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Abstract. Maritime Antarctica (M.A.) contains the most extensive and diverse lithological exposure compared to the entire
continent. This lithological substrate reveals a rich history encompassing lithological, pedogeomorphological, and
glaciological aspects of M.A., all of with are influenced by periglacial processes. Although pedogeophysical surveys can detect
and provide valuable information to understand Antarctic lithologies and their history, such surveys are scarce on this continent
and, in practice, almost non-existent. In this sense, we conducted a pioneering and comprehensive gamma-spectrometric
(natural radioactivity) and magnetic susceptibility (k) survey on various igneous rocks. This study aimed to improve the
geoscientific understanding of periglacial and pedogeomorphological processes in Keller Peninsula by integrating radiometric
and magnetic data with advanced spatial analysis. It investigates the spatial variability of natural radiouclides and magnetic
susceptibility across different substrates, evaluates a machine learning approach for data modelling, and interprets y-ray and k
maps to reveal soil and landscape-forming processes. For that, we used proximal gamma-spectrometric and k data in different
lithological substrates associated to terrain attributes. The pedogeophysical variables were collected in the field from various
lithological substrates, by use field portable equipment. The pedogeophysical variables were collected in the field from various
lithological substrates using portable equipment. These variables, combined with relief data and lithology, served as input data
for modeling to predict and spatially map the content of radionuclides and k by random forest algorithm (RF). In addition, we
use nested-LOOCYV as a form of external validation in a geophysical data with a small number of samples, and the error maps
as evaluation of results. The RF algorithm successfully generated detailed maps of gamma-spectrometric and « variables. The

distribution of radionuclides and ferrimagnetic minerals was influenced by morphometric variables. Nested-LOOCV method
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evaluated algorithm performance accurately with limited samples, generating robust mean maps. The highest thorium levels
were observed in elevated, flat, and west beach areas, where detrital materials from periglacial erosion came through
fluvioglacial channels. Lithology and pedogeomorphological processes-controlled thorium contents. Steeper areas formed a
ring with the highest uranium contents, influenced by lithology and geomorphological-periglacial processes (rock cryoclasty,
periglacial erosion, and heterogeneous deposition). Felsic rocks and areas less affected by periglacial erosion had the highest
potassium levels, while regions with sulfurization-affected pyritized-andesites near fluvioglacial channels showed the lowest
potassium contents. Lithology and pedogeochemical processes governed potassium levels. The k values showed no distinct
distribution pattern. Hydrothermal alteration affected the pyritized andesites, with heat and magmatic fluids driving iron
enrichment and the formation of hydrothermal magnetite, which in turn led to elevated k values. Conversely, Cryosol areas,
experiencing freezing and thawing activity, had the lowest k values due to limited ferrimagnetic mineral formation. In regions
characterized by diverse terrain attributes and abundant active and intense periglacial processes, the spatial distribution of
geophysical variables does not reliably reflect the actual lithological composition of the substrate. The complex interplay of
various periglacial processes in the area, along with the morphometric features of the landscape, leads to the redistribution,
mixing, and homogenization of surface materials, contributing to the inaccuracies in the predicted-spatialized geophysical
variables.

Keywords: machine learning; gamma-ray; magnetic susceptibility; cryopedology

1. Introduction

Recently, proximal geophysical sensors have been used for lithological-pedological characterization in other parts of the world,
where the provided information is used to understand the lithosphere-pedosphere interaction and dynamics in a
geoenvironmental context (Bastos et al., 2023; Vingiani et al., 2022). Pedogeophysics is the application of one or more
geophysical survey techniques to pedology to acquire pedogeophysical variables, aiming to understand pedogenesis, soil
attributes, their landscape distribution, and the relationships between soil-forming factors and broader land surface processes.
Pedogeophysical surveys utilizing sensors enabled the gathering of soil field information swiftly and efficiently, reducing the
necessity of sample collection for laboratory analysis (Souza et al., 2021; Mello et al., 2020; Mello et al., 2021; Mello et al.,
2023; Mello et al., 2023). Among the geophysical techniques used for lithological surveys, radiometric (gamma-ray
spectrometry) and magnetic (magnetic susceptibility) stand out.

Gamma-spectrometry involves the quantification uranium (e**3U), thorium (e>32Th), and potassium (*’K) commonly called
(radionuclides) in naturally radioactive rocks, soils, and sediments (Minty, 1988). The quantities of these radionuclides are
influenced by various factors such as lithological substrate and surface processes (weathering, pedogenesis, geomorphological,
and periglacial) (Navas et al., 2018). Dickson and Scott, (1997); Wilford and Minty, (2006) and Mello et al., (2021) have

shown that radionuclide contents depend not only on the soil parent material but also on surface processes. Proximal gamma-
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ray spectrometry offers a precise method for determining concentrations of specific radioactive elements and mapping their
sources accurately in soil, bedrock, and surface geological exploration (Ford et al., 2008).

Magnetic susceptibility (k) quantifies the degree of magnetization induced in a material relative to the strength of the applied
magnetic field (Mullins, 1977). In soils, « is primarily controlled by ferrimagnetic minerals either inherited from lithological
substrates or formed through weathering and pedogenesis, typically occurring as magnetite in the sand fraction and maghemite
in the clay fraction (Ayoubi et al., 2018). In addition, the surface processes a role in determining k values (Garankina et al.,
2022; Mello et al., 2020; Ribeiro et al., 2018; Sarmast et al., 2017).

Many studies used gamma-ray spectrometry mapping to delineate lithological maps (Arivazhagan et al., 2022; Loiseau et al.,
2020; Shebl et al., 2021) and magnetic susceptibility (Bressan et al., 2020; Costa et al., 2019; Harris and Grunsky, 2015). In
addition, recently Mello et al., (2022), Mello et al., (2020), Mello et al., (2021), Mello et al., (2022), Mello et al., (2022) have
successfully used machine learning algorithms combined with data from multiple field geophysical equipment to map
pedogeophysical variables and understand tropical soils, lithology and landscapes, obtaining satisfactory results in mapping
and understanding these landscapes using modeling via machine learning algorithms.

Maritime Antarctica (MA) is currently a great geosciences frontier to be explored in pedogeophysical studies in with its
complex and heterogeneous landforms and lithological characteristics. MA has a different climate from continental Antarctica,
being hotter and more humid (Turner et al., 2007, 2005). In this region, periglacial environments are abundant and ruled by
seasonal cycles of water freezing-thawing, which determine the specific landforms, permafrost and typical soils (French, 2017;
Pollard, 2018). The MA lithology is predominantly composed of igneous rocks and a few sedimentary rocks. This complex
lithological system associated with climatic conditions produces heterogencous soils, sediments and saprolites, forming a
unique geoenvironment on the planet (Meier et al., 2023; Siqueira et al., 2022).

Traditionally geoscientists use invasive, destructive and time-consuming techniques for lithological and pedological
characterization in natural systems, employing sample collection for physical-chemical and mineralogical analysis in the
laboratory. Besides, the lack of detailed characterization of samples in the field demands a high collection of samples. In
Antarctica, material collection is limited by a lack of logistics and restricted access to a small number of researchers who
sample on the continent. While geophysical survey techniques are well-established and commonly utilized in research, only a
few studies have demonstrated their use, specifically gamma-ray spectrometry and magnetic susceptibility, for characterizing
and understanding periglacial landscapes such as MA (Mello et al., 2022). This scarcity of studies is particularly evident in the
Antarctic environment, where hostile and inaccessible conditions have limited pedogeophysical characterization such as
gamma spectrometry and magnetic susceptibility mapping, and their correlation with periglacial processes and landforms.
Fieldwork logistics in such extreme geoenvironmental settings are inherently challenging. Consequently, acquiring in situ
pedogeophysical data can support more accurate inferences about the lithological, mineralogical, and pedological
characteristics of the terrain, reducing the need for extensive sample collection and laboratory analysis. This approach is

especially valuable when utilizing diverse sensor technologies in remote and sensitive environments.
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Given the above, this study aimed to enhance the geoscientific understanding of periglacial and pedogeomorphological
processes in Keller Peninsula (Maritime Antarctica) by integrating radiometric and magnetic surficial data with advanced
spatial analysis techniques. Specifically, we sought to: i) investigate how natural radioactivity (*3¥U, #32Th, and *°K) and
magnetic susceptibility (k) vary across heterogeneous lithological and pedological substrates and how they reflect underlying
geomorphic and periglacial dynamics; ii) evaluate the performance of a machine learning algorithm, combined with the Nested
Leave-One-Out Cross-Validation method, in modeling and spatializing pedogeophysical surface data; iii) use the generated
gamma-ray ternary and Kk maps as tools to interpret and reveal spatial patterns related to soil development, rock weathering,
and cryogenic processes in the study area.

