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Abstract. Chemical-transport models (CTMs) are indispensable for air-quality assessment and policy development, yet 13 

their operational use is hampered by high computational cost. We present FastCTM, a physics-informed neural-network 14 

emulator that rapidly predicts hourly concentrations of ten key pollutant variables: major PM₂.₅ species (SO₄²⁻, NO₃⁻, NH₄⁺, 15 

organic matter, elemental carbon, crustal material), coarse PM₁₀, SO₂, NO₂, CO, and O₃. FastCTM embeds five process-16 

specific neural modules—primary emissions, horizontal transport, turbulent diffusion, chemical reactions and deposition 17 

within a unified framework. Given 1-hour initial condition data, FastCTM can simulate future 24-hour concentrations for 18 

ten air pollutants using corresponding meteorological fields and emissions as input. Trained on 2018–2022 WRF-CMAQ 19 

forecasts over China and evaluated on 2023 data, FastCTM reproduces CMAQ with mean RMSE (μg m⁻³) of 9.1, 11.9, 20 

4.4, 4.0, 48.9, 10.9 and R² of 0.80, 0.81, 0.80, 0.83, 0.90, 0.70 for PM₂.₅, PM₁₀, SO₂, NO₂, CO and O₃, respectively. 21 

Sensitivity tests confirm physically plausible responses to temperature, wind speed, boundary-layer height and precursor 22 

emissions. The modular architecture enables quantitative process analysis, offering CTM-like insight at GPU-accelerated 23 

speeds. In a nutshell, FastCTM provides a computationally efficient solution for air-quality simulations, sensitivity analysis, 24 

and process attribution with high accuracy and physical consistency.  25 

1 Introduction 26 

Effective air quality management requires accurate characterization of current and future pollution conditions to implement 27 

targeted emission control measures (Wang et al., 2010; Council, 2004). Driven by this demand, deterministic air quality 28 

numerical models have been developed to simulate the spatiotemporal variability and evolution of ambient air pollutants 29 

in the atmosphere (Hakami et al., 2003; Eder et al., 2006). In these models, such as the Community Multiscale Air Quality 30 

(CMAQ) model, atmospheric physical and chemical processes (e.g., emissions, chemical reactions, horizontal advection, 31 

and diffusion) are mathematically represented by partial differential equations. The air pollutant and species concentrations 32 

can then be calculated by solving these complex equations using numerical methods (Byun and Schere, 2006), which is 33 

often time-consuming (Leal et al., 2017) and requires substantial computational resources such as high-performance 34 

computing (Efstathiou et al., 2024).  35 
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Deep learning offers promising alternatives for developing rapid, data-driven CTMs by leveraging the capacity of neural 36 

networks to encode complex spatiotemporal patterns from large datasets (Lecun et al., 2015; He et al., 2016; Liao et al., 37 

2020). These deep learning-based CTM models are expected to provide accurate simulations that are comparable to the 38 

current deterministic numerical CTMs while offering much higher computational efficiency and enhanced learning 39 

capabilities. However, progress has been hindered by challenges in designing neural architectures that simultaneously 40 

achieve high accuracy, interpretability, and long-term simulation stability and fidelity (Reichstein et al., 2019; Irrgang et 41 

al., 2021). In constructing deep learning-based CTM models, air quality modeling is often formulated as a sequence-to-42 

sequence prediction problem (Shi et al., 2015; Zhang et al., 2024) to capture the spatiotemporal correlations among multiple 43 

variables. Consequently, previous studies have mainly focused on refining neural network’s representation capabilities by 44 

proposing new neural-network operations and structures to improve error back-propagation efficiencies and model 45 

encoding capabilities (Wang et al., 2018; Huang et al., 2021; Mao et al., 2021). For example, Xing et al. (2022) developed 46 

a deep learning-based module named deepCTM that mimics atmospheric photochemical modeling to simulate ozone 47 

concentrations. However, these deep learning-based CTMs are often structured as uninterpretable black-box models that 48 

generate simulations reflecting the cumulative effect of all physical and chemical processes. Such black-box models hinder 49 

error attribution, inspection of internal processes and knowledge discovery (Reichstein et al., 2019).  50 

Quantifying individual atmospheric processes enables a mechanistic interpretation of model predictions and identification 51 

of error sources (Liu et al., 2010). Motivated by this need, recent studies have developed models that learn specific 52 

atmospheric processes, such as chemical reactions and deposition, within CTM frameworks. Kelp et al. (2022) developed 53 

a neural network chemical solver for stable long‐term global simulations of atmospheric chemistry, trained from the GEOS-54 

Chem model. Xia et al. (2024) simulated 74 chemical species and 229 reactions following the SAPRC-99 mechanism using 55 

an artificial intelligence photochemistry (AIPC) scheme, achieving approximately 8-fold speed-up. Sturm and Wexler 56 

(2020) developed a mass- and energy-conserving framework for using machine learning to accelerate computations, 57 

demonstrating successful application in a photochemistry example. For the deposition process, Silva et al. (2019) proposed 58 

a deep learning parameterization for ozone dry deposition velocities that provided accurate predictions on independent new 59 

datasets, revealing the potential of neural networks to capture complex spatio-temporal latent processes. Liu et al. (2025) 60 

proposed a Neural Network Emulator, named ChemNNE, for rapid chemical concentration modelling, which achieved 61 

strong performance in both accuracy and efficiency. Although these successes, a gap remains in coupling these NN 62 

operators into a complete deep-learning CTM. 63 

The main objective of our study is to develop and validate a principles-guided, neural network-based FastCTM, capable of 64 

simulating spatial-temporal fields of hourly concentrations of major air pollutant species in the same manner as a traditional 65 

CTM. FastCTM can model individual contributions from each atmospheric process: transport, diffusion, deposition, 66 

chemical reactions, and emissions. FastCTM is currently configured to simulate hourly concentrations of 10 criteria 67 

pollutants relevant to health impact assessment and policy-making, including major species of PM2.5 (SO4
2−, NO3

−, NH4
+, 68 

organic matters and other inorganic components, coarse part in PM10, CO, NO2, SO2, and O3. Enhancing the interpretability 69 

of deep-learning models is critical for advancing their application in Earth system science, including both climate and air-70 

quality research. The well-trained FastCTM model is capable of performing analysis of internal chemical and physical 71 

processes. The FastCTM model offers many benefits, including high computational speed, efficient data assimilation, and 72 

rapid model updates.  73 
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2 Data and Methods 74 

2.1 Parent Model Simulations and Datasets 75 

In this study, the FastCTM model was designed to replicate the parent model CMAQ, trained by learning CMAQ’s 76 

underlying physical and chemical processes among multiple air pollutants, including the complicated chemical reaction, 77 

transport, diffusion, and deposition. CMAQ has a process analysis (PA) tool to separate out and quantify the contributions 78 

of individual physical and chemical processes to the changes in the predicted concentrations of a pollutant, which provides 79 

the opportunity to conduct a sensitivity analysis by comparing process contributions between CMAQ and FastCTM.  80 

