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Abstract. The Arctic sea ice is sufferingsuffers dramatic retreating in summer and fall, which has far-reaching consequences 

on the global climate and commercial activities. Accurate seasonal sea ice predictions are significant in inferringsignificantly 

infer climate change and planning commercial activities. However, seasonally predicting the summer sea ice encounters a 10 

significant obstacle known as the spring predictability barrier (SPB): predictions made later than the date of melt onset 

(roughly May)predictions made later than May demonstrate good skill in predicting summer sea ice, while predictions made 

on or earlier than May exhibit considerably lower skill. This study develops a transformer-based deep-learning model, 

SICNetseason (V1.0), to predict the Arctic sea ice concentration on a seasonal scale. Including spring sea ice thickness (SIT) 

data in the model significantly improves the prediction skill at the SPB point. A 20-year (2000-2019) testing demonstrates 15 

that the detrended anomaly correlation coefficient (ACC) of Sep. sea ice extent (sea ice concentration > 15%) predicted by 

our model at May/Apr. is improved by 7.7%/10.61% over the ACC predicted by the state-of-the-art dynamic model SEAS5 

from the European Centre for Medium-Range Weather Forecasts (ECMWF). Compared with the anomaly persistence 

benchmark, the mentioned improvement is 41.02%/36.33%. Our deep learning model significantly reduces prediction errors 

of Sep.'s sea ice concentration on seasonal scales compared to SEAS5 ECMWF and Persistence. The spring SIT data is key 20 

in optimizing the SPBoptimizing the predictions around the SPB, contributing to a more than 20% ACC enhancement in 

Sep.'s SIE at four to five months lead predictions. Our model achieves good generalization in predicting the Sep. SIE of 

2020-2023. 

1 Introduction  

Arctic sea ice plays a significant role in the global climate because it modulates the thermal and dynamic exchanges between 25 

the ocean and the atmosphere(Ding et al., 2017; Kapsch et al., 2013; Liu et al., 2021a; Olonscheck et al., 2019). In recent 

decades, global warming has resulted in a dramatic retreat in Arctic sea ice during the summer and fall (Cao et al., 2017; Shu 

et al., 2022). This decline triggers a system-positive feedback mechanism that causes the Arctic's surface air temperature to 

increase 2-4 times faster than the global mean state, known as the Arctic amplification (AA) (England et al., 2021; Pithan 
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and Mauritsen, 2014; Screen et al., 2013; Screen and Simmonds, 2010). AA accelerates sea ice decline, strengthening 30 

positive feedback (Jenkins and Dai, 2021; Kumar et al., 2010). If the situation is unchanged, climate models project that the 

Arctic will become ice-free during summer by the 2050s (Jahn et al., 2024; Kim et al., 2023Andersson et al., 2021). The 

dramatic Arctic sea ice loss has led to consequences for global climate (Francis and Vavrus, 2012) and commercial activities 

(Min et al., 2022). For example, it it may weaken the stratospheric polar vortexweakens the stratospheric polar vortex in the 

winter, increasing extreme cold events in the Northern Hemisphere (Blackport et al., 2019; Cohen et al., 2014). Furthermore, 35 

the lower sea ice area during summer extends the navigability of the Arctic Passage to seasonal scales (Cao et al., 2022). 

Sea ice predictions are helpful for better understanding global climate change and support human activities in the Arctic 

(Lindsay et al., 2008; Merryfield et al., 2013). Therefore, sea ice prediction, commonly represented by parameters such as 

sea ice concentration (SIC) or sea ice extent (SIE, defined as the sum of grid cell area where SIC>15%), has always attracted 

substantial efforts (Guemas et al., 2016; Stroeve and Notz, 2015). Various prediction systems are proposed, such as 40 

numerical  (Chevallier et al., 2013; Liang et al., 2020; Mu et al., 2020; Wang et al., 2013; Yang et al., 2019; Zhang et al., 

2008, 2022), statistical (Gregory et al., 2020; Wang et al., 2016, 2022; Yuan et al., 2016), and deep learning models (Jun 

Kim et al., 2020; Ren et al., 2022; Ren and Li, 2023). However, accurate sea ice prediction for Arctic summer remains 

challenging, particularly at seasonal or even longer scales (Zampieri et al., 2018; Blanchard-Wrigglesworth et al., 2015, 

2023). One of the biggest challenges is the spring predictability barrier (SPB): predictions for summer sea ice made before or 45 

at the timing of melt onset before or on May show significantly lower skill than predictions made after the timing of melt 

onset May (Bonan et al., 2019; Bushuk et al., 2020; Day et al., 2014; Zeng et al., 2023). The Sea Ice Prediction Network 

(SIPN) for the Sep.' SIE in the Arctic showed that individual dynamical and statistical predictions could not beat the anomaly 

persistence benchmark when predictions are made from early June to early August, with a root mean squared error (RMSE) 

of 0.5–0.7 million km2  (Blanchard-Wrigglesworth et al., 2015, 2023). Studies show that SPB is evident in nearly all the 50 

fully coupled global climate models (GCMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), a crucial 

initiative providing climate projections to support essential climate research worldwide (Blanchard-Wrigglesworth et al., 

2011; Tietsche et al., 2014). So, optimizing the SPBoptimizing the predictions around the SPB is an urgent task for accurate 

summer sea ice predictions. 