This study can improve our understanding about periglacial processes, which can improve pedogeophysical surveys and soil-
lithological digital mapping in the Antarctic environment. This expectation is based on research that has focused on
comprehending lithological characteristics, periglacial processes and landscape evolution in Antarctic pedosphere-lithosphere

interactions.

2 Material and methods

2.1 Study area, lithological-soil surveys and sampling points

The study site comprises Keller Peninsula (62°4'33" S, 58°23'46"W), Admiralty Bay, King George Island, and in the South
Shetland Archipelago in M.A. (Fig. 1). The Keller Peninsula covers an area of 500 ha, stretching 4 km (north-south) and 2 km
(east-west) (Francelino et al., 2011). The geological framework of Keller Peninsula (Admiralty Bay, King George Island) was
characterized based on the volcanic stratigraphy described by Birkenmajer, (1980) and subsequent revisions of the volcanic
geology of Admiralty Bay. The peninsula is composed predominantly of Tertiary volcanic sequences, representing three major
eruptive cycles associated with caldera collapse and subsequent migration of volcanic centers. Field descriptions and
petrographic data indicate the dominance of basaltic-andesitic to andesitic lithologies, locally pyritized, with phenocrysts of
labradorite-andesine plagioclase and accessory pyroxenes. These lithological features, combined with the caldera structure and
stratigraphic relations to Ullman Spur and Point Hennequin, were used to establish the geological context of the study area,
ensuring a robust framework for subsequent soil, geomorphological, and pedogeophysical analyses.

We used the most detailed comprehensive lithological map of Admiralty Bay and its surroundings produced by British
geologists stationed at Base G on Keller Peninsula between 1948 and 1980 (Birkenmajer, 1980), at a scale of 1:50,000. The
geological framework of the area is linked to volcanic activity involving transitional magmas between the oceanic crust and
the Antarctic Plate, generating basaltic to andesitic lavas, pyroclastic deposits, volcanic tuffs, and hypabyssal intrusions, dated
from the Upper Cretaceous to the Oligocene (Pride et al., 1990). Overall, the lithology of Keller Peninsula is dominated by
igneous rocks, including andesitic-basalts, basaltic-andesites, diorites, pyritized-andesites, and tuffites, as well as
undifferentiated Quaternary deposits comprising local material and sediments reworked by marine erosion (Fig. 2A). Marine

terraces characterize the lower landscape, while andesitic-basalts and basaltic-andesites predominate in the upper sectors.
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Pyritized-andesites occur in various topographic positions, tuffites typically occupy intermediate elevations, and diorites
appear sporadically in isolated outcrops. These data supported the interpretation of bedrock as a key soil-forming factor,
particularly in the mobilization and spatial distribution of radionuclides (***U, *2Th, and “°K) in surface soils. The mineralogical
composition of the parent material, especially the presence of Fe-bearing silicates and accessory minerals, influenced the
geochemical dynamics of secondary ferrimagnetic mineral formation and the inheritance of primary minerals. The spatial
relationship between sampling points and lithological boundaries was assessed using a detailed lithological map, revealing

distinct geological compartments corresponding to variations in landscape relief.
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Figure 1. Study area in Maritime Antarctic (Keller Peninsula), collected point, digital elevation model, and geophysical
sensors. a) Antarctic continent; b) Keller Peninsula. A — Gamma-ray spectrometer (Radiation Solution — RS 230); B —Magnetic

susceptibility meter (KT-10 Terraplus); C — Gamma-ray readings; D- Magnetic susceptibility readings.

The weather in Maritime Antarctica follows a typical pattern, albeit slightly warmer, as outlined by Rakusa-Suszczewski et
al., (1993). Summer (December—March) temperatures average around +1.6°C, whereas winter (June—September) temperatures
drop to an average of —5.3 °C (INPE, 2009). Annual precipitation is around 400 mm. The Keller Peninsula spans elevations
between 0 and 380 meters above sea level, featuring a diverse topography from flat to steep (slopes ranging from 0 to 75%).
This region is characterized by various landforms like moraines, protalus, inactive rock glaciers, uplifted marine terraces, and
Felsenmeer. These lithological features have formed due to both paraglacial and periglacial conditions, as discussed by
Francelino et al., (2011).

The lower portions of the landscape consist mainly of marine terraces. At intermediate elevations, lithified pyroclastic deposits,
known as tuffites, are predominant. These tuffites are characterized by volcanic glass shards, plagioclase, and pyroxene
crystals, as well as lithic clasts embedded in a fine ash matrix. They frequently exhibit varying degrees of alteration, including
chloritization and sericitization, and may be cemented by secondary silica or calcite (Nawrocki et al., 2021).

Above the tuffites, extensive outcrops of andesitic-basalts and basaltic-andesites dominate the upper landscape. These volcanic
rocks primarily consist of labradorite-andesine phenocrysts set within a groundmass of plagioclase, volcanic glass, and
clinopyroxene (Nawrocki et al., 2021). Scattered throughout these units are occurrences of pyritized andesites, which have
undergone significant post-magmatic hydrothermal alteration. This alteration transformed primary plagioclase and pyroxene
into secondary minerals such as chlorite, albite, carbonate, and quartz. Additionally, quartz—pyrite mineralization developed
within these andesites (Birkenmajer, 1980).

Less abundant and restricted to specific localized zones, diorite outcrops occur notably on Keller Peninsula. These diorites are
composed mainly of plagioclase (andesine to labradorite), hornblende, and minor biotite, with accessory minerals such as
magnetite, apatite, titanite, and zircon. The texture is generally coarse-grained and equigranular (Birkenmajer, 1980; Valeriano

etal., 2008).
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Figure 2. The maps indicated: A) Lithology (adapted from Birkenmajer, 1980) . B) Soil classes: The lithological and soil

classes maps were adapted from Francelino et al., (2011).

Soil classification and mapping were carried out by an experienced pedologist, using 20 representative soil profiles. The overall
soil development in the area is limited, and according to the World Reference Base for Soil Resources (WRB) (FAO, 2014),
2014), the soils in the region can be categorized into various types, including Gelic Eutric Leptosol, Gelic Skeletic Regosol,
Gelic Skeletic Cambisol, Gelic Leptic Regosol, Gelic Dystric Fluvisol, Arenic Skeletic Cryosol, Vitric Leptic Cryosol, Gelic
Leptic Cambisol, and Arenic Turbic Cryosol, as illustrated in Figure 2B. The occurrence of permafrost was observed the first
two meters below the soil surface in five soil profiles. Additionally, it is discontinuously found within the first two meters in
regions with mid-slope and flat topography, all of which are classified as Cryosols (Francelino et al., 2011; Mello et al., 2023).

Within each soil profile, samples were meticulously collected from identified diagnostic soil horizons at various soil depths to

facilitate subsequent physico-chemical analyses.
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The sampling design and the selection of measurement locations were conducted while considering mainly 5 topossequences
(topographic gradients) that account for various lithologies and soils. The distribution of collection points by the proximal
gamma-ray and magnetic susceptibilimeter is shown in figure 1. The readings with the sensors were carried out, taking into

account the lithological diversity of the Peninsula, as well as pedological diversity and variations in relief.