Weather and air quality simulations from 2018 to 2023 were conducted using a WRF-CMAQ modeling system consisting 81 

of three major components: (1) the meteorology component, the Weather Research and Forecasting model, WRF v3.4.1 82 

(Michalakes et al., 2005; Skamarock et al., 2008), which provides meteorological fields; provides meteorological fields, 83 

(2) the emission component, which supplies gridded estimates of hourly emission rates for primary pollutants matched to 84 

model species, and (3) the CTM component, CMAQ v5.0.2 (Byun and Schere, 2006), which solves the governing physical 85 

and chemical equations to obtain 3-D pollutant concentration fields. WRF-CMAQ simulations are not two-way coupled, 86 

so weather and chemistry do not influence each other. We used hourly average concentrations of dominant PM2.5 87 

components of sulfate (SO4), nitrate (NO3), ammonium (NH4), organic carbon (OC), and other components (EC and soil, 88 

etc.), and CO, SO2, NO2, and O3 in the surface layer. The 10 species were selected based on their direct relevance to 89 

regulatory standards (e.g., PM₂.₅, PM₁₀, O₃, NO₂, SO₂, and CO) and their dominance in driving health and environmental 90 

impacts in urban and industrial regions. 91 

Meteorological variables used in this study include relative humidity (RH), air temperature (T), wind components (U, V) 92 

at surface 10 meters height, precipitation (RN), cloud fraction (CFRAC), and planetary boundary layer height (PBLH). 93 

Wind speed (WS) was calculated from U and V. The data covered the whole of China at a horizontal resolution of 12km 94 

with 372×426 grid cells. The simulation data from 2018-2022 are used as the training dataset, while the remaining 95 

simulation data in 2023 is used for independent evaluation. The surface topographic data (HGT, Figure S1 in the 96 

supplementary material, obtained from https://lta.cr.usgs.gov/GTOPO30) and land cover data (Zhang et al., 2020) of urban 97 

and tree fraction (LULC) are also used to reflect the effects of land surface conditions in this study. 98 

The original primary emissions used in the aforementioned WRF-CMAQ modelling system are used as input to the 99 

FastCTM. The large amount of emission data is grouped according to the simulated 10 pollutant variables. Specifically, 100 

the primary PM2.5 emissions of SO4, NO3, NH4, OC, and other components, and gaseous emissions including sulfur oxide 101 

(SO2), nitrogen oxides (NOx, including HONO, NO, and NO2), ammonia (NH3), volatile organic species (VOCs, including 102 

isoprene (ISOP), terpene (TERP), and other species of VOC) are used in the FastCTM. Annual average emissions of NOx, 103 

SO2, and VOC are respectively depicted in Figure S2-4 in the supplementary material.  104 

2.2 FastCTM Model Formulations 105 

2.2.1 FastCTM Model Framework 106 

The deterministic CTM models simulate emissions, transport, deposition, diffusion, and chemical transformations of gases 107 

and particles in the troposphere through numerically solving the governing equations as follows, 108 

𝜕𝐶𝑖

𝜕𝑡
= −∇ ∙ (𝑢⃗ 𝐶𝑖) + ∇(𝐾∇𝐶𝑖) + 𝑅𝑖 + 𝐸𝑖 + 𝐷𝑖  (1) 109 

where 𝐶𝑖 is the concentration of species i, 𝑢 is the air fluid velocity, 𝐾 is the eddy diffusivity tensor, 𝑅𝑖 is the net rate of 110 
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chemical generation of species i, 𝐸𝑖  is the rate of direct addition of the species from primary emissions, and 𝐷𝑖   is the 111 

deposition rate caused by both dry and wet depositions. A detailed description of CMAQ principles is available elsewhere 112 

(Byun and Schere, 2006; Appel et al., 2017). Inspired by numerical CTMs principles and equations, the guiding framework 113 

of FastCTM was also structured in a similar formulation to represent the dominant processes in order to simulate air 114 

pollutant spatiotemporal variations.  115 

In the context of deep learning, hourly air quality simulation is a spatiotemporal sequence-to-sequence learning problem 116 

aimed at predicting the most probable future sequence of length K, given a previous sequence of length J, as shown in Eq.2, 117 

𝑌̂𝑡+1, . . . , 𝑌̂𝑡+𝐾  =  𝑎𝑟𝑔max 𝑝 ([𝑌𝑡−𝐽+1, . . . , 𝑌𝑡], [𝑋𝑡−𝐽+1, . . . , 𝑋𝑡 , 𝑋𝑡+1, … , 𝑋𝑡+𝐾]) (2) 118 

Where the arg max (short for “argument of the maximum”) function is used to find the p class with the highest predicted 119 

probability. The 𝑋𝑡 ∈ 𝑹
𝑀×𝑁×𝑉𝑋  is the data of 𝑉𝑋 input variables at the spatial grid of 𝑀 ×𝑁 at time t. The 𝑌𝑡 ∈ 𝑹

𝑀×𝑁×𝑉𝑌 120 

is the data of 𝑉𝑌  predictive variables at time t. Specifically, the FastCTM simulates future K-hour air pollutant 121 

concentrations, given J-hour air pollutant concentrations[𝑌𝑡−𝐽+1, . . . , 𝑌𝑡] as initial fields and (K+J)-hour meteorological and 122 

emission conditions [𝑋𝑡−𝐽+1, . . . , 𝑋𝑡 , 𝑋𝑡+1, … , 𝑋𝑡+𝐾]. Previous studies generally used multiple-step input data with J>1 to 123 

ensure sufficient spatial-temporal correlations contained in the training data (Sum et al., 2022; Xing et al., 2022). Instead, 124 

we use 1-hour initial pollutant concentration (J=1) to simulate 24-hour air quality pollutants (K=24), to ensure FastCTM is 125 

dedicated to learning air quality changes between two neighboring hours as shown in Figure 1a. In other words, at time 126 

𝑡 = 0 , FastCTM predicted K-hour air pollutant concentrations of 𝐶𝑡=0, 𝐶𝑡=1, … , 𝐶𝑡=𝐾−1 , given the input air pollutant 127 

concentration in previous hour 𝐶𝑡=−1 and corresponding meteorological data and emissions at time 𝑡 = 0,1,…,K-1. The 128 

unit of concentrations is μg/m3 for all pollutants.  129 

 130 

 131 

Figure 1: (a) General model workflow, and (b) the basic simulator module structure at the time step t of the deep learning 132 

simulation model FastCTM, designed according to Eq.1. Arrows and boxes with different colours represent calculation modules 133 

of different atmospheric physical and chemical processes. 134 

The FastCTM model uses the basic simulator module (Figure 1a) recursively for hourly simulations, using output air 135 

pollutant concentrations from one step as input to the next step basic simulator. In contrast to directly learning 136 
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spatiotemporal correlations of predictand itself as in most previous studies (Wang et al., 2018; Shi et al., 2017), the basic 137 

simulator (Figure 1b) is formulated following the atmospheric physical and chemical equations and constraints shown in 138 

