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Application of machine learning to proximal gamma-ray and
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Abstract. Maritime Antarctica (M.A.) contains the most extensive and diverse lithological exposure compared to the entire
continent. This lithological substrate reveals a rich history encompassing lithological, pedogeomorphological, and
glaciological aspects of M.A., all of with are influenced by periglacial processes. Although geophysical surveys can detect and
provide valuable information to understand Antarctic lithologies and their history, such surveys are scarce on this continent

and, in practice, almost non-existent. In this sense, we conducted a pioneering and comprehensive gamma-spectrometric

(natural radioactivity) and magnetic susceptibility (k) survey on various igneous rocks. _
_. For that, we used proximal gamma-spectrometric and « data in different

lithological substrates associated to terrain attributes. The geophysical variables were collected in the field from various
lithological substrates, by use field portable equipment. The geophysical variables were collected in the field from various
lithological substrates using portable equipment. These variables, combined with relief data and lithology, served as input data
for modeling to predict and spatially map the content of radionuclides and k by random forest algorithm (RF). In addition, we
use nested-LOOCYV as a form of external validation in a geophysical data with a small number of samples, and the error maps
as evaluation of results. The RF algorithm successfully generated detailed maps of gamma-spectrometric and « variables. The
distribution of radionuclides and ferrimagnetic minerals was influenced by morphometric variables. Nested-LOOCV method

evaluated algorithm performance accurately with limited samples, generating robust mean maps. The highest thorium levels
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were observed in elevated, flat, and west beach areas, where detrital materials from periglacial erosion came through
fluvioglacial channels. Lithology and pedogeomorphological processes-controlled thorium contents. Steeper areas formed a
ring with the highest uranium contents, influenced by lithology and geomorphological-periglacial processes (rock cryoclasty,
periglacial erosion, and heterogeneous deposition). Felsic rocks and areas less affected by periglacial erosion had the highest
potassium levels, while regions with sulfurization-affected pyritized-andesites near fluvioglacial channels showed the lowest
potassium contents. Lithology and pedogeochemical processes governed potassium levels. The k values showed no distinct
distribution pattern. Pyritized-andesite areas had the highest levels due to sulfurization and associated pyrrhotite, promoting
iron release. Conversely, Cryosol areas, experiencing freezing and thawing activity, had the lowest k values due to limited
ferrimagnetic mineral formation. Lithology and pedological-periglacial processes in Cryosols played a significant role in
controlling k values. In regions characterized by diverse terrain attributes and abundant active and intense periglacial processes,
the spatial distribution of geophysical variables does not reliably reflect the actual lithological composition of the substrate.
The complex interplay of various periglacial processes in the area, along with the morphometric features of the landscape,
leads to the redistribution, mixing, and homogenization of surface materials, contributing to the inaccuracies in the predicted-
spatialized geophysical variables.

Keywords: modeling; cryosphere; geophysical characterization; geoscience

1. Introduction

Recently, proximal geophysical sensors have been used for lithological-pedological characterization, in other parts of the
world, where the provided information is used to understand the lithosphere-pedosphere interaction and dynamics in a
geoenvironmental context (Bastos et al., 2023; Vingiani et al., 2022). Geophysical surveys utilizing these sensors enabled the
gathering of field information swiftly and efficiently, eliminating the necessity of sample collection for laboratory analysis
(Souza et al., 2021; Mello et al., 2020; Mello et al., 2021; Mello et al., 2023; Mello et al., 2023). Among the geophysical
techniques used for lithological surveys, radiometric (gamma-ray spectrometry) and magnetic (magnetic susceptibility) stand
out.

Gamma-spectrometry involves the quantification uranium (e*3*U), thorium (e?*?Th), and potassium (*°K) commonly called
(radionuclides) in naturally radioactive rocks, soils, and sediments (Minty, 1988). The quantities of these radionuclides are
influenced by various factors such as lithological substrate and surface processes (weathering, pedogenesis, geomorphological,
and periglacial) (Navas et al., 2018). Dickson and Scott, (1997); Wilford and Minty, (2006) and Mello et al., (2021) have
shown that radionuclide contents depend not only on the soil parent material but also on surface processes. Proximal gamma-
ray spectrometry offers a precise method for determining concentrations of specific radioactive elements and mapping their
sources accurately in soil, bedrock, and surface geological exploration (Ford et al., 2008).

Magnetic susceptibility (k) is a measure of the magnetization induced in a sample relative to the magnetic field inducing it

(Mullins, 1977). It is influenced by the presence of ferrimagnetic primary minerals in both the lithological substrates and the
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ferrimagnetic secondary minerals found in the sand (magnetite) and clay (maghemite) fraction of the soil (Ayoubi et al., 2018).
In addition, the surface processes a role in determining k values (Garankina et al., 2022; Mello et al., 2020; Ribeiro et al., 2018;
Sarmast et al., 2017).

Many studies used gamma-ray spectrometry mapping to delineate lithological maps (Arivazhagan et al., 2022; Loiseau et al.,
2020; Shebl et al., 2021) and magnetic susceptibility (Bressan et al., 2020; Costa et al., 2019; Harris and Grunsky, 2015). In
addition, recently Mello et al., (2022), Mello et al., (2020), Mello et al., (2021), Mello et al., (2022), Mello et al., (2022) have
successfully used machine learning algorithms combined with data from multiple field geophysical equipment to map
geophysical variables and understand tropical soils, lithology and landscapes, obtaining satisfactory results in mapping and
understanding these landscapes using modeling via machine learning algorithms.

