® Reviewer 1

General comments:

In summary, this research aims to develop a transformer-based U-net model to improve prediction
skill of Arctic sea ice concentration at seasonal lead times. The primary novel contribution of this
work is the use of a state-of-the-art deep learning architecture with a custom domain-specific loss
function as well as including spring sea ice thickness as an input predictor to overcome the common
spring predictability barrier (SPB) faced by previous numerical and DL-based models that decrease
prediction skill of predictions made before May.

The authors choose to use a transformer based architecture to capture spatiotemporal patterns in the
input data. The model inputs include multiple sea-ice related variables over 3-6 months and outputs
the sea ice concentration of the next six months, specifically looking at predictions for June-Sept at
6 month lead times. The authors develop a novel loss function that combines both a standard DL
loss function (mean squared error) and a domain-specific NIEE loss which accounts for spatial
similarity in model predictions and ground truth. The model follows a standard DL training
procedure and includes three years of unseen data to test their model performance. The authors
evaluate their model using standard DL performance metrics along with Binary Accuracy (BACC)
which accounts for accurate spatial distributions.

The authors succeed in improving prediction skill when compared to the benchmark Persistence
model and dynamical ECMWF model. For Sept ice prediction specifically, the ECMWF model
performs better at smaller lead times but the author’s model shows marked performance
improvement at a lead time of 3-6 months, thus overcoming the spring predictability barrier. The
authors perform necessary ablation tests to investigate the role of sea ice thickness in their model.
They show a model that includes sea ice thickness as input outperforms a model without sea ice
thickness at seasonal lead times of 3-6 months. When testing their model on unseen data, the authors
use an ensemble model approach by averaging the results of 20 separately trained models. The
authors also test their model against a previous state of the art deep learning CNN based approach,
IceNet. They show their model produces better ACC scores at longer lead times. Their model
produced lower BACC scores but can capture more individualized/local or extreme characteristics
in comparison to IceNet which tends to produce smoothed out results.

Overall, this manuscript provides a significant improvement to the modeling of sea ice concentration
by providing a novel approach to increase prediction skill at seasonal lead times to overcome the
SPB. The authors clearly state their motivations for the project and outline their novel contributions.
The authors discuss previous modeling approaches in the field and clearly showcase their significant
scientific results where their model outperforms previous approaches. The contributions of this
paper is twofold, one in utilizing a novel transformer based approach that the authors state has not
been previously used in this field and second in highlighting the impact of spring sea ice thickness
on improving prediction accuracies, revealing potential scientific insights that need to be studied
further. Below are a few suggestions to improve reproducibility and presentation quality.
Response: Thanks for the comment.



Specific comments:

Comment 1: In line 52, the authors state that experiments show the reason for decrease in
prediction skill before spring is due to ice motion and growth in the winter. It is unclear which
experiments in the literature the authors are referring to. Including a citation here would help
justify this statement.

Response: Thanks for the comment. We cite the following reference in this sentence:

Bushuk, M., Winton, M., Bonan, D. B., Blanchard-Wrigglesworth, E., and Delworth, T. L.: A
mechanism for the Arctic sea ice spring predictability barrier, Geophys Res Lett, 47,
https://doi.org/10.1029/2020GL088335, 2020.

Comment 2: In line 79, a citation for the IceNet model (Andersson et al 2021) is missing. Since
working with the IceNet model is a significant portion of the manuscript, perhaps including
more information about the IceNet model and how it differentiates from the author’s
transformer based model would provide more context to the reader in this section.

Response: Thanks for the comment. We added the citation for IceNet in line 79. A brief introduction
about IceNet has also been added. The revised sentences are as follows:

Finally, we compare our SICNetscason model with the published deep learning model IceNet
(Andersson et al., 2021). IceNet is a probability prediction model for Arctic SIE based on
convolutional neural network (CNN) units and the U-Net architecture. It achieved state-of-the-art
performance in predicting the SIE for six months (Andersson et al., 2021). Therefore, we chose

IceNet as a comparison model.