Eq.1, and is composed of five modules to respectively represent the physics-chemical processes to improve the model 139 

performance. The modules for each of the five processes in the basic simulator are described in the following section. The 140 

time step used in FastCTM was 60 seconds.  141 

2.2.2 Primary Emissions Module 142 

Primary pollutants are assumed to be directly emitted into the atmosphere and instantly well-mixed within the PBL. 143 

Therefore, hourly enhancement of air-pollutant concentrations caused by primary emissions could be described in the 144 

following Eq.3.  145 

𝐸𝑚,𝑛,𝑖,𝑡 =
1000×𝑃𝐸𝑚,𝑛,𝑖,𝑡

𝑃𝐵𝐿𝐻×d𝑥×d𝑦
 (3) 146 

Where 𝐸𝑚,𝑛,𝑘,𝑡 refers to the concentration changes contributed by primary emissions at spatial coordinate (𝑚, 𝑛) for species 147 

i at time t. The 𝑃𝐸𝑚,𝑛,𝑖,𝑡 is the corresponding total primary emissions within the grid cell per second, which has a unit of 148 

g/s. Considering that the cell size in the FastCTM is 12km by 12km, we have d𝑥 = 12000 and d𝑦=12000 in this study. 149 

The boundary layer height PBLH ,i s also in the unit of meters(m). Therefore, the resulting air pollutant concentration 150 

increases by primary emission 𝐸𝑚,𝑛,𝑖,𝑡 has a unit of μg/m3. 151 

2.2.3 Horizontal Transport Module 152 

In the FastCTM, horizontal transport usually has a significant influences on air quality variations (Lang, 2013). In CMAQ, 153 

the regional transport is generally represented by the divergence of the product of wind field and air pollutant species as in 154 

Eq.1, inferred from continuity equations and convection equations (Michalakes et al., 2001; Byun and Schere, 2006). By 155 

decomposing the air mass movement into two orthogonal directions of east-west (x) and north-south (y), they could be 156 

rewritten in the form as shown in Eq. 4, 157 

∇ ∙ (𝑢⃗ 𝐶𝑖) =  
𝜕(𝐶𝑖𝑈)

𝜕𝑥
+

𝜕(𝐶𝑖𝑉)

𝜕𝑦
 (4) 158 

Where the wind field is represented as 𝑢⃗ , which is then decomposed into 𝑈 and 𝑉, respectively in the x and y directions.  159 

In the deep learning framework, the partial equation in Eq. 4 could be rewritten in a discrete form as convolution operations 160 

and inner product calculations as shown in Eq. 5 with a finite difference method. The convolutional kernels of 𝑊𝑥 and 𝑊𝑦 161 

were defined in an upwind scheme as shown in Eq. 6 and Eq. 7. With the scheme, this transport module itself is mass-162 

conserved, even though FastCTM is not mass-conserved as a whole. 163 

∇ ∙ (𝑢⃗ 𝐶𝑖) =
𝑊𝑥∗(𝐶𝑖×𝑈)

d𝑥
+

𝑊𝑦∗(𝐶𝑖×𝑉)

d𝑦
 (5) 164 

𝑊𝑥 = {
[−1 1 0] 𝑖𝑓 𝑈 < 0

[0 −1 1] 𝑖𝑓 𝑈 ≥ 0
 (6) 165 

𝑊𝑦 =

{
 
 

 
 [

0
1
−1
]  𝑖𝑓 𝑉 < 0

[
1
−1
0
]  𝑖𝑓 𝑉 ≥ 0

 (7) 166 
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2.2.4 Diffusion Module 167 

Diffusion involves the physical and chemical processes that disperse pollutants in the atmosphere. It is influenced by 168 

meteorological conditions, i.e. atmospheric stability and humidity, and surface features, i.e., land terrains and vegetation 169 

(Jiang et al., 2021). The turbulence diffusion process ∇(𝐾∇𝐶𝑖) in Eq.1 helps the spread of pollutants in the atmosphere. It 170 

is expressed as the second-order deviation of species concentrations as shown in Eq. 8. They could also be discretized to 171 

convolutional operations with the finite difference method as shown in Eq. 9, just like that in the horizontal transport 172 

process module.  173 

∇(𝐾∇𝐶𝑖) =  
𝜕

𝜕𝑥
(𝐾

𝜕𝐶𝑖

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾

𝜕𝐶𝑖

𝜕𝑦
) (8) 174 

∇(𝐾∇𝐶𝑖) =
𝑊𝑥∗(𝐾×𝑊𝑥∗𝐶𝑖)

d𝑥×d𝑥
+

𝑊𝑦∗(𝐾×𝑊𝑦∗𝐶𝑖)

d𝑦×d𝑦
 (9)  175 

𝐾 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐾([𝑇, 𝑅𝐻, 𝑃𝑅𝑆, 𝑃𝐵𝐿𝐻]) (10) 176 

The turbulent diffusivity 𝐾 is closely related to the meteorological conditions of the atmosphere and is simulated with an 177 

encoder module 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐾  (Eq. 10). The input variables of the 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐾  include temperature 𝑇, humidity 𝑅𝐻, surface 178 

pressure 𝑃𝑅𝑆, and boundary layer height 𝑃𝐵𝐿𝐻. The 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐾  is determined to be a grid-to-grid regression model based 179 

on the Unet++ model with a nested structure (Zhou et al., 2018; Ronneberger et al., 2015). The 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐾  model consists 180 

of 5 layers with each layer respectively composed of 16, 32, 64, 128 and 256 filters. 181 

2.2.5 Chemical Reaction Module 182 

Reduced-form models like InMAP (Tessum et al., 2017) and EASIUR (Gentry et al., 2023) focus on annual-average 183 

exposure, while FastCTM provides hourly-resolved simulations critical for real-time management. FastCTM quantifies 184 

hourly contributions from individual processes (transport, chemistry, emissions) via its modular design, rather than 185 

aggregating source impacts in reduced-form models (e.g., EASIUR’s source-receptor matrices). Furthermore, FastCTM 186 

explicitly couples meteorology (PBLH, T, RH) with chemistry, whereas InMAP/APEEP (Muller and Mendelsohn, 2006) 187 

assume static meteorology, which limits their utility in capturing diurnal or synoptic-scale variations. Specifically, the air 188 

pollutant concentration changes caused by chemical reactions are represented in the following Eq. 11. In the equation, the 189 

rate of chemical reaction of species i is expressed as the product of a rate constant 𝑘 and a term that is dependent on the 190 

concentrations of its reactants j (Carter, 1990; Carter and Atkinson, 1996).  191 

𝑅𝑚,𝑛,𝑖,𝑡 = 𝑘𝑚,𝑛,𝑖,𝑡 × 𝑓(𝐶𝑚,𝑛,𝑗,𝑡) (11) 192 

𝑘𝑖 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑘([𝑇, 𝑅𝐻, 𝑃𝑅𝑆,𝑊𝑆, 𝑃𝑅𝐸, 𝐶𝐹𝑅𝐴𝐶]) (12) 193 

The reaction kinetics constant k is generally temperature-dependent. They could also be related to atmospheric pressures 194 

and moisture humidity in some reaction processes. Therefore, the reaction rate constant 𝑘  is simulated using a spatial 195 

encoder function 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 as shown in Eq. 12, which has the same structure as that of diffusion encoder modules (Eq. 10). 196 