Maritime Antarctica (MA) is currently a great geosciences frontier to be explored in pedogeophysical studies in with its
complex and heterogeneous landforms and lithological characteristics. MA has a different climate from continental Antarctica,
being hotter and more humid (Turner et al., 2007, 2005). In this region, periglacial environments are abundant and ruled by
seasonal cycles of water freezing-thawing, which determine the specific landforms, permafrost and typical soils (French, 2017;
Pollard, 2018). The MA lithology is predominantly composed of igneous rocks and a few sedimentary rocks. This complex
lithological system associated with climatic conditions produces heterogeneous soils, sediments and saprolites, forming a
unique geoenvironment on the planet (Meier et al., 2023; Siqueira et al., 2022).

Traditionally geoscientists use invasive, destructive and time-consuming techniques for lithological and pedological
characterization in natural systems, employing sample collection for physical-chemical and mineralogical analysis in the
laboratory. Besides, the lack of detailed characterization of samples in the field demands a high collection of samples. In
Antarctica, material collection is limited by a lack of logistics and restricted access to a small number of researchers who
sample on the continent. While geophysical survey techniques are well-established and commonly utilized in research, only a

few studies have demonstrated their use, specifically gamma-ray spectrometry and magnetic susceptibility, for characterizing

and understanding periglacial landscapes such as MA (Mello et al., 2022). _
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This study can improve our understanding about periglacial processes, which can improve geophysical surveys and soil-
lithological digital mapping in the Antarctic environment. This expectation is based on research that has focused on
comprehending lithological characteristics, periglacial processes and landscape evolution in Antarctic pedosphere-lithosphere

interactions.

2 Material and methods

2.1 Study area, lithological-soil surveys and sampling points

The study site comprises Keller Peninsula (62°4'33" S, 58°23'46"W), Admiralty Bay, King George Island, and in the South
Shetland Archipelago in M.A. (Fig. 1). The Keller Peninsula covers an area of 500 ha, stretching 4 km (north-south) and 2 km
(east-west) (Francelino et al., 2011). The predominant lithological composition of the Keller Peninsula consists mainly of
igneous rocks, specifically andesitic-basalts, basaltic-andesites, diorite, pyritized-andesite, tuffites, and unspecified marine

sediments, as depicted in Figure 2A.
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Figure 1. Study area in Maritime Antarctic (Keller Peninsula), collected point, digital elevation model, and geophysical
sensors. a) Antarctic continent; b) Keller Peninsula. A — Gamma-ray spectrometer (Radiation Solution — RS 230); B —Magnetic

susceptibility meter (KT-10 Terraplus); C — Gamma-ray readings; D- Magnetic susceptibility readings.

The weather in Maritime Antarctica follows a typical pattern, albeit slightly warmer, as outlined by Rakusa-Suszczewski et
al., (1993). Summer (December—March) temperatures average around +1.6°C, whereas winter (June—September) temperatures
drop to an average of —5.3 °C (INPE, 2009). Annual precipitation is around 400 mm. The Keller Peninsula spans elevations
between 0 and 380 meters above sea level, featuring a diverse topography from flat to steep (slopes ranging from 0 to 75%).
This region is characterized by various landforms like moraines, protalus, inactive rock glaciers, uplifted marine terraces, and

Felsenmeer. These lithological features have formed due to both paraglacial and periglacial conditions, as discussed by
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magnetite, apatite, titanite, and zircon. The texture is generally coarse-grained and equigranular (Birkenmajer, 1980; Valeriano
150  Etal2008)!
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Figure 2. The maps indicated: A) Lithology. B) Soil classes: The lithological and soil classes maps were adapted from
Francelino et al., (2011).
155
Soil classification and mapping were carried out by an experienced pedologist, using 20 representative soil profiles. The overall
soil development in the area is limited, and according to the World Reference Base for Soil Resources (WRB) (FAO, 2014),
2014), the soils in the region can be categorized into various types, including Gelic Eutric Leptosol, Gelic Skeletic Regosol,
Gelic Skeletic Cambisol, Gelic Leptic Regosol, Gelic Dystric Fluvisol, Arenic Skeletic Cryosol, Vitric Leptic Cryosol, Gelic
160  Skeletic Regosol, Gelic Leptic Cambisol, and Arenic Turbic Cryosol, as illustrated in Figure 2B. The occurrence of permafrost
was observed the first two meters below the soil surface in five soil profiles. Additionally, it is discontinuously found within

the first two meters in regions with mid-slope and flat topography, all of which are classified as Cryosols (Francelino et al.,
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2011; Mello et al., 2023). These permafrost occurrences were observed in only five soil profiles, all of which are classified as
Cryosols. Within each soil profile, samples were meticulously collected from identified diagnostic soil horizons at various soil
depths to facilitate subsequent physico-chemical analyses.

The sampling design and the selection of measurement locations were conducted while considering mainly 5 topossequences
(topographic gradients) that account for various lithologies and soils. The distribution of collection points by the proximal
gamma-ray and magnetic susceptibilimeter is shown in figure 1. The readings with the sensors were carried out, taking into

account the lithological diversity of the Peninsula, as well as pedological diversity and variations in relief.

2.2 Geophysical survey, radiometric and k characterization

The geophysical variables (radiometric and «), were collected using proximal geophysical sensors, RS-230 and KT-10
Terraplus, respectively (Figs. 1A and B, respectively). The radiometric data (gamma-ray spectrometry) correspond to the
acquisition of radionuclide contents eU, eTh and *’K, quantified in ppm (eU and eTh) and % for “°K. Magnetic susceptibility
is given in 10-3 SI units and the sensor is able to detect mean k values to a depth of 2 cm below the rock outcrops surface
(Sales, 2021). Detailed calibration methods, method of collection and interpretation of results can be found in (Mello et al.,
2022; Mello et al., 2021, 2022).

