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Abstract. Chemical--transport models (GIM—)—haveL\AHéeand—pmﬁe«meLappheaﬂenmCTMs) are indispensable for air-- [&!Tﬁi RIECEH)

_ (BB THR: HEER)

ainedassessment and policy development, [ﬁﬁ?’l‘%i FEER)

yet their operational use is hampered by high computational burdens-—tna-thisstudy-we-developedcost. We present FastCTM, [ﬁ!?’l‘ﬁi HE(EE)

a physics-informed peural--network based-CTM-model-{FastCTM)-to-efficiently-simulate-emulator that rapidly predlcts s'; [1&57%3& FIE(ER)

hourly concentrations of ten airkey, pollutant cempesitionvariablesincluding; major PM.sPM..5 species ef SO3= NO7; / %‘&ET;I:; i E(i)

4 . - . . . . S BET FE(EE)

NH#(SO+~, NOs~, NH.*, organic matters-and-other—inorganic-compenents;matter, elemer-nal- cark-)on, crustal material), | [ﬁﬁ?#}i FEEE)

coarse part-6fPMio;—SO2NO2;PMio, SO2, NO:, CO, and Os—FheOs, FastCTM has-aprinciple-informed-structureby [ BE TR BEEE)

iel ' iephysi i i iesi iically-tn-the-si (mEBTHR: HEEE)

(wBTHR: HEEE)

—primary emissions, horizontal transport, turbulent diffusion, chemical reactions and depesitions-deposition within a [ﬁ!ﬂtﬁi FEGE)

unified framework. Given 1-hour initial condition data, the-FastCTM is-able-tecan simulate future 24-hour concentrations [ﬁETﬁi REEE)

(mEBTHX: WEER)

of-thefor ten air pollutants withusing corresponding metesrology—meteorological fields and emissions as input. Fhe [ﬁﬁ-{ﬁﬂ FEERE)
o ; . . . . . . [ﬁﬁﬂﬁi
{CMAQ)-in-Trained on 2018--2022—Fhe-wel-trained-FastCTM-is- WRF-CMAQ forecasts over China and gvaluated [ﬁﬂ?’l‘”ﬁi«“

comparing-to-the-long-termon 2023 data, FastCTM reproduces, CMAQ forecast-in-an-independent-year2023,and-achieves [’&Eﬂ%ﬂ RIECEHE)

high-agreements with mean RMSE wvalues(ug m?) 0f 9.1, 11.9, 4.4, 4.0, 48.9-and, 10.9 pe/m® and R*valuesRZof 0.880, %z;;gz i Ei:

0.81, 0.880, 0.83, 0.9-and90, 0.770, for PMa.5; PM10;-SO2NO2:PMa.s, PMio, SO2, NO», COs-and-Os—TFhe-FastCTFM-model [ﬁﬁ?’%:‘:ﬁ FEEE)

also-exhibited-reasonable and Os, respectively. Sensitivity tests confirm physically plausible, responses ef-airgquality-to [ﬁgﬂvﬁx FE(EE)

meteorological-variables—ofair-to temperature, wind speed%piane&a#y boundary- Jayer hmghtaswe“%mput %ﬁ??ﬁi& FIE(ERE)
BRETHER

(mETHR: HEER)

modular_architecture enables quantitative, process analy5|s—eeeud—be—pe#9mc}ed—by—Fas&GIM—te—quan&#y—the—speeme [ﬁETJ{%;—& EEE)

-, offering CTM-like insight at [*&ET’P&E& HIE(EE)

GPU-accelerated speeds. In a nutshell, FastCTM has-multi-functional-advantages-in-air-poHutant-concentration-provides a [&ET%?& HEEE)

computationally efficient solution for air-quality simulations, sensitivity analysis, and internal-process analysisattribution %ﬁﬁﬂ%i REEHE)
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with high eemputation-efficiencies-on-GPU-and-accuracy and physical consistency.

1 Introduction

Effective air quality management requires an-accurate understandingcharacterization of air—current and future pollution

conditions in-eurrent-time-and-future-to takeimplement targeted emission-eut-and control measures (Wang et al., 2010;
Council, 2004). Driven by this demand, deterministic air quality sumerienumerical models have been developed to simulate
the spatiotemporal varianeesvariability and evelutiensevolution of ambient air pollutants in the atmosphere (Hakami et al.,
2003; Eder et al., 2006). In these models, such as the Community Multiscale Air Quality (CMAQ) model, atmospheric
physical and chemical processes (e.g., emissions, chemical reactionreactions, horizontal advection, and diffusion-ete-}) are
mathematically definedrepresented by partial differential equations. The air pollutant and species concentrations can be
then be calculated by solving these eemplicatedcomplex equations with-aumerieusing numerical methods (Byun and
Schere, 2006), which is often time-consuming (Leal et al., 2017) and requires intensesubstantial computational resources
such as high-performance computing (Efstathiou et al., 2024).