There are 6 input variables of the 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑘 including 𝑇, 𝑅𝐻, 𝑃𝑅𝑆,𝑊𝑆, 𝑅𝑁 and 𝐶𝐹𝑅𝐴𝐶. The concentration processor 𝑓 is 197 

designed as a simple multi-layer convolutional network with a kernel size of 1 to represent high-order and complex relations 198 

among different reactants.  199 

2.2.6 Deposition Module 200 

Air pollutant deposition refers to the process by which atmospheric pollutants are transferred to Earth's surfaces (land, 201 

water, vegetation) or removed from the air. This phenomenon plays a critical role in environmental pollution dynamics and 202 
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ecosystem impacts. The deposition was closely influenced by meteorological conditions and surface characteristics (Janhäll, 203 

2015). For example, high wind disperses pollutants, while turbulence enhances dry deposition. Forests and crops act as 204 

sinks due to large surface areas for adsorption. Air quality changes due to the deposition process are expressed linearly as 205 

the product of the deposition rate d and the corresponding air pollutants concentrations C, as shown in Eq. 13. The constant 206 

d is closely related to the current and previous meteorological conditions, terrains, and underlying land cover types. 207 

Therefore, they are all simulated with an Encoder module as shown in Eq. 14.  208 

𝐷𝑚,𝑛,𝑖,𝑡 = 𝑑𝑚,𝑛,𝑖,𝑡 × 𝐶𝑚,𝑛,𝑖,𝑡 (13) 209 

𝑑 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑑([𝑊𝑆, 𝑅𝐻, 𝑅𝑁,𝐻𝐺𝑇, 𝐿𝑈𝐿𝐶]) (14) 210 

The model structure and parameter configurations are also the same as that of 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐾  and 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑘. The input data 211 

variables of 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑑 include WS, RH, RN, HGT and LULC.  212 

2.3 Model Training 213 

The FastCTM was programmed with Python 3 on the deep learning framework TensorFlow (Abadi et al., 2016). The model 214 

was trained with the WRF-CMAQ operational forecast data in China for 2018-2022. Considering that on each day we had 215 

120-hour forecasts with a spatial coverage of 426×372 grid cells (each with a size of 12×12km2) for 9 meteorological 216 

variables and I=10 air pollutant variables, the total training dataset has a size of 𝑻𝑫 = 𝑹1826,120,426,372,19, where 1826 217 

represents the total counting days from 2018 to 2022. Since the model was set to predict 24-hour PM2.5 concentrations from 218 

1-hour input data, the total input sequence length was 25 hours in each training step. Besides, the size 𝑀 ×𝑁 of input data 219 

𝑋𝑡 to FastCTM was decided to be 150×150, equal to an area of 1,800×1,800 km2 in 12-km resolution. Therefore, the input 220 

batch data for FastCTM in each step should be in the size of 𝑩𝑫 = 𝑹𝑏,25,150,150,19, where b is the batch size (determined 221 

as 1 in this study). The input data 𝑩𝑫 are randomly sliced from the whole training dataset 𝑻𝑫 in each training iteration, 222 

indicating each BD representing different spatial and temporal coverages. The random sampling tactics helps the model 223 

learn inherent physical and chemical principles rather than just statistical spatiotemporal autocorrelations using data in a 224 

constant spatial area (Xing et al., 2022). Besides, the spatio-temporal random samples contain varied emissions, which 225 

would improve FastCTM adaptation to changing emission levels. 226 

Even though five modules are defined in FastCTM, individual processes are not trained separately. The model was trained 227 

as a whole with hour-to-hour air pollutant concentrations, while each process could learn its parameters under the 228 

constraints of its dedicated formulation. Specifically, FastCTM was tuned to minimize the loss function ℒ, which was 229 

determined to be L2 loss (Bühlmann and Yu, 2003) of the regularized mean squared error (MSE) as shown in Eq. 15. The 230 

model was optimized using the Adam optimizer (Kingma and Ba, 2014).  231 

ℒ =
1

𝐽×𝑁×𝑀×𝐼
∑ ∑ ∑ ∑ (𝐶 𝑚,𝑛,𝑖,𝑡 − 𝐶̃𝑚,𝑛,𝑖,𝑡)

𝐼
𝑖=1

2𝑁
𝑛=1

𝑀
𝑚=1

𝐽
𝑡=1  (15) 232 

The learning rate was set to be 0.001, and batch size to be 1. The FastCTM model was trained on one entry-level 233 

professional acceleration card of NVIDIA A40 with a running time of 10 hours for every 10000 iterations. A total of 300,000 234 

iterations were performed until the remaining model loss stabilized.  235 

2.4 Model Evaluation 236 

FastCTM was assessed against CMAQ simulations using the same input emission data and meteorological fields. Starting 237 

from 0:00 local time on each day, the CMAQ model simulated 120-hour forecasts in one cycle. There are 139 cycles in the 238 

evaluation year of 2023 due to data unavailability in the remaining days. The FastCTM model generated 119-hour forecasts 239 



8 

 

using 1-hour initial input condition. The 119-hour forecasts in the leading hours from 2 to 120 by the two models were 240 

compared regarding to corresponding leading time. For example, when we had 120-hour forecast starting at 0:00 on January 241 

1, 2023 at Beijing Local Time (BLT), the data of 0:00 on January 1, 2023 were fed into FastCTM to get the 119-hour 242 

forecasts until 23:00 on January 5. The 10 species forecasts by FastCTM were compared against the CMAQ forecasts at 243 

each corresponding hour. The metrics of root mean square error (RMSE) and coefficient of determination (R2) were 244 

calculated daily in each of 119 leading hours on the difference in each of the 158,742 grid cells between CMAQ and 245 

FastCTM. Therefore, metrics of R2 and RMSE were obtained on each lead hour at each day of the independent test year of 246 

2023. The statistic values on each day are then averaged for the same leading hour for comparison.  247 

The FastCTM was also assessed in terms of sensitivity analysis to emission inputs and meteorological fields. For 248 

meteorological variables, responses of six criteria pollutant concentrations to T, WS and PBLH were calculated. For 249 

emissions, responses to paired variables of SO2/NH4 and NOx/VOC was calculated. Besides, FastCTM’s capability to 250 

simulate responses to emission changes were also evaluated by comparing with CMAQ simulations in 11 emission-251 

intervention scenarios. Finally, the contributions of five internal processes of transport, diffusion, emission, reaction, and 252 

deposition were also analyzed and discussed for an example pollution episode.  253 

3 Results 254 

3.1 Forecast Performance by FastCTM 255 

FastCTM has exhibited strong, stable performance in reproducing CMAQ forecasts over the 119-hour forecast period 256 

evaluated for 2023 (Figure 2). The average RMSE values for six criteria pollutants of PM2.5, PM10, SO2, NO2, CO, and O3 257 

are respectively 9.1, 11.9, 4.4, 4.0, 48.9 and 10.9 μg/m3. For R2 values, they are 0.8, 0.81, 0.8, 0.83, 0.9 and 0.7. As for 258 