Gamma spectrometric readings (Fig. 1 C) were taken on the rock outcrop surface and soil depth (saprolite/rock), at the 91
collection points shown in figure 1, in “essay mode”, which provides greater precision, and the reading time was adjusted to 3
minutes at each point. The sensor is able to detect radiation up to a mean depth of 30 - 60cm depending on the characteristics
of the substrate (Beamish, 2015; Taylor et al., 2002; Wilford et al., 1997a). Subsequently, the equipment data were transferred
to a computer and concatenated with soil k values and environmental data (lithology and terrain attributes).

Similarly, the « survey readings (Fig. 1 D) was undertaken at each of the 87 points to a mean depth of 2 cm below the rock
outcrops surface and soil depth (saprolite/rock). Three readings were taken for each point to reduce sensor noise and increase
the precision reading and, the k mean values of these three readings were used in data processing. The resulting k data were
then combined with their respective gamma-ray spectrometric data, lithology and terrain attributes in order to be processed.
All readings were carried out in different lithological-pedological compartments, with emphasis on in situ materials (igneous
rocks), despite of the little presence of marine terraces with presence of external materials and a wide range of materials from

ex situ sites.

2.3 Digital Elevation Model

Geoprocessing and Digital Elevation Model (DEM) analysis were conducted utilizing R software version 4.10 version (R Core
Team, 2023), employing data derived from a High-Resolution Topography (HRT) survey to create the DEM (Fig. 1). The
HRT survey, conducted during the 2014/2015 and 2015/2016 periods, utilized a Terrestrial Laser Scanner (TLS) of the RIEGL
VZ-1000 model, known for its nominal accuracy and precision of 8 and 5 mm, respectively (Schiinemann et al., 2018). This

advanced sensor and geoprocessing methodology yielded a low root mean square error and a high number of points per cell,

8



resulting in a densely populated point cloud. This dataset facilitated a comprehensive generalization process to generate surface

models with superior performance, accurately representing local relief. This, in turn, enabled in-depth studies of landscape

evolution at a micro scale over time, specifically allowing for the assessment of pedogeomorphological processes.

Using the R software (R Core Team, 2023), a total of forty-eight additional topographic attributes were computed based on
200 the DEM data extracted from the Digital Terrain Model (DTM) (Table 1). These attributes were derived using the utilization

of the "Rsaga" tool (Brenning, 2008) and the "raster" package (Hijmans and Van Etten, 2016).

Table 1. Terrain attributes generated from the digital terrain model, geology, soil and spectral indices.

Terrain attributes, geology and

spectral indices Abbreviations Brief description
Aspect AS Slope orientation
Blue Band B The blue band wavelengths fall below 1546.12 nm.
Green Band G BA primary wavelength of 495-570 nm approximately
Red Band R The longer wavelengths of 1546.12 nm and higher
Curvature classification CC Curvature classification

terrain parameter which shows the structure of the relief as a set of

Convergence index cl convergent areas (channels) and divergent areas (ridges).
Difference D Geometric difference of the overlayed polygon layers
Diurnal anisotropic heating DAH Continuous measurement of exposure-dependent energy
Easterners EA
Flow Line Curvature FLC Represents the projection of a gradient line onto a horizontal plane
General curvature GC The combination of both plan and profile curvatures
Geology GEO Rocks and similar substances that make up the earth's surface
A s i et ied o mp s
Digtal doadon model Do Reroenion b s gond (0 crt opogric
Effective air flow heights EAFH A line representing the resultant velocity of the disturbed airflow
Longitudinal curvature LC Measures the curvature in the downslope direction
Mass balance index MBI Multivariate distance methqu fo'r geomorphographic relief
classification
Maximal curvature MAXC Maximum curvature in the local normal section



Terrain attributes, geology and

o e Abbreviations Brief description
spectral indices
Mid-slope position MSP Represents the distance from thtt(:) t{)p to the valley, ranging from 0
Minimal curvature MINC Minimum curvature for the local normal section
Morphometric Protection MPI Measure of exposure/protection of a point from the surrounding
Index relief
Multiresolution index of ridge MRRTF Indicates flat positions in high-altitude areas
top flatness
Multiresolution index of valley MRVBF Indicates flat surfaces at the bottom of valley
bottom flatness
Normalized Difference Remote sensing techniques used to assess the health and density of
. NDVI .
Vegetation Index vegetation.
Normalized height NH Vertical distance between base and ridge of normalized slope
Northerns NO Means in or from the north of a region
Ridee level RL The maximum vertical distance between the finished floor level
g and the finished roof height directly above.
Slope S Represents local angular slope
Slope height SH Vertical distance between the base and the ridge of slope
Slope Index SI Represents the local angular slope index
Solrad Diffusel SolDiffusel Diffuse insolation for the month of January
Solrad Diffuse2 SolDiffuse2 Diffuse insolation for the month of July
Solar total radiation SolTR Insolation duration for the month of January
Solrad Directl SolDiret1 Direct insolation for the month of January
Solrad Direct2 SolDiret2 Direct insolation for the month of July
Solrad Ration1 SolRation] Ratio between direct insolation and diffuse insolation for the
month of January
Solrad Ration2 SolRation2 Ratio between direct insolation and diffuse insolation for the
month of July
Soil S Soil body as triphasic system
Sky view factor SVF Defines the ratio of sky hemisphere visible from the ground
Standardized height STANH Vertical distance between base and standardized slope index
Tangential curvature TANC Measured in the normal plane in a direction perpendicular to the

gradient

10
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Terrain attributes, geology and