2.2 Pedogeophysical survey, radiometric and k characterization

The pedogeophysical variables (radiometric and k), were collected using proximal geophysical sensors, RS-230 and KT-10
Terraplus, respectively (Figs. 1A and B, respectively). The radiometric data (gamma-ray spectrometry) correspond to the
acquisition of radionuclide contents €U, eTh and “’K, quantified in ppm (eU and eTh) and % for K. Magnetic susceptibility
is given in 107 SI units and the sensor is able to detect mean x values to a depth of 2 cm below the rock outcrops surface
(Sales, 2021). Detailed calibration methods, method of collection and interpretation of results can be found in (Mello et al.,
2022; Mello et al., 2021, 2022).

Gamma spectrometric readings (Fig. 1 C) were taken on the rock outcrop surface and soil depth (saprolite/rock), at the 91
collection points shown in figure 1, in “essay mode”, which provides greater precision, and the reading time was adjusted to 3
minutes at each point. The sensor is able to detect radiation up to a mean depth of 30 - 60cm depending on the characteristics
of the substrate (Beamish, 2015; Taylor et al., 2002; Wilford et al., 1997a). Subsequently, the equipment data were transferred
to a computer and concatenated with soil k values and environmental data (lithology and terrain attributes).

Similarly, the k survey readings (Fig. 1 D) was undertaken at each of the 87 points to a mean depth of 2 cm below the rock
outcrops surface and soil depth (saprolite/rock). Three readings were taken for each point to reduce sensor noise and increase
the precision reading and, the k mean values of these three readings were used in data processing. The resulting k data were
then combined with their respective gamma-ray spectrometric data, lithology and terrain attributes in order to be processed.
All readings were carried out in different lithological-pedological compartments, with emphasis on in situ materials (igneous
rocks), despite of the little presence of marine terraces with presence of external materials.

It is important to highlight that only 87 points with geophysical sensors were taken on pedological substrates. Furthermore,
these few points are found in soils with little pedogenetic evolution, characterized by a high content of rock fragments and a
predominance of the coarse fraction composed of cryoclastic rocks (many with a skeletal character). Additionally, where there
was soil, we opened a small trench and carried out geophysical readings at the base of the soil profiles, in direct contact with
the rock. As a result, we do not have enough number of points to carry out an analysis to identify differences between surface
geophysical variables and pedological substrates. Therefore, we consider these points as readings carried out on the lithological

substrate.

2.3 Digital Elevation Model
Geoprocessing and Digital Elevation Model (DEM) analysis were conducted utilizing R software version 4.10 version (R Core

Team, 2023), employing data derived from a High-Resolution Topography (HRT) survey to create the DEM (Fig. 1). The



HRT survey, conducted during the 2014/2015 and 2015/2016 periods, utilized a Terrestrial Laser Scanner (TLS) of the RIEGL
VZ-1000 model, known for its nominal accuracy and precision of 8 and 5 mm, respectively (Schiinemann et al., 2018). This
advanced sensor and geoprocessing methodology yielded a low root mean square error and a high number of points per cell,
resulting in a densely populated point cloud. This dataset facilitated a comprehensive generalization process to generate surface
215 models with superior performance, accurately representing local relief. This, in turn, enabled in-depth studies of landscape
evolution at a micro scale over time, specifically allowing for the assessment of pedogeomorphological processes.
Using the R software (R Core Team, 2023), a total of forty-eight additional topographic attributes were computed based on
the DEM data extracted from the Digital Terrain Model (DTM) (Table 1). These attributes were derived using the utilization
of the "Rsaga" tool (Brenning, 2008) and the "raster" package (Hijmans and Van Etten, 2016).
220

Table 1. Terrain attributes generated from the digital terrain model, geology, soil and spectral indices.

Terrain attributes, geology and

spectral indices Abbreviations Brief description
Aspect AS Slope orientation
Blue Band B The blue band wavelengths fall below 1546.12 nm.
Green Band G BA primary wavelength of 495-570 nm approximately
Red Band R The longer wavelengths of 1546.12 nm and higher
Curvature classification CcC Curvature classification
Convergence index 1 terrain parameter which shows the structure of the relief as a set of
convergent areas (channels) and divergent areas (ridges).
Difference D Geometric difference of the overlayed polygon layers
Diurnal anisotropic heating DAH Continuous measurement of exposure-dependent energy
Easterners EA Degree of orientation of a slope toward the east
Flow Line Curvature FLC Represents the projection of a gradient line onto a horizontal plane
General curvature GC The combination of both plan and profile curvatures
Lithology GEO Rocks and similar substances that make up the earth's surface
A e g T saddd 0 o s
Digta o modd eV NPaion of b gowd (bt opogrpic s
Effective air flow heights EAFH A line representing the resultant velocity of the disturbed airflow
Longitudinal curvature LC Measures the curvature in the downslope direction

10



Terrain attributes, geology and
spectral indices

Abbreviations

Brief description

Mass balance index
Maximal curvature
Mid-slope position

Minimal curvature

Morphometric Protection
Index

Multiresolution index of ridge
top flatness

Multiresolution index of valley
bottom flatness

Normalized Difference
Vegetation Index

Normalized height

Northerns
Ridge level

Slope

Slope height

Slope Index
Solrad Diffusel
Solrad Diffuse2

Solar total radiation

Solrad Direct1
Solrad Direct2

Solrad Rationl

Solrad Ration2

Soil

Sky view factor

MBI

MAXC

MSP

MINC

MPI

MRRTF

MRVBF

NDVI

NH
NO

RL

S
SH
SI
SolDiffusel
SolDiffuse2
SolTR
SolDiret1
SolDiret2

SolRation1

SolRation2

S
SVF

Multivariate distance methods for geomorphographic relief
classification

Maximum curvature in the local normal section

Represents the distance from the top to the valley, ranging from 0
tol

Minimum curvature for the local normal section

Measure of exposure/protection of a point from the surrounding
relief

Indicates flat positions in high-altitude areas

Indicates flat surfaces at the bottom of valley

Remote sensing techniques used to assess the health and density of
vegetation.

Vertical distance between base and ridge of normalized slope
Means in or from the north of a region

The maximum vertical distance between the finished floor level
and the finished roof height directly above.

Represents local angular slope
Vertical distance between the base and the ridge of slope
Represents the local angular slope index
Diffuse insolation for the month of January
Diffuse insolation for the month of July
Insolation duration for the month of January
Direct insolation for the month of January
Direct insolation for the month of July

Ratio between direct insolation and diffuse insolation for the
month of January

Ratio between direct insolation and diffuse insolation for the
month of July

Soil body as triphasic system

Defines the ratio of sky hemisphere visible from the ground

11



Terrain attributes, geology and

o e Abbreviations Brief description
spectral indices
Standardized height STANH Vertical distance between base and standardized slope index
Tangential curvature TANC Measured in the normal plane in a direction perpendicular to the
gradient
Terrain ruggedness index TRI Quantitative index of topography heterogeneity
Terrain surface convexi TSC Ratio of the number of cells that have positive curvature to the
ty number of all valid cells within a specified search radius
Terrain surface texture TST Splits surface texture into 8, 12, or 16 classes
Total curvature TC General measure of surface curvature
Total insolation TSR The amount of solar energy that. strikes a given area over a specific
time,
Topographic openness TO Expresses the dominance (positive) or enclosure (negative) of a
landscape location.
Topographic position index TPI Difference between a point’s elevation and surrounding elevation
Valley depth VD Calculation of vertical distance at drainage base level
Valley VA Calculation of fuzzy valley using the Top Hat approach
Valley Index VA Calculation of fuzzy valley index using the Top Hat approach
Vector ruggedness index VRI Measure terrain ruggedness as the yarlatlon in three-dimensional
orientation
Topographic wetness index TWI Describes the tendency of Qach cell t.o accumulate water as a
function of relief
Wind exposition WE The average of wind effect index for all directions using an

angular step

2.4 Modeling processes and statistical analysis

The point values of eU, eTh, K*, and «, linked with terrain attributes, soil type, lithology, and RGB (Table 1), were utilized

225 to modeling these variables for other areas, employing the Random Forest (RF) algorithm. The modeling process comprises

two main steps: covariate selection and model tuning / performance evaluation. During the covariates the selection phase, the

algorithm aims to generate an optimal set of covariates, adhering to the principle of parsimony. This involved two sequential

methods, we initially removed self-correlated variables and subsequently assessed the importance of the remaining variables.

