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Abstract. The Arctic sea ice suffers dramatic retreating in summer and fall, which has far-reaching consequences on the global 

climate and commercial activities. Accurate seasonal sea ice predictions significantly infer climate change and planning 

commercial activities. However, seasonally predicting the summer sea ice encounters a significant obstacle known as the 10 

spring predictability barrier (SPB): predictions made later than the date of melt onset (roughly May) demonstrate good skill in 

predicting summer sea ice, while predictions made on or earlier than May exhibit considerably lower skill. This study develops 

a transformer-based deep-learning model, SICNetseason (V1.0), to predict the Arctic sea ice concentration on a seasonal scale. 

Including spring sea ice thickness (SIT) data in the model significantly improves the prediction skill at the SPB point. A 20-

year (2000-2019) testing demonstrates that the detrended anomaly correlation coefficient (ACC) of Sep. sea ice extent (sea ice 15 

concentration > 15%) predicted by our model at May/Apr. is improved by 7.7%/10.61% over the ACC predicted by the state-

of-the-art dynamic model SEAS5 from the European Centre for Medium-Range Weather Forecasts (ECMWF). Compared 

with the anomaly persistence benchmark, the mentioned improvement is 41.02%/36.33%. Our deep learning model 

significantly reduces prediction errors of Sep.'s sea ice concentration on seasonal scales compared to SEAS5 and Persistence. 

The spring SIT data is key in optimizing the predictions around the SPB, contributing to a more than 20% ACC enhancement 20 

in Sep.'s SIE at four to five months lead predictions. Our model achieves good generalization in predicting the Sep. SIE of 

2020-2023. 

1 Introduction  

Arctic sea ice plays a significant role in the global climate because it modulates the thermal and dynamic exchanges between 

the ocean and the atmosphere(Ding et al., 2017; Kapsch et al., 2013; Liu et al., 2021a; Olonscheck et al., 2019). In recent 25 

decades, global warming has resulted in a dramatic retreat in Arctic sea ice during the summer and fall (Cao et al., 2017; Shu 

et al., 2022). This decline triggers a system-positive feedback mechanism that causes the Arctic's surface air temperature to 

increase 2-4 times faster than the global mean state, known as the Arctic amplification (AA) (England et al., 2021; Pithan and 

Mauritsen, 2014; Screen et al., 2013; Screen and Simmonds, 2010). AA accelerates sea ice decline, strengthening positive 
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feedback (Jenkins and Dai, 2021; Kumar et al., 2010). If the situation is unchanged, climate models project that the Arctic will 30 

become ice-free during summer by the 2050s (Jahn et al., 2024; Kim et al., 2023). The dramatic Arctic sea ice loss has 

consequences for global climate (Francis and Vavrus, 2012) and commercial activities (Min et al., 2022). For example, it may 

weaken the stratospheric polar vortex in the winter, increasing extreme cold events in the Northern Hemisphere (Blackport et 

al., 2019; Cohen et al., 2014). Furthermore, the lower sea ice area during summer extends the navigability of the Arctic Passage 

to seasonal scales (Cao et al., 2022). 35 

Sea ice predictions are helpful for better understanding global climate change and support human activities in the Arctic 

(Lindsay et al., 2008; Merryfield et al., 2013). Therefore, sea ice prediction, commonly represented by parameters such as sea 

ice concentration (SIC) or sea ice extent (SIE, defined as the sum of grid cell area where SIC>15%), has always attracted 

substantial efforts (Guemas et al., 2016; Stroeve and Notz, 2015). Various prediction systems are proposed, such as numerical  

(Chevallier et al., 2013; Liang et al., 2020; Mu et al., 2020; Wang et al., 2013; Yang et al., 2019; Zhang et al., 2008, 2022), 40 

statistical (Gregory et al., 2020; Wang et al., 2016, 2022; Yuan et al., 2016), and deep learning models (Jun Kim et al., 2020; 

Ren et al., 2022; Ren and Li, 2023). However, accurate sea ice prediction for Arctic summer remains challenging, particularly 

at seasonal or even longer scales (Zampieri et al., 2018; Blanchard-Wrigglesworth et al., 2015, 2023). One of the biggest 

challenges is the spring predictability barrier (SPB): predictions for summer sea ice made before or at the timing of melt onset 

show significantly lower skill than predictions made after the timing of melt onset (Bonan et al., 2019; Bushuk et al., 2020; 45 

Day et al., 2014; Zeng et al., 2023). Studies show that SPB is evident in nearly all the fully coupled global climate models 

(GCMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), a crucial initiative providing climate projections 

to support essential climate research worldwide (Blanchard-Wrigglesworth et al., 2011; Tietsche et al., 2014). So, optimizing 

the predictions around the SPB is an urgent task for accurate summer sea ice predictions. 