o e Abbreviations Brief description
spectral indices
Terrain ruggedness index TRI Quantitative index of topography heterogeneity
Terrain surface convexi TSC Ratio of the number of cells that have positive curvature to the
ty number of all valid cells within a specified search radius
Terrain surface texture TST Splits surface texture into 8, 12, or 16 classes
Total curvature TC General measure of surface curvature
Total insolation TSR The amount of solar energy that. strikes a given area over a specific
time,
Topographic openness TO Expresses the dominance (positive) or enclosure (negative) of a
landscape location.
Topographic position index TPI Difference between a point’s elevation and surrounding elevation
Valley depth VD Calculation of vertical distance at drainage base level
Valley VA Calculation of fuzzy valley using the Top Hat approach
Valley Index VA Calculation of fuzzy valley index using the Top Hat approach
Vector ruggedness index VRI Measure terrain ruggedness as the yarlatlon in three-dimensional
orientation
Topographic wetness index TWI Describes the tendency of e.ach cell to accumulate water as a
function of relief
Wind exposition WE The average of wind effect index for all directions using an

angular step

2.4 Modeling processes and statistical analysis

The point values of eU, eTh, K*°, and «, linked with terrain attributes, soil type, lithology, and RGB (Table 1), were utilized
to modeling these variables for other areas, employing the Random Forest (RF) algorithm. The modeling process comprises
two main steps: covariate selection and model tuning / performance evaluation. During the covariates the selection phase, the
algorithm aims to generate an optimal set of covariates, adhering to the principle of parsimony. This involved two sequential
methods, we initially removed self-correlated variables and subsequently assessed the importance of the remaining variables.
Initially, to assess the correlation between variables, we used a Spearman correlation cut-off limit > |0.95|. We eliminated a
variable from the pair of variables with correlation above the established value, to decide which variable from the pair would
be eliminated, we opted for the variable with the highest sum of absolute correlations with the other covariates involved in this
process. To carry out this phase, we employed the “cor” and “findcorrelation” functions from the “stats” (Hothorn, 2021) and
“caret” (Kuhn et al., 2020) packages in the R software, respectively (Kuhn and Johnson, 2013). The covariates that successfully
passed this selection phase were combined with the samples and, subsequently, the samples were separated into training and

test sets.

11
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To partition the data into training and test subsets, we adopted the "nested leave-one-out cross-validation" (nested LOOCV)
method (Ferreira et al., 2021; Paes et al., 2022; Rytky et al., 2020). It is noteworthy that the number of samples and readings
obtained from geophysical sensors was limited (92) due to various challenges encountered during data collection in the field
(e.g., sloping terrain, high hazard areas, glaciers, steep terrain, snowbanks, etc.). Given the small sample size, the nested
LOOCYV method was chosen, as this method has already been recommended by other authors in similar cases (Ferreira et al.,
2021; Mello et al., 2022a; Mello et al., 2022¢, 2022b). This particular approach represents a significant innovation in our
research.
The nested LOOCYV approach involves a double looping process. In the first loop, the model is trained on a dataset of size n-
1, and in the second loop, testing is performed using the omitted sample to evaluate the training performance (Jung et al.,
2020; Neogi and Dauwels, 2019; Mello et al., 2025). The final machine learning algorithm performance results are calculated
as average performance indicators across all points (training/testing). This method proves to be robust in evaluating the real
generalization ability of the algorithm and in identifying possible problematic samples or outliers in the data set. Each iteration
generates a training set that undergoes covariate selection by importance and subsequent training.
The covariate selection based on importance is executed using the backward-forward method, employing the Recursive Feature
Elimination (RFE) function available in the "caret" package (Kuhn and Johnson, 2013). This RFE technique is algorithm-
specific and yields an optimal set of covariates utilized in predicting the final model for each respective algorithm (Moquedace
et al., 2024). RFE is a selection procedure that iteratively removes variables contributing the least to the model, employing an
importance measure tailored to each algorithm (Kuhn and Johnson, 2013).
The algorithm is then trained on discrete subsets of variables, going from 2 to the total variables one by one. The ideal subset
of covariates is optimized based on the leave-one-out cross-validation (LOOCYV), for each of the internal hyperparameters of
the tested algorithms (10). The hyperparameters for each algorithm are described in the caret package manual, Chapter 6,
“Described Models”, available at https://topepo.github.io/caret/train-models-by-tag.html. The Mean Absolute Error (MAE)
was used as a metric to select the best subset for the RF algorithm.
Training is then performed using the previously selected variables and tested with LOOCV. Additionally, ten values of each
RF hyperparameter were evaluated. At the end of the training phase, predictions are made on samples not used in the training
process, and the results are saved for performance analysis. The assessment of algorithm predictions and sensor sets is carried
out using a collection of samples from the outer loop within the nested Leave-One-Out Cross-Validation (LOOCV) method.
Three key evaluation parameters are utilized: Concordance Correlation Coefficient (CCC) (Eq. (1)), Root Mean Square Error
(RMSE) (Eq. (2)), and Mean Absolute Error (MAE) (Eq. (3)) (Lin, 1989).

2po,0, (1)

P~ strol (px-py)z

Where:

n represents the number of samples;

12
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pc is the correlation coefficient between the two variables;
px and py are the means for the two variables;
n_n

c" "x"/~"2"and "o" "y" ~"2" are the corresponding variances;

Pi and Oi represent the predicted and observed values at location i.

RMSE = \/% x Z(Qobs — Qpred)?

1
MAE = - x Z |Qpred — Qobs|
Where:
Qpred = the mean of the training samples
Qobsi = the validation sample

n =number of samples (loop).

As additional validation, we used the “null model” approach (NULL RMSE and NULL MAE). This null model involves

using the mean value determined from the collected samples (EQ. 4 and EQ. 5). The null model represents the simplest possible

2

3

model when given a training set, providing a single average value for numerical results.