Initially, to assess the correlation between variables, we used a Spearman correlation cut-off limit > |0.95|. We eliminated one

230 variable from each pair showing correlations above the established threshold. To decide which variable to remove, we selected

the one with the highest sum of absolute correlations with the remaining covariates in the dataset. To carry out this phase, we

employed the “cor” and “findcorrelation” functions from the “stats” (Hothorn, 2021) and “caret” (Kuhn et al., 2020) packages

12
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in the R software, respectively (Kuhn and Johnson, 2013). The covariates that successfully passed this selection phase were
combined with the samples and, subsequently, the samples were separated into training and test sets.
To partition the data into training and test subsets, we adopted the "nested leave-one-out cross-validation" (nested LOOCV)
method (Ferreira et al., 2021; Paes et al., 2022; Rytky et al., 2020). It is noteworthy that the number of samples and readings
obtained from geophysical sensors was limited (92) due to various challenges encountered during data collection in the field
(e.g., sloping terrain, high hazard areas, glaciers, steep terrain, snowbanks, etc.). Given the small sample size, the nested
LOOCYV method was chosen, as this method has already been recommended by other authors in similar cases (Ferreira et al.,
2021; Mello et al., 2022a; Mello et al., 2022¢, 2022b). This particular approach represents a significant innovation in our
research.
The nested LOOCYV approach involves a double looping process. In the first loop, the model is trained on a dataset of size n-
1, and in the second loop, testing is performed using the omitted sample to evaluate the training performance (Jung et al.,
2020; Neogi and Dauwels, 2019; Mello et al., 2025). The final machine learning algorithm performance results are calculated
as average performance indicators across all points (training/testing). This method proves to be robust in evaluating the real
generalization ability of the algorithm and in identifying possible problematic samples or outliers in the data set. Each iteration
generates a training set that undergoes covariate selection by importance and subsequent training.
The covariate selection based on importance is executed using the backward-forward method, employing the Recursive Feature
Elimination (RFE) function available in the "caret" package (Kuhn and Johnson, 2013). This RFE technique is algorithm-
specific and yields an optimal set of covariates utilized in predicting the final model for each respective algorithm (Moquedace
et al., 2024). RFE is a selection procedure that iteratively removes variables contributing the least to the model, employing an
importance measure tailored to each algorithm (Kuhn and Johnson, 2013).
The algorithm is then trained on discrete subsets of variables, going from 2 to the total variables one by one. The ideal subset
of covariates is optimized based on the leave-one-out cross-validation (LOOCYV), for each of the internal hyperparameters of
the tested algorithms (10). The hyperparameters for each algorithm are described in the caret package manual, Chapter 6,
“Described Models”, available at https://topepo.github.io/caret/train-models-by-tag.html. The Mean Absolute Error (MAE)
was used as a metric to select the best subset for the RF algorithm.
Training is then performed using the previously selected variables and tested with LOOCV. Additionally, ten values of each
RF hyperparameter were evaluated. At the end of the training phase, predictions are made on samples not used in the training
process, and the results are saved for performance analysis. The assessment of algorithm predictions and sensor sets is carried
out using a collection of samples from the outer loop within the nested Leave-One-Out Cross-Validation (LOOCV) method.
Three key evaluation parameters are utilized: Concordance Correlation Coefficient (CCC) (Eq. (1)), Root Mean Square Error
(RMSE) (Eq. (2)), and Mean Absolute Error (MAE) (Eq. (3)) (Lin, 1989).

2po,o, (M

P~ strol (ux-uy)2
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Where:

n represents the number of samples;

pc is the correlation coefficient between the two variables;
px and py are the means for the two variables;

e

c" "x"~"2"and "o" "y" A"2" are the corresponding variances;

Pi and Oi represent the predicted and observed values at location i.

1 (2)
RMSE = . Z(Qobs — Qpred)?

1 3)
MAE = " ZlQpred — Qobs|

Where:
Qpred = the mean of the training samples
Qobsi = the validation sample

n =number of samples (loop).

As additional validation, we used the “null model” approach (NULL RMSE and NULL MAE). This null model involves
using the mean value determined from the collected samples (EQ. 4 and EQ. 5). The null model represents the simplest possible
model when given a training set, providing a single average value for numerical results.

The null model serves as a reference and can be seen as the simplest adjustable model. Any other models that present similar
or inferior performances in relation to the null model must be discarded. This indicates that the final model outperforms the
use of average values, highlighting its superior quality in model creation. Furthermore, the null model approach is widely
employed, especially in spatialization processes such as kriging, where the variable under consideration exhibits spatial
dependence, often called the pure nugget effect. The equations used for NULL _RMSE and NULL MAE calculations are as

follows:

1
2

NULL_RMSE = [2 S, (Qtram; — Qobs;)?] (Eq.4)
NULL_MAE = rl—lx Y|Qtramn; — Qobs;| (Eq.5)

Where:

Qtrain = the mean of the training samples
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Qobsi = the validation sample

n =number of samples (loop).

The NULL RMSE and NULL MAE values were computed using the nullMode function within the caret package (Kuhn et
al., 2020). To assess the overall performance of the algorithms for each attribute, a total of 87 loops were conducted. The
training results represent the average performance, and the test sample results were calculated from the 87 outer loops using
Equations 1, 2, and 3.

Eighty-seven maps were predicted, yielding one map for each execution of the outer loop in the nested Leave-One-Out Cross-
Validation (LOOCYV). Coefficient of Variation (CV) was calculated for each pixel across the 87 stacked maps. Additionally,
a coefficient of variation map (CV% = standard deviation / mean) was generated to illustrate the variation of predicted values
in each pixel of the map relative to the mean. Spatial predictions exhibiting lower CV indicate more consistent results, thereby
resulting in smaller errors in the estimation/predictions and reduced uncertainty.

The statistical differences between the pedogeophysical variables and lithology substrates were analysed by using the Kruskal-

Wallis and Dunn's posthoc tests with a significance level of 5%.

3 Results and discussion

3.1. Model’s performance and variables’ importance

The Random Forest (RF) algorithm was employed to predict gamma-ray data and magnetic susceptibility of the substrate,
enabling the production of ternary gamma-ray and k maps (Table 2). The Concordance Correlation Coefficient (CCC) values
ranged from 0.771 to 0.851 (Table 2). The CCC is a modified version of the coefficient of determination (R?); in addition to
measuring the strength of correlation, it also assesses how closely the model predictions align with the 1:1 line (a 45-degree
line from the origin). This feature makes the CCC a robust metric for evaluating both the precision and accuracy of predictions
(Svensson et al., 2022; Zhao et al., 2022). Unlike the Pearson correlation coefficient, the CCC can detect systematic bias in
model outputs. This key distinction makes it a more appropriate choice for model validation than R? (Khaledian and Miller,
2020). In recent geoscience studies, CCC has been effectively used to assess the performance of machine learning algorithms
(Chenetal., 2019; S. Chen et al., 2019; Feng et al., 2019; Khosravi et al., 2018; Mishra et al., 2022; Siqueira et al., 2023; Zhou
et al., 2022). In addition, the nested-LOOCV methodological framework was better than NULL-model (Table 2), for
prediction of radionuclides and magnetic susceptibility with a limited number of samples. This approach consistently generated
comparable maps across loops, where 87 samples were utilized for training in each loop, and at the conclusion of the process,
all samples were used as the test dataset. As a result, the models and/or coefficients of variation in the maps were similar

(Ferreira et al., 2020).

