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Abstract. The Arctic sea ice suffers dramatic retreating in summer and fall, which has far-reaching consequences on the 

global climate and commercial activities. Accurate seasonal sea ice predictions significantly infer climate change and 

planning commercial activities. However, seasonally predicting the summer sea ice encounters a significant obstacle known 10 

as the spring predictability barrier (SPB): predictions made later than the date of melt onset (roughly May) demonstrate good 

skill in predicting summer sea ice, while predictions made on or earlier than May exhibit considerably lower skill. This study 

develops a transformer-based deep-learning model, SICNetseason (V1.0), to predict the Arctic sea ice concentration on a 

seasonal scale. Including spring sea ice thickness (SIT) data in the model significantly improves the prediction skill at the 

SPB point. A 20-year (2000-2019) testing demonstrates that the detrended anomaly correlation coefficient (ACC) of Sep. sea 15 

ice extent (sea ice concentration > 15%) predicted by our model at May/Apr. is improved by 7.7%/10.61% over the ACC 

predicted by the state-of-the-art dynamic model SEAS5 from the European Centre for Medium-Range Weather Forecasts 

(ECMWF). Compared with the anomaly persistence benchmark, the mentioned improvement is 41.02%/36.33%. Our deep 

learning model significantly reduces prediction errors of Sep.'s sea ice concentration on seasonal scales compared to SEAS5 

and Persistence. The spring SIT data is key in optimizing the predictions around the SPB, contributing to a more than 20% 20 

ACC enhancement in Sep.'s SIE at four to five months lead predictions. Our model achieves good generalization in 

predicting the Sep. SIE of 2020-2023. 

1 Introduction  

Arctic sea ice plays a significant role in the global climate because it modulates the thermal and dynamic exchanges between 

the ocean and the atmosphere(Ding et al., 2017; Kapsch et al., 2013; Liu et al., 2021a; Olonscheck et al., 2019). In recent 25 

decades, global warming has resulted in a dramatic retreat in Arctic sea ice during the summer and fall (Cao et al., 2017; Shu 

et al., 2022). This decline triggers a system-positive feedback mechanism that causes the Arctic's surface air temperature to 

increase 2-4 times faster than the global mean state, known as the Arctic amplification (AA) (England et al., 2021; Pithan 

and Mauritsen, 2014; Screen et al., 2013; Screen and Simmonds, 2010). AA accelerates sea ice decline, strengthening 
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positive feedback (Jenkins and Dai, 2021; Kumar et al., 2010). If the situation is unchanged, climate models project that the 30 

Arctic will become ice-free during summer by the 2050s (Jahn et al., 2024; Kim et al., 2023). The dramatic Arctic sea ice 

loss has consequences for global climate (Francis and Vavrus, 2012) and commercial activities (Min et al., 2022). For 

example, it may weaken the stratospheric polar vortex in the winter, increasing extreme cold events in the Northern 

Hemisphere (Blackport et al., 2019; Cohen et al., 2014). Furthermore, the lower sea ice area during summer extends the 

navigability of the Arctic Passage to seasonal scales (Cao et al., 2022). 35 

Sea ice predictions are helpful for better understanding global climate change and support human activities in the Arctic 

(Lindsay et al., 2008; Merryfield et al., 2013). Therefore, sea ice prediction, commonly represented by parameters such as 

sea ice concentration (SIC) or sea ice extent (SIE, defined as the sum of grid cell area where SIC>15%), has always attracted 

substantial efforts (Guemas et al., 2016; Stroeve and Notz, 2015). Various prediction systems are proposed, such as 

numerical  (Chevallier et al., 2013; Liang et al., 2020; Mu et al., 2020; Wang et al., 2013; Yang et al., 2019; Zhang et al., 40 

2008, 2022), statistical (Gregory et al., 2020; Wang et al., 2016, 2022; Yuan et al., 2016), and deep learning models (Jun 

Kim et al., 2020; Ren et al., 2022; Ren and Li, 2023). However, accurate sea ice prediction for Arctic summer remains 

challenging, particularly at seasonal or even longer scales (Zampieri et al., 2018; Blanchard-Wrigglesworth et al., 2015, 

2023). One of the biggest challenges is the spring predictability barrier (SPB): predictions for summer sea ice made before or 

at the timing of melt onset show significantly lower skill than predictions made after the timing of melt onset (Bonan et al., 45 

2019; Bushuk et al., 2020; Day et al., 2014; Zeng et al., 2023). Studies show that SPB is evident in nearly all the fully 

coupled global climate models (GCMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), a crucial 

initiative providing climate projections to support essential climate research worldwide (Blanchard-Wrigglesworth et al., 