The null model serves as a reference and can be seen as the simplest adjustable model. Any other models that present similar
or inferior performances in relation to the null model must be discarded. This indicates that the final model outperforms the
use of average values, highlighting its superior quality in model creation. Furthermore, the null model approach is widely
employed, especially in spatialization processes such as kriging, where the variable under consideration exhibits spatial

dependence, often called the pure nugget effect. The equations used for NULL _RMSE and NULL MAE calculations are as

follows:

1
NULL_RMSE = [%Z?Ll(Qtralni - Qobsi)z]z

NULL_MAE = ix Y|Qtran; — Qobs;|

Where:
Qtrain = the mean of the training samples
Qobsi = the validation sample

n =number of samples (loop).

13
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(Eq.5)
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The NULL RMSE and NULL MAE values were computed using the nullMode function within the caret package (Kuhn et
al., 2020). To assess the overall performance of the algorithms for each attribute, a total of 87 loops were conducted. The
training results represent the average performance, and the test sample results were calculated from the 87 outer loops using
Equations 1, 2, and 3.

Eighty-seven maps were predicted, yielding one map for each execution of the outer loop in the nested Leave-One-Out Cross-
Validation (LOOCYV). Coefficient of Variation (CV) was calculated for each pixel across the 87 stacked maps. Additionally,
a coefficient of variation map (CV% = standard deviation / mean) was generated to illustrate the variation of predicted values
in each pixel of the map relative to the mean. Spatial predictions exhibiting lower CV indicate more consistent results, thereby
resulting in smaller errors in the estimation/predictions and reduced uncertainty.

The statistical differences between the geophysical variables and lithology substrates were analysed by using the Kruskal-
Wallis and Dunn's posthoc tests with a significance level of 5%.

It is important to highlight that only 87 points with geophysical sensors were taken on pedological substrates. Furthermore,
these few points are found in soils with little pedogenetic evolution, characterized by a high content of rock fragments and a
predominance of the coarse fraction composed of cryoclastic rocks (many with a skeletal character). Additionally, where there
was soil, we opened a small trench and carried out geophysical readings at the base of the soil profiles, in direct contact with
the rock. As a result, we do not have enough number of points to carry out an analysis to identify differences between surface
geophysical variables and pedological substrates. Therefore, we consider these points as readings carried out on the lithological

substrate.

3 Results and discussion

3.1. Model’s performance and variables’ importance



315
Table 2. Model’s performance in terms of Concordance Correlation Coefficient (CCC), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), NULL RMSE and NULL MAE.
Parameters of RF Algorithm
model’s
performance ev ¢Th 'K *
cce 0.771 0.851 0.817 0.809
MAE 0.496 1.784 0.497 11.898
RMSE 0.680 2.432 0.646 15.469
NULL_RMSE 0.652 2.457 0.502 12.224
NULL MAE 0.463 1.818 0.502 15.651
The importance of covariates in predicting geophysical variables revealed that morphometric attributes such as minimal
320 curvature (MINC), mid-slope position (MSP), diurnal anisotropic heating (DAH), difference (D), total insolation (TSR), flow
line curvature (FLC), effective air flow heights (EAFH), terrain surface convexity (TSC), hill shading (HI), aspect (AS), mass
balance index (MBI), ridge level (RL), digital elevation model (DEM) minimal curvature (MINC), and convergence index
(CD) were the most influential, collectively contributing to over 50% of the reduction in mean prediction error (Fig. 3). In
contrast, lithological variables contributed less significantly, accounting for less than 50% of the predictive importance (Fig.
325 3). Similar results were reported by Cracknell and Reading (2014), Harris and Grunsky (2015), and Kuhn et al. (2018), who
also achieved satisfactory performance using the RF algorithm to predict radionuclide content and magnetic susceptibility for
lithological mapping. In addition, the Red Band (R) and Green Band (G) were found to be important for predicting K
330
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3.2 Radionuclides and x contents on lithological compartments and their relationship with mineralogy

The eU mean content was generally low and showed the greatest variation on the lithologies (Fig. 4). The highest eU mean
content values were observed on tuffites and the lowest on andesitic-basalts (Fig. 4). The diorite presented the highest mean
€Th contents, while the andesitic-basalts showed the lowest one. Regarding the “°K, the mean values were high in all lithologies
(> 1%) excepted on pyritized-andesite (Fig. 4). The highest *°K contents were observed on diorite, and the lowest one on
pyritized-andesite (Fig. 4). The mean « values ranged from moderate to low in all lithologies, where pyritized-andesites showed
the highest mean values and tuffites the lowest (Fig. 4). The descriptive statistics for radionuclides and « content for all
lithological units are shown in table 3, and corroborates and complements the information provided in figure 4 in quantitative

terms.
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Figure 4. Boxplot with descriptive statistics of the distribution of radionuclide contents and magnetic susceptibility by
lithology. Lowercase letters to the right of the boxplot bars indicate statistical differences as determined by the Kruskal-Walli’s

test.

Table 3. Descriptive statistics for the analyzed radionuclides and k by lithology
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Diorites

