugal, S.A. (EDP) and structured according to the methodology outlined in Wells (2021). The reservoir comprises one 135 

main branch (the Tâmega River), three tributaries and one distributed tributary (Fig. 1). Tributaries 1 and 2 are depicted in 

Fig 1. Tributary 3 represents the inflow from the Douro River into the pump-back system of the Torrão Reservoir. The 

bathymetric map includes 27 segments, each measuring 1000 meters in length, and a maximum number of 58 layers, each 

with a depth of 1 meter. Following this preliminary step, the reservoir boundary conditions (including water quality, 

hydrology, meteorology, and sediment characterization) were defined according to the methods described in Section 2.4. 140 

Due to the lack of available information, the model structure only includes a single algae group (Diatoms). 
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Figure 1: Torrão reservoir watershed. Thiessen polygons. Water quality stations 

 

2.3 Modeling approach 145 

To thoroughly evaluate the capability of CE-QUAL-W2 in modeling dissolved oxygen using the sediment diagenesis 

module, the four available SOD modeling approaches were considered: Zero-order model; First-order model; Zero/First-

order model (Hybrid model) and the sediment diagenesis model (SG model). The models were calibrated for the 2016–2021 
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period (see Section 2.5). During the results analysis, the performance metrics obtained during each model’s calibration 

process were compared, along with the SOD values across the bottom layers of each model. A sensitivity analysis was 150 

conducted following calibration to evaluate each model’s response: a) to varying POC, PON, and POP values in the case of 

the SG model; b) to different SOD values in the Zero-order and Hybrid models and c) to varying the initial first order 

sediment concentration in the case of the First-order model. Section 2.6 details the methodological approach used for the 

sensitivity analysis. To assess the sensitivity of each model to reductions in external organic matter (OM) and phosphorus 

(PO₄-P) inputs, two separate scenario analyses were conducted. The first scenario involved an 80% reduction in OM inflow 155 

load, while the second applied an 80% reduction in both OM and PO₄-P inflow loads. These reductions were implemented 

specifically in the main reservoir branch (Branch 1 – Tâmega River), where the majority of nutrient and organic inputs 

occur. Each sediment model—SD, Zero-order, First-order, and Hybrid—was run under baseline conditions and under both 

reduction scenarios. The impact on DO dynamics was evaluated using time series of depth- and segment-averaged DO 

concentrations. Each model—SD, Zero-order, First-order, and Hybrid—was run under baseline conditions and then under 160 

this reduced-loading scenario. The evaluation of model performance, along with the results of the sensitivity analysis, 

provided deeper insights into simulating SOD dynamics using the sediment diagenesis approach in comparison to the other 

SOD formulations. 

2.4 Model Forcing Datasets 

The meteorological data used to drive the model, including hourly air temperature, dew point, solar radiation, cloud cover, 165 

and wind characteristics, were sourced from ERA5-Land, a high-resolution reanalysis dataset optimized for land 

applications. Although no on-site meteorological stations are available in the study area for direct validation, studies by 

Almeida and Coelho (2023b) and Barbosa et al. (2022) have demonstrated a strong correlation between ERA5-Land air 

temperature data and observed measurements at regional scales, supporting the reliability of this dataset for our modeling 

purposes. Furthermore, the accuracy of water temperature predictions in our simulations indicates that the meteorological 170 

forcing was well represented, confirming the suitability of ERA5-Land data for driving the model. Reservoir data, such as 

daily inflow/outflow, water levels, and water quality, covering the years 2016–2021, were provided by EDP. Water quality 

data specific to Branch 1 originated from the Praia Aurora Station, accessed via the Portuguese National Water Resources 

Information System (SNIRH, 2024). With only 21 recorded measurements for Branch 1 during this period, three modeling 

methods were employed to address the 99.04% of missing data. The variables include: water temperature; DO; Total P; 175 

Ammonium (N-NH4); Nitrate+Nitrite (N-NOX); BOD5; Chl-a; Alkalinity; Conductivity and Total Suspended Solids (SST). 

The first method employed regression models implemented through the LOADEST package (Runkel et al., 2004) developed 

by the U.S. Geological Survey. The second method utilized the Extreme Gradient Boosting (XGBoost) machine learning 

algorithm, implemented using the Chen and Guestrin (2016) open-source library, a method proven effective in various 

environmental studies (Feigl et al., 2021; Adedeji et al., 2022; Xu et al., 2022). For additional details on the algorithm, refer 180 

to Almeida and Coelho (2023b). The third approach relied on Support Vector Regression (SVR), implemented via the scikit-
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learn library (Pedregosa et al., 2011), which has also demonstrated strong performance in environmental modeling 

applications (Adedeji et al., 2022; Ji and Lu, 2018). For machine learning approaches, datasets were split into training (80%) 

and testing (20%) sets. Hyperparameters for these models were optimized using the Tree-structured Parzen Estimators (TPE) 

algorithm, executed with the Hyperopt library (Bergstra et al., 2013) and 100 iterations. The Nash-Sutcliffe Efficiency (NSE) 185 

was used to determine the best model. Table A1 describes the input features of each model. Correlations derived from 

Branch 1 informed data extrapolation to other tributaries using flow as the predictor. Observed data for Tributary 3 was 

retrieved from the Crestuma-Lever reservoir monitoring station. 

Water quality variables used for model inputs included water temperature, DO, orthophosphates (P-PO4), N-NH4, N-NOx, 

labile and refractory dissolved and particulate organic matter (LDOM, RDOM, LPOM, RPOM), alkalinity, inorganic 190 

suspended solids (ISS), total dissolved solids (TDS), total inorganic carbon (TIC), and algal biomass (diatoms). For non-

monitored variables, estimations were made based on available data: i) P-PO4: Derived from total phosphorus, assuming 

inorganic phosphorus represents 70% of the total; ii) Organic matter: BOD5 was converted to organic matter using a 

stoichiometric ratio of 1.4 g O₂/1.0 g organic matter, with 60% assumed refractory and 40% labile;  iii) ISS: Estimated as 

97.4% of TSS; iv) TDS: Calculated from electrical conductivity (Eq.1); v) TIC: Estimated from alkalinity (Eq. 2); vi)  Algae 195 

biomass: Chl-a was converted to biomass using the following ratio: Algal Biomass (mg/L)/ Chl-a (μg/L) = 0.05 

 

TDS (mg/L)=0.65×Electrical Conductivity(μS/cm)        (1) 

TIC (mg/L) = 0.2782×Alkalinity (mg/L)0.9706        (2) 

 200 

This equation was derived from the relationship between TIC and alkalinity values observed in four reservoirs within the 

United States, utilizing a dataset comprising 55232 value pairs available in the CE-QUAL-W2 v4.5 model examples (Wells, 

2021). The analysis achieved an R2 value of 0.99. Figure 2 illustrates the locations of the five sediment sampling sites used 

to define the SD model baseline run. The spatial distribution of the sediment samples depicted in the figure were linked to 

specific reservoir segments to characterize the initial sediment content of POC, PON, and POP, as detailed in Table 2. 205 

Sediment values were assigned as follows: site A to segments 25–28, site B to segments 20–24, site C to segments 16–19, 

site D to segments 11–15, and site E to segments 2–10. Several assumptions were made to establish the sediment 

characterization: i) A sediment density of 960 kg/m³ (density of dried sediment with air in the pore space) (Minear, 2007) 

was applied to convert sample values from mg/kg to mg/L; ii) POP values were set at 25 mg/L, based on established 

literature benchmarks (Wells, 2021); iii) The TN value observed at site B was used to characterize sites C, D, and E; iv) 210 

TOC and TN were assumed to exist entirely in particulate form, represented as particulate organic carbon and nitrogen. This 

approach ensured a consistent and representative characterization of sediment properties across the reservoir segments. 

 

 

 215 
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Table 2: Torrão Reservoir sediment chemical characterization obtained for each sampling site. 