PM2.5 components, RMSE values are 1.68, 2.68, 1.52, 1.98 and 4.25 μg/m3 respectively for SO4
2−, NO3

−, NH4
+, organic 259 

matters and other inorganic components, while the R2 values are 0.72, 0.6, 0.3, 0.83 and 0.68. Compared to the ~5ppb 260 

(~10.5 μg/m3) in the previous study by Xing et al. (2022), the FastCTM model has similar RMSE values in forecasting O3. 261 

To test the influences of initial condition on FastCTM long-term simulations, FastCTM forecasts using zero values as input 262 

air quality data were almost the same as that using ordinary input in the long leading hours. Results indicating that FastCTM 263 

simulations in long leading hours are not affected by initial conditions (Figure S5 in the SI), just like deterministic CTMs 264 

(such as CMAQ). In other words, the insensitivities of FastCTM to initial conditions indicate that it has well learned and 265 

encoded the most physical and chemical principles in CMAQ CTM, rather than just spatio-temporal correlations among 266 

air quality sequences. 267 

 268 
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 269 
Figure 2: The evaluation performances of FastCTM forecasts against CMAQ forecasts in 2023. Panel (a) and (b) respectively 270 

show RMSE values of criteria pollutants and the PM2.5 components. Panel (c) and (d) respectively show R2 values. It should be 271 

noted that RMSE value of CO corresponds to the right axis in panel (a). 272 

Hourly RMSE values show clear diurnal variation with higher RMSE values in the nighttime than that in the daytime, 273 

which could be due to higher hourly concentrations of air pollutants in nighttime except for O3 (Figure S6 of SI). 274 

Consistency between CMAQ and FastCTM, as characterized by R², is lower in the daytime. Since the FastCTM is a 2-D 275 

model only considering atmospheric processes within the boundary layer, lower consistency with the CMAQ model during 276 

daytime, possibly due to more vigorous vertical mixing. Strong vertical mixing of air pollutants to the height above PBLH 277 

have been found (Li et al., 2017; Tang et al., 2016), which may not be not fully represented in FastCTM. It is important to 278 

note that the relatively low R2 values observed for NH4
+ . While CMAQ explicitly resolves NH4

+  formation reactions, 279 

FastCTM does not explicitly encode these pathways. Instead, the neural network implicitly learns relationships between 280 

NH4
+  and precursor emissions (NH3, NOx, SO2) and meteorological variables (e.g., temperature, humidity). This 281 

simplification omits acid-base equilibria and aerosol thermodynamics, which are critical for partitioning NH4
+ between gas 282 

and particle phases. The low R² for NH4
+ primarily reflects FastCTM’s simplified chemical mechanism in this part, which 283 

could be improved by adding related species in the simulation.  284 

The spatial distributions of the mean absolute error (MAE) and the normalized mean absolute error (NMAE) are presented 285 

in Figure 3. For all six pollutants under consideration, MAE values tend to be higher in polluted areas. In polluted 286 

environments, there are often multiple sources of emissions, complex chemical reactions, and variable meteorological 287 

conditions that can lead to greater discrepancies between the predicted concentrations between the two models. Conversely, 288 

the NMAE values exhibit an opposite trend, being lower in polluted areas. In these regions, the NMAE values typically 289 

hover around 0.2, in contrast to the relatively higher values of approximately 1 in cleaner areas. The NMAE is a normalized 290 

metric that takes into account the magnitude of the actual pollutant concentrations. A lower NMAE in areas with high 291 

pollution levels suggests that the FastCTM model is effectively capturing the overall magnitude and trends relative to the 292 
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reference CMAQ simulation. The Air quality forecasts starting from 00:00 a.m. on March 4th, 2023 (Figure S7 in the SI) 293 

demonstrate FastCTM’s strong capability in modelling the complex spatio-temporal changes in a large spatial domain and 294 

over a relatively long period and a large area.  295 

 296 

Figure 3: Spatial distribution of mean absolute error (panels a, c, e, g, i, and k) and normalized mean absolute error for the six 297 

criteria pollutants (panels b, d, f, h, j, and l) of FastCTM compared with CMAQ in 2023. 298 

Defining the warm season as the months from April to September and the winter and cold season as the remaining months, 299 

the FastCTM model exhibited comparable performances. As shown in Figure 4 (with detailed information in Figure S8 in 300 

the SI), the coefficient of determination R2 values for the six criteria pollutants were 0.82, 0.8, 0.8, 0.82, 0.91, and 0.7 in 301 

the warm season, and 0.8, 0.79, 0.78, 0.83, 0.88, and 0.68 in the cold season, respectively. To assess the performance 302 

variations of FastCTM across different spatial locations, comparative evaluations were carried out in urban and rural areas 303 

as well as in inland and coastal regions. Generally, FastCTM demonstrated slightly higher accuracies in rural areas 304 

compared to urban areas (as presented in Figure S9 in the SI). This outcome is reasonable given the more intricate emission 305 

and chemical processes prevalent in urban settings (Guo et al., 2014). Similarly, FastCTM exhibited comparable 306 

performances in inland areas to those in coastal areas, except for PM₂.₅ and PM₁₀ (Figure S10 in the SI). 307 
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 308 

Figure 4: The mean evaluation R2 values for all 119 leading hours of FastCTM forecasts in warm/cold seasons, rural/urban areas, 309 

and coastal/inland areas. 310 

To validate the FastCTM model, three land use regression (LUR) models were constructed, namely the linear regression 311 

model, the random forest model (with the number of trees set at 500), and the XGBoost model (with the booster specified 312 

as gbtree). These LUR models were developed using the same input meteorological data, emissions, and geophysical 313 

variables as FastCTM to ensure fair comparison. When compared with the FastCTM model, the performance of the LUR 314 

models was found to be significantly inferior, as demonstrated in the Table. 1 and Figure S10 – S12 in the SI. For example, 315 

R2 values for FastCTM range from 0.68-0.90, whereas the LUR models only achieve 0.06-0.33. This outcome is anticipated 316 

when we consider the complex nature of air quality dynamics in predicting future air quality. Air quality is not a static 317 

entity, but it varies both spatially and temporally, determined by the joint effects of local emissions, meteorological 318 

conditions, and surface features, etc. For instance, the transport of air pollution is a highly dynamic process that hinges on 319 

wind fields and air pollution concentrations in a reciprocal manner. The wind direction and speed dictate the trajectory 320 

along which pollutants travel, while the existing pollutant concentrations in different regions influence the overall 321 

dispersion and mixing patterns. LUR models, which on the other hand predominantly rely on local input data (Wong et al., 322 

2021; Cheng et al., 2021), struggle to capture these intricate, non-local interactions. They cannot account for the far-323 

reaching effects, such as wind-driven pollutant transport and the temporally accumulated changes in air quality over larger 324 

geographical areas. As far as we know, LUR models have been mostly applied in predicting air pollution fields in retrieval 325 

given corresponding air quality observations as training and constrained input data. They have been seldom used in air 326 

quality forecasts and simulations, as we have demonstrated with the FastCTM model.  327 