Besides, more information about the IceNet model, such as the model’s inputs and outputs, was
presented in Section 4.7, lines 263-267:

The IceNet is a seasonal sea ice prediction model that performs state-of-the-art SIE prediction
(Andersson et al., 2021). It is a CNN-based classification model, and it outputs the probability of
three classes: open water (SIC<15%), marginal ice (15% < SIC < 80%), and full ice (SIC>80%)).
Differently, our SICNetscason oOutputs the 0-100% range SIC values. The IceNet's inputs consist of 50
monthly mean variables, including SIC, 11 climate variables, statistical SIC forecasts, and metadata.

Comment 3: In lines 108-109, the authors state that multiple experiments were conducted to
determine the length of the model input features. It is unclear what experiments or methods the
authors tried. Was this determined by manual tuning using their cross-validation strategy or did the
authors employ an automated grid-search type strategy. The authors can also include if domain
knowledge or previous literature informed the choice of input lengths of the data.

Response: Thanks for the comment. We determine the length of input factors by combining domain
knowledge and manual tuning experiments. The main domain knowledge we considered is the sea
ice reemergence mechanism. The spring-fall reemergence occurs between pairs of months where
the ice edge is in the same position, such as in May and December (Blanchard-Wrigglesworth et al.,
2011; Day et al., 2014). The spring sea ice anomaly is positively correlated with fall sea ice
anomalies, and there is also a weaker reemergence between fall sea ice anomalies and anomalies



the following spring (Bushuk et al., 2015). Therefore, we set the initial input length of the
SIC/SIT/SIC anomaly as six months. Then, we change the length manually to fine-tune the deep
learning model to find the best-matched length for each factor. The SIC climatology of the target
months provides an essential mean state of the prediction SIC, so we input it into the model. It can
also represent the month number signal that IceNet has considered. We explain more details about
this issue in the revised manuscript, and the new revision is as follows:

The input for SICNetscason is 2 96x96x18 SIC and SIT sequence, composed of SIT of the last three
months, SIC of the last six months, SIC anomaly of the last three months, and SIC climatology of
the six target months (Fig. 1a). We determine the length of input factors by combining domain
knowledge and manual tuning experiments. The primary domain knowledge we considered is the
spring-fall reemergence mechanism. It occurs between pairs of months where the ice edge is in the
same position, such as in May and December (Blanchard-Wrigglesworth et al., 2011; Day et al.,
2014). The spring sea ice anomaly is positively correlated with fall sea ice anomalies, and there is
also a weaker reemergence between fall sea ice anomalies and anomalies the following spring
(Bushuk et al., 2015). Therefore, we set the initial input length of the SIC/SIT/SIC anomaly as six
months. We change the input length manually (from six to one in step one) to fine-tune the deep
learning model to find the best-matched length for each factor. The SIC climatology of the target
months provides an essential mean state of the prediction SIC. It represents the monthly cycle signal
that IceNet has considered.

[1] Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., and Deweaver, E.: Persistence and
inherent predictability of arctic sea ice in a GCM ensemble and observations, J Clim, 24, 231-250,
https://doi.org/10.1175/2010JCLI3775.1, 2011.

[2] Day, J. J., Tietsche, S., and Hawkins, E.: Pan-arctic and regional sea ice predictability:
Initialization month dependence, J Clim, 27, 43714390, https://doi.org/10.1175/JCLI-D-13-
00614.1, 2014,

[3] Bushuk, M., Giannakis, D., and Majda, A. J.: Arctic Sea Ice Reemergence: The Role of Large-
Scale Oceanic and Atmospheric Variability*, https://doi.org/10.1175/JCLI-D-14-00354.s1, 2015.

Comment 4: In section 4.7, when comparing the transformer based model to the CNN-based
IceNet model, the authors state they used identical training and testing settings to perform fair
comparisons. It is unclear whether the authors used the same 20 trained ensemble model
approach they had used for their transformer model for the IceNet model. If so, specifying
whether they used an ensemble approach or singular-model approach for IceNet would clarify
this for the reader. If the authors did not use a similar ensemble approach, the authors should
justify this choice.