Reeent—developments—in—deepDeep learning models—provideoffers promising alternative—pathways—to—build—fast
andalternatives for developing rapid, data-driven deepleaning-based CFM-meodels;owingtoCTMs by leveraging the strong
capabilitiescapacity of neural networks in-encoding-and-representingto encode complex features;spatiotemporal patterns
and-relationships-thatcould-belearned-from long-term-and-large-size-data datasets (Lecun et al., 2015; He et al., 2016; Liao

etal., 2020). SuehThese deep learning-based CTM models are expected to provide accurate simulations that are comparable

to the current deterministic aumerienumerical CTMs but-withwhile offering much higher computational efficiency and
better—learnableenhanced learning capabilities. However, related—advanees—have—progress has been limited—due—to
diffieultieshindered by challenges in designing preperneural network-structures-toarchitectures that simultaneously achieve
the—goals—of-high aceuracies;structuralinterpretationsaccuracy, interpretability, and long-term simulationssimulation
stability and fidelity (Reichstein et al., 2019; Irrgang et al., 2021). In the-construections-efconstructing deep learning-based

CTM models, air quality simulations-and predictions-were-always-viewedmodeling is often formulated as a sequence-to-
sequence prediction preblemsproblem (Shi et al., 2015; Zhang et al., 2024) to sredelcapture the spatiotemporal correlations

among multiple variables. FhereforeConsequently, previous studies have mainly focused on refining thencural network’s
representation capabilities-ef-the-neural-netwerk by proposing new neural-network operations and structures to improve
error back-propagation efficiencies and model encoding capabilities (Wang et al., 2018; Huang et al., 2021; Mao et al.,
2021). For example, Xing et al. (2022) developed a deep learning-based module named deepCTM through-mimickingthat
mimics atmospheric photochemical modeling to simulate ozone concentrations. However, these deep learning-based CTMs
are often structured in-anas uninterpretable black-box style-toemodels that generate simulations that-refleetreflecting the
cumulative effect of all physical and chemical processes. FheseSuch black-box models have limitationsinmedetinghinder
error attribution, inspection of internal processes inspeetion-and knowledge findings-ete-discovery (Reichstein et al., 2019).
Quantifying individual atmospheric processes would-provide-fundamental-explanationsforenables a medel's-mechanistic
interpretation of model predictions; and therefore-is-also-useful-in-identifyingpotential-soureesidentification of error in-the
model-formulation-orits—inputssources (Liu et al., 2010). With-the-metivation,—there-areMotivated by this need, recent
studies dedicated-to-develop-medel-tohave developed models that learn ene-specific atmospheric precess;—i-e-processes,
such as chemical reactions and deposition, i-thewithin CTM medelframeworks. Kelp et al. (2022) developed a neural

network chemical solver for stable long-term global simulations of atmospheric chemistry, learnedtrained from the GEOS-
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Chem model. Xia et al. (2024) simulated 74 chemical species and 229 reactions following the SAPRC-99 mechanism
withusing an artificial intelligence photochemistry (AIPC) scheme-to-achieve—, achieving approximately 8-time-fold

speed-up. Sturm and Wexler (2020) developed a mass- and energy-conserving framework for using machine learning to
speedaccelerate computations—with—an, demonstrating successful application in a photochemistry example. For the
deposition process, Silva et al. (2019) proposed a deep learning parameterization for ozone dry deposition velocities
withthat provided accurate predictions inon independent new date-setsdatasets, revealing the potential of neural network-in
encodingnetworks to capture complex spatio-temporal latent processes. Liu et al. (2025) proposed a Neural Network
Emulator, named ChemNNE, for fastrapid chemical concentration modelling, which achieved geedstrong performance in

both accuracy and efficiency. Even-thoughAlthough these s sufl i susine de
mdividuabatmospheric chemicaland physical pr ~there-is-an-missingsuccesses, a gap remains in coupling these NN

operator replacementstogether-as-anoperators into a complete deep--learning-based CTM.