2011; Tietsche et al., 2014). So, optimizing the predictions around the SPB is an urgent task for accurate summer sea ice 

predictions. 50 

Experiments based on ensemble simulations reveal that the predictability of summer SIE is limited before spring due to the 

ice motion and growth in winter (Bushuk et al., 2020). However, the predictability increases rapidly after the melting processes 

in the spring (Bushuk et al., 2020). The satellite observations show that the spring sea ice thickness (SIT) correlates more with 

the summer SIE than the spring SIE (Landy et al., 2022). These findings indicate that the spring SIT may be a key factor in 

optimizing the predictions around the SPB (Bushuk et al., 2020). Recently, researchers have assimilated the CryoSat-2 observed 55 

SIT data, the first summer SIT observations, into the Geophysical Fluid Dynamics Laboratory (GFDL) ocean–sea ice model 

and found that the prediction skill of Sep.'s SIC is improved significantly when the model is initialized with SIT anomaly in Jul. 

and Aug. (Zhang et al., 2023). This study further proves that the summer SIT data contributes to Sep's sea ice prediction. 

However, as the SPB flag is May for most studies, whether the predictions around the SPB could be optimized by including SIT 

data remains largely unknown.  60 

Currently, numerical models are widely used in operationally sea ice predicting, but they are inflexible and have been limited 

by the SPB (Msadek et al., 2014; Sigmond et al., 2013). Statistical models are good at long-term prediction but cannot model 

complex nonlinear relationships and face SPB challenges. Deep learning models are more flexible than numerical models and 
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more potent than traditional statistical ones, and they have been successfully used in Earth prediction problems (Li et al., 2021; 

Reichstein et al., 2019). Researchers have successfully developed deep-learning models to predict polar sea ice state from 65 

synoptic to sub-seasonal scales (Andersson et al., 2021; Dong et al., 2024; Li et al., 2024; Mu et al., 2023; Palerme et al., 

2024; Ren et al., 2022; Ren and Li, 2023; Song et al., 2024; Wu et al., 2022; Yang et al., 2024.; Zhu et al., 2023), bringing 

the new potential to solve the SPB problem to improve the seasonal prediction skill from a data-driven perspective.  

This work develops a seasonal sea ice prediction model named SICNetseason (V1.0) to optimize the predictions around the 

SPB. SICNetseason is a transformer-based deep learning model with a physically constrained loss function based on SIC 70 

morphology. It takes historical SIC and SIT data as predictors and predicts the SIC of the following six months. The SIC data is 

the satellite-observed data from the National Snow and Ice Data Center (NSIDC) (Cavalieri et al., 1996). The SICNetseason 

model is trained on data from 1979-2019 and tested with data from 2000-2019 by a leave-one-year-out strategy. Data from the 

recent four years, 2020-2023, is employed to verify the model's generalization. Experiments demonstrate that our model 

significantly optimizes the SPB with a higher detrend correlation coefficient (ACC) compared with anomaly persistence 75 

(Persistence) and the state-of-the-art dynamic model, SEAS5, from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) (Johnson et al., 2019). Our model significantly reduces the errors in September. SIC/SIE in four to five months lead 

predictions compared to the two compared models. The spring SIT data is key in optimizing the predictions around the SPB. 

Our model generalized well in predicting the Sep. SIE of 2020-2023. Finally, we compare our SICNetseason model with an 

IceNet-inspired U-Net model  (Andersson et al., 2021). IceNet is a probability prediction model for Arctic SIE based on 80 

convolutional neural network (CNN) units and the U-Net architecture. It achieved state-of-the-art performance in predicting the 

probability of SIE for six months (Andersson et al., 2021). Therefore, we construct an IceNet-inspired U-Net model as a 

comparison model. 

2 Data 

1.1 Sea ice concentration data 85 

The SIC data of 1979-2023 are experiment data. The SIC is the satellite-observed data obtained from the NSIDC. It is a daily 

observation derived from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and the Defense 

Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I and SSMIS) (DiGirolamo et al., 2022). 

The projection of the SIC data is the north-polar stereographic with a 25 km spatial resolution. 