Experiments based on ensemble simulations reveal that the predictability of summer SIE is limited before spring due to the 55 

ice motion and growth in winter (Bushuk et al., 2020). However, the predictability increases rapidly after the melting processes 

in the  spring (Bushuk et al., 2020). The satellite observations show that the spring sea ice thickness (SIT) correlates more with 

the summer SIE than the spring SIE (Landy et al., 2022). These findings indicate that the spring SIT may be a key factor in 

optimizing the SPBoptimizing the predictions around the SPB (Bushuk et al., 2020, n.d.). Recently, researchers have 

assimilated the CryoSat-2 observed SIT data, the first summer SIT observations, into the Geophysical Fluid Dynamics 60 

Laboratory (GFDL) ocean–sea ice model and found that the prediction skill of Sep.'s SIC is improved significantly when the 

model is initialized with SIT anomaly in Jul. and Aug. (Zhang et al., 2023). This study further proves that the summer SIT data 

contributes to Sep's sea ice prediction. However, as the SPB flag is May for most studies, whether the predictions around the 
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SPB could be optimized or even overcome by including SIT data remains largely unknown.  

Currently, numerical models account for the mainstreamare widely used in operationally  sea ice predictionng, but they are 65 

inflexible and have been limited by the SPB (Msadek et al., 2014; Sigmond et al., 2013). Statistical models are good at long-

term prediction but cannot model complex nonlinear relationships and face SPB challenges. Deep learning models are more 

flexible than numerical models and more powerful potent than traditional statistical ones, and they have been successfully used 

in Earth prediction problems (Li et al., 2021; Reichstein et al., 2019). Researchers have successfully developed deep-learning 

models to predict polar sea ice state from synoptic to sub-seasonal scales (Andersson et al., 2021; Dong et al., 2024; Li et al., 70 

2024; Mu et al., 2023; Palerme et al., 2024; Ren et al., 2022; Ren and Li, 2023; Song et al., 2024; Wu et al., 2022; Yang et 

al., n.d2024.; Zhu et al., 2023), bringing the new potential to solve the SPB problem to improve the seasonal prediction skill 

from a data-driven perspective.  

This work develops a seasonal sea ice prediction model named SICNetseason (V1.0) to optimize the SPBoptimize the 

predictions around the SPB. SICNetseason is a transformer-based deep learning model with a physically constrained loss function 75 

based on SIC morphology. It takes historical SIC and SIT data as predictors and predicts the SIC of the following six months. 

The SIC data is the satellite-observed data from the National Snow and Ice Data Center (NSIDC) (Cavalieri et al., 1996). The 

SICNetseason model is trained on data from 1979-2019 and tested with data from 2000-2019 by a leave-one-year-out strategy. 

Data from the recent four years, 2020-2023, is employed to verify the model's generalization. Experiments demonstrate that our 

model significantly optimizes the SPB with a higher detrend correlation coefficient (ACC) compared with anomaly persistence 80 

(Persistence) and the state-of-the-art dynamic predictions model, SEAS5, from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) (Johnson et al., 2019). Our model significantly reduces the errors of Sepin September. SIC/SIE in 

four to five months lead predictions than compared to the two compared models. The spring SIT data is key in optimizing the 

SPBoptimizing the predictions around the SPB. Our model generalized well in predicting the Sep. SIE of 2020-2023. Finally, 

we compare our SICNetseason model with thean IceNet-inspired  published deep learningU-Net model IceNet Finally, a 85 

comparison between our and the published deep learning model IceNet (Andersson et al., 2021) is discussed. IceNet is a 

probability prediction model for Arctic SIE based on convolutional neural network (CNN) units and the U-Net architecture. It 

achieved state-of-the-art performance in predicting the probability of SIE for six months (Andersson et al., 2021). Therefore, 

Therefore, wwe construct an IceNet-inspired U-Net model chose IceNet as a comparison model.The IceNet is a probability 

prediction model for Arctic SIE based on convolutional neural networks (CNN) units and the U-Net architecture. It achieved the 90 

state-of-the-art performance in predicting the SIE of six months (Andersson et al., 2021). Therefore, we choose the IceNet as a 

comparison model.  
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2 Data 

1.1 Sea ice concentration data 

The SIC data of 1979-2023 are experiment data. The SIC is the satellite-observed data obtained from the NSIDC. It is a daily 95 

observation derived from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and the Defense 

Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I and SSMIS) (DiGirolamoCavalieri et 

al., 19962022). The projection of the SIC data is the north-polar stereographic with a 25 km spatial resolution. 