Experiments based on ensemble simulations reveal that the predictability of summer SIE is limited before spring due to the ice 50 

motion and growth in winter (Bushuk et al., 2020). However, the predictability increases rapidly after the melting processes in 

the spring (Bushuk et al., 2020). The satellite observations show that the spring sea ice thickness (SIT) correlates more with the 

summer SIE than the spring SIE (Landy et al., 2022). These findings indicate that the spring SIT may be a key factor in optimizing 

the predictions around the SPB (Bushuk et al., 2020). Recently, researchers have assimilated the CryoSat-2 observed SIT data, 

the first summer SIT observations, into the Geophysical Fluid Dynamics Laboratory (GFDL) ocean–sea ice model and found that 55 

the prediction skill of Sep.'s SIC is improved significantly when the model is initialized with SIT anomaly in Jul. and Aug. (Zhang 

et al., 2023). This study further proves that the summer SIT data contributes to Sep's sea ice prediction. However, as the SPB flag 

is May for most studies, whether the predictions around the SPB could be optimized by including SIT data remains largely 

unknown.  

Currently, numerical models are widely used in operationally sea ice predicting, but they are inflexible and have been limited 60 

by the SPB (Msadek et al., 2014; Sigmond et al., 2013). Statistical models are good at long-term prediction but cannot model 

complex nonlinear relationships and face SPB challenges. Deep learning models are more flexible than numerical models and 

more potent than traditional statistical ones, and they have been successfully used in Earth prediction problems (Li et al., 2021; 
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Reichstein et al., 2019). Researchers have successfully developed deep-learning models to predict polar sea ice state from synoptic 

to sub-seasonal scales (Andersson et al., 2021; Dong et al., 2024; Li et al., 2024; Mu et al., 2023; Palerme et al., 2024; Ren et 65 

al., 2022; Ren and Li, 2023; Song et al., 2024; Wu et al., 2022; Yang et al., 2024.; Zhu et al., 2023), bringing the new potential 

to solve the SPB problem to improve the seasonal prediction skill from a data-driven perspective.  

This work develops a seasonal sea ice prediction model named SICNetseason (V1.0) to optimize the predictions around the SPB. 

SICNetseason is a transformer-based deep learning model with a physically constrained loss function based on SIC morphology. It 

takes historical SIC and SIT data as predictors and predicts the SIC of the following six months. The SIC data is the satellite-70 

observed data from the National Snow and Ice Data Center (NSIDC) (Cavalieri et al., 1996). The SICNetseason model is trained on 

data from 1979-2019 and tested with data from 2000-2019 by a leave-one-year-out strategy. Data from the recent four years, 

2020-2023, is employed to verify the model's generalization. Experiments demonstrate that our model significantly optimizes the 

SPB with a higher detrend correlation coefficient (ACC) compared with anomaly persistence (Persistence) and the state-of-the-

art dynamic model, SEAS5, from the European Centre for Medium-Range Weather Forecasts (ECMWF) (Johnson et al., 2019). 75 

Our model significantly reduces the errors in September. SIC/SIE in four to five months lead predictions compared to the two 

compared models. The spring SIT data is key in optimizing the predictions around the SPB. Our model generalized well in 

predicting the Sep. SIE of 2020-2023. Finally, we compare our SICNetseason model with an IceNet-inspired U-Net model  

(Andersson et al., 2021). IceNet is a probability prediction model for Arctic SIE based on convolutional neural network (CNN) 

units and the U-Net architecture. It achieved state-of-the-art performance in predicting the probability of SIE for six months 80 

(Andersson et al., 2021). Therefore, we construct an IceNet-inspired U-Net model as a comparison model. 

2 Data 

1.1 Sea ice concentration data 

The SIC data of 1979-2023 are experiment data. The SIC is the satellite-observed data obtained from the NSIDC. It is a daily 

observation derived from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and the Defense 85 

Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I and SSMIS) (DiGirolamo et al., 2022). 

The projection of the SIC data is the north-polar stereographic with a 25 km spatial resolution. 