1.2 Sea ice thickness data 90 

The SIT data is the reanalysis SIT from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). PIOMAS 

is a numerical model with sea ice and ocean components, and it assimilates SIC and sea surface temperature (Zhang and 

Rothrock, 2003). PIOMAS SIT agrees well with in situ, airborne, and satellite measurements (Schweiger et al., 2011). It is 

daily data with an 18 km spatial resolution. Although the PIOMAS generally overestimates thin ice and underestimates thick 
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ice regions, it is widely adopted by Arctic studies (Collow et al., 2015; Kwok et al., 2020; Nakanowatari et al., 2022). The 95 

SIC and PIOMAS SIT data are converted to a Northern Polar Stereographic Grid with 80 km resolution. The temporal 

resolution is one month. 

3 Method 

3.1 Framework of SICNetseason 

The SICNetseason model is derived from a transformed-based U-Net deep learning model, SwinUNet (Cao Hu and Wang, 100 

2023)(Cao Hu and Wang, 2023). It accepts a three-dimensional sea ice data sequence and predicts a three-dimensional SIC 

sequence of the future, Fig. 1. The inputs to the model are monthly mean fields. The predicted target is the SIC of the next 

six months. For example, if we make predictions in May, the six months' predictions will cover the months from Jun. to Nov. 

 
Figure 1. Framework of model SICNetseason. (a) Input consists of SIT of the last three months, SIC of the last six months, SIC 105 
anomaly of the last three months, and SIC climatology of six target months, 96×96×18. (b) The encoder comprises four swin-
transformer blocks and three patch-merging operators. (c) The decoder contains three swin-transformer blocks and four patch-
expanding operators. (d) Concatenations connect the feature maps from the encoder and the decoder module. (e) A CNN layer 
with sigmoid activation transforms the feature map to the predicted SIC of six-month leads. (f) Model training procedure. The loss 
function combines the normalized integrated ice-edge error (NIIEE) and the mean square error (MSE). 110 
 

The input for SICNetseason is a 96×96×18 SIC and SIT sequence, composed of SIT of the last three months, SIC of the last 

six months, SIC anomaly of the last three months, and SIC climatology of the six target months (Fig. 1a). We determine the 

length of input factors by combining domain knowledge and manual tuning experiments. The primary domain knowledge we 

considered is the spring-fall reemergence mechanism. It occurs between pairs of months where the ice edge is in the same 115 

position, such as in May and December (Blanchard-Wrigglesworth et al., 2011; Day et al., 2014). The spring sea ice 
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anomaly is positively correlated with fall sea ice anomalies, and there is also a weaker reemergence between fall sea ice 

anomalies and anomalies the following spring (Bushuk et al., 2015). Therefore, we set the initial input length of the 

SIC/SIT/SIC anomaly as six months. We change the input length manually (from six to one in step one) to fine-tune the deep 

learning model to find the best-matched length for each factor. The SIC climatology of the target months provides an 120 

essential mean state of the prediction SIC. It represents the monthly cycle signal that IceNet has considered (Andersson et 

al., 2021).  

The input is fed into the encoder to capture spatiotemporal correlations among SIC/SIT data sequences at different levels 

to form multi-scale correlation maps. The encoder comprises four swin-transformer (Liu et al., 2021b) blocks and three patch 

merging operators (Fig. 1b). A swin-transformer block is a transformer unit integrated with shifted windows (Liu et al., 125 

2021b). A transformer operator captures global dependencies through an attention mechanism. The shifted windows help the 

transformer operator capture local dependencies like the convolution operator. Therefore, local and global spatiotemporal 

dependencies among sea ice sequences can be captured. The patch merging operator downscales the captured feature maps 

like the pooling layer in CNN models. The decoder upscales the feature maps through the patch expanding operator and 

swin-transformer blocks (Fig. 1c). The extracted correlation maps of the encoder and decoder are stacked to form fused 130 

spatiotemporal maps (Fig. 1d). A CNN layer transforms the decoded feature maps to the same shape as the target SIC 

sequence. Here, it is a 96×96×6 array (Fig. 1e). As the range of SIC is 0-1, we employ the sigmoid function to activate the 

last feature map to transform the predicted values to 0-1.  

During the training procedure, the loss is calculated between the predicted and ground values. Then, the model’s 

parameters are trained by minimizing the loss value literately. We will explain the loss function in the following section. 135 

3.2 Integrated ice-edge-constrained loss function 

For a deep-learning model, the loss function is crucial during the training procedure as it guides the optimization of the 

model’s parameters.  Here, the loss is the difference between the predicted values and the ground ones from NSIDC. 

Generally, the mean square error (MSE) is a fundamental loss function for prediction tasks. The MSE measures the mean 

state for all predicted values and cannot reflect the spatial differences between 2-dimensional SIC patterns. To address the 140 

issue, we proposed a normalized integrated ice-edge error (NIIEE) loss function that considers the spatial distribution of SIC 

to constrain the model's optimization (Fig. 1g).  