The main objective of our study is to builddevelop and validate a principles-guided, neural network--based FastCTM-that
could-simulate, capable of simulating spatial-temporal fields of hourly concentrations of major air pollutant species likein
the same manner as a traditional CTM. FastCTM eeuldcan model individual contributions from each ef-the-atmospheric
proecesses—ofprocess: transport, diffusion, deposition, reaetionchemical reactions, and emissienemissions. FastCTM is

currently configured to simulate hourly concentrations of 10 criteria pollutants eritiealforrelevant to health impact
assessment and policy-making, including-ard major species of PMys (SO%~, NO3, NHJ, organic matters and other
inorganic components, coarse part in PMjo, CO, NO2, SO, and O;. InterpretationsEnhancing the interpretability of deep—-

learning netweork—are—also—widely—vowedto—imprevemodels is critical for advancing their applieationsapplication in
earthEarth system science-and-, including both climate stadiesand air-quality research. The well-trained FastCTM model

is capable of performing analysis of internal chemical and physical processes. The FastCTM model weuld-bringofters
many benefits-with-their, including high eemputationcomputational speed, efficient data assimilation, and fastrapid model
updates.

2 Data and Methods

2.1 Parent Model Simulations and Datasets

In this study, the FastCTM model was designed to replicate the parent model CMAQ, trained by learning CMAQ’s
underlying physical and chemical processes among multiple air pollutants, including the complicated chemical reaction,
transport, diffusion, and deposition. CMAQ has a process analysis (PA) tool to separate out and quantify the contributions
of individual physical and chemical processes to the changes in the predicted concentrations of a pollutant, which
provideprovides the opportunity to conduct a sensitivity analysis by comparing process contributions between CMAQ and
FastCTM.

Fhe—weatherWeather and air quality simulations #from 2018~ to 2023 were conducted using a WRF-CMAQ
medetinemodeling system that-censistsconsisting of three major components: Fhe(1) the meteorology component-ef, the
Weather Research and FereeastForecasting model{, WRE; v3.4.13 (Michalakes et al., 2005; Skamarock et al., 2008), which

provides meteorological fields:-the-; provides meteorological fields. (2) the emission component-prevides-, which supplies

gridded estimates of hourly emissionsemission rates effor primary pollutants that-matched to model species, and (3) the

CTM component+{, CMAQ v5.0.2 (Byun and Schere, 2006)), which solves the governing physical and chemical equations

to obtain 3-D pollutant eoncentrationsconcentration fields. WRF-CMAQ simulations are not two-way coupled, so that
3
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weather and chemistry and-chemistry-do not havefeedbacks-to-influence each other. We used hourly average concentrations
of dominant PM2s components of sulfate (SO4), nitrate (NO3), ammonium (NHy), organic carbon (OC3), and other
components (EC and soil, etc-).), and CO, SOz, NO,, and Os in the surface layer. The 10 species were selected based on
their direct relevance to regulatory standards (e.g., PMz.s, PMio, O3, NO2, SO2, and CO) and their dominance in driving
health and environmental impacts in urban and industrial regions.

Meteorological variables used in this study include relative humidity (RH), air temperature (T), wind components (U, V)
at surface 10 meters height, precipitation (RN), cloud fraction (CFRAC)), and planetary boundary layer height (PBLH).
Wind speed (WS) was calculated from U and V. The data covered the whole of China at a horizontal resolution of +2
km12km with 372x426 grid cells. The simulation data effrom 2018~-2022 isarc used as the training dataset, while the
remaining simulation data in 2023 is used for independent evaluation. The surface topographic data (HGT, Figure S1 in
the supplementary material, obtained from https:/Ita.cr.usgs.gov/GTOPO30) and land cover data (Zhang et al., 2020) of
urban and tree fraction (LULC) are also used to reflect the effects of land surface conditions in this study.

The original primary emissions used in the aforementioned WRF-CMAQ modelling system are used as input to the
FastCTM. The large amount of emission data is grouped according to the simulated 10 pollutant variables. Specifically,
the primary PM2 s emissions of SO4, NOs, NH4, OC, and other components, and gaseous emissions including sulfur oxide
(SOy), nitrogen oxides (NOy, including HONO, NO, and NO,), ammonia (NHz), volatile organic species (VOCs, including
isoprene (ISOP), terpene (TERP), and other species of VOC) are used in the FastCTM. Annual average emission
emissions of NOx, SOz, and VOC are respectively depicted in Figure S2-4 in the supplementary material.