1.2 Sea ice thickness data 

The SIT data is the reanalysis SIT from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). PIOMAS is 

a numerical model with sea ice and ocean components, and it assimilates SIC and sea surface temperature (Zhang and 90 

Rothrock, 2003). PIOMAS SIT agrees well with in situ, airborne, and satellite measurements (Schweiger et al., 2011). It is 

daily data with an 18 km spatial resolution. Although the PIOMAS generally overestimates thin ice and underestimates thick 

ice regions, it is widely adopted by Arctic studies (Collow et al., 2015; Kwok et al., 2020; Nakanowatari et al., 2022). The SIC 

and PIOMAS SIT data are converted to a Northern Polar Stereographic Grid with 80 km resolution. The temporal resolution 
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is one month. 95 

3 Method 

3.1 Framework of SICNetseason 

The SICNetseason model is derived from a transformed-based U-Net deep learning model, SwinUNet (Cao Hu and Wang, 

2023)(Cao Hu and Wang, 2023). It accepts a three-dimensional sea ice data sequence and predicts a three-dimensional SIC 

sequence of the future, Fig. 1. The inputs to the model are monthly mean fields. The predicted target is the SIC of the next six 100 

months. For example, if we make predictions in May, the six months' predictions will cover the months from Jun. to Nov. 

 

Figure 1. Framework of model SICNetseason. (a) Input consists of SIT of the last three months, SIC of the last six months, SIC anomaly 
of the last three months, and SIC climatology of six target months, 96×96×18. (b) The encoder comprises four swin-transformer 
blocks and three patch-merging operators. (c) The decoder contains three swin-transformer blocks and four patch-expanding 105 
operators. (d) Concatenations connect the feature maps from the encoder and the decoder module. (e) A CNN layer with sigmoid 
activation transforms the feature map to the predicted SIC of six-month leads. (f) Model training procedure. The loss function 
combines the normalized integrated ice-edge error (NIIEE) and the mean square error (MSE). 
 

The input for SICNetseason is a 96×96×18 SIC and SIT sequence, composed of SIT of the last three months, SIC of the last 110 

six months, SIC anomaly of the last three months, and SIC climatology of the six target months (Fig. 1a). We determine the 

length of input factors by combining domain knowledge and manual tuning experiments. The primary domain knowledge we 

considered is the spring-fall reemergence mechanism. It occurs between pairs of months where the ice edge is in the same 

position, such as in May and December (Blanchard-Wrigglesworth et al., 2011; Day et al., 2014). The spring sea ice anomaly 

is positively correlated with fall sea ice anomalies, and there is also a weaker reemergence between fall sea ice anomalies and 115 

anomalies the following spring (Bushuk et al., 2015). Therefore, we set the initial input length of the SIC/SIT/SIC anomaly as 



5 
 

six months. We change the input length manually (from six to one in step one) to fine-tune the deep learning model to find the 

best-matched length for each factor. The SIC climatology of the target months provides an essential mean state of the prediction 

SIC. It represents the monthly cycle signal that IceNet has considered (Andersson et al., 2021).  

The input is fed into the encoder to capture spatiotemporal correlations among SIC/SIT data sequences at different levels to 120 

form multi-scale correlation maps. The encoder comprises four swin-transformer (Liu et al., 2021b) blocks and three patch 

merging operators (Fig. 1b). A swin-transformer block is a transformer unit integrated with shifted windows (Liu et al., 2021b). 

A transformer operator captures global dependencies through an attention mechanism. The shifted windows help the 

transformer operator capture local dependencies like the convolution operator. Therefore, local and global spatiotemporal 

dependencies among sea ice sequences can be captured. The patch merging operator downscales the captured feature maps 125 

like the pooling layer in CNN models. The decoder upscales the feature maps through the patch expanding operator and swin-

transformer blocks (Fig. 1c). The extracted correlation maps of the encoder and decoder are stacked to form fused 

spatiotemporal maps (Fig. 1d). A CNN layer transforms the decoded feature maps to the same shape as the target SIC sequence. 

Here, it is a 96×96×6 array (Fig. 1e). As the range of SIC is 0-1, we employ the sigmoid function to activate the last feature 

map to transform the predicted values to 0-1.  130 

During the training procedure, the loss is calculated between the predicted and ground values. Then, the model’s parameters 

are trained by minimizing the loss value literately. We will explain the loss function in the following section. 

3.2 Integrated ice-edge-constrained loss function 

For a deep-learning model, the loss function is crucial during the training procedure as it guides the optimization of the model’s 

parameters.  Here, the loss is the difference between the predicted values and the ground ones from NSIDC. Generally, the 135 

mean square error (MSE) is a fundamental loss function for prediction tasks. The MSE measures the mean state for all predicted 

values and cannot reflect the spatial differences between 2-dimensional SIC patterns. To address the issue, we proposed a 

normalized integrated ice-edge error (NIIEE) loss function that considers the spatial distribution of SIC to constrain the model's 

optimization (Fig. 1g).  