Table 1. Performance metrics of LUR models and FastCTM compared against CMAQ 328 

Variable Model RMSE R2 NMB 

PM2.5 

FastCTM 8.78 0.81 -0.15 

Liner Model 35.05 0.09 -0.24 

Random Forest 33.08 0.19 -0.25 

XGBoost 33.02 0.14 -0.12 
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PM10 

FastCTM 11.58 0.80 -0.17 

Liner Model 44.66 0.10 -0.23 

Random Forest 45.07 0.19 -0.33 

XGBoost 44.53 0.15 -0.21 

SO2 

FastCTM 4.51 0.80 0.09 

Liner Model 39.42 0.14 -1.18 

Random Forest 25.74 0.33 -0.65 

XGBoost 25.57 0.26 -0.60 

NO2 

FastCTM 4.24 0.83 0.04 

Liner Model 21.42 0.27 -0.30 

Random Forest 25.13 0.16 -0.58 

XGBoost 23.88 0.15 -0.43 

CO 

FastCTM 51.84 0.90 0.01 

Liner Model 427.67 0.03 6.38 

Random Forest 83.25 0.08 1.32 

XGBoost 70.06 0.06 1.10 

O3 

FastCTM 11.46 0.68 0.02 

Liner Model 357.97 0.09 -0.46 

Random Forest 285.16 0.19 -0.21 

XGBoost 291.58 0.15 -0.22 

Annually, the daily air quality typically exhibits similar fluctuations to those in other years, which can be primarily 329 

attributed to the cyclical nature of meteorological conditions and pollutant emission patterns. The FastCTM model was 330 

trained using a comprehensive dataset spanning five years, from 2018 to 2022. In light of this, it was crucial to rule out the 331 

possibility that the model was merely reproducing historical averages during the test year of 2023. To this end, the daily 332 

national average concentrations of PM2.5 and O3 in 2023, as predicted by FastCTM, were meticulously compared with 333 

those simulated by CMAQ in the same test year, as well as with the CMAQ forecasts from the training years of 2018-2022. 334 

As illustrated in Figure 5, the predictions made by FastCTM in 2023 align more closely with the actual CMAQ forecasts 335 

for that year, with R2 = 0.94 and 0.72, respectively, for PM2.5 and O3, rather than with the forecasts generated from the 336 

training data of 2018-2022, with R2=0.54 and 0.59. The NMB was also lower between FastCTM and CMAQ for the same 337 

year, 2023. These results not only validate the adaptive learning capabilities of the FastCTM model but also indicate that 338 

the model is not using a simplistic approach of averaging concentrations from the previous five years based on time of day. 339 

Hourly time series plots of air pollutant concentrations (Figure S6 in the SI) further demonstrate that FastCTM appears to 340 

incorporate real-time meteorological feedback, adjust for shifts in emission patterns, and leverage its learned relationships 341 

to provide more accurate and contemporaneous predictions. 342 
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 343 

Figure 5: The daily FastCTM forecasts compared with CMAQ forecasts, respectively, in training period of 2018-2022 and the 344 

evaluation period of 2023 for (a) PM2.5 and (b) O3. The gaps for FastCTM and CMAQ in 2023 are due to data unavailability 345 

these days.  346 

3.2 Sensitivity Analysis with FastCTM 347 

The FastCTM model was trained with 5-year meteorological and air quality simulations by WRF-CMAQ. These 348 

simulations used an emission inventory that was identical for every year. In this condition, the FastCTM model has learned 349 

the relationships between the air quality and varied meteorology with fixed emissions input. Considering that the FastCTM 350 

model has exhibited high accuracy at an independent evaluation year 2023, when new meteorological fields are fed into 351 

FastCTM, the deep learning model should be able to simulate responses of air pollutant concentrations to meteorological 352 

variables. However, for the response of air pollutant concentrations to emissions, the training data do not contain 353 

relationships between inter-annual varied emissions and air quality under the condition of the same annual meteorological 354 

fields. Therefore, it is less expected for FastCTM to simulate reliable and correct response relationships between emissions 355 

and air quality. To validate these analyses, we calculated the sensitivities of simulated air pollutant concentrations to 356 

changes in meteorological variables and emissions.  357 
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3.2.1 Response of Air Pollutant Concentration to Meteorology  358 

 359 

 360 

Figure 6: The FastCTM predicted air pollutant percentage changes in response to changes of T, WS, and PBLH in Beijing on 361 

January 2nd (a-c respectively in the left column) and August 1st (d-f respectively in the right column), 2023. The air pollutant 362 

concentrations are relative to those at the baseline meteorological conditions.  363 

The responses of six criteria pollutants to meteorological changes simulated by FastCTM are evaluated as exhibited in 364 

Figure 6. For ground-level temperature (T) elicited a distinct response in O3 concentrations compared to the other five 365 

criteria pollutants. O3 concentrations have slight negative responses to T in January, as shown in Figure 6a, which is 366 

probably because higher temperatures increase NOₓ emissions, enhancing dilution. O3 concentrations had the strongest 367 

positive responses in August among six pollutants, which is consistent with previous observation-based studies (Flaum et 368 

al., 1996). The O3 had larger sensitivities when the air temperature was higher. The gaseous pollutants of CO, NO2, and 369 

SO2 show the strongest positive response to temperature, which could be caused by the shift of chemical equilibrium 370 

towards the higher release of these gaseous pollutants (Bassett and Seinfeld, 1983; Cox, 1982). The particulate matter 371 

pollutants, especially PM10, have the weakest responses among six pollutants. Considering that there are dominating 372 
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proportions of chemically inert species in particulates, the weak responses of PM2.5 and PM10 are expected.  373 

For the wind speed and PBLH, the responses of pollutants have similar patterns for the same pollutant. First, O3 374 

concentrations exhibited patterns opposite to other pollutants both in January and August. Higher wind speed would 375 

increase the dispersion and transport of air pollutants (Feng et al., 2015; Lv et al., 2017), resulting in lower pollution levels, 376 

so concentrations decrease as wind speed increases, except for O3. The contradictory response of ozone and particulate 377 

matter concentrations to PBLH is consistent with the analysis results of multiple-year observations (Liu and Tang, 2024). 378 

Theoretically, the air pollutant concentrations should exhibit an inverse relationship between air pollution concentrations 379 

and PBLH. The actual air pollutant concentration changes simulated by FastCTM generally fit the theory that there are 380 

negative nonlinear effects with increasing PBLH. Meanwhile, the sensitivity is stronger when the PBLH is lower (Figures 381 

6e and 6f), which is consistent with previous observation-based analysis (Wang et al., 2019; Su et al., 2020). The totally 382 

different relationship of O3 to wind speed and PBLH compared to other pollutants could be due to its high dependence on 383 

chemical precursors, such as NOx and VOC. Concentrations of these precursors could have an inverse relationship with O3 384 

at specific locations. FastCTM model itself is trained with multi-year CMAQ simulations, indicating that it is 385 

preconditioned on varied meteorological fields with the same atmospheric physical and chemical rules. Therefore, the 386 

sensitivity of air quality simulations to meteorology variations could be well learned, especially with the disciplinary-based 387 

model FastCTM.  388 

3.2.2 Response of Air Pollutant Concentration to Emission  389 

The sensitivity analysis with a “brute force” method can be carried out with the FastCTM model quickly due to its high 390 

computational efficiency on GPU. The responses of PM2.5 concentrations to doubled emissions of SO2, NOx were explored 391 

in a winter month of January 2023 (Figure 7). For doubled NOx, the PM2.5 concentrations exhibited positive responses in 392 

most areas of China as shown in Figure 7a. The largest increases occurred in North China, Heilongjiang province in 393 