The NIIEE loss is based on the integrated ice-edge error (IIEE), a professional metric for sea ice predictions. The IIEE 

represents the error regions the prediction model overestimated and underestimated (Goessling et al., 2016). It measures the 

spatial similarity between two 2-dimension SIC patterns. Initially, the IIEE binaries the SIC by 15% to describe the SIE. For 145 

the SIC prediction here, we do not perform binarization. Let PSIC/GSIC represent the predicted/ground SIC; the IIEE is 

calculated by Eq. (1). We normalize IIEE to the range of 0-1 to form the NIIEE loss by Eq. (2). If the NIIEE loss is 0, the 

predicted SIC and the ground SIC will match in spatial and numerical. The fundamental MSE loss has been demonstrated to 

be adequate for prediction tasks. If the number of all predicted values is N, the MSE is calculated by Eq. (3). We combine 
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the NIIEE with MSE as the loss function of the SICNetseason. A constant scale factor, 0.01, is multiplied by NIIEE to balance 150 

its range with that of MSE, Eq. (4). 

 

IIEE = (PSIC∪GSIC) - (PSIC∩GSIC)                                                                                                                                           (1) 

NIIEE = IIEE
PSIC∪GSIC

= 1 −   PSIC∩GSIC
PSIC∪GSIC

                                                                                                                                           (2) 

MSE = ∑(���������)�

�
                                                                                                                                                    (3) 155 

Loss = 0.01×푁퐼퐼퐸퐸+MSE                                                                                                                                           (4) 

4 Experiments 

4.1 Model training 

The model is trained on a computer station with an NVIDIA Tesla V100 32-GB card. The training and test samples are 

constructed by step-by-step sliding. The testing period is 2000-2019. The leave-one-year-out strategy is adopted to 160 

train/evaluate our SICNetseason model. For example, if the testing year is 2000, the training set is from 1979-1999 and 2001-

2019. The leave-one-year-out strategy is widely adopted by statistical models to maximize the sample volume while 

obtaining a multi-year evaluation (Wang et al., 2022; Yuan et al., 2016). The validation set is split 20% from the training set. 

We set the batch size as eight and the initial learning rate as 0.0001. We employ the early stopping strategy to break the 

training procedure when the validation loss does not decrease. The model is trained three times to eliminate random errors. 165 

The testing set is run on three trained models, and the mean values are adopted as the final predictions. Data from the recent 

four years, 2020-2023, is employed to verify the model's generalization. Data from these four years did not participate in the 

training stage. They are fed into the trained models obtained by the leave-one-year-out strategy to get the predictions. The 

predictions are the mean values of the 20 trained models. 

4.2 Evaluation metrics 170 

The mean absolute error (MAE), Binary Accuracy (BACC), and detrend ACC are evaluation metrics. The MAE is for SIC, 

and the other two metrics are for SIE. To accurately calculate the metrics, we use the maximum observed monthly SIE since 

1979 to mask the predictions. Assuming the predicted/truth value of the ith grid is pi/gi, the number of validation grids is N. 

The MAE values are calculated by (5). The BACC of time t is obtained by using one to subtract the ratio of IIEE to the area 

of the activated grid cell region (the maximum observed SIE during 1979-2019) of t by equation (6). The detrend ACC of 175 

SIE is the anomaly correlation coefficient of two detrend SIE series. Each SIE series has 20 elements, from 2000 to 2019. 

MAE = ∑ |�����|�
�

�
                                                                                                                                                          (5) 

BACC = (1 - IIEE
area of the activated grid cell region

) × 100%                                                                                                            (6) 
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4.3 Model skill in seasonal predictions 

We compare the SICNetseason with the Persistence and the SEAS5 to validate our model's ability to optimize the predictions 180 

around the SPB. The Persistence is the anomaly persistence model. It assumes the anomaly constant in time and estimates 

the target SIC values by adding the current anomaly to the climate mean state at the target time, widely adopted as a 

benchmark for sea ice prediction (Wang et al., 2016). The SEAS5 is a new seasonal forecast system from the ECMWF that 

shows excellent sea ice prediction skills (Johnson et al., 2019). A BACC value of 100% indicates that the predicted SIE 

matches the observed SIE 100% spatially. The metrics are calculated for 20 testing years, 2000-2019, in a leave-one-year-out 185 

training/testing strategy. As the SPB occurred in the target summer month, we focus on the four summer months, June to 

September.  