Response: Thanks for the comment. We are sorry for the confusion. We did not use an ensemble
approach for both SICNetscason and IceNet. The training procedure is a leave-one-year-out strategy
for the 20 testing years (2000-2019). For example, if the testing year is 2019, the training set is data
from 1979-2018, and the testing data is 2019. Then, the testing year moves to 2018, and the
corresponding training set is data from 1979-2017 and 2019. The model is trained 3 times for each
training-testing pair to eliminate randomness, and the prediction for each testing year is the mean
value of the three trained models. We explain the leave-one-year-out training procedure in Section
4.1. Further, we clarify the training strategy in the revision:



The training and testing settings of IceNet are the same as those of SICNetscason. The IceNet is trained
using the same leave-one-year-out strategy as the SICNetscason. For example, if the testing year is
2019, the training set is data from 1979-2018, and the testing data is 2019. Then, the testing data
moves to 2018; the remaining data (1979-2017, 2019) is the training set. For each training/testing
pair, the model is trained three times to eliminate randomness, and the final prediction for testing
data is the mean value of the three models.

Comment 5: In line 269, it is unclear how the authors transformed the IceNet output to match
the continuous scale (for e.g restructuring only the final output layer). Having this additional
context would help with reproducibility of this experiment.

Response: Thanks for the comment. We reconstruct IceNet's output layer by replacing the softmax
with the sigmoid activation function. The sigmoid function outputs continuous values of 0-100%.
We clarify this point in the revision:

We reconstruct IceNet’s output layer by replacing the original softmax with the sigmoid activation
function. The sigmoid function outputs continuous values of 0-100%.

Comment 6: For Figures 2, 4, 6 and 8, it is slightly confusing to the reader at first how to
interpret these results, specifically the Difference column. Perhaps including the caption that
red signifies improvement in accuracy and blue signifies a decrease would aid in understanding
especially because in Figures 3 and 5 the opposite color scheme is used (red = high error, blue
— lower error).

Response: Thanks for the comment. We have added the following statement to the captions of
Figures 2, 4, 6, and 8: The red signifies a high/improvement in ACC/BACC, and the blue signifies
a decrease.



® Reviewer 2

Summary

The manuscript "SICNetseason V1.0: a transformer-based deep learning model for seasonal
Arctic sea ice prediction by incorporating sea ice thickness data" by Ren et al presents a
seasonal forecast model for Arctic sea ice, based on deep learning. This paper presents a novel
approach to training DL models for sea ice prediction, by integrating a loss function which
considers spatial information (the Integrated Ice Edge Error), as well as the standard Mean-
Squred Error (MSE). The authors claim that, by including PIOMAS sea ice thickness reanalysis
in their training, SICNetscason i able to "optimize" the spring predictability barrier, improving
forecasts of September sea ice made before June 1st. These forecasts are benchmarked against
a damped persistence forecast, and the ECMWF SEASS seasonal prediction system. Overall
the paper is well written and is a nice contribution to the sea ice prediction literature. I
recommend minor revisions before publication.

Response: Thanks for the comment.

General comments

Comment 1: One small comment I have relates to how the Spring Predictability Barrier (SBP)
is motivated and referenced throughout the manuscript. I suggest changing statements like
"optimize the SPB" to "optimize predictions around the SPB", and remove statements such as
"overcome the SPB" on L60 and elsewhere. I think it's important to make it clear to the reader
that the SPB is an inherent characteristic of Arctic sea ice that cannot be overcome by better
data, as it relates to how physical sea ice mass anomalies are locked in by ice-albedo feedbacks
at the date of melt onset. Having thickness data before the SPB is of limited use because
thickness anomalies in winter-spring are primarily driven by export (and moderated by negative
ice growth feedbacks), hence these anomalies do not persist for long.

Response: Agreed and revised. We revised statements like "optimize the SPB" or "overcome
the SPB" to "optimize predictions around the SPB."