Observed values 

Sampling site TOC, mg/kg TN, mg/kg POP, mg/kg 

A 25 000 6020 - 

B 20 900 5990 - 

C 22 300 - - 

D 20 100 - - 

E 5 600 - - 

Final values included in the sediment diagenesis model 

 POC, mg/L PON, mg/L POP, mg/L 

A 24 000 5779 25 

B 20 064 5750 25 

C 21 408 5750 25 

D 19 296 5750 25 

E 5376 5750 25 
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Figure 2: Sediment sampling sites. CE-QUAL-W2 model segments 

 

2.5 Water Quality Model (CE-QUAL-W2) Calibration 220 

The simulation period considered for this study spanned 2016 to 2021. This period was selected due to the availability of 

flow and water quality data. The trial-and-error technique was applied to calibrate the model for the simulation period, 

considering the default calibration parameters described in Wells, 2021. The error between observed and predicted values of 

six state variables was evaluated with five different metrics (see section 2.7). The observed data included six annual values 

for water temperature, DO, TP, TN, BOD5, and Chl-a. These time series were obtained from: (a) an integrated sample 225 
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between the reservoir surface and a depth of 5.8 meters, (b) a depth of 23 meters, and (c) a depth of 43.7 meters.  In addition, 

35 water temperature and DO profiles—six per year from 2016 to 2021—were also included. These profiles were observed 

300 meters upstream from the Torrão Dam. Details on the models’ initial conditions, parameters, constants, and forcing 

datasets can be found in Almeida and Coelho (2025) and in Tables A2 to A8. The models were calibrated by adjusting their 

parameters to improve the fit between the model output and observed data. Please refer to Wells (2021) for a detailed 230 

account of the model calibration parameters and default values. Water temperature was the first constituent to be calibrated. 

The wind sheltering coefficient (WSC) was manually adjusted to achieve the best fit between the modeled and observed 

water temperature profiles, resulting in a final value of 1. A value of 1 implies that the WSC has no effect over the wind 

velocity forcing the model. The zero-order model for SOD was then manually adjusted to improve DO predictions based on 

35 DO profiles. The optimal result was achieved with a zero-order SOD value of 2.5 g O₂/m²day. Following this calibration, 235 

the phosphorus sediment release rate (PO4R) in the zero-order model was modified from its default value of 0.015 to 0.001. 

The same process was applied to the Hybrid model, where the best results were achieved using a PO4R of 0.001 and a zero-

order SOD value of 1.0 g O₂/m²day. In the first-order model, the PO₄R parameter was adjusted to 0.001, and the initial 

concentration of first-order sediment was set to 0.5 g/m². All other parameters were kept at their relevant default values and 

the default settings for the sediment diagenesis model were also maintained. The observed data included water temperature, 240 

DO), TP, TN, BOD5, and Chl-a. 

2.6 Sensitivity analysis 

A sensitivity analysis was conducted after the calibration process to evaluate the model’s response: 

i) Different initial sediment values for POC, PON, and POP were used in the SD model (Table 3). It is important to note 

that for each of the 24 runs described in Table 2, only the corresponding parameter was modified, while the other two 245 

parameters retained their default values shown in Table 3. The number of runs varying the PON and POP values is higher 

than the number of runs considered for POC, with 6 versus 9 runs, respectively. This adjustment was necessary to achieve 

a minimal RMSE in the predictions of dissolved oxygen in the water column; 

ii) Different zero-order SOD values for the Zero-order model (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 g O2/m2.day); 

iii) Different initial first order sediment concentration (ISC) for the First-order model (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 250 

g/m²); 

iv) Different zero-order SOD values for the Hybrid model (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 g O2/m2.day. 

In the results analysis for each run and for both scenarios (i) and (ii), the prediction error for DO was compared with the 

SOD values derived from each model. Specifically, runs 5, 8, and 20 were forced with the POC, PON, and POP values 

defined in the SD model baseline run. 255 
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Table 3. TOC, PON, and POP initial sediment values for the SD model sensitivity analyses.  

Parameter 

Sampling site/Model segments 
SD 

model run 
A B C D E 

28-25 24-20 19-16 15-11 10-2 

POC 

4 800 4 013 4 282 3 859 1 075 1 

9 600 8 026 8 563 7 718 2 150 2 

14 400 12 038 12 845 11 578 3 226 3 

19 200 16 051 17 126 15 437 4 301 4 

24 000 20 064 21 408 19 296 5 376 5 (SD model-baseline) 

28 800 24 077 25 690 23 155 6 451 6 

PON 

8 669 8 625 8 625 8 625 8 625 7 

5 779 5 750 5 750 5 750 5 750 8 (SD model-baseline) 

2 890 2 875 2 875 2 875 2 875 9 

1 445 1 438 1 438 1 438 1 438 10 

722 719 719 719 719 11 

361 359 359 359 359 12 

181 180 180 180 180 13 

90 90 90 90 90 14 

45 45 45 45 45 15 

POP 

128 128 128 128 128 16 

85 85 85 85 85 17 

57 57 57 57 57 18 

38 38 38 38 38 19 

25 25 25 25 25 20 (SD model-baseline) 

13 13 13 13 13 21 

6 6 6 6 6 22 

3 3 3 3 3 23 

2 2 2 2 2 24 

 260 

2.7 Metrics 

The evaluation of model calibration and the analysis of quantitative differences across simulation scenarios utilized various 

performance metrics. These included the root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe 

efficiency (NSE) (Nash and Sutcliffe, 1970), percent bias (PBIAS), and the coefficient of determination (R2). The 

calculations were carried out using equations where 𝑚𝑖 and 𝑜𝑖  represent the simulated and observed values, respectively, and  265 

𝑜𝑖̅ the observed values mean. 
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RMSE = √
1

𝑁
∑ (𝑚𝑖 − 𝑜𝑖)

2𝑁
𝑖=1           (3) 

MAE =
1

𝑁
∑ |𝑚𝑖 − 𝑜𝑖|
𝑁
𝑖=1            (4) 

𝑁𝑆𝐸 = 1 − [
∑ (𝑜𝑖−⁡𝑚𝑖)

2𝑁
𝑖=1

∑ (𝑜𝑖−𝑜𝑖̅)
2𝑁

𝑖=1

]           (5) 

 𝑃𝐵𝐼𝐴𝑆 = ⁡
∑ (𝑜𝑖−⁡𝑚𝑖)
𝑁
𝑖=1

∑ (𝑜𝑖)
𝑁
𝑖=1

× 100          (6) 270 

R2 =
∑ (𝑚𝑖−𝑜̅)

2𝑁
𝑖=1

∑ (𝑜𝑖−𝑜̅)
2𝑁

𝑖=1

× 100           (7) 

 

3 Results 

3.1 Observed Inflow Water Quality Characterization 

The SVR algorithm was more effective at predicting the inflow water temperature compared to the other models. The R² and 275 

PBIAS values achieved with the SVR were 0.87, and 3.77%, respectively, indicating that the water temperature trends and 

average magnitudes are well described (Table A1). Additionally, the RMSE and MAE values of 2.1ºC and 1.6ºC, 

respectively, demonstrate an accurate approximation of the observed datasets. The SVR algorithm was also the best model in 

predicting DO. The R², PBIAS, RMSE, and MAE values reached, 0.91, 0.92%, 0.40 mg/L and 0.26 mg/L, respectively, 

indicating that the model performed well. This was not the case for the remaining parameters. In fact, the Loadest regression 280 

outperformed the other models for the remaining water quality variables. This was primarily due to the limited number of 

training samples. Simpler models like regressions can have lower variance (i.e., be less susceptible to overfitting) compared 

to SVR and XBOOST algorithms. Overall, the PBIAS obtained for NH4, N-NOx, and Chl-a (10.88%, 43.64%, and 30.00%) 

suggests that the average magnitude was reasonably well represented. 