1.2 Sea ice thickness data 

The SIT data is the reanalysis SIT from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). PIOMAS 100 

is a numerical model with sea ice and ocean components, and it assimilates SIC and sea surface temperature (Zhang and 

Rothrock, 2003). PIOMAS SIT agrees well with in situ, airborne, and satellite measurements (Schweiger et al., 2011). It is 

daily data with an 18 km spatial resolution. Although the PIOMAS generally overestimates thin ice and underestimates thick 

ice regions, it and is widely adopted by Arctic studies (Collow et al., 2015; Kwok et al., 2020; Nakanowatari et al., 2022). 

The SIC and PIOMAS SIT data are converted to a Northern Polar Stereographic Grid with 80 km resolution. The temporal 105 

resolution is one month. 

3 Method 

3.1 Framework of SICNetseason 

The SICNetseason model is derived from a transformed-based U-Net deep learning model, SwinUNet (Cao Hu and Wang, 

2023)(Cao Hu and Wang, 2023). It accepts a three-dimensional sea ice data sequence and predicts a three-dimensional SIC 110 

sequence of the future, Fig. 1. The inputs to the model are monthly mean fields. The predicted target is the SIC of the next 

six months. For example, if we make predictions in May, the six months' predictions will cover the full summer and fall,the 

months from Jun. to Nov. 
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Figure 1. Framework of model SICNetseason. (a) Input consists of SIT of the last three months, SIC of the last six months, SIC 115 
anomaly of the last three months, and SIC climatology of six target months, 96×96×18. (b) The encoder comprises four swin-
transformer blocks and three patch-merging operators. (c) The decoder contains three swin-transformer blocks and four patch-
expanding operators. (d) Concatenations connect the feature maps from the encoder and the decoder module. (e) A CNN layer 
with sigmoid activation transforms the feature map to the predicted SIC of six-month leads. (f) Model training procedure. The loss 
function is combined withcombines the normalized integrated ice-edge error (NIIEE) and the mean square error (MSE). 120 
 

The input for SICNetseason is a 96×96×18 SIC and SIT sequence, composed of SIT of the last last three months, SIC of the 

last last six months, SIC anomaly of the last last three months, and SIC climatology of the six target months (Fig. 1a). The 

lengths of the input factors are determined by lots of experiments. We determine the length of input factors by combining 

domain knowledge and manual tuning experiments. The primary domain knowledge we considered is the spring-fall 125 

reemergence mechanism. It occurs between pairs of months where the ice edge is in the same position, such as in May and 

December (Blanchard-Wrigglesworth et al., 2011; Day et al., 2014). The spring sea ice anomaly is positively correlated with 

fall sea ice anomalies, and there is also a weaker reemergence between fall sea ice anomalies and anomalies the following 

spring (Bushuk et al., 2015). Therefore, we set the initial input length of the SIC/SIT/SIC anomaly as six months. We change 

the input length manually (from six to one in step one) to fine-tune the deep learning model to find the best-matched length 130 

for each factor. The SIC climatology of the target months provides an essential mean state of the prediction SIC. It represents 

the monthly cycle signal that IceNet has considered (Andersson et al., 2021).  

The input is fed into the encoder to capture spatiotemporal correlations among SIC/SIT data sequences at different levels 

to form multi-scale correlation maps. The encoder comprises four swin-transformer (Liu et al., 2021b) blocks and three patch 

merging operators (Fig. 1b). A swin-transformer block is a transformer unit integrated with shifted windows (Liu et al., 135 

2021b). A transformer operator captures global dependencies through an attention mechanism. The shifted windows help the 

transformer operator capture local dependencies like the convolution operator. Therefore, local and global spatiotemporal 
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dependencies among sea ice sequences can be captured. The patch merging operator downscales the captured feature maps 

like the pooling layer in CNN models. The decoder upscales the feature maps through the patch expanding operator and 

swin-transformer blocks (Fig. 1c). The extracted correlation maps of the encoder and decoder are stacked to form fused 140 

spatiotemporal maps (Fig. 1d). A CNN layer transforms the decoded feature maps to the same shape as the target SIC 

sequence. Here, it is a 96×96×6 array (Fig. 1e). As the range of SIC is 0-1, we employ the sigmoid function to activate the 

last feature map to transform the predicted values to 0-1.  

During the training procedure, the loss is calculated between the predicted and ground values. Then, the model’s 

parameters are trained by minimizing the loss value literately. We will explain the loss function in the following section. 145 

3.2 Integrated ice-edge-constrained loss function 

For a deep-learning model, the loss function is crucial during the training procedure as it guides the optimization of the 

model’s parameters.  Here, the loss is the difference between the predicted values and the ground ones from NSIDC. 