2.2 FastCTM Model Formulations

2.2.1 FastCTM Model Framework

The deterministic CTM models simulate emissions, transport, deposition, diffusion, and chemical transformations of gases
and particles in the troposphere through numerically solving the governing equations as follows,
%4 = —V- (iC;) + V(KVC)) + Ry + E; + D; (1)

where C; is the concentration of species 7, u is the air fluid velocity, K is the eddy diffusivity tensor, R; is the net rate of
chemical generation of species i, E; is the rate of direct addition of the species from primary emissions, and D; is the
deposition rate caused by both dry and wet depositions. A detailed description of CMAQ principles is available elsewhere
(Byun and Schere, 2006; Appel et al., 2017). Inspired by the traditionalnumerienumerical CTMs principles and equations,
the guiding framework of FastCTM was also structured in a similar formulation to represent the dominant processes in
order to simulate air pollutant spatiotemporal variations.
In the context of deep learning, hourly air quality simulation is a spatiotemporal sequence-to-sequence learning problem
to-predietaimed at predicting the most probable future length-K-sequence of length K, given thea previous leagth-Fsequence
of length J., as shown in-thefolowing Eq.2,

Verroooo Verg = argmaxp ([Yt—/+1- s Yt]; [Xt—]+1' o KXo Xev "'!Xt+K]) 2)

Where the arg max (short for “argument of the maximum”) function is used to find the p class with the highest predicted

probability. The X, € RM*N*V ig the data of Vy input variables at the spatial grid of M X N at time ¢. The ¥, € RM*NxVy
is the data of Vy predictive variables at time . Specifically, the FastCTM simulates future K-hour air pollutant
concentrations, given J-hour air pollutant concentrations[}’t_ JHL e Yt] as initial fields and (K+.J)-hour meteorological and

emission conditions [X;_;y1,..., X, Xeq1, o0 X, . Previous studies generally used multiple-step input data with J>1 to
t—j+1 A+ t+K g y p p mp
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ensure sufficient spatial-temporal correlations contained in the training data (Sum et al., 2022; Xing et al., 2022). Instead,
we use 1-hour initial pollutant concentration (J=1) to simulate 24-hour air quality pollutants (K=24), to ensure FastCTM is
dedicated to learnlearning air quality changes between two neighboring twe-hours as shown in Figure 1a. In other words,
attime t = 0, FastCTM predicted K-hour air pollutant concentrations of C;—g, C¢=1, ..., Ct=x_1, given the input air pollutant
concentration in previous hour C,—_; and corresponding meteorological data and emissions at time t = 0,1,...,K-1. The

unit of concentrations is pg/m? for all pollutants.

(a) (b)

Ctz—l
| WS,, RH,, T, CFRC,, Ri
‘ I Enny, E: 0s Reaction Unit, -
Evoc.Eno,
Emissione-o 1} pagic simulator
Meteorology,-o
A
WS,, PRS,. T, PBLH,, Diffusior
» Ci—g [ S 9 | Diffusion Unit
Basic Simulator

. 7(kvey)

Emission, .,
Meteorology,-,

Deposition Unit

[ws,‘ PRS,.T,. PBLII,,]
PRE,LULC

Ct=1
Emissiong-, PBLHe, Enoy. Eew so,:
Met: ! N Iy
creoraiogye, Emission Unit,
C‘t=2 E“v

v v v
* Cier —® > @ > >
e

Emission—x_y Basic Simulator (USA) »
Meteorology,.x-. B

Gk

-7 (ic)
Basic Simulator

Figure 1: (a) General model workflow, and (b) the basic simulator module structure at the time step t of the deep learning
simulation model FastCTM, designed according to Eq.1. Arrows and boxes with different colours represent calculation modules

of different atmospheric physical and chemical processes.

The FastCTM model uses the basic simulator module (Figure 1a) recursively for hourly simulations, using output air
pollutant concentrations from one step as input to the next-_step basic simulator. In contrast to directly learning
spatiotemporal correlations of predictand itself as in most previous studies (Wang et al., 2018; Shi et al., 2017), the basic
simulator (Figure 1b) is formulated following the atmospheric physical and chemical equations and constraints shown in
Eq.1, and wasis composed of five modules to respectively represent the physics-chemical processes to improve the model
performance. The modules for each of the five processes in the basic simulator are described in the following section. The

time step used in FastCTM was 60 seconds.

2.2.2 Primary Emissions Module

Primary pollutants are assumed to be directly emitted into the atmosphere and instantly well-mixed within the PBL.
Therefore, hourly enhancement of air—-pollutant concentrations-enhancement caused by primary emissions could be

described in the following Eq.3.