The NIIEE loss is based on the integrated ice-edge error (IIEE), a professional metric for sea ice predictions. The IIEE 140 

represents the error regions the prediction model overestimated and underestimated (Goessling et al., 2016). It measures the 

spatial similarity between two 2-dimension SIC patterns. Initially, the IIEE binaries the SIC by 15% to describe the SIE. For 

the SIC prediction here, we do not perform binarization. Let PSIC/GSIC represent the predicted/ground SIC; the IIEE is calculated 

by Eq. (1). We normalize IIEE to the range of 0-1 to form the NIIEE loss by Eq. (2). If the NIIEE loss is 0, the predicted SIC 

and the ground SIC will match in spatial and numerical. The fundamental MSE loss has been demonstrated to be adequate for 145 

prediction tasks. If the number of all predicted values is N, the MSE is calculated by Eq. (3). We combine the NIIEE with MSE 

as the loss function of the SICNetseason. A constant scale factor, 0.01, is multiplied by NIIEE to balance its range with that of 

MSE, Eq. (4). 
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IIEE = (PSIC∪GSIC) - (PSIC∩GSIC)                                                                                                                                           (1) 150 

NIIEE = 
IIEE

PSIC∪GSIC
= 1 −  

 PSIC∩GSIC

PSIC∪GSIC
                                                                                                                                           (2) 

MSE = 
∑(௉ೄ಺಴ିீೄ಺಴)

మ

ே
                                                                                                                                                    (3) 

Loss = 0.01×𝑁𝐼𝐼𝐸𝐸+MSE                                                                                                                                           (4) 

4 Experiments 

4.1 Model training 155 

The model is trained on a computer station with an NVIDIA Tesla V100 32-GB card. The training and test samples are 

constructed by step-by-step sliding. The testing period is 2000-2019. The leave-one-year-out strategy is adopted to 

train/evaluate our SICNetseason model. For example, if the testing year is 2000, the training set is from 1979-1999 and 2001-

2019. The leave-one-year-out strategy is widely adopted by statistical models to maximize the sample volume while obtaining 

a multi-year evaluation (Wang et al., 2022; Yuan et al., 2016). The validation set is split 20% from the training set. We set the 160 

batch size as eight and the initial learning rate as 0.0001. We employ the early stopping strategy to break the training procedure 

when the validation loss does not decrease. The model is trained three times to eliminate random errors. The testing set is run 

on three trained models, and the mean values are adopted as the final predictions. Data from the recent four years, 2020-2023, 

is employed to verify the model's generalization. Data from these four years did not participate in the training stage. They are 

fed into the trained models obtained by the leave-one-year-out strategy to get the predictions. The predictions are the mean 165 

values of the 20 trained models. 

4.2 Evaluation metrics 

The mean absolute error (MAE), Binary Accuracy (BACC), and detrend ACC are evaluation metrics. The MAE is for SIC, 

and the other two metrics are for SIE. To accurately calculate the metrics, we use the maximum observed monthly SIE since 

1979 to mask the predictions. Assuming the predicted/truth value of the ith grid is pi/gi, the number of validation grids is N. 170 

The MAE values are calculated by (5). The BACC of time t is obtained by using one to subtract the ratio of IIEE to the area 

of the activated grid cell region (the maximum observed SIE during 1979-2019) of t by equation (6). The detrend ACC of SIE 

is the anomaly correlation coefficient of two detrend SIE series. Each SIE series has 20 elements, from 2000 to 2019. 

MAE = 
∑ |௣೔ି௚೔|ಿ

భ

ே
                                                                                                                                                          (5) 

BACC = (1 - 
IIEE

area of the activated grid cell region
) × 100%                                                                                                            (6) 175 
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4.3 Model skill in seasonal predictions 

We compare the SICNetseason with the Persistence and the SEAS5 to validate our model's ability to optimize the predictions 

around the SPB. The Persistence is the anomaly persistence model. It assumes the anomaly constant in time and estimates the 

target SIC values by adding the current anomaly to the climate mean state at the target time, widely adopted as a benchmark 

for sea ice prediction (Wang et al., 2016). The SEAS5 is a new seasonal forecast system from the ECMWF that shows excellent 180 

sea ice prediction skills (Johnson et al., 2019). A BACC value of 100% indicates that the predicted SIE matches the observed 

SIE 100% spatially. The metrics are calculated for 20 testing years, 2000-2019, in a leave-one-year-out training/testing strategy. 