Table 2. Model’s performance in terms of Concordance Correlation Coefficient (CCC), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), NULL RMSE and NULL MAE.
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Parameters of RF Algorithm

model’s
eU eTh WK K
performance
cce 0.771 0.851 0.817 0.809
MAE 0.496 1.784 0.497 11.898
RMSE 0.680 2.432 0.646 15.469
NULL RMSE 0.652 2.457 0.502 12.224
NULL MAE 0.463 1.818 0.502 15.651

The importance of covariates in predicting pedogeophysical variables revealed that morphometric attributes such as minimal
curvature (MINC), mid-slope position (MSP), diurnal anisotropic heating (DAH), difference (D), total insolation (TSR), flow
line curvature (FLC), effective air flow heights (EAFH), terrain surface convexity (TSC), hill shading (HI), aspect (AS), mass
balance index (MBI), ridge level (RL), digital elevation model (DEM) minimal curvature (MINC), and convergence index
(CI) were the most influential, collectively contributing to over 50% of the reduction in mean prediction error (Fig. 3). In
contrast, lithological variables contributed less significantly, accounting for less than 50% of the predictive importance (Fig.
3). Similar results were reported by Cracknell and Reading (2014), Harris and Grunsky (2015), and Kuhn et al. (2018), who
also achieved satisfactory performance using the RF algorithm to predict radionuclide content and magnetic susceptibility for
lithological mapping. In addition, the Red Band (R) and Green Band (G) were found to be important for predicting *°K
concentrations in more than 75% (Fig. 3). In periglacial Antarctic environments characterized by shallow soils, rugged terrain,
sparse vegetation, and exposures of mafic and felsic igneous rocks (Francelino et al., 2011), VIS-NIR reflectance
predominantly captures variations in surface mineralogy and soil exposure. Landscape dynamics such as erosion and
deposition are largely controlled by relief (Viscarra Rossel, 2011). At our study site, exposed mineral surfaces on steep slopes
and weathered areas exhibit strong red band reflectance, making this spectral band a valuable proxy for modelling the spatial

distribution of “°K when integrated with topographic and lithological data within machine learning frameworks.
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Figure 3. Importance of variables of predictors. X axis: variables that most contributed to the predictive models. Axis y: value
in relative percentage of the contribution. eTh: equivalent thorium; eU: equivalent uranium; *“’K potassium; «: magnetic
susceptibility; The predictors included in the analysis were: Red Band (R); Minimal curvature (MINC); Mid-slope position
(MSP); Diurnal anisotropic heating (DAH); Difference (D); Solar total radiation (SolTR); Flow line curvature (FLC); Green
Band (G); Effective air flow heights (EAFH); Terrain surface convexity (TSC); Hill shade (HI); Aspect (AS); Mass balance
index (MBI); Ridge level (RL); Digital elevation model (DEM); and Convergence index (CI). Colours represent the target

variable: green for eTh, blue for eU, red for “°K, and orange for «.

3.2 Radionuclides and k contents on lithological compartments and their relationship with mineralogy

The eU mean content was generally low and showed the greatest variation on the lithologies (Fig. 4). The highest eU mean
content values were observed on tuffites and the lowest on andesitic-basalts (Fig. 4). The diorite presented the highest mean
€Th contents, while the andesitic-basalts showed the lowest one. Regarding the “°K, the mean values were high in all lithologies
(> 1%) excepted on pyritized-andesite (Fig. 4). However, the observed “°K were low compared to those of continental crust
rocks (plutonic, metamorphic and sedimentary. According to literature these values are consistent with the average of oceanic
crust rocks, which are predominantly basaltic. The highest 4°K contents were observed on diorite, and the lowest one on
pyritized-andesite (Fig. 4). The mean « values ranged from moderate to low in all lithologies, where pyritized-andesites showed

the highest mean values and tuffites the lowest (Fig. 4). The descriptive statistics for radionuclides and k content for all
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lithological units are shown in table 3, and corroborates and complements the information provided in figure 4 in quantitative

365 terms.
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Figure 4. Boxplot with descriptive statistics of the distribution of radionuclide contents and magnetic susceptibility by

lithology. Lowercase letters to the right of the boxplot bars indicate statistical differences as determined by the Kruskal-Walli’s

370 test.

Table 3. Descriptive statistics for the analyzed radionuclides and k by lithology
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Diorites
L. Radiometric and magnetic susceptibility
Summary Statistics
eU(mg.kg™) eTh(mg.kg!) Y0K(%,) K (1073 SI units)
Mean 1.27 8.85 2.10 18.54
Standard deviation 0.62 3.01 0.74 13.72
Minimum 0.50 3.30 0.60 0.13
Maximum 2.50 13.7 3.20 49.0
Tuffites
Radiometric and magnetic susceptibility
Summary Statistics
eU(mg.kg™) eTh(mg.kg!) Y0K(%,) K (1073 SI units)
Mean 1.63 6.62 1.41 4.73
Standard deviation 0.55 1.96 0.53 7.18
Minimum 1.00 3.20 0.80 0.04
Maximum 3.20 11.9 2.90 27.33
Andesitic-basalts
Radiometric and magnetic susceptibility
Summary Statistics
eU(mg.kg™) eTh(mg.kg™) YK (%) K (107 SI units)
Mean 0.99 5.72 1.26 21.0
Standard deviation 0.41 1.44 0.17 15.0
Minimum 0.20 2.90 1.00 3.56
Maximum 1.40 7.20 1.50 50.4
Basaltic-andesites
Radiometric and magnetic susceptibility
Summary Statistics
eU(mg.kg™) eTh(mg.kg™) YK(%) K (1073 SI units)
Mean 1.62 7.87 1.59 17.2
Standard deviation 0.82 3.08 0.61 16.6
Minimum 0.40 3.80 0.80 0.70
Maximum 3.80 15.5 3.10 75.4
Pyritized-andesites
Radiometric and magnetic susceptibility
Summary Statistics
eU(mg.kg™) eTh(mg.kg™) Y0K(%) K (107 SI units)
Mean 1.64 7.59 1.54 22.5
Standard deviation 0.74 2.23 0.57 18.6
Minimum 0.20 3.30 0.70 2.37
Maximum 3.50 10.9 2.90 74.9
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In our study area, the high variability in eU content and/or the relatively low concentrations observed in basic—intermediate
igneous rocks (Fig. 4, Table 3) can be primarily explained by the fact that uranium and other radionuclides are typically
concentrated during the late stages of magmatic crystallization. As a result, mafic rocks, which crystallize earlier in the
magmatic sequence, are expected to exhibit lower radionuclide contents (Ragland et al., 1967; Whitfield et al., 1959). In
addition, according to Wilford and Minty, (2006) and Wilford et al., (1997b), the mean contents of radionuclides in the Earth
crust vary to 2.3%, 3 ppm and 12 ppm, for *°K, uranium and thorium, respectively, similar to the values observed in our study
site.

The eTh and K contents tended to increase with an increase in the silicon content in our lithology composed by igneous rocks
(from andesitic-basalts to diorite) (Fig. 4, table 3). Our results are corroborated by Dickson and Scott, (1997) and Mello et al.,
(2023b), who found an increasing in €Th and “’K contents in acid-felsic igneous rocks and lower levels in basic-mafic igneous
rocks. It is noteworthy that the undifferentiated sediments receive materials from various parts of the Peninsula and from
outside it, in which case it is not appropriate to use this lithology for radionuclides comparison purposes. Most of the gamma-
ray radiation detected and quantified by the sensor originates from the first 45-60cm of the dry substrate (rocks, soils and
sediments), which the mineralogy and geochemistry of the substrate presented the greater contribution to radionuclides
contents (Gregory and Horwood, 1961). In addition, Earth surface processes and landforms such as chemical weathering,
pedogenesis and relief affect radionuclide contents, since “°K content decreases with weathering advance once it is removed
by destruction of feldspars. Also, “’K is not incorporated in secondary minerals, so it is leached, whereas Th composes highly
resistant minerals, such as ilmenite and zircon. Consequently, Th content increases with weathering (Dickson and Scott, 1997,
Wilford et al., 1997b; Mello et al., 2021; Mello et al., 2022; Mello et al., 2023). Despite this, physical weathering in this
environment associated with periglacial processes (governed by cycles of freezing and thawing of water in the different
portions and types of substrates) should not be neglected, since during these processes, radionuclides are redistributed in the
landscape.