E  — 1000XPEmqn,it
MLt T ppLHxdxxdy

-3

Where Ep, , ¢ refers to the concentration changes contributed by primary emissions at spatial coordinate (m, n) for species

i at time ¢. The PE,, , ;. is the corresponding total primary emissions within the grid cell per second, which has a unit of
5
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g/s. Considering that the cell size in the FastCTM is +2 k1 2km by +2 -kl 2km, we have dx = 12000 and dy=12000 in
this study. The boundary layer height PBLH is,i s also in the unit of meter-meters(m). Therefore, resultedthe resulting air

pollutant concentration inereaseincreases by primary emission Ep, ,; . has a unit of pg/m®.

2.2.3 Horizontal Transport Module

In the FastCTM, horizontal transpertstransport usually havehas a significant influences on air quality variations (Lang,
2013). In CMAQ, the regional transport was-in-generalis generally represented asby the divergence of the product of wind
field and air pollutant species as in Eq.1, inferred from continuity equations and convection equations (Michalakes et al.,
2001; Byun and Schere, 2006). By decomposing the air mass movement into two orthogonal directions of east-west (x)

and north-south (y), they could be re-writtenrewritten in the form as shown in Eq. 4,
“)

Where the wind field wasis represented as %, which wasis then decomposed into U and V, respectively in the x and y

(A1)
dy

R PRI (1)
V- (@Ec) = S+
directions.
In the deep learning framework, the partial equation in Eq. 4 could be rewritten in a discrete form as convolution operations
and inner product calculations as shown in Eq. 5 with a finite difference method. The convolutional kernels of W, and W,

were defined in an up-windupwind scheme as shown in Eq. 6 and Eq. 7. With the scheme, this transport module itself is

mass-conserved, even though FastCTM is not mass-conserved as a whole.

War(©xU) | Wy(CxV)
dx dy

[-1 1 0]ifU<0

[0 -1 1]ifU=0

V- (ic) = (5)

wx={ (6)

ifV<o0

2.2.4 Diffusion Module

Diffusion involves the physical and chemical processes that disperse pollutants in the atmosphere. It’s is influenced by
meteorological conditions, i.e. atmospheric stability and humidity, and surface features, i.e-.. land terrains and vegetation
(Jiang et al., 2021). The turbulence diffusion process V(KVC;) in Eq.1 helps the spread of pollutants in the atmosphere. It
is expressed as the second-order deviation of species concentrations as shown in Eq. 8. They could also be discretized to
convolutional operations with the finite difference method as shown in Eq. 9, just like that in the horizontal transport

process module.
[} ac; [} ac;
vavey = 5 (K5) + 5 (K5 ®
Wik (KXWyxCp) | Wyr(KXWyxCy) ©9)
dxxdx dyxdy

K = Encodery ([T, RH, PRS, PBLH]) (10)

V(KVC) =

The turbulent diffusivity K is closely related to the meteorological conditions of the atmosphere and is simulated with an
encoder module Encodery (Eq. 10). The input variables of the Encodery include temperature T, humidity RH, surface

pressure PRS, and boundary layer height PBLH. The Encodery is determined to be a grid-to-grid regression model based
6



208
209

210

211
212
213
|214
215
|216
217
218
219
220
221
222
223
224
225
226
227

228

229
230
231
232
233
234
235
236
237
238
239
240

241

242
243

on the Unet++ model with a nested structure (Zhou et al., 2018; Ronneberger et al., 2015). The Encodery model consists

of 5 layers with each layer respectively composed of 16, 32, 64, 128 and 256 filters.

2.2.5 Chemical Reaction Module

Reduced-form models like INMAP (Tessum et al., 2017) and EASIUR (Gentry et al., 2023) focus on annual-average
exposure, while FastCTM provides hourly-resolved simulations critical for real-time management. FastCTM quantifies
hourly contributions from individual processes (transport, chemistry, emissions) via its modular design, rather than
aggregating source impacts in reduced-form models (e.g., EASIUR’s source-receptor matrices)-inreduced-form-models:).
Furthermore, FastCTM explicitly couples meteorology (PBLH, T, RH) with chemistry, whereas INMAP/APEEP (Muller

and Mendelsohn, 2006) assume static meteorology, Hmitingwhich limits their utility in capturing diurnal or synoptic-scale
variations. Specifically, the air pollutant concentration changes caused by chemical reactions are represented in the
following Eq. 11. In the equation, the rate of chemical reaction of species i is expressed as the product of a rate constant k
and a term that is dependent on the concentrations of its reactants j (Carter, 1990; Carter and Atkinson, 1996).
Rt = Kmnie X f(Cm,n,j,t) (11
k; = Encoder, ([T, RH, PRS, WS, PRE, CFRAC]) (12)