3.2 CE-QUAL-W2 calibration 285 

Tables A2 through A8 display the most significant CE-QUAL-W2 coefficients obtained after the calibration process. The 

results of the calibration process for all models, are presented in Table 4 and Table A9 and illustrated in figures 3 to 6 and 

figures 8 and 9. The performance metrics for water temperature across the different sediment models show consistent 

accuracy, with NSE and R² values ranging from 0.95 to 0.96 and minimal variation across models. The RMSE and MAE for 

temperature also remain low, indicating reliable thermal performance regardless of the sediment model applied. In contrast, 290 

DO predictions show more variability. The Hybrid model achieved the best overall DO performance, with the highest NSE 

(0.76 ± 0.30) and R² (0.76 ± 0.31), as well as the lowest RMSE (1.87 ± 0.72) and MAE (1.22 ± 0.55), while maintaining a 
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near-zero PBIAS (-0.55 ± 11.14), indicating minimal systemic bias. The Zero-order model also performed reasonably well, 

with slightly lower error metrics than the SD model. The First-order model, however, showed the weakest DO performance, 

with a lower NSE (0.68 ± 0.22), higher RMSE (2.15 ± 0.82), and a significant negative PBIAS (-12.17 ± 15.44), suggesting 295 

an underestimation of oxygen concentrations. Overall, the results suggest that while temperature simulation is robust across 

all models, DO dynamics are better captured using the Hybrid or Zero-order models, with the Hybrid model offering the 

most balanced and accurate representation under the tested conditions. However, the differences in performance metrics for 

DO among the models are relatively small and often fall within overlapping standard deviations, with the exception of the 

First-order model, which consistently shows lower accuracy and higher bias, suggesting that while the Hybrid model offers 300 

slightly better overall performance, the improvements over the SD and Zero-order models are modest and should be 

interpreted with caution. In terms of nutrient dynamics, the Hybrid and Zero-order models improve TN and TP predictions 

relative to the SD and First-order models. The Hybrid model, for example, improves TN R² to 0.31 and TP to 0.27, although 

the associated biases remain significant (e.g., −18.75% for TN and +36.49% for TP). BOD₅ and Chl-a remain poorly 

simulated across all models, with R² values consistently low (≤0.06 for Chl-a and ≤0.03 for BOD₅), and large PBIAS values, 305 

particularly in the SD and First-order configurations. The Zero-order model slightly reduces bias in Chl-a and Total N 

compared to the SD model but performs poorly for TP due to a large overestimation (PBIAS = 103.43%) (Fig.4D). Notably, 

the SD and First-order models failed to reproduce observed phosphorus release events from sediments on 2018-09-18, 2020-

09-08, and 2021-08-31 (Figures 3D and 5D). In contrast, the Hybrid model successfully captured these events by modeling 

phosphorus release as a linear function of SOD, providing a more realistic representation of sediment–water nutrient 310 

interactions (Fig.6D). Overall, while no model fully captures the complexity of all constituents, the Hybrid model 

consistently provides the most balanced and improved representation, particularly for DO and nutrient parameters. 
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Table 4: Metrics between observed and predicted values for all models. Water temperature and DO metrics were obtained from 

36 observed and predicted profiles.  

Constituent 
SD model (run 5 - baseline) 

NSE R2 PBIAS RMSE MAE 

Water 

temperature 
0.95±0.18 0.96±0.07 1.96±3.08 1.13±0.28 0.89±0.26 

DO 0.71±0.14 0.73±0.29 4.43±15.06 2.01±0.59 1.38±0.46 

Constituent 
Zero-order model (zero-order SOD = 2.5 g O2/m2day - baseline) 

NSE R2 PBIAS RMSE MAE 

Water 

temperature 
0.95±0.19 0.96±0.07 1.91±3.09 1.13±0.28 0.89±0.25 

DO 0.73±0.20 0.74±0.30 1.75±15.87 1.97±0.74 1.29±0.57 

Constituent 
First-order model (ISC= 0.5 g/m² - baseline) 

NSE R2 PBIAS RMSE MAE 

Water 

temperature 
0.96±0.19 0.96±0.08 1.46±2.97 1.09±0.23 0.85±0.20 

DO 0.68±0.22 0.73±0.27 -12.17±15.44 2.15±0.82 1.50±0.65 

Constituent 
Hybrid model (zero-order SOD= 1.0 g O2/m2day - baseline) 

NSE R2 PBIAS RMSE MAE 

Water 

temperature 
0.96±0.18 0.96±0.08 1.45±2.97 1.09±0.23 0.85±0.20 

DO 0.76±0.30 0.76±0.31 -0.55±11.14 1.87±0.72 1.22±0.55 
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  330 

Figure 3: Constituents observed values at three different depths: (a) an integrated sample between the reservoir surface and an 

average depth of 5.8 meters, (b) an average depth of 23 meters, and (c) an average depth of 43.7 meters. These observed values 

were compared with the predicted time series from the  SD model (run 5 - baseline) (A to F) for the same depths. 
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 335 

Figure 4: Constituents observed values at three different depths: (a) an integrated sample between the reservoir surface and an 

average depth of 5.8 meters, (b) an average depth of 23 meters, and (c) an average depth of 43.7 meters. These observed values 

were compared with the predicted time series from the Zero-order model (zero order SOD = 2.5 g O2/m2day - baseline) (A to F) for 

the same depths. 
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 340 

Figure 5: Constituents observed values at three different depths: (a) an integrated sample between the reservoir surface and an 

average depth of 5.8 meters, (b) an average depth of 23 meters, and (c) an average depth of 43.7 meters. These observed values 

were compared with the predicted time series from the First-order model (ISC=0.5 g/m2 - baseline) (A to F) for the same depths. 
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 345 

Figure 6: Constituents observed values at three different depths: (a) an integrated sample between the reservoir surface and an 

average depth of 5.8 meters, (b) an average depth of 23 meters, and (c) an average depth of 43.7 meters. These observed values 

were compared with the predicted time series from the Hybrid model (zero order SOD= 1.0 g O2/m2day - baseline) (A to F) for the 

same depths 

 350 
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3.3 Sensitivity analysis 

The SOD values strongly influence the water column DO; therefore, this parameter was considered to support this analysis. 

Figure 7 shows the SOD values from the reservoir bottom layer, predicted by the SD model for Runs 1 to 6, compared with 

the RMSE (Fig7A) and the NSE (Fig7B) values obtained between the predicted water column DO profiles and the mean 

initial POC values (across all sites values) for each run. These results suggest that Run 4 was the best modeling solution. 355 

Considering the results obtained for Run 5 (baseline), Run 4 reduced the RMSE from 2.015 mg/L (Run 5) to 2.011 mg/L 

(Run 4) and increased the NSE from 0.714 (Run 5) to 0.716 (Run 4). The average SOD value in the bottom layer of the 

reservoir (across all model segments) decreased from 1.162 g O₂/m²day (Run 5) to 1.071 g O₂/m²day (Run 4). Although the 

reduction is modest and had only a minor effect on the DO profile predictions (Fig. 9), it suggests that the initial POC values 

used in Run 5 were likely overestimated. This outcome aligns with the assumption made in Run 5, where all observed TOC 360 

was considered to exist entirely as POC. In contrast, Run 4 was characterized using a lower average sediment concentration. 

Specifically, the mean value used in Run 4 (14170 mg/L) represents approximately 80% of the TOC value used in Run 5 

(17712 mg/L), which was derived from observed TOC measurements (see Table 3). This comparison suggests that a more 

realistic estimate is that about 80% of the total organic carbon exists in particulate form, with the remainder composed of 

dissolved organic carbon. Run 4 and Run 5 show negligible differences in the predicted water temperature and DO profiles 365 

(Fig. 8 and 9). Table A10 presents the performance metrics for water temperature, DO, TN, TP, BOD₅, and Chl-a obtained 

for Run 4. While this run improved the DO simulation in the reservoir, results for the other constituents remained very 

similar to those of Run 5 (baseline). Overall, the water temperature profiles are very well captured by all models (Fig. 8), 

reflecting their robustness in simulating thermal dynamics. In contrast, DO profiles are more complex and challenging to 

model due to their sensitivity to multiple interacting processes. Nevertheless, the models were able to capture the main 370 

seasonal and vertical trends in DO concentrations, including stratification patterns and general oxygen depletion in bottom 

layers during warmer months (Fig.9).  
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Figure 7: A) SOD values from the reservoir bottom layer, predicted by the SD_model for Runs 1 to 6, compared with the RMSE 375 
obtained between the predicted water column DO profiles and the mean initial POC values (across all sites values) for each run of 

the SD_model.  B) Similar to A but considering the NSE metric. 
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Figure 8: Observed water temperature profiles (300 m from the dam) compared to predicted profiles using the SD model (Run 4) 380 
and (Run 5 - baseline), Zero-order model (zero-order SOD = 2.5 g O2/m2day - baseline); First-order model (ISC= 0.5 g/m² - 

baseline) and the Hybrid model (zero order SOD= 1.0 g O2/m2day - baseline). 
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 385 

Figure 9: Observed DO profiles (300 m from the dam) compared to predicted profiles using the SD model (Run 4) and (Run 5 -  

baseline), Zero-order model (zero-order SOD = 2.5 g O2/m2day - baseline); First-order model (ISC= 0.5 g/m² - baseline) and the 

Hybrid model (zero order SOD= 1.0 g O2/m2day - baseline). 