Generally, the mean square error (MSE) is a basica fundamental loss function for prediction tasks. The MSE measures the 

mean state for all predicted values and cannot reflect the spatial differences between 2-dimensional SIC patterns. To address 150 

the issue, we proposed a normalized integrated ice-edge error (NIIEE) loss function that considers the spatial distribution of 

SIC to constrain the model's optimization (Fig. 1g).  

The NIIEE loss is based on the integrated ice-edge error (IIEE), a common professional metric for sea ice predictions. The 

IIEE represents the error regions that the prediction model overestimated and underestimated (Goessling et al., 2016). It 

measures the spatial similarity between two 2-dimension SIC patterns. Initially, the IIEE binaries the SIC by 15% to describe 155 

the SIE. For the SIC prediction here, we do not perform binarization. Let PSIC/GSIC represent the predicted/ground SIC; the 

IIEE is calculated by Eq. (1). We normalize IIEE to the range of 0-1 to form the NIIEE loss by Eq. (2). If the NIIEE loss is 0, 

the predicted SIC and the ground SIC will match in spatial and numerical. The fundamental MSE loss has been demonstrated 

to be effective adequate for prediction tasks. If the number of all predicted values is N, the MSE is calculated by Eq. (3). We 

combine the NIIEE with MSE as the loss function of the SICNetseason. A constant scale factor, 0.01, is multiplied by NIIEE to 160 

balance its range with that of MSE, Eq. (4). 

 

IIEE = (PSIC∪GSIC) - (PSIC∩GSIC)                                                                                                                                           (1) 

NIIEE = IIEE
PSIC∪GSIC

= 1 −   PSIC∩GSIC
PSIC∪GSIC

                                                                                                                                           (2) 

MSE = ∑(���������)�

�
                                                                                                                                                    (3) 165 

Loss = 0.01×푁퐼퐼퐸퐸+MSE                                                                                                                                           (4) 
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4 Experiments 

4.1 Model training 

The model is trained on a computer station with an NVIDIA Tesla V100 32-GB card. The training and test samples are 

constructed by step-by-step sliding. The testing period is 2000-2019. The leave-one-year-out strategy is adopted to 170 

train/evaluate our SICNetseason model. For example, if the testing year is 2000, the training set is from 1979-1999 and 2001-

2019. The leave-one-year-out strategy is widely adopted by statistical models to maximize the sample volume while 

obtaining a multi-year evaluation (Wang et al., 2022; Yuan et al., 2016). The validation set is split 20% from the training set. 

We set the batch size as eight and the initial learning rate as 0.0001. We employ the early stopping strategy to break the 

training procedure when the validation loss does not decrease. The model is trained three times to eliminate random errors. 175 

The testing set is run on three trained models, and the mean values are adopted as the final predictions. Data from the recent 

four years, 2020-2023, is employed to verify the model's generalization. Data from these four years did not participate in the 

training stage. They are fed into the trained models obtained by the leave-one-year-out strategy to get the predictions. The 

predictions are the mean values of the 20 trained models. 

4.2 Evaluation metrics 180 

The mean absolute error (MAE), Binary Accuracy (BACC), and detrend ACC are evaluation metrics. The MAE is for SIC, 

and the other two metrics are for SIE. To accurately calculate the metrics, we use the maximum observed monthly SIE since 

1979 to mask the predictions. Assuming the predicted/truth value of the ith grid is pi/gi, the number of validation grids is N. 

The MAE values are calculated by (5). The BACC of time t is obtained by using one to subtract the ratio of IIEE to the area 

of the activated grid cell region (the maximum observed SIE during 1979-2019) of t by equation (6). The detrend ACC of 185 

SIE is the anomaly correlation coefficient of two detrend SIE series. Each SIE series has 20 elements, from 2000 to 2019. 

MAE = ∑ |�����|�
�

�
                                                                                                                                                          (5) 

BACC = (1 - IIEE
area of the activated grid cell region

) × 100%                                                                                                            (6) 

4.3 Model skill in seasonal predictions 

We compare the SICNetseason with the Persistence and the ECMWF dynamical model SEAS5 to validate our model's ability 190 

to optimize the SPBoptimize the predictions around the SPB. Blanchard-WrigglesworthThe Persistence model estimates the 

target SIC values by adding the current anomaly to the climate mean state at the target time, widely adopted as a benchmark 

for sea ice prediction (Wang et al., 2016)(Wang et al., 2016Blanchard-Wrigglesworth et al., 2023). The Persistence is the 

anomaly persistence model. It assumes the anomaly constant in time and estimates the target SIC values by adding the 

current anomaly to the climate mean state at the target time, widely adopted as a benchmark for sea ice prediction (Wang et 195 

al., 2016). The SEAS5 is a new seasonal forecast system from the ECMWF that shows excellent sea ice prediction skills 
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(Johnson et al., 2019). A BACC value of 100% indicates that the predicted SIE matches the observed SIE 100% in 

spatialspatially. The metrics are calculated for 20 testing years, 2000-2019, in a leave-one-year-out training/testing strategy. 

As the SPB occurred in the target summer month, we focus on the four summer months, June to September.  