As the SPB occurred in the target summer month, we focus on the four summer months, June to September.  

Fig. 2 shows the detrended ACC and BACC of target months, Jun.-Sep., on six lead months' predictions. As shown in Figs. 

2(a) and (b), the predictions of Persistence and SEAS5 show an apparent SPB: the detrended ACC drops sharply when the 185 

predictions are made earlier than May, with a maximum ACC gap between two adjacent lead months marked by black lines. 

Taking September for example, the detrend ACC is 56.39% for Persistence when the prediction is made in Jun. (three months 

lead). Then, it decreases to 26.59% in May's prediction (four months lead), Fig. 2(a). For SEAS5, the ACC of Jun.'s prediction 

is 83.94%, then drops to 59.91% at May's prediction, forming a 24.03% ACC gap, Fig. 2(b). Although the SICNetseason's 

prediction also shows an SPB feature, the black line in Fig.2 (c), the ACC at May's prediction is improved to 67.61%, and the 190 

ACC gap is reduced to 15.6%. Further, the ACC difference is calculated between SICNetseason and Persistence/SEAS5. 

Compared with Persistence, SICNetseason improves the ACC in most predictions, Fig. 2d. The ACC improvements along the 

SPB flag are more than 30% on average (the lead months right to the black line in Fig. 2d). Compared with the SEAS5, 

SICNetseason also improves the prediction skill of the SPB. When the target months are Jun. and Jul., SICNetseason shows a much 

higher prediction skill than SEAS5 in four to six months lead predictions, Fig. 2e. For the target month Sep., the SICNetseason 195 

improves the ACC by 7.70%/10.61% than SEAS5 when prediction is made in May/Apr. (four/five months lead in Fig. 2e). 

For the target month Aug./Sep., the SICNetseason shows lower ACCs than the SEAS5 when prediction is made on or before 

Mar. (five/six months lead for Aug./Sep.). However, for the predictions made adjacent to the SPB flag line, the SICNetseason 

achieves larger ACCs than the SEAS5 (values right to the black line in Fig. 2e). Therefore, the SICNetseason optimizes the SPBs 

significantly compared to the well-known numerical model. 200 

The BACC of SEAS5 also shows a similar SPB characteristic to the ACC. A sharp BACC drop occurred when the prediction 

was made on and before May, the black line in Fig. 2(g). The maximum BACC gaps of Persistence and SICNetseason occurred 

in the second lead month. However, the maximum BACC gap of SICNetseason is about 2%, much lower than the 10% gap of 

Persistence and SEAS5. Compared with the Persistence and SEAS5, the SICNetseason improves the BACC by more than 10% 

in predicting SIE of Aug. and Sep. three to six months lead, Figs. 2(i) and (j). 205 
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Figure 2. Detrend ACC of SIE, BACC of SIE, and their differences of Persistence, SEAS5, and SICNetseason from Jun. to Sep., 
averaged by 2000-2019. (a)-(c) Detrend ACC of three models. Two detrend SIE series (predicted and observed) calculate each value. 
(d)-(e) Detrend ACC differences between SICNetseason and Persistence/SEAS5. (f)-(h) BACC of three models. Each BACC is a mean 
value during 20 testing years. (i)-(j) BACC differences of SICNetseason and Persistence/SEAS5. The black line indicates the SPB: a 210 
maximum decrease between two adjacent lead months. The red signifies a high/improvement in ACC/BACC, and the blue signifies 
a decrease. 
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4.4 Performance in predicting SIC of Sep. 

As September's sea ice draws wider attention than other months, we calculate the MAE of SIC of Sep. predicted by three 

models. Fig. 3 shows the spatial MAE of Persistence, SEAS5, and SICNetseason on six lead months. The MAE in the three 215 

models is not much different for the first two lead months. When the lead month is one, the MAE of SEAS5 is slightly better 

than that of Persistence and SICNetseason, indicating that the SEAS5 model performs well in monthly predicting. This result 

may be due to the good atmospheric initialization in SEAS5, which beat many machine learning and dynamical models in sub-

seasonal scale SIC prediction (Bushuk et al., 2024). However, when the lead month is longer than three, the SEAS5's MAEs 

are much more than 45% in the Pacific sector, mainly containing the Beaufort Sea, the Chukchi Sea, the East Siberian Sea, 220 

and the Laptev Sea, Figs. 3(j)-(l). The SICNetseason reduces the MAEs to 20-30% for most regions in the Pacific Arctic, Figs. 