The reaction kinetics constant k is generally temperature-dependent. They could also be related to atmospheric pressures
and moisture humidity in some reaction processes. Therefore, the reaction rate constant k is simulated using a spatial
encoder function Encoder as shown in Eq. 12, which has the same structure as that of diffusion encoder modules (Eq. 10).
There are 6 input variables of the Encodery, including T, RH, PRS, WS, RN and CFRAC. The concentration processor f is
designed as a simple multi-layer convolutional network with a kernel size of 1 to represent high-order and complex relations

among different reactants.

2.2.6 Deposition Module

Air pollutant deposition refers to the process by which atmospheric pollutants are transferred to Earth's surfaces (land,
water, vegetation) or removed from the air. This phenomenon plays a critical role in environmental pollution dynamics and
ecosystem impacts. The deposition was closely influenced by meteorological conditions and surface characteristics (Janhall,
2015). For example, high wind disperses pollutants, while turbulence enhances dry deposition. Forests and crops act as
sinks due to large surface areas for adsorption. Air quality changes due to the deposition process are expressed linearly as
the product of the deposition rate d and the corresponding air pollutants concentrations C, as shown in Eq. 13. The constant
d is closely related to the current and previous meteorological conditions, terrains, and underlying land cover types.
Therefore, they are all simulated with an Encoder module as shown in Eq. 14.
Dt = dmnyie X Cnie (13)
d = Encodery ([WS,RH,RN,HGT,LULC]) (14)
The model structure and parameter configurations are also the same as that of Encodery and Encodery. The input data

variables of Encoder, include WS, RH, RN, HGT and LULC.

2.3 Model Training

The FastCTM was programmed with Pythea3Python 3 on the deep learning framework TensorFlow (Abadi et al., 2016).
The model was trained with the WRF-CMAQ operational forecast data in China for 2018~-2022. Considering that on each
7



a4
D45
246
|247
248
|249
250
251
252
253
254
255
256
257
|258
259
|26O

261

262
263
264

265

66
267
268
269
270
P71
272
273
274
275
76
077
278
|279
280
|281

day we had 120-hour forecasts with a spatial coverage of 426x372 grid cells (each with a size of 12x12km*12km?) for 9
meteorological variables and I=10 air pollutant variables, the total training data—havedataset has a size of TD =
R1826:120426,37219 '\where 1826 represents the total counting days from 2018 to 2022. Since the model was set to predict
24-hour PM> 5 concentrations from input-1-hour input data, the total input sequence length was 25 hours in each training
step. Besides, the size M X N of input data X, to FastCTM was decided to be 150x150, equal to an area of
1800=18001,800x1.800 km? in 12-km resolution. Therefore, the input batch data for FastCTM in each step should be in

the size of BD = RP25150.150.19 'yhere b is the batch size (determined as 1 in this study). The input data BD are randomly

sliced from the whole training dataset TD in each training iteration, indicating each BD representing different spatial and
temporal coverages. The random sampling tactics weuld—helphelps the model learn inherent physical and chemical
principles medetrather than just statistical spatiotemporal autocorrelations using data in a constant spatial area (Xing et al.,
2022). Besides, the spatio-temporal random samples contain varied emissions., which would improve FastCTM
adaptionadaptation to changing emission levels.

Even though five modules are defined in FastCTM, individual processes are not trained separately. The model was trained
as a whole with hour-to-hour air pollutant concentrations, while each process could learn its parameters under the
constrainsconstraints of its dedicated formulation. Specifically, FastCTM was tuned to minimize the loss function £, which
was determined to be L2 loss (Bithlmann and Yu, 2003) of the regularized mean squared error (MSE) as shown in Eq. 15.

The model was optimized withusing the Adam optimizer (Kingma and Ba, 2014).
1 ~ 2
L= i o1 Zotea St Bhea(Comnie = Cmni) (15)
The learning rate was set to be 0.001, and batch size to be 1. The FastCTM model was trained on one entry-level

professional acceleration card of NVIDIA A40 with a running time of 10 hours for every 10000 iterations. A total of 300,
000 iterations were performed beforeuntil the remaining model loss becomingstablestabilized.