Fig. 2 shows the detrended ACC and BACC of target months, Jun.-Sep., on six lead months' predictions. As shown in Figs. 200 

2(a) and (b), the predictions of Persistence and SEAS5 ECMWF show an apparent SPB: the detrended ACC drops sharply 

when the predictions are made earlier than May, with a maximum ACC gap between two adjacent lead months marked by 

black lines. Taking September for example, the detrend ACC is 56.39% for Persistence when the prediction is made in Jun. 

(three months lead). Then, it decreases to 26.59% in May's prediction (four months lead), Fig. 2(a). For ECMWFSEAS5, the 

ACC of Jun.'s prediction is 83.94%, then drops to 59.91% at May's prediction, forming a 24.03% ACC gap, Fig. 2(b). 205 

Although the SICNetseason's prediction also shows an SPB feature, the black line in Fig.2 (c), the ACC at May's prediction is 

improved to 67.61%, and the ACC gap is reduced to 15.6%. Further, the ACC difference is calculated between SICNetseason 

and Persistence/ECMWFSEAS5. Compared with Persistence, SICNetseason improves the ACC in most predictions, Fig. 2d. 

The ACC improvements along the SPB flag are more than 30% on average (the lead months right to the black line in Fig. 

2d). Compared with the ECMWFSEAS5, SICNetseason also improves the prediction skill of the SPB. When the target months 210 

are Jun. and Jul., SICNetseason shows a much higher prediction skill than ECMWFSEAS5 in four to six months lead 

predictions, Fig. 2e. For the target month Sep., the SICNetseason improves the ACC by 7.70%/10.61% than ECMWFSEAS5 

when prediction is made in May/Apr. (four/five months lead in Fig. 2e). For the target month Aug./Sep., the SICNetseason 

shows lower ACCs than the ECMWFSEAS5 when prediction is made on or before Mar. (five/six months lead for Aug./Sep.). 

However, for the predictions made adjacent to the SPB flag line, the SICNetseason achieves larger ACCs than the 215 

ECMWFSEAS5 (values right to the black line in Fig. 2e). Therefore, the SICNetseason optimizes the SPBs significantly 

compared to the well-known numerical model. 

The BACC of ECMWFSEAS5 also shows a similar SPB characteristic to the ACC. A sharp BACC drop occurred when 

the prediction was made on and before May, the black line in Fig. 2(g). The maximum BACC gaps of Persistence and 

SICNetseason occurred in the second lead month. However, the maximum BACC gap of SICNetseason is about 2%, much lower 220 

than the 10% gap of Persistence and ECMWFSEAS5. Compared with the Persistence and ECMWFSEAS5, the SICNetseason 

improves the BACC by more than 10% in predicting SIE of Aug. and Sep. three to six months lead, Figs. 2(i) and (j). 
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Figure 2. Detrend ACC of SIE, BACC of SIE, and their differences of Persistence, ECMWFSEAS5, and SICNetseason from Jun. to 
Sep., averaged by 2000-2019. (a)-(c) Detrend ACC of three models. Two detrend SIE series (predicted and observed) calculate 
each value. (d)-(e) Detrend ACC differences between SICNetseason and Persistence/ECMWFSEAS5. (f)-(h) BACC of three models. 
Each BACC is a mean value during 20 testing years. (i)-(j) BACC differences of SICNetseason and Persistence/ECMWFSEAS5. The 230 
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black line indicates the SPB: a maximum decrease between two adjacent lead months. The red signifies a high/improvement in 
ACC/BACC, and the blue signifies a decrease. 

4.4 Performance in predicting SIC of Sep. 

As September's sea ice draws wider attention than other months, we calculate the MAE of SIC of Sep. predicted by three 

models. Fig. 3 shows the spatial MAE of Persistence, ECMWFSEAS5, and SICNetseason on six lead months. The MAE in the 235 

three models is not much different for the first two lead months. When the lead month is one, the MAE of ECMWFSEAS5 is 

slightly better than that of Persistence and SICNetseason, indicating that the dynamic SEAS5 model performs well in monthly 

predicting. This result may be due to the good atmospheric initialization in SEAS5, which beat many machine learning and 

dynamical models in sub-seasonal scale SIC prediction (Bushuk et al., 2024). However, when the lead month is longer than 

three, the ECMWFSEAS5's MAEs are much more than 45% in the Pacific sector, mainly containing the Beaufort Sea, the 240 

Chukchi Sea, the East Siberian Sea, and the Laptev Sea, Figs. 3(j)-(l). The SICNetseason reduces the MAEs to 20-30% for 

most regions in the Pacific Arctic, Figs. 3(q)-(r). Compared with Persistence, SICNetseason also reduces MAEs by 5-10% in 

the mentioned four local seas, Figs. 3(d)-(f). Therefore, the SICNetseason significantly reduces the SIC errors of Sep. in 

seasonal scale predictions (three to six months lead). 
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Figure 3. The MAEs of September's predictions are based on three compared models: each value is averaged by 20 testing years. 
(a)-(g) MAEs of Persistence. (h)-(m) MAEs of ECMWFSEAS5. (n)-(s) MAEs of SICNetseason. 