Summary Statistics

Radiometric and magnetic susceptibility

eU(mg.kg™) eTh(mg.kg!) Y0K(%,) K (1073 SI units)
Mean 1.27 8.85 2.10 18.54
Standard deviation 0.62 3.01 0.74 13.72
Minimum 0.50 3.30 0.60 0.13
Maximum 2.50 13.7 3.20 49.0
Tuffites
Radiometric and magnetic susceptibility
Summary Statistics
eU(mg.kg™) eTh(mg.kg!) Y0K(%,) K (1073 SI units)
Mean 1.63 6.62 1.41 4.73
Standard deviation 0.55 1.96 0.53 7.18
Minimum 1.00 3.20 0.80 0.04
Maximum 3.20 11.9 2.90 27.33
Andesitic-basalts
Radiometric and magnetic susceptibility
Summary Statistics
eU(mg.kg™) eTh(mg.kg™) YK(%) K (1073 SI units)
Mean 0.99 5.72 1.26 21.0
Standard deviation 0.41 1.44 0.17 15.0
Minimum 0.20 2.90 1.00 3.56
Maximum 1.40 7.20 1.50 50.4
Basaltic-andesites
Radiometric and magnetic susceptibility
Summary Statistics
eU(mg.kg™) eTh(mg.kg™) YK(%) K (1073 SI units)
Mean 1.62 7.87 1.59 17.2
Standard deviation 0.82 3.08 0.61 16.6
Minimum 0.40 3.80 0.80 0.70
Maximum 3.80 15.5 3.10 75.4
Pyritized-andesites
Radiometric and magnetic susceptibility
Summary Statistics
eU(mg.kg™) eTh(mg.kg™) “K(%) K (107 SI units)
Mean 1.64 7.59 1.54 22.5
Standard deviation 0.74 2.23 0.57 18.6
Minimum 0.20 3.30 0.70 2.37
Maximum 3.50 10.9 2.90 74.9
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In our study site, the great variability in eU content and/or their low content in basic-intermediate igneous rocks (Fig. 4, table
3) can be explained mainly by two reasons: i) loss of uranium from magmas during the later stages of their differentiation; ii)
uranium oxidation and reduction in its content with increasing in fractionation processes during magmatic crystallization
(Ragland et al., 1967; Whitfield et al., 1959). In addition, according to Wilford and Minty, (2006) and Wilford et al., (1997b),
the mean contents of radionuclides in the Earth crust vary to 2.3%, 3 ppm and 12 ppm, for K, uranium and thorium,
respectively, similar to the values observed in our study site.

The eTh and K contents tended to increase with an increase in the silicon content in our lithology composed by igneous rocks
(from andesitic-basalts to diorite) (Fig. 4, table 3). Our results are corroborated by Dickson and Scott, (1997) and Mello et al.,
(2023b), who found an increasing in €Th and “’K contents in acid-felsic igneous rocks and lower levels in basic-mafic igneous
rocks. It is noteworthy that the undifferentiated sediments receive materials from various parts of the Peninsula and from
outside it, in which case it is not appropriate to use this lithology for radionuclides comparison purposes. Most of the gamma-
ray radiation detected and quantified by the sensor originates from the first 45-60cm of the dry substrate (rocks, soils and
sediments), which the mineralogy and geochemistry of the substrate presented the greater contribution to radionuclides
contents (Gregory and Horwood, 1961). In addition, Earth surface processes and landforms such as chemical weathering,
pedogenesis and relief affect radionuclide contents, since “°K content decreases with weathering advance once it is removed
by destruction of feldspars. Also, “’K is not incorporated in secondary minerals, so it is leached, whereas Th composes highly
resistant minerals, such as ilmenite and zircon. Consequently, Th content increases with weathering (Dickson and Scott, 1997,
Wilford et al., 1997b; Mello et al., 2021; Mello et al., 2022; Mello et al., 2023). In our case, gamma radiation and radionuclide
contents are much more associated with the mineralogy of the substrate than land surface processes, due to the low intensity
with which chemical weathering and pedogenesis operate in MA. Despite this, physical weathering in this environment
associated with periglacial processes (governed by cycles of freezing and thawing of water in the different portions and types
of substrates) should not be neglected, since during these processes, radionuclides are redistributed in the landscape.

The low mean « values were not expected on basic mafic igneous lithologies (basaltic-andesite, andesitic-basalts) (Fig. 4, table
3), since there is a great probability to these rocks present more abundance of ferrimagnetic minerals in the rock. According
to Mullins (1977) increasing in ferrimagnetic mineral contents in the substrate results in increases in k values. The low « values
associated with the low content of ferrimagnetic minerals in the basaltic-andesite and andesitic-basalts may be due to a
difficulty in stabilizing the iron oxides mineral phases caused by low pressures, low oxygen content and anhydrous conditions
in magma source. This would reduce the iron oxides content in basalt or andesite to be generated from magma and,
consequently, from ferrimagnetic minerals (Sisson and Grove, 1993). Regarding the low «k values on tuffite, this igneous rock
is formed from volcanic ashes and containing large amounts of poorly crystalline minerals (Fabris et al., 1995), which is
difficult to form ferrimagnetic minerals. Poggere et al., (2018), also found low magnetic signature on soil formed from tuffites

in Brazilian soils with contrasting rock parent material.
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The greater k values on pyritized-andesites (Fig. 4, table 3), can be explained by the presence of pyrite and sulfidation process
(Passier et al., 2001). As a result, occurs the formation of pyrite in the pyritized-andesites with formation of ferrimagnetic

pyrrhotite and magnetite in the rock (Figueiredo, 2000) contributing to the increasing in k values.

430

The predicted maps of “°K, €Th, and eU are demonstrated in figures 5A, 5B and 5C, respectively. In addition, figures 5D and
5E demonstrate the high resolution predicted ternary gamma-ray and magnetic susceptibility maps. Our initial focus lies on
describing the interpretations of the three radionuclides in relation to the gamma-ray response associated to lithological-

435 pedological substrates found in the specific landscapes and geomorphic processes.
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Figure 5. A) Predicted map of “°K; B) Predicted map of eU; C) Predicted map of eTh; D) and E) 3D landscape perspective

and magnetic susceptibility and gamma-ray ternary image, respectively over part of the Keller Peninsula. By integrating
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gamma-ray spectrometric images with digital elevation models (DEMs) in 3D perspective views, a comprehensive
visualization emerges, revealing intricate connections between gamma-ray responses, terrain morphology attributes and

surface processes (pedogeomorphological and periglacial).
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3.3 Applicability of geophysical techniques on soil-lithological survey and understanding of periglacial processes

A relationship between radionuclide content/distribution and « in the landscape in a digital elevation model are demonstrated
in figures 6 and 7, respectively). Rock color variations between different lithologies were also observed in the field (Fig. 8).
The content and distribution of radionuclides and « are occasionally associated with the lithology of the area, making it difficult
to establish a direct and generalist relationship between radionuclides and « with the lithological units. This method allows for
the estimation of apparent surface concentrations of naturally occurring radionuclides and their relationship with lithology,
pedogeomorphological and periglacial processes (Mello et al., 2023b). By assuming that the absolute and relative
concentrations of these radioelements vary significantly with lithology (Dickson and Scott, 1997; Wilford et al., 2016), gamma-
ray spectrometric surveys can be used effectively for lithological mapping (Elawadi et al., 2004). However, in this particular
study, the surface lithology is difficult to be map due to multiple geomorphological and periglacial processes that operates in

M.A.