2.4 Model Evaluation

FastCTM werewas assessed against CMAQ simulations using the same input emission data and meteorological fields. The

Starting from 0:00 local time on each day, the CMAQ model simulated 120-hour forecasts frem-0:00-tecal

dayin one cycle. There are 139 cycles in the evaluation year of 2023;-while-the- due to data unavailability in the remaining

days. The FastCTM model generated 119-hour forecasts withusing 1-hour initial input datacondition. The 119-hour
forecasts are-achiev: iteratively using an initiali itionin the leading hours from the-previeus-step-—The H9-hour
foreeast-data2 to 120 by the two models were compared hourby-heurat-eachregarding to corresponding leading time. For
example, when we had 120-hour forecast starting at 0:00 on January 1, 2023 at Beijing Local Time (BLT), the data of 0:00
on January 1, 2023 were fed into FastCTM to get the 119-hour forecasts until 23:00 on January 5. The 10 species forecasts
by FastCTM were compared against the CMAQ forecasts at each corresponding hour. The metrics of root mean square
error (RMSE) and coefficient of determination (R?) were calculated daily in each of 119 leading hours on the difference in
each of the 158,742 grid cells between CMAQ and FastCTM. Therefore, +19-staticvaluesfor each-metriemetrics of R? and
RMSE were obtained on each lead hour at each day of the independent test year of 2023. The statistic values on each day
are then averaged for the same leading hour for comparison.

The FastCTM was also assessed from-the-aspeetsin terms of sensitivity analysis to emission inputs and meteorological
fields. For meteorological variables, responses of six criteria pollutant concentrations to T, WS and PBLH were calculated.

For emissions, responses to paired variables of SO»/NHs4 and NOx/VOC emissions—werewas calculated. Besides,
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FastCTM’s capability to simulate responses to emission changes were also evaluated by comparing with CMAQ
simulations in 11 emission-intervention scenarios. Finally, the contributions of five internal processes of transport, diffusion,

emission, reaction, and deposition were also analyzed and discussed for an example pollution episode.

3 Results

3.1 Forecast Performance by FastCTM

TFhe FastCTM has exhibited strong-and, stable strengthsperformance in reproducing CMAQ forecasts for-along-lastingover
the 119-hour forecast period efH9-hours-evaluated infor 2023 (Figure 2). The average RMSE values for six criteria
pollutants of PM, s, PMj, SO,, NO,, CO, and O; are respectively 9.1, 11.9, 4.4, 4.0, 48.9 and 10.9 pg/m®. For R? values,
they are 0.8, 0.81, 0.8, 0.83, 0.9 and 0.7. As for PM_ 5 components, RMSE values are 1.68, 2.68, 1.52, 1.98 and 4.25 pg/m®
respectively for SO3~, NO3, NH, organic matters and other inorganic components, while the R? values are 0.72, 0.6, 0.3,
0.83 and 0.68. Compared to the ~5ppb (~10.5 pug/m?) in the previous study by Xing et al. (2022), the FastCTM model has
similar RMSE values in forecasting Os. To test the influences of initial condition on FastCTM long-term simulations,
FastCTM forecasts using zero values as input air quality data were almost the same as that using ordinary input in the long
leading hours. Results indicating that FastCTM simulations in long leading hours are not affected by initial conditions
(Figure S5 in the SI), just like deterministic aumerie-CTMs (such as CMAQ). In other words, the insensitivities of FastCTM
to initial conditions indicate that it has well learned and encoded the most physical and chemical principles in CMAQ CTM,

rather than just spatio-temporal correlations among air quality sequences.
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Figure 2: The evaluation performances of FastCTM forecasts against CMAQ forecasts in 2023. Panel (a) and (b) respectively
show RMSE values of criteria pollutants and the PM2s components. Panel (c) and (d) respectively show R? values. It should be

noted that RMSE value of CO corresponds to the right axis in panel (a).

Hourly RMSE values haveapparentshow clear diurnal variationsvariation with lewerhigher RMSE values in the nighttime

than that in the daytime-Fhis-is-prebably, which could be due to : sieal c seshigher hourly
i ich-is nighttime except for O3 (Figure S6 of SI).

concentrations of air pollutants in ¢ ~whic

Consistency between CMAQ and FastCTM-—Besides;sinee, as characterized by R? is lower in the daytime. Since the