3(q)-(r). Compared with Persistence, SICNetseason also reduces MAEs by 5-10% in the mentioned four local seas, Figs. 3(d)-

(f). Therefore, the SICNetseason significantly reduces the SIC errors of Sep. in seasonal scale predictions (three to six months 

lead). 
 225 
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Figure 3. The MAEs of September's predictions are based on three compared models: each value is averaged by 20 testing years. 
(a)-(g) MAEs of Persistence. (h)-(m) MAEs of SEAS5. (n)-(s) MAEs of SICNetseason. 

4.5 SIT’s contributions to seasonal predictions 

We further conduct a comparison experiment to validate the role of SIT data in seasonal predictions based on SICNetseason. The 230 

model without SIT as an input is named SICNetseason_nosit. The other settings for SICNetseason_nosit are the same as those for 

SICNetseason. The detrended ACC and BACC are shown in Fig. 4. 

Without the SIT data as input, the model's prediction skill drops apparently in three to six months lead predictions, Fig. 4(a). 

For the target month Sep., the detrend ACC is 76.41% when the prediction is made in Jun. (three months' lead). Then, the ACC 

drops to 26.43% at May's prediction (four months' lead). By including SIT data as input, the ACC of May's prediction is 235 

improved by 41.18% in model SICNetseason, Fig. 4(c). For the target month of August, the ACC improvement at May's 

prediction (three months' lead) by including SIT data is 42.44%. Therefore, the SIT data is important to improve the model's 

prediction skill on SPB. 

For target months Aug. and Sep., the BACCs of SICNetseason_nosit show an apparent drop in three to six months lead 

predictions. By including SIT data as the model's input, the BACC improvement is 0.95%/2.02% for the target month, Aug./Sep. 240 

at May's predictions, Fig. 4(f). Then, we calculate the MAE of the target month Sep., Fig. 5. The MAEs of the first two lead 

months are similar for the two models. When the lead month is larger than three, the MAEs of SICNetseason_nosit in the Beaufort 

Sea, the East Siberian Sea, and the Laptev Sea are 30-45%, with red circles in Figs. 5(d)-(f). By including SIT data, the MAEs 

in the three mentioned regions are reduced to 20-35% by SICNetseason, as shown in the red circles in Figs. 5(j)-(l). Therefore, 

including SIT data reduces the errors of Sep.'s SIC by more than 10% in seasonal scale predictions. 245 
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Figure 4. Detrended ACC of SICNetseason_nosit (a) and SICNetseason (b). (c) ACC difference obtained by SICNetseason minus 
SICNetseason_nosit. BACC of SICNetseason_nosit (d) and SICNetseason (e). (f) BACC difference like (c).  The red signifies a 
high/improvement in ACC/BACC, and the blue signifies a decrease. 
 250 

 

 

Figure 5. The MAEs of Sep.'s SIC predicted by SICNetseason and SICNetseason_nosit. Each value is averaged by 20 testing years. (a)-(g) 
MAE of SICNetseason_nosit. (h)-(m) MAE of SICNetseason. The red cycles marked the regions where the MAE is reduced typically by 
including SIT data. 255 
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4.6 Generalization in predicting the SIEs of 2020-2023 

To verify our model's generalization in predicting the SIEs of recent years, we employed the twenty trained models to predict 

the SIE of the recent four years, 2020-2023. The twenty models are trained for 2000-2019, as mentioned in the earlier sections. 

The data from 2020-2023 is "blind" for the models. The mean values of the twenty models' predictions are the final predictions. 

As the temporal span of four years is too short for calculating ACC, we use the BACC as the metric (Fig. 6). Compared with 260 

Persistence and SEAS5, the SICNetseason achieves higher BACCs in predicting SIEs of Aug. and Sep. For the target month 

Sep., the BACC of SICNetseaon is 10% higher than those of the other two models in three to six months lead predictions.  

We draw the observed and predicted Sep.’s SIEs of 2020, 2022, and 2023 in Fig. 7. The Sep.’s SIE in 2020/2023 (4.0/4.37 

milkm2) is the second/sixth lowest record in the Arctic since 1979. The SIE in 2022 Sep. (4.90 milkm2) has been large since 

2015. We focus on the seasonal scale predictions with four to six lead months. Our SICNetseason model shows obvious 265 

advantages over the SEAS5 and Persistence. For predictions made on or before May, lead months of four to six, the BACCs 

of SICNetseason are much higher than those of Persistence and SEAS5, Fig. 7. At May's prediction, our model achieved a BACC 

of 82.25%/90.39%/82.08% in 2020/2022/2023, more than 10% higher over the Persistence and SEAS5, Fig. 7(a)/(d)/(g). 