Comment 2: Another comment relates to how SICNetseason 1S trained and evaluated. I think in
the sea ice prediction community we would probably consider this leave-one-out evaluation as
"cheating", as you have optimized the weights of the network using future data. As you say on
L148, for a testing year 2000, you train using data from 1979-1999 and 2001-2019. Meanwhile
If you were really making this forecast in 2000, you would only have had access to data from
1979-1999. Your model therefore has a much better understanding of sea ice variability and
trends than it should have in the year 2000. This ultimately makes me question how fair it is to
compare this model to damped persistence, unless you computed the damped persistence
forecast in a similar leave-one-out way? For example, for a damped persistence forecast in the
year 2000, are the anomalies at the chosen lead time based on a linear trend climatology
computed over the period 1979-1999, or 1979-2019? The same question for the anomaly



standard deviation and correlations. In any case, I think what would be most preferable is if the
damped persistence forecasts were generated using only past data, and SICNetseason is trained
for each forecast year, using only past data. Otherwise, I feel the only forecast evaluations I can
consider "fair" are those over 2020-2023.

Response: Thanks for the comment. The main reason for using the leave-one-out strategy is to
evaluate the model's performance in a long time series with limited samples, which reviewers
of a previous submission suggested. The sample volume for seasonal scale predictions with
monthly mean data is not large. So, some statistical models [1-2] adopted the "leave-one-out"
cross-validation to maximize the sample volume while obtaining a multi-year evaluation.
Especially for deep learning models, the sample volume is vital for model training. If we train
the model using data from 1979 to 1999 for the 2000 evaluation, the volume of training samples
will be reduced by half. When we use the leave-one-out strategy, we randomly shuftle all
samples for each training epoch to eliminate the influence of trends. The sea ice trends from
the past have been disrupted. In this instance, the model can not learn the long-term trend.
Besides, the ACC we calculated is the detrended ACC. These measures eliminate the
contribution of the long-term trend to the model skill. Therefore, we have to utilize the "leave-
one-out" strategy and try our best to eliminate the influence of the sea ice trend.

We used the Anomaly Persistence baseline, not the Damped Anomaly Persistence. Sorry
for the misleading statement. We have clarified this point in the revision; see following
Comment 12. As referred to in Yuan's papers [1], Persistence prediction is calculated using the
current anomaly plus the climatology at the target time to estimate the future state. The
climatology is the mean state of 1979-2019, excluding the target year.

[1] Yuan, X., Chen, D., Li, C., Wang, L., and Wang, W.: Arctic sea ice seasonal prediction by a
linear markov model, J Clim, 29, 81518173, https://doi.org/10.1175/JCLI-D-15-0858.s1, 2016.
[2] Wang, Y., Yuan, X., Bi, H., Bushuk, M., Liang, Y., Li, C., and Huang, H.: Reassessing
seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model, Cryosphere,
16, 1141-1156, https://doi.org/10.5194/tc-16-1141-2022, 2022.

Comment 3: Lastly, I have concerns about the comparison with ICENet. On L268-271 you
describe how you have changed ICENet's training procedure and architecture to be similar to
SICNetseason to make it a fairer comparison. I actually feel like this is less fair to ICENet. The
original ICENet architecture, loss function, and inputs were optimized for the task outlined in
the Andersson 2021 paper, and changing these may result in sub-optimal predictions.
Effectively, you're no longer using ICENet. I suggest in this section you make a fair comparison
to the original (unchanged) ICENet model, or you change the labelling to say you're comparing
SICNetseason With an (ICENet-inspired) U-Net architecture.

Response: Thanks for the comment. Agreed. The original IceNet treated the sea ice prediction
(regression task) as a classification task. Here, we implemented the same backbone as the
original IceNet and changed the classification output layer to a regression one. We adopted the
comment and revised the "IceNet" labeling as "U-Net (IceNet-inspired)."

Minor comments



Comment 1 L11: suggest changing "predictions made later than May" to "predictions made
later than the date of melt onset (roughly May)."
Response: Agreed and revised.

Comment 2 L17: suggest stating explicitly that the ECMWF model is the SEASS model
Response: Agreed and revised.

Comment 3 L30: instead of referencing Andersson et al., 2021 here, I would reference papers
specifically focused on ice-free timing, like Jahn et al 2024 and Kim et al 2023.
Response: Agreed and revised.