4.5 SIT’s contributions to seasonal predictions 

We further conduct a comparison experiment to validate the role of SIT data in seasonal predictions based on SICNetseason. 250 

The model without SIT as an input is named SICNetseason_nosit. The other settings for SICNetseason_nosit are the same as those for 

SICNetseason. The detrended ACC and BACC are shown in Fig. 4. 

Without the SIT data as input, the model's prediction skill drops apparently in three to six months lead predictions, Fig. 

4(a). For the target month Sep., the detrend ACC is 76.41% when the prediction is made in Jun. (three months' lead). Then, 

the ACC drops to 26.43% at May's prediction (four months' lead). By including SIT data as input, the ACC of May's 255 

prediction is improved by 41.18% in model SICNetseason, Fig. 4(c). For the target month of August, the ACC improvement at 

May's prediction (three months' lead) by including SIT data is 42.44%. Therefore, the SIT data is important to improve the 

model's prediction skill on SPB. 
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For target months Aug. and Sep., the BACCs of SICNetseason_nosit show an apparent drop in three to six months lead 

predictions. By including SIT data as the model's input, the BACC improvement is 0.95%/2.02% for the target month, 260 

Aug./Sep. at May's predictions, Fig. 4(f). Then, we calculate the MAE of the target month Sep., Fig. 5. The MAEs of the first 

two lead months are similar for the two models. When the lead month is larger than three, the MAEs of SICNetseason_nosit in 

the Beaufort Sea, the East Siberian Sea, and the Laptev Sea are 30-45%, with red circles cycles in Figs. 5(d)-(f). By 

including SIT data, the MAEs in the mentioned three regions are reduced to 20-35% by SICNetseason, three mentioned regions 

are reduced to 20-35% by SICNetseason, as shown in the red circles cycles in Figs. 5(j)-(l). Therefore, including SIT data 265 

reduces the errors of Sep.'s SIC by more than 10% in seasonal scale predictions. 
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Figure 4. Detrended ACC of SICNetseason_nosit (a) and SICNetseason (b). (c) ACC difference obtained by SICNetseason minus 
SICNetseason_nosit. BACC of SICNetseason_nosit (d) and SICNetseason (e). (f) BACC difference like (c).  The red signifies a 270 
high/improvement in ACC/BACC, and the blue signifies a decrease. 
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 275 
Figure 5. The MAEs of Sep.'s SIC predicted by SICNetseason and SICNetseason_nosit. Each value is averaged by 20 testing years. (a)-(g) 
MAE of SICNetseason_nosit. (h)-(m) MAE of SICNetseason. The red cycles marked the regions where the MAE is reduced typically by 
including SIT data. 
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4.6 Generalization in predicting the SIEs of 2020-2023 

To verify our model's generalization in predicting the SIEs of recent years, we employed the twenty trained models to predict 280 

the SIE of the recent four years, 2020-2023. The twenty models are trained for 2000-2019, as mentioned in the earlier 

sections. The data from 2020-2023 is "blind" for the models. The mean values of the twenty models' predictions are the final 

predictions. As the temporal span of four years is too short for calculating ACC, we use the BACC as the metric (Fig. 6). 

Compared with Persistence and ECMWFSEAS5, the SICNetseason achieves higher BACCs in predicting SIEs of Aug. and 

Sep. For the target month Sep., the BACC of SICNetseaon is 10% higher than those of the other two models in three to six 285 

months lead predictions.  

We draw the observed and predicted Sep.’s SIEs of 2020-2023, 2022, and 2023 in Fig. 7. The Sep.’s SIE in 2020/2023 

(4.0/4.37 milkm2) is the second/sixth lowest record in the Arctic since 1979. The SIE in 2022 Sep. (4.90 milkm2) has been 

large since 2015. We focus on the seasonal scale predictions with four to six lead months. The ECMWF model achieves 

good accuracy when the lead month is one, with the largest BACC values in 2020-2022, Fig. 7(a)/(g)/(m). This result proves 290 

that the dynamic model is good at short-term predictions. However, for the lead month longer than two, oOur SICNetseason 

data-driven model shows obvious advantages over the ECMWFSEAS5 and Persistence. For predictions made on or before 

May, lead months of four to six, the BACCs of SICNetseason are much higher than those of Persistence and ECMWFSEAS5, 

Fig. 7. The SIE in 2020/2023 is the second/sixth lowest record in the Arctic since 1979. At May's prediction, our model 

achieved a BACC of 82.25%/90.39%/82.08% in 2020/2022/2023, about 12%/10%more than 10% higher than over the 295 

Persistence and ECMWFSEAS5, Fig. 7(a)/(d)/(vg). Therefore, the SICNetseason model achieves good generalization ability in 

predicting the SIEs of 2020-2023. 