Gamma-ray ternary image combined with 3D landscape perspective in different views highlighting areas with higher and lower
values of radionuclides (Fig. 6). The predicted ternary gamma-ray map (composite image) technique by machine learning was
510 employed to simultaneously display three parameters of radioelement concentrations and distributions on a single image (Fig.
6). By utilizing color differences, this technique proved effective in discerning periglacial and pedogeomorphological
processes associated to lithology and not only lithology (Fig. 6). This methodology allowed the identification of areas where
distinct surface processes operate where different lithofacies occur within the larger mapped region and detailed studies

involving surface process by using gamma-ray spectrometry and « should be encouraged.
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Figure 6. Gamma-ray ternary image combined with 3D landscape perspective in different views highlighting areas with
higher and lower values of radionuclides. 1: higher €Th content; 2: higher eU content; 3A: higher “°K content; 3B miner “K
content in natural sulfate-affected areas.
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Regarding «, surface pedogeomorphological and periglacial processes also influence the distribution of magnetic susceptibility
in the landscape, such that the spatial variability of « has specific relationships with the lithology of the area (Fig. 7). Low
values may not reflect the properties of the in-situ lithology, as many of the areas are affected by depositional processes caused
by periglacial erosion, resulting in the mixing of surface materials (Mello et al., 2023). In a similar vein, Joju et al., (2023)
conducted research and discovered that coarse soils in Larsemann Hills, East Antarctica, are primarily composed of magnetic
minerals originating directly from the parent material, showcasing the strong influence of lithology on soil composition.
Furthermore, despite the milder and moister climate in the maritime Antarctic region, Lee et al., (2004) observed minimal
chemical weathering of bedrocks, suggesting that the soils mainly consist of physically weathered minerals and rock fragments.
Moreover, our findings align with those of Warrier et al., (2021a), who argued that while pedogenesis is indeed occurring, its
intensity is insufficient to generate magnetic grains.

In some areas, the sulfurization process, induced by the influence of pyritized-andesite (Fig. 7), leads to significant
environmental acidification and consequential mineralogical transformations affecting k values (Souza et al., 2012; Lopes et
al., 2019). This process may have played a role in the limited occurrence of ferrimagnetic minerals and their uniform
distribution across the landscape contributing low variety in k values (Mello et al., 2023b). Certain regions situated in the lower
sections of the terrain are surrounded by mafic igneous rock (andesitic-basalts) in sloping areas, where periglacial erosion rates
are high affect ferrimagnetic minerals distribution over landscape (Francelino et al., 2011; Mello et al., 2023) On the other
hand, some areas are located on marine terraces composed of undifferentiated sediments, exhibiting diverse k values patterns
(Mello et al., 2023). The variation in k values can be attributed to the presence of different sediment types with distinct
mineralogical compositions in these specific locations.

It is also notable the occurrence of low « values in the elevated and flat parts of the landscape (Fig. 7), where Cryosols occur.
The permafrost in this compartment of the landscape hinders ferrimagnetic minerals formation. Water derived from snow melt
during summer infiltrates through soil pores and accumulated in the active layer due to low permeability of permafrost. The
saturation of soil induces gleyzation and avoid ferrimagnetic minerals precipitation (Zhu et al., 2021). In addition, the presence
of a deeper regolith associated with periglacial processes of freezing and thawing of the active layer of permafrost, increases
the differences between content and distribution of ferrimagnetic minerals on the surface and ferrimagnetic properties of the
lithology (Mello et al., 2023).

The sensors were able to detect some lithological transitions, with significant changes in radionuclide and « contents (Fig. 8).
However, the sensors do not present values directly associated with lithology due to the high intensity of surface
pedogeomorphological and periglacial processes, it exerts a great influence on geophysical readings in agreement with Dickson

and Scott, (1997); Mello et al., (2020) and Mello et al., (2021).
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Figure 7. Magnetic susceptibility combined with 3D landscape perspective in different views highlighting areas with higher

and lower k values. 1: areas with high « values; 2 areas with lower k values over Cryosols.

26



v
v
wv

27



560

565

570

575

Figure 8. Examples of lithological transitions in Keller Peninsula. A: pyritized-andesite/ basaltic-andesites; B and C:
pyritized-andesite/ andesitic-basalts; D and E: pyritized-andesite/ tuffites; F: pyritized-andesite/ andesitic-basalts; G: pyritized-
andesite/basaltic-andesites; H: pyritized-andesite/andesitic-basalts; I: pyritized-andesite/diorite; J: undifferentiated marine
sediments; L: tuffite/ pyritized-andesite; M: andesitic-basalts/ basaltic-andesites; N: undifferentiated marine
sediments/pyritized-andesite; O: pyritized-andesite/  basaltic-andesites; P: andesitic-basalts/ pyritized-andesite/

undifferentiated marine sediments.