 

The sensitivity analysis also involved varying the initial values of PON and POP for each run. The results indicate that mean 390 

reservoir SOD values remained nearly constant, as depicted in Fig. 10, suggesting that the SD model was not significantly 

affected by variations in the initial PON and POP values in the sediments. However, in Runs 7, 8, and 9, where PON values 

were higher, there was a significant increase in the release of N-NH4 and N-NOX from the reservoir sediments, leading to an 
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impact on water column DO. This is evidenced by the notable increase in RMSE and the reduction of NSE values, as shown 

in Fig. 10A and 10B. 395 

 

 

Figure 10: A) SOD values from the reservoir bottom layer, predicted by the SD model for Runs 7 to 15, compared with the RMSE 

obtained between the predicted water column DO profiles and the mean initial PON values (across all sites) for each run B) 

Similar to A) but considering the NSE metric. C) SOD values from the reservoir bottom layer, predicted by the SD model for Runs 400 
16 to 24, compared with the RMSE obtained between the predicted water column DO profiles and the mean initial POP values 

(across all sites) for each run. D) Similar to C) but considering the NSE metric. 

 

Figure 11 shows the RMSE (Fig. 11A) and the NSE (Fig. 11B) values between observed and predicted water column DO 

profiles for all models: SD model (Runs 1 to 6), Zero-order model and Hybrid model, each with six different SOD values 405 

ranging from 0.5 to 3.0 g/m²day, along with the corresponding reservoir SOD values. Additionally, this figure illustrates how 

the First-order model varies with the initial sediment concentration. Among the four models evaluated, the Hybrid model 
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demonstrated the best overall performance in predicting DO concentrations in the reservoir. With an average SOD of 1.49 g 

O₂/m²day, the hybrid model achieved the lowest RMSE (1.87 mg/L) and highest NSE (0.76), demonstrating superior 

predictive accuracy. The Zero-order model followed closely, reaching optimal performance at an average zero-order SOD of 410 

1.43 g O₂/m²day, with an RMSE of 1.965 mg/L and an NSE of 0.732. The SD model also performed well, attaining its best 

accuracy at an average SOD of 1.07 g O₂/m²day, where the RMSE decreased to 2.011 mg/L and the NSE peaked at 0.716; 

however, further improvements plateaued beyond this point. In contrast, the First-order model consistently exhibited higher 

RMSE values (ranging from 2.15 mg/L to 2.22 mg/L) and lower NSE values (between 0.66 and 0.68), regardless of the 

initial sediment concentration. Moreover, its SOD at the bottom layer remained relatively stable, indicating limited 415 

sensitivity to input variations. Overall, these results underscore the hybrid model’s robustness and accuracy, followed by the 

Zero-order and SD models, while the First-order model demonstrated the weakest performance in this context. 

 

Figure 11. (A) RMSE between observed and simulated DO profiles in the water column for all models: the SD model (Runs 1–6), 

the Zero-order model, the Hybrid model with six SOD values ranging from 0.5 to 3.0 g O2/m2day, and the First-order model with 420 
initial sediment organic matter concentrations from 0.0 to 3.0 g m⁻². (B) Same as (A), but using the Nash–Sutcliffe Efficiency (NSE) 

as the performance metric. 
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3.4 Inflow Organic Matter and Phosphorus Load Reduction Scenarios 

The results reveal clear differences in model sensitivity to inflow load reductions, with the First-order and Hybrid models 

exhibiting a stronger response compared to the SD and Zero-order models (Figures 12 and 13). The SD model showed 

minimal change, indicating limited sensitivity to external loading (Figures 12a and 13a), likely due to strong internal loading 435 

feedback from legacy phosphorus and organic matter stored in sediments. The Zero-order model demonstrated limited utility 

for management scenarios because it is decoupled from the water column, reducing its responsiveness to external changes. 

The First-order model may overestimate sensitivity as it tends to underestimate internal loading contributions. The Hybrid 

model, which combines both approaches, is less reactive than the First-order model due to the influence of the Zero-order 

component, offering a more balanced response. However, the Zero-order SOD component in the Hybrid model depends 440 

solely on temperature and remains decoupled from water column conditions; this limitation may gradually reduce the 

model’s accuracy in long-term simulations. These differences in model sensitivity are further reflected in the evolution of 

average SOD across scenarios (Table 5). While the Zero-order and SD models show virtually no change in bottom-layer 

SOD under reduced loading conditions, the First-order and Hybrid models register clear declines. The First-order model’s 

SOD drops from 0.87 g O₂/m²day to 0.42 g O₂/m²day (80% OM reduction) and 0.29 g O₂/m²day (80% OM  and P reduction) 445 

and the Hybrid model from 1.49 g O₂/m²day to 1.07 g O₂/m².day (80% OM reduction)  and 0.94 g O₂/m²day (80% OM  and P 

reduction). 
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Figure 12. Time series of DO, averaged across all model layers and segments, for each baseline model scenario: SD model (Run 5), 450 

Zero-order model (SOD = 2.5 g O₂/m²day), First-order model (initial sediment concentration = 0.5 g/m²), and Hybrid model (Zero-

order SOD = 1.0 g O₂/m²day). The figure compares baseline conditions with an 80% reduction in organic matter inflow load in the 

main reservoir branch (Branch 1 – Tâmega River). Performance metrics (R², RMSE, MAE, NSE, and PBIAS) are also shown for 

each case. 
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 455 

Figure 13. Time series of DO, averaged across all model layers and segments, for each baseline model scenario: SD model (Run 5), 

Zero-order model (SOD = 2.5 g O₂/m²day), First-order model (initial sediment concentration = 0.5 g/m²), and Hybrid model (Zero-

order SOD = 1.0 g O₂/m²day). The figure compares baseline conditions with an 80% reduction in organic matter and P-PO4 inflow 

loads in the main reservoir branch (Branch 1 – Tâmega River). Performance metrics (R², RMSE, MAE, NSE, and PBIAS) are also 

shown for each case. 460 
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Table 5. Average sediment oxygen demand (SOD) in the bottom layers of the reservoir, calculated across all segments, for each 470 
model under three scenarios: Reference (baseline conditions), 80% reduction in organic matter inflow (OM 80%), and combined 

80% reduction in organic matter and phosphorus inflow (OM and P%) in the in the main reservoir branch (Branch 1 – Tâmega 

River) 

Scenario 
SD model 

(Run 5) 

Zero-order model 

(SOD = 2.5 g 

O₂/m²day) 

First-order 

model 

 (ISC = 0.5 g/m²) 

Hybrid model (Zero-order SOD = 1.0 g 

O₂/m.day) 

Aggregate 
Zero-order 

term 

First-order 

term 

Baseline 1.16±0.82 1.43±2.12 0.87±1.19 1.49±2.02 0.59± 0.85 0.90± 0.75 

OM 80% 

reduction  
1.13±0.83 1.44±2.12 0.42±0.61 1.07±1.43 0.61± 0.85 0.46± 0.75 

OM and P% 

80% reduction 
1.13±0.82 1.46±2.11 0.29±0.37 0.94±1.19 0.64± 0.84 0.30± 0.42 

 

4 Discussion 475 

Overall, the temperature and DO predictions for the reservoir boundary conditions (Tâmega river) were quite good: PBIAS: 

0.76% and 0.92%, respectively. When a significant number of samples and forcing variables are available the accuracy of 

machine learning algorithms can be greatly enhanced. This was demonstrated in the studies by Lu et al. (2020), Rajesh and 

Rehana (2021), and Feigl et al. (2021), where the RMSE for river water temperature prediction reached 1.04ºC, 1.03ºC, and 

0.58ºC, respectively. The results obtained for alkalinity, conductivity and TSS were also good: Alkalinity-PBIAS: 17.44%; 480 

Conductivity - PBIAS: 8.23%; TSS - PBIAS: 11.86%. However, as expected, the PBIAS values obtained for the remaining 

constituents were not as favorable (Total P- PBIAS: 7.11%; N-NOX- PBIAS: 3.92%; BOD5- PBIAS: 6.93%; Chla- PBIAS: 

30%).  The modeling of these constituents involves complex biological, chemical, and physical processes that are harder to 

model accurately.  However, except for Chla, the PBIAS values were generally less than 10%, reflecting acceptable levels of 

bias. Ammonium (N-NH4) was the only parameter for which performance was significantly lower, generating a PBIAS of 485 

28.27%. Moriasi et al. (2015) suggest that 10PBIAS  25 is indicative of a satisfactory model performance. 