Fig. 2 shows the detrended ACC and BACC of target months, Jun.-Sep., on six lead months' predictions. As shown in Figs. 

2(a) and (b), the predictions of Persistence and SEAS5 show an apparent SPB: the detrended ACC drops sharply when the 

predictions are made earlier than May, with a maximum ACC gap between two adjacent lead months marked by black lines. 190 

Taking September for example, the detrend ACC is 56.39% for Persistence when the prediction is made in Jun. (three 

months lead). Then, it decreases to 26.59% in May's prediction (four months lead), Fig. 2(a). For SEAS5, the ACC of Jun.'s 

prediction is 83.94%, then drops to 59.91% at May's prediction, forming a 24.03% ACC gap, Fig. 2(b). Although the 

SICNetseason's prediction also shows an SPB feature, the black line in Fig.2 (c), the ACC at May's prediction is improved to 

67.61%, and the ACC gap is reduced to 15.6%. Further, the ACC difference is calculated between SICNetseason and 195 

Persistence/SEAS5. Compared with Persistence, SICNetseason improves the ACC in most predictions, Fig. 2d. The ACC 

improvements along the SPB flag are more than 30% on average (the lead months right to the black line in Fig. 2d). 

Compared with the SEAS5, SICNetseason also improves the prediction skill of the SPB. When the target months are Jun. and 

Jul., SICNetseason shows a much higher prediction skill than SEAS5 in four to six months lead predictions, Fig. 2e. For the 

target month Sep., the SICNetseason improves the ACC by 7.70%/10.61% than SEAS5 when prediction is made in May/Apr. 200 

(four/five months lead in Fig. 2e). For the target month Aug./Sep., the SICNetseason shows lower ACCs than the SEAS5 when 

prediction is made on or before Mar. (five/six months lead for Aug./Sep.). However, for the predictions made adjacent to the 

SPB flag line, the SICNetseason achieves larger ACCs than the SEAS5 (values right to the black line in Fig. 2e). Therefore, the 

SICNetseason optimizes the SPBs significantly compared to the well-known numerical model. 

The BACC of SEAS5 also shows a similar SPB characteristic to the ACC. A sharp BACC drop occurred when the 205 

prediction was made on and before May, the black line in Fig. 2(g). The maximum BACC gaps of Persistence and 

SICNetseason occurred in the second lead month. However, the maximum BACC gap of SICNetseason is about 2%, much lower 

than the 10% gap of Persistence and SEAS5. Compared with the Persistence and SEAS5, the SICNetseason improves the 

BACC by more than 10% in predicting SIE of Aug. and Sep. three to six months lead, Figs. 2(i) and (j). 
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  210 
Figure 2. Detrend ACC of SIE, BACC of SIE, and their differences of Persistence, SEAS5, and SICNetseason from Jun. to Sep., 
averaged by 2000-2019. (a)-(c) Detrend ACC of three models. Two detrend SIE series (predicted and observed) calculate each 
value. (d)-(e) Detrend ACC differences between SICNetseason and Persistence/SEAS5. (f)-(h) BACC of three models. Each BACC is 
a mean value during 20 testing years. (i)-(j) BACC differences of SICNetseason and Persistence/SEAS5. The black line indicates the 
SPB: a maximum decrease between two adjacent lead months. The red signifies a high/improvement in ACC/BACC, and the blue 215 
signifies a decrease. 
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4.4 Performance in predicting SIC of Sep. 

As September's sea ice draws wider attention than other months, we calculate the MAE of SIC of Sep. predicted by three 

models. Fig. 3 shows the spatial MAE of Persistence, SEAS5, and SICNetseason on six lead months. The MAE in the three 

models is not much different for the first two lead months. When the lead month is one, the MAE of SEAS5 is slightly better 220 

than that of Persistence and SICNetseason, indicating that the SEAS5 model performs well in monthly predicting. This result 

may be due to the good atmospheric initialization in SEAS5, which beat many machine learning and dynamical models in 

sub-seasonal scale SIC prediction (Bushuk et al., 2024). However, when the lead month is longer than three, the SEAS5's 

MAEs are much more than 45% in the Pacific sector, mainly containing the Beaufort Sea, the Chukchi Sea, the East Siberian 

Sea, and the Laptev Sea, Figs. 3(j)-(l). The SICNetseason reduces the MAEs to 20-30% for most regions in the Pacific Arctic, 225 

Figs. 3(q)-(r). Compared with Persistence, SICNetseason also reduces MAEs by 5-10% in the mentioned four local seas, Figs. 