Therefore, the SICNetseason model achieves good generalization in predicting the SIEs of 2020-2023. 
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 270 

Figure 6. BACC of 2020-2023. (a) Persistence, (b) SEAS5, and (c) SICNetseason. Each value is a mean value of the four testing years. 
The horizontal axis represents the six lead months, and the vertical axis represents the target months, Jun. to Sep. The red signifies 
a high/improvement in ACC/BACC, and the blue signifies a decrease. 
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  275 

Figure 7. Predicted Sep. SIEs and their BACCs of 2020/2022/2023 in four to six months lead by Persistence, SEAS5, and SICNetseason. 
(a)-(c) 2020, (d)-(f) 2022, and (g)-(i) 2023. 
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4.7 Comparison with the representative deep learning model 

We compare the SICNetseason against the representative deep learning sea ice prediction model, the U-Net (IceNet-inspired)  

model. The IceNet is a seasonal sea ice prediction model that performs state-of-the-art SIE probability prediction (Andersson 280 

et al., 2021). It is a CNN-based U-Net model for classification tasks, and it outputs the probability of three classes: open water 

(SIC≤15%), marginal ice (15% < SIC < 80%), and full ice (SIC≥80%). Differently, our SICNetseason outputs the 0-100% range 

SIC values. The IceNet's inputs consist of 50 monthly mean variables, including SIC, 11 climate variables, statistical SIC 

forecasts, and metadata. The original IceNet model has some unique designs in inputs and training strategy. As we focus on 

the differences in model structures, we construct a U-Net (IceNet-inspired) model for comparison. 285 

We set the inputs (including SIT data) of the U-Net (IceNet-inspired) to the same ones as SICNetseason. The loss function is 

also set as the NIIEE+MSE. We set the output layer of U-Net (IceNet-inspired) as a sigmoid activation function to output 

continuous values of 0-100%. We also change the number of CNN filters to make the number of training parameters in U-Net 

(IceNet-inspired) equal to that in SICNetseason, about 140 million. The training and testing settings of U-Net (IceNet-inspired) 

are the same as those of SICNetseason. The U-Net (IceNet-inspired) is trained using the same leave-one-year-out strategy as the 290 

SICNetseason. For example, if the testing year is 2019, the training set is data from 1979-2018, and the testing data is 2019. 

Then, the testing data moves to 2018; the remaining data (1979-2017, 2019) is the training set. For each training/testing pair, 

the model is trained three times to eliminate randomness, and the final prediction for testing data is the mean value of the three 

models.  
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 295 

Figure 8. Detrended ACC of U-Net (IceNet-inspired) (a) and SICNetseason (b). (c) ACC difference obtained by SICNetseason minus U-
Net (IceNet-inspired). BACC of U-Net (IceNet-inspired) (d) and SICNetseason (e). (f) BACC difference like (c).  The red signifies a 
high/improvement in ACC/BACC, and the blue signifies a decrease. 
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Figure 9. The predicted Sep. SIEs of U-Net (IceNet-inspired) and SICNetseason in six months' lead: (a) 2012, (b) 2017, (c) 2018, and 
(d) 2019.  
 

Fig. 8 shows the detrend ACC, BACC, and the differences between the two models. Compared with the U-Net (IceNet-

inspired) model, our SICNetseason model significantly improves the ACC at most predictions, Fig. 8(c). For the target month, 305 

Aug./Sep., the SPB feature is obvious in the U-Net (IceNet-inspired): the maximum ACC gap is about 40%/30% at predictions 

made in May and Jun., Fig. 8(a). Our SICNetseason model optimizes the ACC gap with an improvement of 31.8%/20.8% at 

May's predictions, Fig. 8(c). The ACC improvements are also larger than 15% for predictions made before May. Therefore, 

compared with the state-of-the-art deep learning model U-Net (IceNet-inspired), our model achieves more skillful seasonal 

predictions by optimizing the predictions around the SPB. 310 

Unlike the ACC values, the BACC values of U-Net (IceNet-inspired) are more significant than those of SICNetseason on most 

predictions, Fig. 8(f). This result implies that U-Net (IceNet-inspired) depends more on SIE trends than SICNetseason. This 

difference can be attributed to the distinct fundamental units employed by the two models. The U-Net (IceNet-inspired) is a 