Based on the RMSE, the overall reservoir calibration results obtained for all constituents with all models for the 2016-2021 

period were consistent with the results seen in other studies (see Table A11). The mean RMSE values for Chl-a obtained 

with all models (SD model (run 5 - baseline): 17.72 µg/L;  Zero-order model (zero-order SOD = 2.5 g O2/m2 day - baseline): 

17.78 µg/L; First-order model (ISC= 0.5 g/m² - baseline): 14.88 µg/L and the Hybrid model (zero-order SOD=1.0 g O2/m2 490 

day - baseline): 14.88 µg/L) are aligned with the results of other modeling studies (Brito et al., 2018: 62.9 µg/L; Kim et al., 

2019: 6.7 to 13.2 µg/L; Tasnim et al., 2021: 0.6 to 27.6 µg/L; Almeida et al., 2023: 19.36 to 25.57 µg/L). For TP, the mean 

RMSE values were 0.03 mg/L for both the SD model (Run 5 – baseline) and the First-order model (ISC = 0.5 g/m² – 

baseline), while the Hybrid model (zero-order SOD = 1.0 g O₂/m²day – baseline) showed a slightly higher value of 0.04 

mg/L. These results fall within the range reported in previous studies, including Brett et al. (2016) at 0.012 mg/L, Kim et al. 495 

(2019) between 0.014 and 0.068 mg/L, Tasnim et al. (2021) from 0.005 to 0.036 mg/L, and Almeida et al. (2023) ranging 
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from 0.07 to 0.09 mg/L. The only exception was the Zero-order model (SOD = 2.5 g O₂/m²day – baseline), which 

overestimated phosphorus export from sediments during the summer months (July to September) of 2018 to 2021, resulting 

in a notably higher RMSE of 0.1 mg/L. Even with a very low phosphorus release rate from the sediments—representing a 

fraction of the SOD (0.001)—the Zero-order model still overestimated phosphorus concentrations, particularly during 500 

periods of elevated sediment oxygen demand. This suggests that the model may lack the sensitivity needed to accurately 

simulate low-level sediment-phosphorus interactions under such conditions. The mean RMSE values obtained for TN were 

lower than the only reference value available in the literature—0.77 mg/L reported by Deliman et al. (2002). Specifically, the 

SD model (Run 5 – baseline) yielded an RMSE of 0.33 mg/L, the First-order model (ISC = 0.5 g/m² – baseline) produced 

0.36 mg/L, and the Hybrid model (zero-order SOD = 1.0 g O₂/m²day – baseline) resulted in 0.35 mg/L. The only exception 505 

was the Zero-order model (SOD = 2.5 g O₂/m²day – baseline), which had a significantly higher RMSE of 0.79 mg/L—

slightly exceeding the value reported by Deliman et al., yet still within a comparable range. The RMSE obtained with the SD 

model (Run 5 - baseline), Zero-order model (zero-order SOD = 2.5 g O2/m2/day - baseline); First-order model (ISC= 0.5 

g/m² - baseline) and the Hybrid model (zero order SOD= 1.0 g O2/m2/day - baseline) for DO,  2.01 mg/L, 1.97 mg/L, 2.15 

mg/L and 1.87 mg/L respectively) are also in line with the results obtained in other studies (e.g., Deliman et al., 2002: 1.34 510 

mg/L; Brett et al., 2016: 1.2 mg/L; Brito et al., 2018: 7.6 mg/L; Luo et al., 2018: 1.78 mg/L; Tasnim et al., 2021: 2.33 mg/L). 

In the SD model (Run 5 – baseline), bottom-layer SOD values ranged from 0.015 to 5.152 g O₂/m²day (μ = 1.162; σ = 

0.823), reflecting moderate variability driven by seasonal biogeochemical processes. In comparison, the Zero-order model 

(SOD = 2.5 g O₂/m²day - baseline) showed a broader but more temperature-driven range, from 0.000 to 15.640 g O₂/m²day 

(μ = 1.432; σ = 2.122). The First-order model (ISC = 0.5 g/m² - baseline) yielded values between 0.000 and 20.000 g 515 

O₂/m²day, with a much lower mean (μ = 0.870) and relatively high variability (σ = 1.920), consistent with its sensitivity to 

organic matter loading. The Hybrid model (zero-order SOD = 1.0 g O₂/m²day - baseline) incorporated both zero- and first-

order processes and produced the widest overall range, from 0.000 to 21.938 g O₂/m²day (μ = 1.491; σ = 2.024), highlighting 

its enhanced responsiveness to both physical (e.g., temperature) and biogeochemical (e.g., organic matter) drivers. The 

monthly variation in SOD across the four models reveals distinct seasonal patterns influenced by their underlying 520 

formulations (Fig. A2). All models show notable peaks in May and October, corresponding to periods of elevated organic 

matter inflow, while a consistent decline is observed during the summer months (June to August), when external organic 

inputs are comparatively low. The Zero-order model (baseline SOD = 2.5 g O₂/m²·day) exhibits a sharp rise from winter to a 

peak of 1.919 g O₂/m²·day in May, then gradually declines over the summer, before increasing again in October (1.910 g 

O₂/m²day). A similar double-peak pattern is observed in the Hybrid model (zero-order SOD = 1.0 g O₂/m²·day, baseline), 525 

with SOD reaching 1.715 g O₂/m²·day in May and a more pronounced maximum of 2.338 g O₂/m²·day in October, reflecting 

the combined effects of temperature and organic matter availability. The SD model (Run 5 – baseline) shows more moderate 

seasonal variation, with values dipping to 0.679 g O₂/m²·day in August, then rising to 1.501 g O₂/m²·day in November, 

consistent with internal sediment dynamics. The First-order model (ISC = 0.5 g/m², baseline), which is most sensitive to 

organic matter loading, also mirrors this seasonal structure, peaking in October (1.235 g O₂/m²day) after a gradual summer 530 



31 

 

decline. Collectively, these patterns underscore the importance of organic matter availability—particularly in spring and 

autumn—as a key driver of SOD across the different modeling approaches. This pattern indicates the model's responsiveness 

to both organic matter inputs and temperature, leading to a more nuanced representation of seasonal variation compared to 

the other models. These values are consistent with the SOD values obtained in other studies, such as those of Schnoor and 

Fruh (1979), which concluded that the SOD values of Lake Lydon B. Johnson (located in the U.S.) ranged from 1.7 to 5.8 g 535 

O₂/m²day, and of Beutel (2015), which measured SOD values in different locations around Lake Hodges (located in the U.S.) 

ranging from 0.6 to 2.3 g O₂/m²day. It would be useful to be able to compare these results with SOD values measured at 

different sites within the Torrão reservoir.  

It is important to emphasize that this study was primarily designed to evaluate the performance of the sediment diagenesis 

model. However, by incorporating alternative SOD modeling approaches, it inevitably allowed for a comparative ranking of 540 

model performance, highlighting the relative strengths and limitations of each formulation. The performance limitations of 

the Zero-order and First-order models can be attributed to their structural simplifications. Specifically, the Zero-order 

model’s strong temperature dependence, coupled with its disregard for the dynamics of organic matter loading, reduces its 

ability to capture temporal variability driven by external inputs. Similarly, the lower accuracy of the First-order model likely 

stems from its exclusion of anaerobic decay processes and limited representation of sediment biogeochemistry, which 545 

becomes especially relevant under low-oxygen conditions. The Hybrid model outperformed all other approaches. 

Considering the principle of parsimony (Occam’s razor) (Burnham and Henderson, 2002), the simpler Hybrid model proved 

more effective than the complex SD model, making it the preferred choice for simulating SOD dynamics in the reservoir. 

These findings underscore the importance of selecting models that align with the specific characteristics of the system being 

studied. Simpler models, such as the Hybrid model, may be adequate for steady-state conditions, short- to medium-term 550 

forecasts, or scenarios with limited data. The zero-order SOD component of the Hybrid model relies solely on temperature 

and is decoupled from the water column; therefore, in long-term simulations, this limitation can gradually undermine the 

model’s accuracy. In contrast, the SD model may be more appropriate when the goal is to explore system-wide feedbacks 

and temporal dynamics over extended periods—especially those involving sediment accumulation and nutrient cycling—

where it may provide valuable insight into underlying processes, provided that sufficient observational data become available 555 

to support its additional state variables. Moreover, a model’s effectiveness heavily depends on the user's familiarity with its 

structure and their skill in calibration. Yet, it is unrealistic to expect researchers to master the implementation of every 

available modeling approach. As such, comparisons between models should be interpreted carefully, acknowledging the 

influence of user expertise on performance outcomes (Piccolroaz et al. 2024). Overall, to strengthen the analysis, it is 

recommended that users apply all available SOD modeling approaches in the case of the CE-QUAL-W2 model and assess 560 

the model’s behavior. This comprehensive evaluation provides a solid foundation for further modeling efforts and helps 

ensure that the chosen approach is well-suited to the system's specific conditions and objectives. 