The low mean « values were not expected on basic mafic igneous lithologies (basaltic-andesite, andesitic-basalts) (Fig. 4, table
3), since there is a great probability to these rocks present more abundance of ferrimagnetic minerals in the rock. According
to Mullins (1977) increasing in ferrimagnetic mineral contents in the substrate results in increases in « values. The relatively
low k values in the basaltic-andesite and andesitic-basalt substrates may be attributed to the combined influence of the Antarctic
cold climate, limited water availability, and slow pedogenesis, which favor the formation of amorphous or poorly crystalline
iron oxides, even in lithological substrates with sufficient iron content, such as ferrihydrite, rather than well-crystalline
magnetite or maghemite. Despite this, k values remains highly heterogeneous, except for the tuffites, no statistically significant
differences were observed among the other lithologies, including the marine terraces. Regarding the low k values on tuffite,
this igneous rock is formed from volcanic ashes and containing large amounts of poorly crystalline minerals (Fabris et al.,
1995), which is difficult to form ferrimagnetic minerals. Poggere et al., (2018), also found low magnetic signature on soil

formed from tuffites in Brazilian soils with contrasting rock parent material.
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The greater k values on pyritized-andesites (Fig. 4, table 3), can be explained by the presence of pyrite and hydrothermal
alteration process (Passier et al., 2001). Hydrothermal processes in island-arc settings, similar to the study area, can lead to the
formation of hydrothermal magnetite. As hydrothermal fluids, heated by magmas, circulate through permeable rocks, they
dissolve minerals and subsequently precipitate iron oxides, such as magnetite, in response to changes in fluid temperature,
pressure, and chemistry (Nawrocki et al., 2021; Sillitoe, 2010). In addition, some of the elevated «k values may result from the
formation of pyrite in pyritized andesites, along with the development of ferrimagnetic minerals such as pyrrhotite and

magnetite within the rock (Figueiredo, 2000).

3.3 Ternary gamma-ray and magnetic susceptibility predicted maps, radionuclides content and k variability at
landscape scale

The predicted maps of “°K, €Th, and eU are demonstrated in figures SA, 5B and 5C, respectively. In addition, figures 5D and
5E demonstrate the high resolution predicted ternary gamma-ray and magnetic susceptibility maps. Our initial focus lies on
describing the interpretations of the three radionuclides in relation to the gamma-ray response associated to lithological-

pedological substrates found in the specific landscapes and geomorphic processes.
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Figure 5. A) Predicted map of “°K; B) Predicted map of eU; C) Predicted map of eTh; D) and E) 3D landscape perspective
and magnetic susceptibility and gamma-ray ternary image, respectively over part of the Keller Peninsula. By integrating
gamma-ray spectrometric images with digital elevation models (DEMs) in 3D perspective views, a comprehensive
visualization emerges, revealing intricate connections between gamma-ray responses, terrain morphology attributes and

surface processes (pedogeomorphological and periglacial).

The highest eTh values, predominantly represented by the green areas on the map, occur mainly over basaltic-andesite
lithologies, rocks that are less mafic and richer in plagioclase and quartz (Fig. SD). These regions coincide with flatter, high-
elevation plateaus where deeper soils with higher clay content develop. The increased clay fraction enhances the adsorption
capacity for eTh onto soil particle surfaces, thereby elevating eTh readings in these high plateau zones. In such areas, the
spatial distribution and concentration of eTh are primarily controlled by lithology and pedogeomorphological factors.

In contrast, the western beach area, located at lower landscape positions, also exhibits elevated eTh levels associated with

undifferentiated sediments (Fig. SE). This pattern is explained by the geomorphological setting where fluvioglacial meltwaters
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originating from the high plateaus transport cryoclastically derived, eTh-rich sediments downslope. These sediments
accumulate on the western beaches, demonstrating how erosive and depositional processes in a periglacial environment govern
the distribution of €Th in this sector.

Regarding eU, the highest values are found on steep slopes characterized by shallow or absent soils, mainly over basaltic-
andesites and andesitic-basalts lithologies (Fig. SE). In these geomorphologically active areas, eU distribution largely reflects
the chemical composition of the bedrock, indicating strong lithological and geomorphological control. Cryoclastically
fractured and eroded materials are transported downslope by periglacial processes and deposited more evenly across lower
plateaus, where eU concentrations reflect distinct source materials, in contrast to the focused sediment transport through
fluvioglacial channels, which is responsible for eTh enrichment on the west beach. The “K values peaks predominantly in
lower landscape positions, including lower plateaus and southeastern beaches, where andesitic-basalts and dioritic lithologies
prevail (Fig. 5E). Conversely, pyritized-andesite zones show the lowest “°K values, likely due to enhanced chemical weathering
driven by natural acid drainage and sulfurization processes in local fluvioglacial channels. These processes accelerate
potassium depletion, as observed in recent studies of sulfate-affected landscapes in Keller Peninsula (Mello et al., 2023).
Therefore, both lithological composition and pedogeochemical processes regulate *°K distribution in the area.

Previous research (Wilford and Minty, 2006; Dickson and Scott, 1997) has demonstrated that combining ternary gamma
imaging with digital elevation models improves the interpretation of radionuclide spatial patterns by integrating lithological,
soil, periglacial, and geomorphological influences (Mello et al., 2023b). Dickson and Scott (1997) showed that rock
radioelement contents explain much of the gamma radiation variability, while also highlighting intra-class heterogeneity—
granites, for example, lack a unique radionuclide signature. Similarly, Rawlins et al. (2012) quantified that bedrock type
accounted for 52% of gamma radiation variability across Northern Ireland. Felsic rocks generally exhibit elevated eU, eTh,
and “°K contents (Rawlins et al., 2007). Recent tropical environment studies (Ribeiro et al., 2018; Souza et al., 2021; Guimaraes
et al., 2021; Mello et al., 2020, 2021, 2022a,b) have linked radionuclide variability to lithology in areas with minimal
pedogenetic alteration, to relief in erosion and sediment deposition zones, and to weathering and pedogenesis in well-developed
soils. However, recent studies, including the first applications of gamma spectrometry and magnetic susceptibility to Antarctic
soils undertaken by (Mello et al., 2023;Mello et al., 2023), have suggested a strong influence of topography on the distribution
of pedogeophysical variables, which were thoroughly detailed in this work.

Magnetic susceptibility (k) values exhibit high spatial variability across lithologies, soils, and landforms, showing no consistent
broad-scale pattern (Fig. 5D). Nonetheless, localized zones of elevated k correlate with pyritized-andesite and andesitic-basalt
lithologies, particularly on steep slopes or areas minimally influenced by sediment influx from other parts of the landscape.
Conversely, hydrothermal alteration in pyritized andesites can enhance k values as reported by Nawrocki et al., (2021) and
Sillitoe, 2010). This effect is further intensified by higher iron availability and chemical weathering, which together concentrate
ferrimagnetic minerals and contribute to increased susceptibility values (Figueiredo, 2000; Mello et al., 2023).

The lowest k values are observed in areas dominated by Cryosols, which are young soils with minimal pedogenetic

development (Fig. 5D). Although pedogenetic processes can influence «, the low magnetic susceptibility primarily reflects the
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lack of magnetite and other ferrimagnetic phases. The limited formation of secondary magnetic minerals appears less important
for susceptibility differences than the accumulation of magnetite in more developed soils. This pattern aligns with findings by
Dabher et al. (2019), who reported low « values in Antarctic soils derived from igneous rocks, attributed to their relatively
young age and limited weathering.

The spatial distribution of radionuclides and magnetic susceptibility in Keller Peninsula (Fig. 5) results from a dynamic
interplay between mineralogical characteristics of the bedrock, topographic controls on soil development and sediment
transport, and active periglacial geomorphological processes. These factors collectively modulate the pedogeophysical
signatures observed, producing patterns that cannot be solely attributed to lithology but rather to its modification through
landscape evolution and pedogeochemical cycling.