Northeast China, Yangtze River Delta and Sichuan province. In these places, the NOx emission are relatively large. For 394 

doubled SO2, PM2.5 concentrations increased in almost all China as shown in Figure 7b. The response was larger in North 395 

China, Northeast China and Sichuan basin. The PM2.5 responses simulated by FastCTM were generally consistent to 396 

previous studies (Li et al., 2022). 397 
 398 

 399 

Figure 7: Average predictions of PM2.5 concentrations in 5 lead-days with doubled emissions in January 2023. Panel (a) refers 400 

to predictions with doubled NOx, and panel (b) refers to double SO2. 401 

As for ozone, its responses to doubled NOx and VOC are explored as shown in Figure 8. For NOx emission, decreases in 402 
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O₃ concentrations in polluted regions like North China, the Yangtze River Delta, and other highly industrial regions are 403 

well captured by FastCTM. The response is reasonable considering that these regions are generally abundant with NOx 404 

emissions and at VOC-limited conditions. Doubling VOC emissions leads to a significant decrease in O3 (Figure S14 in 405 

the supplementary material), which could be caused by the reason that increased VOC could consume O3 in these regions. 406 

The spatial patterns of O3 responses to NOx and VOC are similar to previous deep learning study trained by emission-407 

controlled simulation data (Xing et al., 2022). However, due to complex speciation of VOC emissions that’s simplified in 408 

the FastCTM, uncertainties for responses of O3 to VOC should be noted.  409 

 410 

Figure 8: Average predictions of hourly O3 concentrations in 5 lead-days with doubled NOx emissions in July 2023. 411 

The sensitivities of FastCTM simulations to emission interventions were contrasted with those of CMAQ. Specifically, 412 

CMAQ was employed to simulate 11 emission scenarios over the two-month periods of January and July 2019 in Southwest 413 

China (Huang et al., 2022). The alterations in emissions relative to the base case are presented in Table 1. Among these 414 

scenarios, 10 involved reduced emissions of major species, with only the no-control scenario exhibiting increased emissions. 415 

Utilizing the identical emissions and meteorological data, FastCTM also conducted simulations, which were then compared 416 

to those of CMAQ. For the 11 scenarios in question, the changes in air pollutant concentrations relative to the base case at 417 

the locations of 139 national air quality monitoring stations (Figure S15 in the SI) were extracted and compared in the 418 

winter month of January 2019 (Figure 9a) and in summer month of July 2019 (Figure 9b). The results indicated that, overall, 419 

the FastCTM simulations due to emissions changes were in good agreement with those of CMAQ, as reflected in two 420 

aspects. The correlation coefficient R values are around 0.9 for SO2, NO2, and O3 in both summer and winter months. For 421 

PM2.5 and PM10, FastCTM exhibited higher consistency with CMAQ in July than in January, with R values around 0.6 for 422 

most cases. For CO, FastCTM has much better performance in January than in July, with R values of approximately 0.8 423 

and 0.2. Considering that CO concentration changes are mostly due to physical dispersion and transport, the decreased 424 

performance is probably due to increased vertical mixing in summer, which is not fully represented in the 2D scheme of 425 

FastCTM. Specifically, in January 2019, except NO2, FastCTM responded to emission changes with an interquartile range 426 

(IQR, 25% - 75% percentile) similar to that of CMAQ (Figure S16). In July 2019, as depicted in Figure S17, all the criteria 427 

pollutants except CO demonstrated a comparable degree of response to emission reductions. 428 
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Table 2. The emission change details of the emission scenarios 429 

Scenario abbreviation Sector NOx VOCs SO2 CO PM2.5 PMC 

nocontrol NCtrl 
Industrial 30% 30% 30% 30% 30% 30% 

Traffic 20% 20% 20% 20% 20% 20% 

medianX MedX 
Industrial -36% -35% -48% -23% -9% -9% 

Traffic -40% -10% 0 -26% -10% -10% 

medianY MedY 
Industrial -26% -20% -38% -13% -4% -4% 

Traffic -30% 0% 0 -16% -5% -5% 

medianZ MedZ 
Industrial -36% -10% -48% -23% -9% -9% 

Traffic -40% 0% 0 -26% -10% -10% 

median-3 Med-3 
Industrial -10% -10% -18% 0 0 0 

Traffic -10% 0% 0 0 0 0 

median-2 Med-2 
Industrial -16% -20% -28% -3% 0 0 

Traffic -20% 0% 0 -6% 0 0 

median-1 Med-1 
Industrial -26% -35% -38% -13% -4% -4% 

Traffic -30% -10% 0 -16% -5% -5% 

median0 Med0 
Industrial -36% -50% -48% -23% -9% -9% 

Traffic -40% -20% 0 -26% -10% -10% 

median+1 Med+1 
Industrial -46% -65% -58% -33% -19% -19% 

Traffic -50% -30% 0 -36% -20% -20% 

median2030 Med30 
Industrial -55% -70% -80% -40% -40% -40% 

Traffic -60% -40% 0 -40% -40% -40% 

median2035 Med35 
Industrial -80% -80% -90% -60% -50% -50% 

Traffic -80% -60% 0 -60% -50% -50% 

 430 

 431 
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 432 

Figure 9: Correlation coefficient R for responses of FastCTM and CMAQ to different emission scenarios and different air 433 

pollutants in January 2023 (panel a) and July 2023 (panel b). 434 

FastCTM model used a principles-constrained formulation framework. As shown in Eq.4, atmospheric chemical reactions 435 

are in the Atkinson form, which independently estimate the reaction rate from meteorological conditions and polynomials 436 

of reactant concentrations in multiple powers. The principle-based formulation should be the reason for the relatively 437 

significant and reasonable response simulations of PM2.5 and O3 to precursor emissions, even though the FastCTM itself is 438 

not trained by emission-controlled CMAQ scenario simulations. The remaining uncertainties should be attributed to the 439 

reason that FastCTM only considered environmental chemical reactants in part compared to that of the CMAQ model 440 

(Binkowski and Roselle, 2003).  441 

3.3 Internal Processes Analysis with FastCTM 442 

The FastCTM is a principles-guided deep neural network to individually simulate the dominant atmospheric physical and 443 

chemical processes as defined in Eq.1. The processes are calculated numerically with critical parameters describing the 444 

processes being estimated by deep learning encoders. The hourly concentration changes equal the sum of the changes 445 

produced by each process. Figure 11 depicts an example during the night-time of January 13, 2023, when hourly PM2.5 446 

concentration changes significantly. Between the two hours of 18:00 and 19:00, hourly PM2.5 concentrations change 447 

markedly in neighbouring areas of Shandong, Hebei, and Henan provinces as shown in the red rectangle (denoted as Area 448 