The results also revealed that the particulate fraction of organic carbon in the reservoir sediments corresponded to 80% of the 

TOC. This value is small compared to the results obtained for Taihu Lake by Yu et al. (2022), where the ratio of POP to 
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TOC varied from 97.85% to 89.53%. However, this value (80%) was obtained indirectly through the analysis of the 565 

reservoir’s predicted SOD values as a function of different initial POC values and may, therefore, reflect other sources of 

uncertainty, such as inflow organic matter characterization. Given the fact that the magnitude of TOC in the sediment can be 

affected by numerous factors, including water column productivity, terrestrial inputs of organic materials, sediment 

properties, and microbial activity rates (Gireeshkumar et al., 2013), and that, partly due to differences in reservoir 

productivity and morphology, the spatial distribution and sources of organic carbon vary greatly across regions (Anderson et 570 

al., 2009), it is reasonable to assume that the only way to accurately assess the POC prediction is by monitoring the reservoir 

POC content. Furthermore, this study has highlighted the need to expand research to additional waterbodies across diverse 

regions to improve our understanding of the CE-QUAL-W2 diagenesis model’s performance under varying environmental 

conditions. This includes evaluating its applicability in long-term scenarios, which are essential for capturing cumulative 

sediment dynamics and climate-driven trends. Additional SOD monitoring studies need to be conducted in lakes and 575 

reservoirs and extended to other latitudes, with particular focus on the chemical characterization of sediments and the 

definition of sediment burial rates. 

5 Conclusions 

This research evaluates the performance of the CE-QUAL-W2 v4.5 sediment diagenesis model in simulating water 

temperature, dissolved oxygen, total phosphorus, total nitrogen, chlorophyll-a, and biochemical oxygen demand in a 580 

Portuguese reservoir over the period from 2016 to 2021. Calibration was based on 35 sets of observed temperature and 

dissolved oxygen profiles, supplemented by six annual measurements of total nitrogen, total phosphorus, chlorophyll-a, and 

biochemical oxygen demand collected at various depths. To evaluate model accuracy, three alternative sediment oxygen 

demand formulations — a Zero-order model, a First-order model, and a Hybrid approach combining features of both — were 

also applied and compared. The Hybrid model consistently outperformed the other formulations, striking an effective 585 

balance between accuracy and simplicity. It therefore represents the most suitable choice for modeling the reservoir. In 

contrast, the Zero- and First-order models exhibited limitations related to temperature dependence and inadequate sediment 

process representation, respectively. Simpler models, such as the Hybrid model, may be adequate for steady-state conditions, 

short- to medium-term forecasts, or scenarios with limited data. In contrast, the SD model — despite its good performance 

— may be more appropriate when the goal is to explore system-wide feedbacks and temporal dynamics over extended 590 

periods, especially in cases involving sediment accumulation and nutrient cycling. In such contexts, it may offer valuable 

insights, provided that sufficient observational data are available to support its additional state variables. Overall, the study 

reinforces the importance of choosing models based on site characteristics, available data, and simulation goals. Future work 

should broaden the evaluation of these models across various waterbodies and extended timeframes, while highlighting the 

need for enhanced sediment monitoring to support detailed process-based modelling. 595 
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Appendix A 

 

Figure A1: CE-QUAL-W2 bathymetry - Cross section of the Tâmega River with the average segment width 



34 

 

 600 

Figure A2: Average monthly sediment oxygen demand (SOD) at the reservoir bottom layer predicted by the SD model (Run 5 - 

baseline), Zero-order model (baseline: SOD = 2.5 g O₂/m²day), First-order model (baseline: ISC = 0.5 g/m²), and Hybrid model 

(baseline: zero-order SOD = 1.0 g O₂/m²day). Also shown is the inflow BOD₅ load from the reservoir’s main branch. 
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Table A1. Model metrics. Characterization of Tâmega river inflow 

Constituent Model R2 PBIAS RMSE MAE Input features 

Input 

sample 

number 

Sample 

Time 

period 

Water temperature 

LOADEST 0.81 5.14 2.61 1.86 Flow; AirT; WT 

21 2016-2021 XGBOOST 0.85 0.76 2.19 1.76 Air T; WT 

SVR 0.87 3.77 2.07 1.60 Air T; WT 

DO 

LOADEST 0.11 5.02 1.32 1.03 Flow, DO 

78 2010-2021 XGBOOST 0.83 1.50 0.56 0.33 WT; DO; Month 

SVR 0.91 0.92 0.40 0.26 WT; DO; Month 

Total P 

LOADEST 0.21 7.11 0.02 0.01 Flow, Total P 

47 2010-2021 XGBOOST 0.12 - 45.72 32.73 WT; Total P; Month 

SVR - - 38.74 38.74 WT; Total P; Month 

N-NH4 

LOADEST 0.11 43.64 0.02 0.02 Flow; N-NH4 

46 
2010-2021 

 
XGBOOST 0.26 32.20 0.02 0.02 WT; N-NH4; Month 

 SVR 0.03 28.27 0.02 0.02 WT; N-NH4; Month 

 

N-NOX 

LOADEST 0.11 10.88 0.18 0.14 Flow; N-NOX 

63 
2010-2021 

 
XGBOOST 0.15 3.92 0.16 0.12 WT; N-NOX;Month 

 SVR 0.26 7.48 0.16 0.13 WT; N-NOX;Month 

 

BOD5 

LOADEST 0.19 6.93 0.98 0.83 Flow; BOD5 

77 
2010-2021 

 
XGBOOST - 782.16 16.31 16.28 WT; BOD5; Month 

 SVR 0.14 1438.34 30.64 29.93 WT; BOD5; Month 

 

Chlorophyll-a 

LOADEST 0.65 30.00 6.27 4.96 Flow; Chl-a 

49 
2010-2021 

 
XGBOOST 0.12 774.02 39.12 29.36 WT; Chl-a; Month 

SVR 0.02 345.72 15.05 13.25 WT; Chl-a; Month 

Alkalinity 

LOADEST 0.26 17.44 6.59 6.30 WT; Chl-a; Month 

31 
2013-2021 

 
XGBOOST 0.26 471.67 88.57 57.64 WT; Alkalinity; 

Month SVR 0.20 242.35 37.97 30.52 WT; Alkalinity; 

Month 

Conductivity 

LOADEST 0.80 8.23 8.81 7.69 Flow; Conductivity 

77 
2010-2021 

 
XGBOOST 0.32 184.79 133.16 120.16 WT; Conductivity; 

month SVR 0.02 17.67 21.96 17.32 WT; Conductivity; 

month 

TSS 

LOADEST 0.00 11.86 1.83 1.45 Flow; SST 

78 2010-2021 XGBOOST 0.19 7.06 1.96 1.38 WT; SST; Month 

SVR 0.24 8.44 1.62 1.24 WT; SST; Month 

 610 
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Table A2. Rates and constants: Hydraulic coefficients 

Rates and constants Value 

Transport solution scheme Ultimate 

Time-weighting for vertical advection scheme 0.55 

Longitudinal eddy viscosity (m2/s) 1.0 

Longitudinal eddy diffusivity (m2/s) 1.0 

Coefficient of bottom heat exchange (W/m2/s) 0.3 

Sediment temperature (°C) 14.0 

Interfacial friction factor 0.0 

Heat lost to sediments that is added back to water column 0.0 

Vertical eddy viscosity W2 

Maximum value of vertical eddy speed (m2/s) 1.0 

Bottom friction solution CHEZY 

Wind roughnessheight (m) 0.001 

 

 

Table A3. Rates and constants: Extinction coefficients 625 

Rates and constants Value 

Extinction for pure water, m−1 0.25 

Suspended solids light extinction, 1/m 0.01 

EXOM - extinction organic matter, 1/(m mg/l) 0.2 

Fraction of incident solar radiation absorbed at the water surface (long-wave components of short-wave solar) 0.45 