Comment 4 L31: suggest changing to "it may weaken the stratospheric polar vortex", as
actually Blackport et al., 2019 suggests that it likely does not.
Response: Agreed and revised.

Comment 5 [.43: suggest changing "before or on May" to "before or at the timing of melt
onset"
Response: Agreed and revised.

Comment 6 [45/46: Actually many statistical and dynamical models do beat damped
persistence on these timescales. See the recent review paper by Bushuk et al 2024.
Response: Agreed. We delete this sentence in the revision.

Comment 7 L61: suggest clarifying what you mean here by "mainstream" sea ice prediction
Response: Thanks for the comment. We revised the sentence as "numerical models are widely
used in operationally sea ice predicting."

Comment 8 L76: Clarify that this is the SEASS model
Response: Agreed and revised.

Comment 9 L84: Is there a reason you don't use the more up-to-date (version 2) NSIDC sea
ice concentration data set? https://doi.org/10.5067/MPYG15WAA4WX

Response: Thanks for the comment. We used the version 2 data set and made a wrong citation.
We replaced the old reference with the following new one in the revision.

[1] DiGirolamo, N., Parkinson, C. L., Cavalieri, D. J., Gloersen, P. & Zwally, H. J. (2022). Sea
Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data.
(NSIDC-0051, Version 2). [Data Set]. Boulder, Colorado USA. NASA National Snow and Ice
Data Center Distributed Active Archive Center.

Comment 10 L89: suggest adding that PIOMAS generally overestimates thin ice and
underestimates thick ice regions
Response: Agreed and revised.

Comment 11 L97: Just to clarify, the inputs to the network are monthly-mean fields, and you
are predicting monthly-mean fields? So a Lead 4 prediction of September-mean SIC is based
on monthly-mean May data?

Response: Agreed and revised. We added "the inputs to the network are monthly-mean fields"
in the revision. The input length of the monthly mean SIC/SIT is six/three. So, a lead four
prediction of September-mean SIC is based on monthly-mean SIC/SIT of Dec.-May/Mar.-May.
We explain more about the input factors and their lengths in the revised Section 3.1.



Comment 12 L167: suggest clarifying that by "Persistence model" you mean "Damped
Anomaly Persistence"

Response: Thanks for the comment. The "Persistence model" we used is "Anomaly
Persistence," not the "Damped Anomaly Persistence." It is calculated, referred to in Yuan's
paper [1], using the current anomaly plus the climatology at the target time to estimate the
future state. As Yuan's studies show, the ACCs of "Anomaly Persistence" and "Damped
Anomaly Persistence" in subseasonal are very similar, so we used "Anomaly Persistence" in
our study. We clarify this point in the revision:

The Persistence is the anomaly persistence model. It assumes the anomaly constant in time and
estimates the target SIC values by adding the current anomaly to the climate mean state at the
target time, widely adopted as a benchmark for sea ice prediction (Wang et al., 2016).

[1] Wang, L., Yuan, X., Ting, M., and Li, C.: Predicting summer arctic sea ice concentration
intraseasonal variability using a vector autoregressive model, J Clim, 29, 1529-1543,
https://doi.org/10.1175/JCLI-D-15-0313.1, 2016.

Comment 13 L.204: Can you speculate here whether the lead 1 and 2 predictions from ECWMF
are better because of their good atmospheric initialization? Certainly in Bushuk et al 2024,
ECMWF SEASS beats all other dynamical forecast systems for Jun 1 to Sep 1 initializations,
possibly for this reason. Did you test including atmospheric variables in your training?