Our results regarding the distribution of radionuclides across the landscape differ slightly from those commonly reported in
the literature (Dickson and Scott, 1997; Mello et al., 2021; Wilford and Minty, 2006; Wilford and Thomas, 2012), which
typically reports a strong correlation between radionuclide concentrations and the parent material in poorly developed soils.
Although the low chemical weathering intensity observed in our study area suggests that lithology should exert primary control,
the presence of highly dissected terrain, steep slopes, and active periglacial processes including periglacial erosion, freezing-
thawing cycles, and cryoturbation intensifies the influence of topography on the redistribution of radionuclides. As a result, in
certain areas of Keller Peninsula, radionuclide concentrations in soils deviate from the expected values based solely on the
underlying rock types. Practically all the relief variables are associated with the landform that control the surface periglacial
and pedogeomorphological processes of the Keller Peninsula landscape. Periglacial erosion, glacial fluvial melt channels,
freezing and thawing of the active layer of permafrost and solifluxion are the most frequent periglacial and
pedogeomorphological processes in Keller Peninsula, as observed by Francelino et al., (2011) and Lépez-Martinez et al.,
(2012). These processes promote the fragmentation, redistribution and mixing of materials in significant areas of the landscape
(Mello et al., 2023; Mello et al., 2023), which can contribute to variations in radionuclide and k values, as well as increase
prediction errors in the points of greater occurrence of these processes, such as the sloping areas of the landscape (Mello et al.,
2022). The same periglacial processes and landscape dynamics also influence iron geochemistry. As a result, soils and areas
underlain by mafic rocks such as basaltic-andesite and andesitic-basalt may exhibit relatively low concentrations of
ferrimagnetic minerals, which is reflected in lower magnetic susceptibility readings (Fig. 4). The opposite can also occur; for
example, soils developed over pyritized andesite show higher magnetic susceptibility values, indicating greater concentrations
of ferrimagnetic minerals (Fig. 4).

The spatial patterns of natural radioactivity and magnetic susceptibility across Keller Peninsula are more strongly influenced
by topography than by lithology. In steep, periglacially active terrains, geomorphic and pedogeomorphological processes such
as cryoturbation, freeze—thaw cycles, and periglacial erosion promote the downslope transport and mixing of soil and minerals,
resulting in the redistribution of radionuclides and ferrimagnetic minerals independent of bedrock type. Birkenmajer's (1980)
geological mapping and petrographic studies further support that variations in mineral assemblages, especially between lightly

altered mafic rocks and hydrothermal zones, and the presence of secondary minerals such as zeolites, albite, and iron oxides
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contribute to these patterns. Consequently, pedogeophysical signals (e.g., eU, eTh, “°K, and magnetic susceptibility) often
reflect a mixed mineralogical signature redistributed by topographic and geomorphological dynamics, rather than a direct
inheritance from the parent material. This may explain our observations such as unexpectedly low magnetic susceptibility over
mafic rocks and elevated values over altered andesites, underscoring the dominant role of relief and periglacial processes in

shaping pedogeophysical variability in Keller Peninsula.

3.3 Applicability of geophysical techniques on soil-lithological survey and understanding of periglacial processes

A relationship between radionuclide content/distribution and « in the landscape in a digital elevation model are demonstrated
in figures 6 and 7, respectively). Rock color variations between different lithologies were also observed in the field (Fig. 8).
The content and distribution of radionuclides and « are occasionally associated with the lithology of the area, making it difficult
to establish a direct and generalist relationship between radionuclides and k with the lithological units. This method allows for
the estimation of apparent surface concentrations of naturally occurring radionuclides and their relationship with lithology,
pedogeomorphological and periglacial processes (Mello et al., 2023b). By assuming that the absolute and relative
concentrations of these radioelements vary significantly with lithology (Dickson and Scott, 1997; Wilford et al., 2016), gamma-
ray spectrometric surveys can be used effectively for lithological mapping (Elawadi et al., 2004). However, in this particular
study, the surface lithology is difficult to be map due to multiple geomorphological and periglacial processes that operates in
M.A.

Gamma-ray ternary image combined with 3D landscape perspective in different views highlighting areas with higher and lower
values of radionuclides (Fig. 6). The predicted ternary gamma-ray map (composite image) technique by machine learning was
employed to simultaneously display three parameters of radioelement concentrations and distributions on a single image (Fig.
6). By utilizing color differences, this technique proved effective in discerning periglacial and pedogeomorphological
processes associated to lithology and not only lithology (Fig. 6). This methodology allowed the identification of areas where
distinct surface processes operate where different lithofacies occur within the larger mapped region and detailed studies

involving surface process by using gamma-ray spectrometry and k should be encouraged.
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Figure 6. Gamma-ray ternary image combined with 3D landscape perspective in different views highlighting areas with
higher and lower values of radionuclides. 1: higher €Th content; 2: higher eU content; 3A: higher “°K content; 3B miner “K

535 content in natural sulfate-affected areas.

Regarding «, surface pedogeomorphological and periglacial processes also influence the distribution of magnetic susceptibility
in the landscape, such that the spatial variability of « has specific relationships with the lithology of the area (Fig. 7). Low
values may not reflect the properties of the in-situ lithology, as many of the areas are affected by depositional processes caused
540 by periglacial erosion, resulting in the mixing of surface materials (Mello et al., 2023). In a similar vein, Joju et al., (2023)
conducted research and discovered that coarse soils in Larsemann Hills, East Antarctica, are primarily composed of magnetic
minerals originating directly from the parent material, showcasing the strong influence of lithology on soil composition.
Furthermore, despite the milder and moister climate in the maritime Antarctic region, Lee et al., (2004) observed minimal

chemical weathering of bedrocks, suggesting that the soils mainly consist of physically weathered minerals and rock fragments.
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Moreover, our findings align with those of Warrier et al., (2021a), who argued that while pedogenesis is indeed occurring, its
intensity is insufficient to generate magnetic grains.

In some areas, the sulfurization due to hydrothermal processes, induced by the influence of pyritized-andesite (Fig. 7), leads
to significant environmental acidification and hydrothermal magnetite formation affecting « values (Souza et al., 2012; Lopes
et al., 2019). This process may have played a role in the limited occurrence of ferrimagnetic minerals and their uniform
distribution across the landscape contributing low variety in k values (Mello et al., 2023b). Certain regions situated in the lower
sections of the terrain are surrounded by mafic igneous rock (andesitic-basalts) in sloping areas, where periglacial erosion rates
are high affect ferrimagnetic minerals distribution over landscape (Francelino et al., 2011; Mello et al., 2023) On the other
hand, some areas are located on marine terraces composed of undifferentiated sediments, exhibiting diverse k values patterns
(Mello et al., 2023). The variation in k values can be attributed to the presence of different sediment types with distinct
mineralogical compositions in these specific locations.

It is also notable the occurrence of low « values in the elevated and flat parts of the landscape (Fig. 7), where Cryosols occur.
The permafrost in this compartment of the landscape hinders ferrimagnetic minerals formation. Water derived from snow melt
during summer infiltrates through soil pores and accumulated in the active layer due to low permeability of permafrost. The
saturation of soil induces gleyzation and avoid ferrimagnetic minerals precipitation (Zhu et al., 2021). In addition, the presence
of a deeper regolith associated with periglacial processes of freezing and thawing of the active layer of permafrost, increases
the differences between content and distribution of ferrimagnetic minerals on the surface and ferrimagnetic properties of the
lithology (Mello et al., 2023).

The sensors were able to detect some lithological transitions, with significant changes in radionuclide and « contents (Fig. 8).
However, the sensors do not present values directly associated with lithology due to the high intensity of surface
pedogeomorphological and periglacial processes, it exerts a great influence on pedogeophysical readings in agreement with

Dickson and Scott, (1997); Mello et al., (2020) and Mello et al., (2021).

27



K (10° SI)
ZD ; 48.34

—  w— ) —  —
0 100 200 300 0 300 600 900

Figure 7. Magnetic susceptibility combined with 3D landscape perspective in different views highlighting areas with higher

570 and lower k values. 1: areas with high k values; 2 areas with lower «k values over Cryosols.