 

 

Table A4. Rates and constants: phytoplankton (Diatoms) 

Rates and constants Value 

Maximum algal growth rate (day−1) 3 

Maximum algal respiration 

rate (day−1) 

0.04 

Maximum algal excretion rate (day−1) 0.04 

Maximum algal mortality rate (day−1) 0.1 

Algal settling rate (day−1) 0.1 

Algal half-saturation for phosphorus-limited growth, g m−3 0.003 

Algal half-saturation for nitrogen limited growth, g m−3 0.014 

Fraction of biomass going to POM at death 0.8 

AT1 lower temperature for algal growth, °C 10 

AT2 lower temperature for maximum algal growth, °C 30 

AT3 upper temperature for maximum algal growth, °C 35 

AT4 upper temperature for algal growth, °C 40 

Fraction of growth rate at AT1 temperature 0.1 

Fraction of maximum growth rate at AT2 0.99 

Fraction of maximum growth rate at AT3 0.99 

Fraction of growth rate at AT4 0.1 

Chlorophyll a to algae biomass ratio 0.065 

 

 630 
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Table A5. Rates and constants: organic matter 

Rates and constants Value 

Labile DOM decay rate, day−1 0.3 

Refractory DOM decay rate, day−1 0.001 

Labile to refractory DOM decay rate, day−1 0.01 

Labile POM decay rate, day−1 0.08 

Refractory POM decay rate, day−1 0.01 

Labile to refractory POM decay rate, day−1 0.001 

POM settling rate, m day−1 0.5 

Lower temperature for organic matter decay, °C, OMT1 4 

Upper temperature for organic matter decay, °C, OMT2 25 

Fraction of organic matter decay rate at OMT1 0.1 

Fraction of organic matter decay rate at OMT2 0.99 

 635 
 

Table A6. Rates and constants: nutrients 

Rates and constants Value 

PO4R Sediment release rate of phosphorus, fraction of SOD 0.015 

PARTP Phosphorus partitioning coefficient for suspended solids 0.0 

NH4R Sediment release rate of ammonium, fraction of SOD 0.15 

NH4DK Ammonium decay rate, day-1 0.05 

NH4T1 Lower temperature for ammonia decay, ºC 5 

NH4T2 Lower temperature for maximum ammonia decay, ºC 25 

NH4K1 Fraction of nitrification rate at NH4T1 0.1 

NH4K2 Fraction of nitrification rate at NH4T2 0.99 

O2NH4 Oxygen stoichiometry for nitrification (mg O2/mg N) 4.57 

NO3DK Water column denitrification rate or nitrate decay rate, day-1 0.05 

NO3S Nitrate loss velocity to the sediments because of sediment denitrification, m day-1 0 

FNO3SED Fraction of NO3-N diffused into the sediments that becomes part of organic N in the sediments (The rest is denitrified.) 0.37 

NO3T1 Lower temperature for nitrate decay, ºC 5 

NO3T2 Lower temperature for maximum nitrate decay, ºC 25 

NO3K1 Fraction of denitrification rate at NO3T1 0.1 

NO3K2 Fraction of denitrification rate at NO3T2 0.99 

 

 

Table A7. Rates and constants: SOD rates 640 

Rates and constants Value 

SEDCI Initial first order sediment concentration, g m-2 0.5 

SEDK First order sediment decay rate, day-1 0.1 

SEDS First order sediment settling or focusing rate, m day-1 0.1 

SEDBR First order sediment burial rate, day-1 0.01 

DYNSEDK Turns ON/OFF dynamic calculation of the first order sediment model decay rate ON 

SODT1 Lower temperature for zero-order SOD or first-order sediment decay, ºC 4 

SODT2 Upper temperature for zero-order SOD or first-order sediment decay, ºC 30 

SODK1 Fraction of SOD or sediment decay rate at lower temperature 0.1 

SODK2 Fraction of SOD or sediment decay rate at upper temperature 0.99 
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Table A8. Rates and constants: Sediment diagenesis model (considering 5 regions) 

"Initial sediment temperature ºC",10,10,10,10,10, 

"Initial sediment pH (only used if include modeling dynamic pH)",7,7,7,7,7 

"Initial POC (total) concentration 

mgC/L",4301,15437,17126,16051,19200,12902 
"Initial PON (total) concentration mgN/L",1000,1000,1000,1000,1000 

"Initial POP (total) concentration mgP/L",0.001,0.001,0.001,0.001,0.001 

"Initial SO4 concentration mgS/L",0.1,0.1,0.1,0.1,0.1 
"Initial dissolved NH4 concentration mgN/L",0.01,0.01,0.01,0.01,0.01 

"Initial dissolved NO3 concentration mgN/L",0.0,0.0,0.0,0.0,0.0 

"Initial total PO4 concentration mgP/L",0.00,0.00,0.00,0.00,0.00 
"Initial dissolved H2S concentration mgS/L",0.1,0.1,0.1,0.1,0.1 

"Initial CH4 concentration mgC/L",0.092,0.092,0.092,0.092,0.092 
"Initial TIC concentration mgC/L",4.011,4.011,4.011,4.011,4.011 

"Initial Alkalinity concentration for each region mg/l as CaCO3",50,50,50,50,50 

"Initial Ferrous Iron concentration for each region mgFe/l",0.1,0.1,0.1,0.1,0.1 
"Initial Iron Oxyhydroxide concentration for each region 

mgFe/l,",0.1,0.1,0.1,0.1,0.1 

"Initial Mn(II) concentration for each region mgMn/l,",0.1,0.1,0.1,0.1,0.1 
"Initial manganese dioxide concentration for each region 

mgMn/l,",0.1,0.1,0.1,0.1,0.1 

"Number of regions for different diagenesis related rates",1 
,Region1,Region2,Region3,Region4,Region5 

"Starting segment for regions",2 

"Ending segment for regions",21 
"Fraction of labile POC",0.1 

"Fraction of refractory POC",0.89 

"Fraction of labile PON",0.1 
"Fraction of refractory PON",0.89 

"Fraction of labile POP",0.1 

"Fraction of refractory POP",0.89 
"Pore water diffusion coefficient m2/d",0.0025 

"Particle mixing velocity between aerobic and anaerobic layers m2/d",0.00006 

"Burial velocity m/d",0.00000685 
"CH4 production calculation method (0: Analytical  1: Numerical)",1,1 

"DO threshold for aerobic layer oxidation rates mgO2/L",2,2 

"Nitrification rate in aerobic layer at DO below threshold m/d",0.3 
"Nitrification rate in aerobic layer at DO above threshold m/d",0.3 

"Denitrification rate in aerobic layer at DO below threshold m/d",0.1 

"Denitrification rate in aerobic layer at DO above threshold m/d",0.1 
"Denitrification rate in anerobic layer m/d",0.1,0.1 

"CH4 oxidation rate in aerobic layer m/d",0.7,0.7 

"Half-saturation oxygen constant for CH4 oxidation mg-O2/L",0,0 
"Nitrification half-saturation constant for NH4 in aerobic layer mgN/L",0.728 

"Nitrification half-saturation constant for O2 in aerobic layer mgO2/L",0.37 

"Temperature coefficient for pore water diffusion between layers",1.08 
"Temperature coefficient for particle mixing diffusion coefficient",1 

"Temperature coefficient for nitrification",1.123 

"Temperature coefficient for denitrification",1.08 
"Temperature coefficient for methane oxidation",1.079 

"SO4 concentration above which sulfide over methane is produced mgS/L",20 

"H2S oxidation rate in aerobic layer m/d",0.2 
"Temperature coefficient for H2S oxidation",1.079 

"H2S oxidation normalization constant for O2 mgO2/L",4 

"Diagenesis rate for labile POC (G1) 1/d",0.035 
"Diagenesis rate for refractory POC (G2) 1/d",0.0018 

"Diagenesis rate for inert/slow refractory POC (G3) 1/d",0.0001 

"Diagenesis rate for labile PON (G1) 1/d",0.035 
"Diagenesis rate for refractory PON (G2) 1/d",0.0018 

"Diagenesis rate for inert/slow refractory PON (G3) 1/d",0.0001 

"Diagenesis rate for labile POP (G1) 1/d",0.035 
"Diagenesis rate for refractory POP (G2) 1/d",0.0018 
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"Diagenesis rate for inert/slow refractory POP (G3) 1/d",0.0001 