Response: Thanks for the comment. Yes, that may be a reason. Zampieri et al. (2018) revealed

that the ECMWF outperforms the climatology and many dynamical models in predicting SIC
0-45 days [1]. Bushuk et al. (2024) also showed that the RMSE of SEASS is lower than that of
most statical models in Agu./Sep. 1 initialization [2]. These results demonstrate that the
atmospheric initialization of SEASS may provide performance in sub-seasonal scale prediction.
We did not include atmospheric variables in this study because an ablation experiment with
different variables requires a lot of work and 20 years of testing. We have another paper
focusing on evaluating the contributions of atmospheric variables (SAT, SST, surface radiation,
SLP, etc.), which is under revision now. We revised the L.204 as follows:

When the lead month is one, the MAE of SEASS is slightly better than that of Persistence and
SICNetscason, indicating that the SEASS5 model performs well in monthly predicting. This result
may be due to the good atmospheric initialization in SEASS, which beat many machine learning
and dynamical models in sub-seasonal scale SIC prediction (Bushuk et al., 2024).

[1] Zampieri, L., Goessling, H. F., and Jung, T.: Bright Prospects for Arctic Sea Ice Prediction
on Subseasonal Time Scales, Geophys Res Lett, 45, 9731-9738,
https://doi.org/10.1029/2018GL079394, 2018.

[2] Bushuk et al. Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill
Comparison. BAMS (2024).

Comment 14 1.228/229: change "cycles" to "circles."
Response: Agreed and revised.

Comment 15 L.253: change "generalization ability" to "generalization."
Response: Agreed and revised.

Comment 16 Figures: I think generally the figures throughout the manuscript are quite small
and it's difficult to read the numbers in the ACC/BACC plots (especially when the manuscript



is printed). Also some of the spatial maps like Figure 7 are very busy with many panels, and it's
hard to distinguish between contour lines without really zooming in (also please choose a
different color for contours other than red and green for color blind readers). In figure 7 1

suggest just showing one or two example lead months, so that the individual panels can be made
bigger and easier to see.

Response: Agreed and revised. In the revision, we plotted the figures using a large font size.
We deleted some panels and kept only nine in Figure 7, lead months 4-6 of 2020, 2021, and
2023. The panels in Figure 7 are easier to read than before. The green and red lines have also
been replaced by cyan and orange. Some new figures are shown as follows:
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Figure 2. Detrend ACC of SIE, BACC of SIE, and their differences of Persistence, SEASS, and



SICNetseason from Jun. to Sep., averaged by 2000-2019. (a)-(c) Detrend ACC of three models. Two
detrend SIE series (predicted and observed) calculate each value. (d)-(e) Detrend ACC differences
between SICNetseason and Persistence/SEASS. (f)-(h) BACC of three models. Each BACC is a mean
value during 20 testing years. (i)-(j) BACC differences of SICNetseason and Persistence/SEASS. The
black line indicates the SPB: a maximum decrease between two adjacent lead months. The red

signifies a high/improvement in ACC/BACC, and the blue signifies a decrease.
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Figure 4. Detrended ACC of SICNetseason_nosit () and SICNetseason (b). (¢) ACC difference obtained
by SICNetseason minus SICNetseason_nosit- BACC of SICNEtseason_nosit (d) and SICNetseason (e)- (f) BACC
difference like (¢). The red signifies a high/improvement in ACC/BACC, and the blue signifies a
decrease.
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Figure 6. BACC 0f 2020-2023. (a) Persistence, (b) SEASS, and (c) SICNetseason. Each value is a mean
value of the four testing years. The horizontal axis represents the six lead months, and the vertical
axis represents the target months, Jun. to Sep. The red signifies a high/improvement in ACC/BACC,
and the blue signifies a decrease.
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Figure 7. Predicted Sep. SIEs and their BACCs of 2020/2022/2023 in four to six months lead by
Persistence, SEASS, and SICNetseason. (2)-(c) 2020, (d)-(f) 2022, and (g)-(i) 2023.
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Figure 8. Detrended ACC of IceNet (a) and SICNetseason (b). (¢) ACC difference obtained by
SICNetseason minus U-Net (IceNet-inspired). BACC of U-Net (IceNet-inspired) (d) and SICNetseason

(e). (f) BACC difference like (c¢). The red signifies a high/improvement in ACC/BACC, and the
blue signifies a decrease.
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Figure 9. The predicted Sep. SIEs of U-Net (IceNet-inspired) and SICNetscason in six months' lead:
(a) 2012, (b) 2017, (c) 2018, and (d) 2019.
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