28



29



575

580

585

590

Figure 8. Examples of lithological transitions in Keller Peninsula. A: pyritized-andesite/ basaltic-andesites; B and C:
pyritized-andesite/ andesitic-basalts; D and E: pyritized-andesite/ tuffites; F: pyritized-andesite/ andesitic-basalts; G: pyritized-
andesite/basaltic-andesites; H: pyritized-andesite/andesitic-basalts; I: pyritized-andesite/diorite; J: undifferentiated marine
sediments; L: tuffite/ pyritized-andesite; M: andesitic-basalts/ basaltic-andesites; N: undifferentiated marine
sediments/pyritized-andesite; O: pyritized-andesite/  basaltic-andesites; P: andesitic-basalts/ pyritized-andesite/

undifferentiated marine sediments.

3.4 Study limitations and recommendations

Figure 9 demonstrates the coefficient of variation (prediction error) of the ternary gamma-ray and k maps. The relatively low
coefficient of variation values in our study can be attributed to the nested-LOOCYV technique. These maps, associated with the
CCC (table 2), illustrates the limitations of the models in predicting and spatializing pedogeophysical data. The prediction
errors were low for the pedogeophysical variables, in agreement with the high CCC values shown in table 2, however, such
errors do exist. It is possible to observe that the main prediction errors are associated with the steepest areas of the Peninsula,
while the smallest are associated with areas with smoother to flat slopes. This shows that the main limitation of the modeling
is related to the small number and distribution of samples read with the geophysical sensors. In this context, the relatively
limited sample number as well as the distribution of samples is justified by the adverse field conditions (e.g., steep areas with
snowbanks, glaciers, sharp rocks and frozen ground combined with high slopes, resulting in high danger areas for data
acquisition by using proximal sensors). In other words, the logistical difficulties imposed by cold environments in field
conditions were one of the significant limitations of this work, as noted by Fisher, (2014; 2015) and Mello et al., (2023).
However, moderate CCC values and satisfactory CV in modeling processes, an exploratory evaluation for field data acquisition
can provided informative results (Dharumarajan et al., 2017; Khaledian and Miller, 2020; Mansuy et al., 2014; Mosleh et al.,
2016; Poggio et al., 2016).
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Figure 9: a) Coefficient of variation for magnetic susceptibility predicted map; b) Coefficient of variation for ternary gamma-
ray predicted maps.

The low number of samples in this study (87) was not so appropriate for a more specific approach. However, the RF algorithm
600 combined with nested-LOOCYV were appropriate for small samples number, as demonstrated in other researches (Mello et al.,

2022a; Mello et al., 2022b, 2022c¢). In addition, in-situ evaluation brings several uncontrolled factors (such as rocks or
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fragments mixing due to periglacial erosion, permafrost activity, fluvioglacial channels and others), can impact the prediction
and reduce the CCC and increase CV (Mello et al., 2023b).

The absence of detailed mineralogical, petrographic, and geochemical analyses constitutes a limitation of this study. This
constraint was primarily due to logistical and operational challenges associated with fieldwork in remote and climatically
extreme environments, which limited both the time available for sample collection and the transport of materials for laboratory
analysis. Additionally, the main focus of the study was the application and evaluation of predictive models based on surface
pedogeophysical data, rather than a comprehensive mineralogical-petrographic characterization. Nevertheless, we mitigated
this limitation by incorporating and referencing existing detailed geological studies of the area, which provided essential
information on the lithological framework, mineralogy and post-magmatic alteration processes. This information contributed
significantly to understanding lithology as both a source of radionuclides and a provider of iron, which plays a key role in the
formation of ferrimagnetic minerals either through pedogenetic processes (in the clay fraction) or as an inherited feature from
the parent material (in the sand fraction).We recommend that future studies integrate in situ mineralogical and geochemical
analyses to deepen the interpretation of the geophysical signals and refine model accuracy. Another limitation of this study is
the unavailability of spatially continuous detailed lithological map (1:5000 for example), which affects the prediction
performance (CCC, table 2) and CV maps (Fig. 9). Furthermore, the variability of sensor readings is another limitation, which
is little, but it exists. As a result, this variability can reduce the accuracy of the information. Nevertheless, our methodology
tackled this concern by extending the reading time of the gamma-ray sensor to 3 minutes and employing the mean values of
three magnetic susceptibility readings. Mello et al., (2023), carried out a similar approach where the same errors and
experimental conditions were observed when modeling the intensity of weathering and studying pedogenesis in soil profiles
in Keller Peninsula, using machine learning algorithms. These researchers also adjusted the data collection method with the
same geophysical sensors used in this research.

The applicability of the findings here, however, is restricted to comparable environments, specifically those exhibiting
periglacial conditions, igneous lithology, similar precipitation, temperature, and relief patterns. Given that many of the
Maritime Antarctica Islands and some parts of Antarctic Peninsula share these common or similar environmental features, it

is strongly recommended to promote similar pedogeophysical survey characterization efforts.

4. Conclusion

The research introduced a structured approach to specialize pedogeophysical variables using machine learning techniques. It
has been demonstrated that employing machine learning methodologies is promising for accurately mapping natural gamma-
ray radioactivity and magnetic susceptibility characteristics. Through our methodology, we fitted regression models that
identified key predictors, assessing accuracy and uncertainty across the RF model and ensuring consistent predictions through
multiple pedogeoenvironmental iterations.

The RF algorithm was efficient and successfully predicted detailed maps of gamma-spectrometric and magnetic susceptibility

variables in periglacial environments with diverse igneous rock substrates. Relief-related morphometric variables significantly
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influenced the distribution of radionuclides and ferrimagnetic minerals on the land surface. The nested-LOOCYV method proved
suitable for pedogeophysical data with limited samples, providing robust evaluation of algorithm performance and generating
accurate and high-performing mean maps.

Although the low degree of pedogenetic development and limited chemical weathering in the study area would typically
suggest a strong lithological control over radionuclide concentrations, our findings indicate that topographic factors play a
more dominant role. The highly dissected relief, steep slopes, and active periglacial processes, such as erosion and
cryoturbation, contribute significantly to the redistribution of materials and radionuclides. As a result, in certain areas of Keller
Peninsula, radionuclide concentrations do not align with the expected values based solely on the underlying lithology.

The highest levels of eTh were observed in three key areas: the elevated parts of the landscape, the flat areas, and the west
beach. The west beach receives detrital materials from periglacial erosion, which come through fluvioglacial melting channels
from the eTh-rich elevated parts. The eTh contents are controlled by lithology and pedogeomorphological processes.

The highest eU contents were observed in the steepest areas, characterized by the greatest slope, forming a ring around the
highest parts of the landscape. In this case, the control of eU contents is determined by lithology and geomorphological
processes, such as rock cryoclasty, periglacial erosion, and heterogeneous Accumulation of materials in the lower elevations
of the terrain.

The highest levels of “°K were found in the most felsic rocks and areas with minimal influence from material deposition caused
by periglacial erosion. Conversely, the lowest contents of “°K were observed in regions affected by the pedogeochemical
process of sulfurization, specifically on pyritized-andesite within/around fluvioglacial melting channels. The control of “’K
levels is determined by both lithology and pedogeochemical processes.

The « did not exhibit an apparent distribution pattern, although the highest levels were observed in pyritized-andesites areas,
while the lowest levels were found in Cryosol areas. Pyritized andesites were influenced by hydrothermal alteration, where
heat and magmatic fluids promoted iron concentration and the formation of hydrothermal magnetite, thereby contributing to
higher k values. On the other hand, Cryosols, in addition to increasing the distance between surface materials and the rocky
substrate, experience seasonal freezing and thawing activity of the active permafrost layer, creating conditions that discourage
the formation of ferrimagnetic minerals and reduce k values. The control of k values is determined by lithology and less
influenced by pedological-periglacial processes associated with Cryosols.

In areas with diverse terrain attributes and a prevalence of active and intense periglacial processes, the predicted-spatialized
pedogeophysical variables do not accurately represent the lithological composition of the substrate. This is because the various
periglacial processes in the region, combined with the morphometric characteristics of the landscape, work to redistribute, mix,

and homogenize the surface materials.
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