3(d)-(f). Therefore, the SICNetseason significantly reduces the SIC errors of Sep. in seasonal scale predictions (three to six 

months lead). 
 

 230 
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Figure 3. The MAEs of September's predictions are based on three compared models: each value is averaged by 20 testing years. 
(a)-(g) MAEs of Persistence. (h)-(m) MAEs of SEAS5. (n)-(s) MAEs of SICNetseason. 

4.5 SIT’s contributions to seasonal predictions 

We further conduct a comparison experiment to validate the role of SIT data in seasonal predictions based on SICNetseason. 

The model without SIT as an input is named SICNetseason_nosit. The other settings for SICNetseason_nosit are the same as those for 235 

SICNetseason. The detrended ACC and BACC are shown in Fig. 4. 

Without the SIT data as input, the model's prediction skill drops apparently in three to six months lead predictions, Fig. 

4(a). For the target month Sep., the detrend ACC is 76.41% when the prediction is made in Jun. (three months' lead). Then, 

the ACC drops to 26.43% at May's prediction (four months' lead). By including SIT data as input, the ACC of May's 

prediction is improved by 41.18% in model SICNetseason, Fig. 4(c). For the target month of August, the ACC improvement at 240 

May's prediction (three months' lead) by including SIT data is 42.44%. Therefore, the SIT data is important to improve the 

model's prediction skill on SPB. 

For target months Aug. and Sep., the BACCs of SICNetseason_nosit show an apparent drop in three to six months lead 

predictions. By including SIT data as the model's input, the BACC improvement is 0.95%/2.02% for the target month, 

Aug./Sep. at May's predictions, Fig. 4(f). Then, we calculate the MAE of the target month Sep., Fig. 5. The MAEs of the first 245 

two lead months are similar for the two models. When the lead month is larger than three, the MAEs of SICNetseason_nosit in 

the Beaufort Sea, the East Siberian Sea, and the Laptev Sea are 30-45%, with red circles in Figs. 5(d)-(f). By including SIT 

data, the MAEs in the three mentioned regions are reduced to 20-35% by SICNetseason, as shown in the red circles in Figs. 

5(j)-(l). Therefore, including SIT data reduces the errors of Sep.'s SIC by more than 10% in seasonal scale predictions. 
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Figure 4. Detrended ACC of SICNetseason_nosit (a) and SICNetseason (b). (c) ACC difference obtained by SICNetseason minus 
SICNetseason_nosit. BACC of SICNetseason_nosit (d) and SICNetseason (e). (f) BACC difference like (c).  The red signifies a 
high/improvement in ACC/BACC, and the blue signifies a decrease. 
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Figure 5. The MAEs of Sep.'s SIC predicted by SICNetseason and SICNetseason_nosit. Each value is averaged by 20 testing years. (a)-(g) 
MAE of SICNetseason_nosit. (h)-(m) MAE of SICNetseason. The red cycles marked the regions where the MAE is reduced typically by 
including SIT data. 260 

4.6 Generalization in predicting the SIEs of 2020-2023 

To verify our model's generalization in predicting the SIEs of recent years, we employed the twenty trained models to predict 

the SIE of the recent four years, 2020-2023. The twenty models are trained for 2000-2019, as mentioned in the earlier 

sections. The data from 2020-2023 is "blind" for the models. The mean values of the twenty models' predictions are the final 

predictions. As the temporal span of four years is too short for calculating ACC, we use the BACC as the metric (Fig. 6). 265 

Compared with Persistence and SEAS5, the SICNetseason achieves higher BACCs in predicting SIEs of Aug. and Sep. For the 

target month Sep., the BACC of SICNetseaon is 10% higher than those of the other two models in three to six months lead 

predictions.  

We draw the observed and predicted Sep.’s SIEs of 2020, 2022, and 2023 in Fig. 7. The Sep.’s SIE in 2020/2023 (4.0/4.37 

milkm2) is the second/sixth lowest record in the Arctic since 1979. The SIE in 2022 Sep. (4.90 milkm2) has been large since 270 

2015. We focus on the seasonal scale predictions with four to six lead months. Our SICNetseason model shows obvious 

advantages over the SEAS5 and Persistence. For predictions made on or before May, lead months of four to six, the BACCs 

of SICNetseason are much higher than those of Persistence and SEAS5, Fig. 7. At May's prediction, our model achieved a 

BACC of 82.25%/90.39%/82.08% in 2020/2022/2023, more than 10% higher over the Persistence and SEAS5, Fig. 