"Temperature coefficient for labile POC",1.1 
"Temperature coefficient for refractory POC",1.15 

"Temperature coefficient for inert/slow refractory POC",1 

"Temperature coefficient for labile PON",1.1 
"Temperature coefficient for refractory PON",1.15 

"Temperature coefficient for inert/slow refractory PON",1,1 

"Temperature coefficient for labile POP",1.1,1.1 
"Temperature coefficient for refractory POP",1.15,1.15 

"Temperature coefficient for inert/slow refractory POP",1 

"PO4 sorption coefficient in anaerobic layer m3/kg",0.02 
"Incremental PO4 partition coefficient",0,0 

"Critical oxygen concentration for incremental sorption mg-O2/L",0.01 

"NH4 sorption coefficient in aerobic layer m3/kg",0.001 
"NH4 sorption coefficient in anaerobic layer m3/kg",0.001 

"H2S sorption coefficient in aerobic layer m3/kg",0.1 

"H2S sorption coefficient in anaerobic layer m3/kg",0.1 
"Algorithm for POM resuspension (0: Wind induced resuspension, 1: Bottom 

scour resuspension) Only used if Include POM resuspension is TRUE.",1,0 

"Fe(II) sorption coefficient in aerobic layer m3/g",0.00005 
"Fe(II) sorption coefficient in anaerobic layer m3 /g",0.01 

"Mn(II) sorption coefficient in aerobic layer m3 /g",0.00005 

"Mn(II) sorption coefficient in anaerobic layer  m3 /g",0.01 
"Write sediment fluxes", TRUE. 

"Frequency of output days",1 
 645 

 

 

 

 

 650 
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 660 

 

 

 

 



40 

 

Table A9. Metrics between observed and predicted values for both models. The predicted values were compared 665 

with observed values at three different depths: (a) an integrated sample between the reservoir surface and an 

average depth of 5.8 meters, (b) an average depth of 23 meters, and (c) an average depth of 43.7 meters. The values 

shown in this table represent the mean value of the metrics obtained for each date and the corresponding standard 

deviation. 

Constituent 
SD model (run 5 - baseline) 

R2 PBIAS RMSE MAE 

Water temperature 0.95 -3.34 1.31 1.05 

DO 0.79 -9.68 2.01 1.40 

Total N 0.19 -15.85 0.33 0.27 

Total P 0.09 -11.44 0.03 0.01 

BOD5 0.02 -50.92 3.24 1.58 

Chl-a 0.14 51.62 17.12 11.51 

Constituent 
Zero-order model (zero order SOD = 2.5 g O2/m2/day - baseline) 

R2 PBIAS RMSE MAE 

Water temperature 0.95 -3.34 1.32 1.06 

DO 0.84 -5.91 1.69 1.12 

Total N 0.22 -1.07 0.79 0.46 

Total P 0.26 103.43 0.10 0.04 

BOD5 0.03 -50.93 3.24 1.58 

Chl-a 0.09 48.89 17.78 12.17 

Constituent 
First-order model (ISC= 0.5 g/m² - baseline) 

R2 PBIAS RMSE MAE 

Water temperature 0.95 -3.18 1.31 1.05 

DO 0.83 9.21 1.84 1.28 

Total N 0.14 -24.73 0.36 0.28 

Total P 0.10 -3.71 0.03 0.02 

BOD5 0.00 -53.34 3.24 1.59 

Chl-a 0.06 -60.39 14.88 8.49 

Constituent 
Hybrid model (zero order SOD= 1.0 g O2/m2/day - baseline) 

R2 PBIAS RMSE MAE 

Water temperature 0.95 -3.20 1.31 1.05 

DO 0.87 -2.34 1.52 1.03 

Total N 0.31 -18.75 0.35 0.28 

Total P 0.27 36.49 0.04 0.02 

BOD5 0.01 -51.93 3.25 1.61 

Chl-a 0.06 -59.55 14.95 8.52 
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Table A10. Metrics between observed and predicted values for SD model (run 4). Water temperature and DO 670 

metrics were obtained from 36 observed and predicted profiles. The predicted values for the remaining constituents 

were compared with observed values at three different depths: (a) an integrated sample between the reservoir 

surface and an average depth of 5.8 meters, (b) an average depth of 23 meters and (c) an average depth of 43.7 

meters. The values in this table represent the mean value of the metrics obtained at each date and the corresponding 

standard deviation or, in the case of water temperature and DO, the mean value of the metrics obtained for each 675 

profile and the standard deviation. 

Constituent 
SD model (Run 4) 

R2 PBIAS RMSE MAE 

Water temperature 0.95 -3.45 1.34 1.07 

DO 0.79 -8.20 1.98 1.37 

Total N 0.18 -15.52 0.33 0.27 

Total P 0.09 -11.18 0.03 0.01 

BOD5 0.02 -50.93 3.24 1.58 

Chl-a 0.15 52.95 16.97 11.48 

 

 

 

 680 
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Table A11. Root mean square error values obtained with different models and across different time frames 

Constituent Model Simulation RMSE Author 

Water 

temperature 

CE-QUAL-W2 1984-1991 2.95 ºC  Deliman et al., 2002 

CE-QUAL-W2 2005-2010 1.93 ºC Kim and Kim, 2006 

CE-QUAL-W2 1991-2000 0.56 ºC Zhang et al., 2015 

CE-QUAL-W2 2011-2013 < 2.0 ºC 
Lindenschmidt et al., 

2019 

Delft3D-FLOW 2015-2017 0.96 to 1.0ºC Piccioni, et al. 2020 

CE-QUAL-W2 2001-2011 1.80 ºC Brito et al., 2018 

CE-QUAL-W2 2010 2.36 ºC Liu et al., 2019 

MINLAKE2020 2007-2009 1.51 ºC Tasnim et al., 2021 

CE-QUAL-W2 2000-2019 3.01-3.17 ºC Almeida et al., 2023 

DO 

CE-QUAL-W2 1984-1991 1.34 mg/l Deliman et al., 2002 

CE-QUAL-W2 1991-2000 0.61 mg/l Zhang et al., 2015 

CE-QUAL-W2 2001 1.2 mg/l Brett et al., 2016 

CE-QUAL-W2 2001-2011 7.6 mg/l Brito et al., 2018 

DYRESM 4.0 2009-2011 1.78 mg/l Luo et al., 2018 

MINLAKE2020 2007-2009 2.33 mg/l Tasnim et al., 2021 

CE-QUAL-W2 2000-2019 2.22-3.46 mg/l Almeida et al., 2023 

Total P 

CE-QUAL-W2 2001 0.012 mg/l Brett et al., 2016 

CE-QUAL-W2 2005-2010 0.014 to 0.068 mg/l Kim et al., 2019  

MINLAKE2020 2007-2009 0.005 to 0.036 mg/l Tasnim et al., 2021 

CE-QUAL-W2 2000-2019 0.07-0.09 mg/l Almeida et al., 2023 

Total N CE-QUAL-W2 1984-1991 0.77 mg/L Deliman et al., 2002 

BOD5 CE-QUAL-W2 2000-2019 3.06-4.83 mg/l Almeida et al., 2023 

 CE-QUAL-W2 1991-2000 1.08 μg/l Zhang et al., 2015 

Chl-a 

CE-QUAL-W2 2001 4.6 μg/l Brett et al., 2016 

CE-QUAL-W2 2005-2010 6.7 to 13.2 μg/l Kim et al., 2019 

CE-QUAL-W2 2001-2011 62.9 μg/l Brito et al., 2018 

MINLAKE2020 2007-2009 0.6 - 27.6 μg/l Tasnim et al., 2021 

CE-QUAL-W2 2000-2019 19.36-25.57 μg/l Almeida et al., 2023 
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Code availability 

The exact version of the models’ source code is archived on Zenodo at https://doi.org/10.5281/zenodo.14606105 (Almeida 705 

and Coelho 2025). The current version of the open-source CEQUAL-W2 model (version 4.5) used in this study is also 

available from the project website (http://www.ce.pdx.edu/w2/, last access 24 January 2024). 

 

Data availability 

Input files needed to run the models’ and the hydrometric water quality and meteorological datasets used to force and 710 

validate each model are freely available and are archive on Zenodo at https://doi.org/10.5281/zenodo.14606105 (Almeida 

and Coelho 2025). 
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