CNN-based model, and the weight-sharing mechanism of convolutional kernels forces the model to capture the most 

"common" local dependencies in spatial. Though representative, these "common" local dependencies tend to yield smoother 315 

model outputs. The SICNetseason is a transformer-based model. The attention mechanism of the transformer can capture global 

dependencies without weight-sharing. As a result, "personalized" global dependencies are extracted, and the output is not 

smooth like the output of a CNN-based model. The "common" local dependencies have more apparent trend features than the 

"personalized" global dependencies. Fig. 9 shows the Sep.'s SIEs predicted by U-Net (IceNet-inspired) and SICNetseason in the 

sixth-month lead. The SIEs of U-Net (IceNet-inspired) are smoother than those of SICNetseason. For 2012 and 2017, the SIEs' 320 

locations of the two models are very similar. For the other two years, the SIEs of U-Net (IceNet-inspired) match the observed 

SIEs better than those of SICNetseason. However, the SIEs of U-Net (IceNet-inspired) are over-smoothed and fail to characterize 

some abnormal characteristics, such as the SIE in Sep. 2018, Fig. 9(c).  
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Therefore, our transformer-based SICNetseason is more skillful than the representative CNN-based model U-Net (IceNet-

inspired) in optimizing the predictions around the SPB. The SICNetseason exhibits a lower dependency on SIE trends and lower 325 

smooth results than the CNN-based model. 

5 Conclusion 

This study develops a deep-learning model, SICNetseason, to predict the Arctic SIC on a seasonal scale. The model is derived 

from a SwinUNet architecture. It inputs the historical SIC, SIT, and SIC climatology of target moths and predicts the SIC of 

the next six months. A spatially constrained loss function NIIEE is employed to train the model considering sea ice distribution.  330 

We employ a 20-year (2000-2019) testing set to validate the model’s performance. The summer season, Jun. to Sep., is the 

target period. The detrend ACC, BACC, and MAE are metrics. Comparison experiments with Persistence and seasonal 

predictions of SEAS5 are made to validate our model’s performance. In particular, an ablation experiment is carried out to 

investigate the role of SIT data in optimizing the predictions around the SPB. A generalization experiment with data from the 

last four years, 2020-2023, is carried out—the seasonal predictions of Sep. SIEs are analyzed. Finally, we discuss the 335 

advantages and disadvantages of our model and the typical CNN-based model, U-Net (IceNet-inspired). Given the mentioned 

efforts, our study draws the following conclusions.  

First, our deep learning model, SICNetseason, is skillful in predicting the Arctic sea ice seasonally. Compared with the dynamic 

model SEAS5, SICNetseason optimizes the SPB significantly. The detrended ACC of Sep. SIE predicted by SICNetseason in 

May/Apr. is improved by 7.7%/10.61% over the ACC predicted by the SEAS5. Compared with the anomaly persistence 340 

benchmark, the mentioned improvement is 41.02%/36.33%. Our deep learning model significantly reduces prediction errors 

of Sep.'s SIC on seasonal scales compared to SEAS5 and Persistence, a 20-30% reduction measured by MAE.  

Second, the spring SIT data is key in optimizing the predictions around the SPB, contributing to a more than 20% ACC 

enhancement in Sep.'s SIE at four to five months lead predictions. By including SIT data, the MAEs in the Beaufort Sea, the 

East Siberian Sea, and the Laptev Sea are reduced by more than 10% compared with those without SIT data.  345 

Third, our model achieves good generalization in predicting the Sep. SIEs of 2020-2023. When predicting the Sep.’s SIE in 

2020/2023 (second/sixth lowest record) in May, SICNetseason achieved a BACC of 82.25%/82.08%, about 12%/10% higher 

than Persistence and SEAS5. 

Fourth, our transformer-based SICNetseason is more skillful than the CNN-based U-Net (IceNet-inspired) model in seasonal 

sea ice predictions. Our SICNetseason model optimizes the ACC gap with an improvement of 31.8%/20.8% at May's predictions 350 

over the U-Net (IceNet-inspired). The SICNetseason exhibits a lower dependency on SIE trends and lower smooth results than 

the CNN-based model. This is due to the attention mechanism of the transformer operator extracting "personalized" global 

dependencies, while the CNN operator captures the most "common" local dependencies globally. The "common" local 

dependencies smooth the map and depend more on the trend than "personalized" ones. 
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Code and data availability 355 

The code, the exact input/output data, and the saved well-trained weights of the developed model SICNetseason are available at 

https://doi.org/10.5281/zenodo.14561423.  
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