7(a)/(d)/(g). Therefore, the SICNetseason model achieves good generalization in predicting the SIEs of 2020-2023. 275 
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(a) (b) (c)

(%) (%)

Ta
rg

et
 m

on
th

BACC
(2020-23)

Lead months Lead months Lead months
 

Figure 6. BACC of 2020-2023. (a) Persistence, (b) SEAS5, and (c) SICNetseason. Each value is a mean value of the four testing years. 
The horizontal axis represents the six lead months, and the vertical axis represents the target months, Jun. to Sep. The red signifies 
a high/improvement in ACC/BACC, and the blue signifies a decrease. 
 280 
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Figure 7. Predicted Sep. SIEs and their BACCs of 2020/2022/2023 in four to six months lead by Persistence, SEAS5, and 
SICNetseason. (a)-(c) 2020, (d)-(f) 2022, and (g)-(i) 2023. 
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4.7 Comparison with the representative deep learning model 

We compare the SICNetseason against the representative deep learning sea ice prediction model, the U-Net (IceNet-inspired)  285 

model. The IceNet is a seasonal sea ice prediction model that performs state-of-the-art SIE probability prediction (Andersson 

et al., 2021). It is a CNN-based U-Net model for classification tasks, and it outputs the probability of three classes: open 

water (SIC≤15%), marginal ice (15% < SIC < 80%), and full ice (SIC≥80%). Differently, our SICNetseason outputs the 0-100% 

range SIC values. The IceNet's inputs consist of 50 monthly mean variables, including SIC, 11 climate variables, statistical 

SIC forecasts, and metadata. The original IceNet model has some unique designs in inputs and training strategy. As we focus 290 

on the differences in model structures, we construct a U-Net (IceNet-inspired) model for comparison. 

We set the inputs (including SIT data) of the U-Net (IceNet-inspired) to the same ones as SICNetseason. The loss function is 

also set as the NIIEE+MSE. We set the output layer of U-Net (IceNet-inspired) as a sigmoid activation function to output 

continuous values of 0-100%. We also change the number of CNN filters to make the number of training parameters in U-

Net (IceNet-inspired) equal to that in SICNetseason, about 140 million. The training and testing settings of U-Net (IceNet-295 

inspired) are the same as those of SICNetseason. The U-Net (IceNet-inspired) is trained using the same leave-one-year-out 

strategy as the SICNetseason. For example, if the testing year is 2019, the training set is data from 1979-2018, and the testing 

data is 2019. Then, the testing data moves to 2018; the remaining data (1979-2017, 2019) is the training set. For each 

training/testing pair, the model is trained three times to eliminate randomness, and the final prediction for testing data is the 

mean value of the three models.  300 
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Figure 8. Detrended ACC of IceNet (a) and SICNetseason (b). (c) ACC difference obtained by SICNetseason minus U-Net (IceNet-
inspired). BACC of U-Net (IceNet-inspired) (d) and SICNetseason (e). (f) BACC difference like (c).  The red signifies a 
high/improvement in ACC/BACC, and the blue signifies a decrease. 
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Figure 9. The predicted Sep. SIEs of U-Net (IceNet-inspired) and SICNetseason in six months' lead: (a) 2012, (b) 2017, (c) 2018, and 
(d) 2019.  
 

Fig. 8 shows the detrend ACC, BACC, and the differences between the two models. Compared with the U-Net (IceNet-310 

inspired) model, our SICNetseason model significantly improves the ACC at most predictions, Fig. 8(c). For the target month, 

Aug./Sep., the SPB feature is obvious in the U-Net (IceNet-inspired): the maximum ACC gap is about 40%/30% at 

predictions made in May and Jun., Fig. 8(a). Our SICNetseason model optimizes the ACC gap with an improvement of 

31.8%/20.8% at May's predictions, Fig. 8(c). The ACC improvements are also larger than 15% for predictions made before 

May. Therefore, compared with the state-of-the-art deep learning model U-Net (IceNet-inspired), our model achieves more 315 

skillful seasonal predictions by optimizing the predictions around the SPB. 

Unlike the ACC values, the BACC values of U-Net (IceNet-inspired) are more significant than those of SICNetseason on 

most predictions, Fig. 8(f). This result implies that U-Net (IceNet-inspired) depends more on SIE trends than SICNetseason. 