3.4 Study limitations and recommendations

Figure 9 demonstrates the coefficient of variation (prediction error) of the ternary gamma-ray and k maps. The relatively low
coefficient of variation values in our study can be attributed to the nested-LOOCYV technique. These maps, associated with the
CCC (table 2), illustrates the limitations of the models in predicting and spatializing geophysical data. The prediction errors
were low for the geophysical variables, in agreement with the high CCC values shown in table 2, however, such errors do
exist. It is possible to observe that the main prediction errors are associated with the steepest areas of the Peninsula, while the
smallest are associated with areas with smoother to flat slopes. This shows that the main limitation of the modeling is related
to the small number and distribution of samples read with the geophysical sensors. In this context, the relatively limited sample
number as well as the distribution of samples is justified by the adverse field conditions (e.g., steep areas with snowbanks,
glaciers, sharp rocks and frozen ground combined with high slopes, resulting in high danger areas for data acquisition by using
proximal sensors). In other words, the logistical difficulties imposed by cold environments in field conditions were one of the
significant limitations of this work, as noted by Fisher, (2014; 2015) and Mello et al., (2023). However, moderate CCC values
and satisfactory CV in modeling processes, an exploratory evaluation for field data acquisition can provided informative results

(Dharumarajan et al., 2017; Khaledian and Miller, 2020; Mansuy et al., 2014; Mosleh et al., 2016; Poggio et al., 2016).
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Figure 9: a) Coefficient of variation for magnetic susceptibility predicted map; b) Coefficient of variation for ternary gamma-
580 ray predicted maps.

The low number of samples in this study (87) was not so appropriate for a more specific approach. However, the RF algorithm
combined with nested-LOOCYV were appropriate for small samples number, as demonstrated in other researches (Mello et al.,

2022a; Mello et al., 2022b, 2022c¢). In addition, in-situ evaluation brings several uncontrolled factors (such as rocks or
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fragments mixing due to periglacial erosion, permafrost activity, fluvioglacial channels and others), can impact the prediction

and reduce the CCC and increase CV (Mello et al., 2023b).

Another limitation of this study is
the unavailability of spatially continuous detailed lithological map (_), which affects the prediction
performance (CCC, table 2) and CV maps (Fig. 9). Furthermore, the variability of sensor readings is another limitation, which
is little, but it exists. As a result, this variability can reduce the accuracy of the information. Nevertheless, our methodology
tackled this concern by extending the reading time of the gamma-ray sensor to 3 minutes and employing the mean values of
three magnetic susceptibility readings. Mello et al., (2023), carried out a similar approach where the same errors and
experimental conditions were observed when modeling the intensity of weathering and studying pedogenesis in soil profiles
in Keller Peninsula, using machine learning algorithms. These researchers also adjusted the data collection method with the
same geophysical sensors used in this research.

The applicability of the findings here, however, is restricted to comparable environments, specifically those exhibiting
periglacial conditions, igneous lithology, similar precipitation, temperature, and relief patterns. Given that many of the
Maritime Antarctica Islands and some parts of Antarctic Peninsula share these common or similar environmental features, it

is strongly recommended to promote similar geophysical survey characterization efforts.

4. Conclusion

The research introduced a structured approach to specialize geophysical variables using machine learning techniques. It has
been demonstrated that employing machine learning methodologies is promising for accurately mapping natural gamma-ray
radioactivity and magnetic susceptibility characteristics. Through our methodology, we fitted regression models that identified
key predictors, assessing accuracy and uncertainty across the RF model and ensuring consistent predictions through multiple
pedogeoenvironmental iterations.

The RF algorithm was efficient and successfully predicted detailed maps of gamma-spectrometric and magnetic susceptibility

variables in periglacial environments with diverse igneous rock substrates. Relief-related morphometric variables significantly
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influenced the distribution of radionuclides and ferrimagnetic minerals on the land surface. The nested-LOOCYV method proved
suitable for geophysical data with limited samples, providing robust evaluation of algorithm performance and generating

accurate and high-performing mean maps.

The highest levels of eTh were observed in three key areas: the elevated parts of the landscape, the flat areas, and the west
beach. The west beach receives detrital materials from periglacial erosion, which come through fluvioglacial melting channels
from the eTh-rich elevated parts. The eTh contents are controlled by lithology and pedogeomorphological processes.

The highest eU contents were observed in the steepest areas, characterized by the greatest slope, forming a ring around the
highest parts of the landscape. In this case, the control of eU contents is determined by lithology and geomorphological
processes, such as rock cryoclasty, periglacial erosion, and heterogeneous Accumulation of materials in the lower elevations
of the terrain.

The highest levels of “°K were found in the most felsic rocks and areas with minimal influence from material deposition caused
by periglacial erosion. Conversely, the lowest contents of “°K were observed in regions affected by the pedogeochemical
process of sulfurization, specifically on pyritized-andesite within/around fluvioglacial melting channels. The control of “’K
levels is determined by both lithology and pedogeochemical processes.

The « did not exhibit an apparent distribution pattern, although the highest levels were observed in pyritized-andesites areas,
while the lowest levels were found in Cryosol areas. Pyritized-andesite facilitates the release of iron in the system through
sulfurization and contains associated pyrrhotite, which contributed to higher k values. On the other hand, Cryosols, in addition
to increasing the distance between surface materials and the rocky substrate, experience seasonal freezing and thawing activity
of the active permafrost layer, creating conditions that discourage the formation of ferrimagnetic minerals and reduce «k values.
The control of k values is determined by lithology and pedological-periglacial processes associated with Cryosols.

In areas with diverse terrain attributes and a prevalence of active and intense periglacial processes, the predicted-spatialized
geophysical variables do not accurately represent the lithological composition of the substrate. This is because the various
periglacial processes in the region, combined with the morphometric characteristics of the landscape, work to redistribute, mix,

and homogenize the surface materials.
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