带格式的: 字体: 默( 认) Times New Roman, 中( 文) Times New
Roman

带格式的: 字体: 默( 认) Times New Roman, 中( 文) Times New
Roman

带格式的: 上标



19 
 

Persistence SEAS5 SICNetseason(%)

(a) (b) (c)

(%) (%)

Ta
rg

et
 m

on
th

BACC
(2020-23)

Lead months Lead months Lead months
 

Figure 6. BACC of 2020-2023. (a) Persistence, (b) ECMWFSEAS5, and (c) SICNetseason. Each value is a mean value of the four 300 
testing years. The horizontal axis represents the six lead months, and the vertical axis represents the target months, Jun. to Sep. 
The red signifies a high/improvement in ACC/BACC, and the blue signifies a decrease. 
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 305 

Figure 7. Predicted Sep. SIEs and their BACCs of 2020-/2022/2023 in four to six months lead by Persistence, ECMWFSEAS5, and 
SICNetseason. (a)-(fc) 2020, (gd)-(lf) 20212022, (g)-(l) 2022, and (sg)-(xi) 2023. 
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4.7 Comparison with the representative deep learning model 

We compare the SICNetseason against the representative deep learning sea ice prediction model, the U-Net (IceNet-inspired)  

IceNetmodel. The IceNet is a seasonal sea ice prediction model that performs state-of-the-art SIE probability predictionThe 310 

IceNet is a seasonal sea ice prediction model and achieves state-of-the-art performance in SIE prediction (Andersson et al., 

2021). It is a CNN-based CNNU-Net-based model for classification tasks model, and it outputs the probability of three 

classes: open water (SIC≤15%), marginal ice (15% < SIC < 80%), and full ice (SIC≥80%). Differently, our SICNetseason 

outputs the 0-100% range SIC values. The IceNet's inputs consist of 50 monthly mean variables, including SIC, 11 climate 

variables, statistical SIC forecasts, and metadata.  315 

The original IceNet model has some unique designs in inputs and training strategy. As we focus on the differences in model 

structures, we construct a U-Net (IceNet-inspired) model for comparison. 

To make a fair comparison, wWe set the inputs (including SIT data) of the IceNet U-Net (IceNet-inspired) to the same 

ones as SICNetseason. The loss function is also set as the NIIEE+MSE. We reconstruct IceNet’sset the output layer of U-Net 

(IceNet-inspired) by replacing the original softmax with theas a sigmoid activation function to output. The sigmoid function 320 

outputs continuous values of 0-100%. transform the original IceNet’s output to the continuous values of 0-100%. We also 

change the number of CNN filters to make the number of training parameters in U-Net (IceNet-inspired) IceNet equal to that 

in SICNetseason, about 140 million. The training and testing settings of U-Net (IceNet-inspired) IceNet are the same as those 

of SICNetseason. The U-Net (IceNet-inspired) IceNet is trained using the same leave-one-year-out strategy as the SICNetseason. 

For example, if the testing year is 2019, the training set is data from 1979-2018, and the testing data is 2019. Then, the 325 

testing data moves to 2018; the remaining data (1979-2017, 2019) is the training set. For each training/testing pair, the model 

is trained three times to eliminate randomness, and the final prediction for testing data is the mean value of the three models.  
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Figure 8. Detrended ACC of IceNet (a) and SICNetseason (b). (c) ACC difference obtained by SICNetseason minus U-Net (IceNet-330 
inspired). BACC of U-Net (IceNet-inspired) (d) and SICNetseason (e). (f) BACC difference like (c).  The red signifies a 
high/improvement in ACC/BACC, and the blue signifies a decrease. 
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 335 
Figure 9. The predicted Sep. SIEs of U-Net (IceNet-inspired) and SICNetseason in six months' lead: (a) 2012, (b) 2017, (c) 2018, and 
(d) 2019.  
 

Fig. 8 shows the detrend ACC, BACC, and the differences between the two models. Compared with the U-Net (IceNet-

inspired)  modelinspired) model, our SICNetseason model significantly improves the ACC at most predictions, Fig. 8(c). For 340 

the target month, Aug./Sep., the SPB feature is obvious in the U-Net (IceNet-inspired): the maximum ACC gap is about 

40%/30% at predictions made in May and Jun., Fig. 8(a). Our SICNetseason model optimizes the ACC gap with an 

improvement of 31.8%/20.8% at May's predictions, Fig. 8(c). The ACC improvements are also larger than 15% for 

predictions made before May. Therefore, compared with the state-of-the-art deep learning model U-Net (IceNet-inspired), 

our model achieves more skillful seasonal predictions by optimizing the SPBoptimizing the predictions around the SPB. 345 