This difference can be attributed to the distinct fundamental units employed by the two models. The U-Net (IceNet-inspired) 

is a CNN-based model, and the weight-sharing mechanism of convolutional kernels forces the model to capture the most 320 

"common" local dependencies in spatial. Though representative, these "common" local dependencies tend to yield smoother 

model outputs. The SICNetseason is a transformer-based model. The attention mechanism of the transformer can capture 

global dependencies without weight-sharing. As a result, "personalized" global dependencies are extracted, and the output is 

not smooth like the output of a CNN-based model. The "common" local dependencies have more apparent trend features 

than the "personalized" global dependencies. Fig. 9 shows the Sep.'s SIEs predicted by U-Net (IceNet-inspired) and 325 

SICNetseason in the sixth-month lead. The SIEs of U-Net (IceNet-inspired) are smoother than those of SICNetseason. For 2012 

and 2017, the SIEs' locations of the two models are very similar. For the other two years, the SIEs of U-Net (IceNet-inspired) 

match the observed SIEs better than those of SICNetseason. However, the SIEs of U-Net (IceNet-inspired) are over-smoothed 

and fail to characterize some abnormal characteristics, such as the SIE in Sep. 2018, Fig. 9(c).  
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Therefore, our transformer-based SICNetseason is more skillful than the representative CNN-based model U-Net (IceNet-330 

inspired) in optimizing the predictions around the SPB. The SICNetseason exhibits a lower dependency on SIE trends and 

lower smooth results than the CNN-based model. 

5 Conclusion 

This study develops a deep-learning model, SICNetseason, to predict the Arctic SIC on a seasonal scale. The model is derived 

from a SwinUNet architecture. It inputs the historical SIC, SIT, and SIC climatology of target moths and predicts the SIC of 335 

the next six months. A spatially constrained loss function NIIEE is employed to train the model considering sea ice 

distribution.  We employ a 20-year (2000-2019) testing set to validate the model’s performance. The summer season, Jun. to 

Sep., is the target period. The detrend ACC, BACC, and MAE are metrics. Comparison experiments with Persistence and 

seasonal predictions of SEAS5 are made to validate our model’s performance. In particular, an ablation experiment is carried 

out to investigate the role of SIT data in optimizing the predictions around the SPB. A generalization experiment with data 340 

from the last four years, 2020-2023, is carried out—the seasonal predictions of Sep. SIEs are analyzed. Finally, we discuss 

the advantages and disadvantages of our model and the typical CNN-based model, U-Net (IceNet-inspired). Given the 

mentioned efforts, our study draws the following conclusions.  

First, our deep learning model, SICNetseason, is skillful in predicting the Arctic sea ice seasonally. Compared with the 

dynamic model SEAS5, SICNetseason optimizes the SPB significantly. The detrended ACC of Sep. SIE predicted by 345 

SICNetseason in May/Apr. is improved by 7.7%/10.61% over the ACC predicted by the SEAS5. Compared with the anomaly 

persistence benchmark, the mentioned improvement is 41.02%/36.33%. Our deep learning model significantly reduces 

prediction errors of Sep.'s SIC on seasonal scales compared to SEAS5 and Persistence, a 20-30% reduction measured by 

MAE.  

Second, the spring SIT data is key in optimizing the predictions around the SPB, contributing to a more than 20% ACC 350 

enhancement in Sep.'s SIE at four to five months lead predictions. By including SIT data, the MAEs in the Beaufort Sea, the 

East Siberian Sea, and the Laptev Sea are reduced by more than 10% compared with those without SIT data.  

Third, our model achieves good generalization in predicting the Sep. SIEs of 2020-2023. When predicting the Sep.’s SIE in 

2020/2023 (second/sixth lowest record) in May, SICNetseason achieved a BACC of 82.25%/82.08%, about 12%/10% higher 

than Persistence and SEAS5. 355 

Fourth, our transformer-based SICNetseason is more skillful than the CNN-based U-Net (IceNet-inspired) model in seasonal 

sea ice predictions. Our SICNetseason model optimizes the ACC gap with an improvement of 31.8%/20.8% at May's 

predictions over the U-Net (IceNet-inspired). The SICNetseason exhibits a lower dependency on SIE trends and lower smooth 

results than the CNN-based model. This is due to the attention mechanism of the transformer operator extracting 

"personalized" global dependencies, while the CNN operator captures the most "common" local dependencies globally. The 360 

"common" local dependencies smooth the map and depend more on the trend than "personalized" ones. 
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Code and data availability 

The code, the exact input/output data, and the saved well-trained weights of the developed model SICNetseason are available at 

https://doi.org/10.5281/zenodo.14561423.  
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