A hereafter) in Figure 11c. In this example, strong northern wind prevails, leading pollutants to move southward. For PM2.5 449 

concentration changes caused by primary emissions (Figure 8d), it is determined by the primary emission and the mixing 450 

volumes determined by PBLH. PM2.5 changes are mostly determined by the transport process (Figure 11e) as its spatial 451 

pattern most closely resembles total PM2.5 concentration changes. In the transport process, air pollutants move from one 452 

area to another, determined by the wind fields as shown in Eq.4. When the northern clean air prevails as in Area A, changes 453 

should be negative in the upstream direction and positive in the downstream direction. The transport process simulated by 454 
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FastCTM sticks to this pattern. As known to us, the diffusion process will bring pollutants from a region of high 455 

concentration to one of low concentration. Its contribution is low as shown in Figure 11f, which is reasonable considering 456 

the relatively large grid cell size of 12km and short simulation period of 1 hour. PM2.5 concentration changes caused by the 457 

diffusion process constituted a small proportion compared to other processes. The activities of chemical reactions are 458 

determined by both meteorological conditions and related precursor concentrations. PM2.5 contribution changes between 459 

T1 and T2 caused by chemical reactions are lower in the areas to the north of Area A because the cold and clean air in this 460 

area is not favourable for chemical reactions. The deposition is the dominant process that led to PM2.5 concentration 461 

reductions where regional transport was not significant. In general, deposition rates were proportional to PM2.5 462 

concentrations as shown in Figure 8h (Davis and Swall, 2006). It should be noted that FastCTM simulated air quality in a 463 

2-D domain rather than in 3-D, the deposition may also include the vertical transport of air pollutants to the upper air above 464 

PBL (Zhao et al., 2020).  465 

 466 

Figure 10: An example of the PM2.5 concentration at T1 (18:00, panel a) and T2 (19:00, panel b) on January 13, 2023 (with the 467 

forecast leading time of 42 hours) and hourly changes (panel c). Changes caused by each of the five dominant processes are 468 

depicted in panels d-h. 469 

Simulated contributions of five major processes to hourly PM2.5 concentration changes are compared between FastCTM 470 

and CMAQ at 139 stations (Figure S15) in the Sichuan-Chongqing region from October 12, 2024, to October 16, 2024, as 471 

shown in boxplots of Figure 11. Overall, the simulation results of the process contributions by FastCTM and its parent 472 

model CMAQ were relatively consistent. Higher degrees of consistency were found in simulations of emissions, advection 473 

processes, and diffusion processes between the two models. Contributions from chemical reactions of FastCTM exhibited 474 

overestimation compared to CMAQ, while contributions from deposition were underestimated. The differences in the 475 

simulated deposition and reaction contributions between the two models could be due to incomplete representation of 476 

influencing factors, given the complexity of the two processes. In general, the consistency between the two models provides 477 

confidence in the reliability of FastCTM for simulating and understanding the complex interplay of atmospheric processes 478 

that govern PM2.5 levels.  479 
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 480 

Figure 11: Boxplots of hourly PM2.5 contribution changes from five major atmospheric processes at 139 evaluation stations from 481 

October 13, 2024, to October 16, 2024, simulated by (a) CMAQ and (b) FastCTM. 482 

4 Discussions 483 

FastCTM is a neural network-based CTM model designed to accelerate air quality simulations and forecasts. Compared to 484 

existing deep learning based CTMs, FastCTM offers more functionalities akin to traditional CTMs. It simulates 10 air 485 

pollutants, including criteria gas pollutants, coarse particulate matter, and five species concentrations of PM2.5. FastCTM 486 

shows strong agreements in long-term forecasts with conventional CTMs. Furthermore, after approximately two days of 487 

simulation, FastCTM predictions demonstrate independence from initial air quality conditions, suggesting that the model 488 

has successfully learned the underlying physical and chemical mechanisms embedded in the CTM rather than simply 489 

memorizing spatiotemporal autocorrelations. Additionally, it has exhibited reasonable responses to precursor emission 490 

changes and meteorological condition changes in sensitivity analysis. Moreover, the internal processes in the FastCTM 491 

model are accessible and interpretable through analyzing the contributions of dominant atmospheric chemical and physical 492 

processes separately. These processes are encoded within FastCTM by designing dedicated neural network modules.  493 

Previous deep learning-based models for emission sensitivity analysis were typically trained using simulations with a group 494 

of different emission scenarios, whereas the FastCTM model was trained using CMAQ simulations of unvaried annual 495 

emissions. The reasonably accurate simulations of responses to emissions and meteorological data indicate that the guiding 496 

principles behind FastCTM enable it to better learn the inherent physical and chemical processes in the training data. 497 

Considering the high computational consumption of conventional CTMs, FastCTM substantially reduces computational 498 

requirements.  499 

FastCTM has the capabilities to generate hourly pollutant simulations with nearly equal accuracy to those produced by 500 

CMAQ, as evaluated against observations at national monitoring sites. However, differences and potential errors remain 501 

within FastCTM, arising from inadequate representations of actual atmospheric processes and mechanisms. First, several 502 

processes are missing from FastCTM. The chemical reactions in traditional CMAQ are highly complex and involve 503 

numerous organic and inorganic species in gaseous and aqueous phases. FastCTM has only modeled potential chemical 504 

reactions among a limited number of atmospheric species. Additionally, long-range air pollutant transport in the upper 505 

atmosphere above the planetary boundary layer was not considered within the FastCTM model. The remaining uncertainties 506 

of FastCTM compared to CMAQ could be further reduced through carefully incorporating additional atmospheric 507 

processes with properly designed neural network modules.  508 

It should also be noted that atmospheric physical and chemical processes are defined in principles-guided neural network 509 
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modules in FastCTM. Their specific formulation was learned and optimized to minimize the sum of loss errors of all species 510 

concentrations, rather than being supervised by data of actual internal processes in CMAQ. The actual contributions of 511 

each process to pollutant concentration changes can be calculated using the integrated process rate (IPR) analysis and 512 

integrated reaction rate (IRR) analysis tools within CMAQ. Future studies could use these IPR and IRR results to supervise 513 

the simulated processes in FastCTM to further improve its simulation accuracy and robustness. FastCTM may also benefit 514 

from expanded mechanisms incorporating detailed gas-phase chemistry or aerosol microphysics. FastCTM’s modular, 515 

principle-informed architecture facilitates targeted updates to integrate additional species (e.g., VOCs or secondary 516 

organics) by focusing modifications on relevant processes rather than overhauling the entire framework. However, adding 517 

new species, especially those participating in multiple atmospheric processes, requires updating associated modules and 518 

retraining the model with the expanded set of variables to ensure the model learns the new species’ interactions with existing 519 

pollutants and processes. Future work will explore such expansions, leveraging the framework’s modularity to streamline 520 

updates while retraining to incorporate the new species and their dynamics. FastCTM will also be extend to 3D dimension 521 

to improve its representation for processes such as vertical mixing, vertical wind gradient, and in-cloud chemistry.  522 
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