Unlike the ACC values, the BACC values of U-Net (IceNet-inspired) are more significant than those of SICNetseason on 

most predictions, Fig. 8(f). This result implies that U-Net (IceNet-inspired) is more dependentdepends more on SIE trends 

than SICNetseason. This difference can be attributed to the distinct fundamental units employed by the two models. The U-Net 

(IceNet-inspired) is a CNN-based model, and the weight-sharing mechanism of convolutional kernels forces the model to 
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capture the most "common" local dependencies in spatial. Though representative, these "common" local dependencies tend 350 

to yield smoother model outputs. The SICNetseason is a transformer-based model. The attention mechanism of the transformer 

can capture global dependencies without weight-sharing. As a result, "personalized" global dependencies are extracted, and 

the output is not smooth like the output of a CNN-based model. The "common" local dependencies have more apparent trend 

features than the "personalized" global dependencies. Fig. 9 shows the Sep.'s SIEs predicted by U-Net (IceNet-inspired) and 

SICNetseason in the sixth-month lead. The SIEs of U-Net (IceNet-inspired) are smoother than those of SICNetseason. For 2012 355 

and 2017, the SIEs' locations of the two models are very similar. For the other two years, the SIEs of U-Net (IceNet-inspired) 

match the observed SIEs better than those of SICNetseason. However, the SIEs of U-Net (IceNet-inspired) are over-smoothed 

and fail to characterize some abnormal characteristics, such as the SIE in Sep. 2018, Fig. 9(c).  

Therefore, our transformer-based SICNetseason is more skillful than the representative CNN-based model U-Net (IceNet-

inspired) in optimizing the SPBoptimizing the predictions around the SPB. The SICNetseason exhibits a lower dependency on 360 

SIE trends and lower smooth results than the CNN-based model. 

5 Conclusion 

This study develops a deep-learning model, SICNetseason, to predict the Arctic SIC on a seasonal scale. The model is derived 

from a SwinUNet architecture. It inputs the historical SIC, SIT, and SIC climatology of target moths and predicts the SIC of 

the next six months. A spatially constrained loss function NIIEE is employed to train the model considering sea ice 365 

distribution.  We employ a 20-year (2000-2019) testing set to validate the model’s performance. The summer season, Jun. to 

Sep., is the target period. The detrend ACC, BACC, and MAE are metrics. Comparison experiments with Persistence and 

seasonal predictions of ECMWFSEAS5 are made to validate our model’s performance. In particular, an ablation experiment 

is carried out to investigate the role of SIT data in optimizing the SPBoptimizing the predictions around the SPB. A 

generalization experiment with data from the last four years, 2020-2023, is carried out—the seasonal predictions of Sep. 370 

SIEs are analyzed. Finally, we discuss the advantages and disadvantages of our model and the typical CNN-based model, U-

Net (IceNet-inspired). Given the mentioned efforts, our study draws the following conclusions.  

First, our deep learning model, SICNetseason, is skillful in predicting the Arctic sea ice seasonally. Compared with the 

dynamic model ECMWFSEAS5, SICNetseason optimizes the SPB significantly. The detrended ACC of Sep. SIE predicted by 

SICNetseason in May/Apr. is improved by 7.7%/10.61% over the ACC predicted by the ECMWFSEAS5. Compared with the 375 

anomaly persistence benchmark, the mentioned improvement is 41.02%/36.33%. Our deep learning model significantly 

reduces prediction errors of Sep.'s SIC on seasonal scales compared to ECMWFSEAS5 and Persistence, a 20-30% reduction 

measured by MAE.  

Second, the spring SIT data is key in optimizing the SPBoptimizing the predictions around the SPB, contributing to a more 

than 20% ACC enhancement in Sep.'s SIE at four to five months lead predictions. By including SIT data, the MAEs in the 380 

Beaufort Sea, the East Siberian Sea, and the Laptev Sea are reduced by more than 10% compared with those without SIT 
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data.  

Third, our model achieves good generalization in predicting the Sep. SIEs of 2020-2023. When predicting the Sep.’s SIE in 

2020/2023 (second/sixth lowest record) in May, SICNetseason achieved a BACC of 82.25%/82.08%, about 12%/10% higher 

than Persistence and ECMWFSEAS5. 385 

Fourth, our transformer-based SICNetseason is more skillful than the CNN-based modelU-Net ( IceNet-inspired) model in 

seasonal sea ice predictions. Our SICNetseason model optimizes the ACC gap with an improvement of 31.8%/20.8% at May's 

predictions over the U-Net (IceNet-inspired)IceNet. The SICNetseason exhibits a lower dependency on SIE trends and lower 

smooth results than the CNN-based model. This is due to the attention mechanism of the transformer operator extracting 

"personalized" global dependencies, while the CNN operator captures the most "common" local dependencies globally. The 390 

"common" local dependencies smooth the map and depend more on the trend than "personalized" ones. 

Code and data availability 

The code, the exact input/output data, and the saved well-trained weights of the developed model SICNetseason are available at 

https://doi.org/10.5281/zenodo.14561423.  
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