FastCTM is a 2-D model only considering atmospheric processes within the boundary layer, lower consistency with the
CMAQ model during daytime-could-be, possibly due to more aetivevigorous vertical turbulencemixing. Strong vertical
mixing of air pollutants to the height above PBLH have been found (Li et al., 2017; Tang et al., 2016), which eeuldmay
not be not fully represented in FastCTM. It is important to note that the relatively low R? values observed for NHF . While
CMAQ explicitly resolves NH} formation reactions, FastCTM does not explicitly encode these pathways. Instead, the
neural network implicitly learns relationships between NH} and precursor emissions (NH3, NOx, SO2) and meteorological
variables (e.g., temperature, humidity). This simplification omits acid-base equilibria and aerosol thermodynamics, which
are critical for partitioning NHJ between gas and particle phases. The low R2 for NH{ primarily reflects FastCTM's
simplified chemical mechanism in this part, which could be improved by adding related species in the simulation.

The spatial distributions of the mean absolute error (MAE) and the normalized mean absolute error (NMAE) are presented

in Figure 3. For all six pollutants under consideration, it-is-a-netablefinding-that-the MAE values tend to be higher in
polluted areas.-Fhis-ec attrt S : aftefic 2 antiteractionsts tons; In
polluted environments, there are often multiple sources of emissions, complex chemical reactions, and variable
meteorological conditions that can lead to greater discrepancies between the model—predicted and-actual-pellutant

concentrations between the two models, Conversely, the NMAE values exhibit an opposite trend, being lower in polluted
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areas. In these regions, the NMAE values typically hover around 0.2, in contrast to the relatively higher values of

approximately 1 in cleaner areas. The NMAE is a normalized metric that takes into account the magnitude of the actual

pollutant concentrations. A lower NMAE in areas with high pollution levels suggests that the FastCTM model is effectively

capturing the overall magnitude and trends e#peﬂuﬂﬂ%%ﬂea%m&%ﬁeﬁﬁe@rﬁae&@%ﬁedel—ﬁ%&

VOCSNOxthe-tercased NO could-fead-to-deercased-O - due to-titration-cffeet- (Ren-and-Xie 2022y relative Lo the
reference CMAQ simulation. The Air quality forecasts starting from 00:00 a.m. on March 4", 2023 (Figure S7 in the SI)

demonstrate FastCTM’s strong capability in modelling the complex spatio-temporal changes in a large spatial domain and

over a relatively long period and a large area.
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Figure 3: Spatial distribution of mean absolute error (panels a, c, e, g, i, and k) and normalized mean absolute error for the six
criteria pollutants (panels b, d, f, h, j, and I) of FastCTM eemparing-tecompared with CMAQ in 2023.

Defining the warm season as the months from April to September and the winter and cold season as the remaining months,
the FastCTM model exhibited comparable performances. As shown in Figure 4 (with detailed information in Figure S7S8
in the SI), the coefficient of determination R? values for the six criteria pollutants were 0.82, 0.8, 0.8, 0.82, 0.91, and 0.7
in the warm season, and 0.8, 0.79, 0.78, 0.83, 0.88, and 0.68 in the cold season, respectively. To assess the performance
variations of FastCTM across different spatial locations, comparative evaluations were carried out in urban and rural areas
as well as in inland and coastal regions. Generally, FastCTM demonstrated slightly higher accuracies in rural areas
compared to urban areas (as presented in Figure S8S9 in the SI). This outcome is reasonable given the more intricate
emission and chemical processes prevalent in urban settings (Guo et al., 2014). Similarly, FastCTM exhibited comparable
performances in inland areas to those in coastal areas, with-the-exeeption-efexcept for PMz.s and PMio (Figure S9S10 in
the SI).

12



353

354

355
356

357
358
359
360
361

362
363
364
365
366
367
368

B Cold Season @ Rural B |nland
O Warm Season B Urban B Coastal

R Square

PMzg PM;, S50, NO; co [0}
M Cold Season O Rural @ Inland

o B Warm Season O Urban B Coastal

o
gl o«
2 o 7
@
3
o
@~
X o |

w

Q4

wn

il

PM; 5 PMjq SO, NO, cO 0

Figure 4: The mean evaluation R? values for all 119 leading hours of FastCTM forecasts in warm/cold seasons, rural/urban areas,
and coastal/inland areas.

To validate the FastCTM model, three land use regression (LUR) models were constructed, namely the linear regression
model, the random forest model (with the number of trees set at 500), and the XGBoost model (with the booster specified
as gbtree). These LUR models were developed using the same input meteorological data, emissiencmissions, and

geophysical variables as FastCTM to ensure fair comparison. When compared with the FastCTM model, the performance

of the LUR models was found to be significantly inferior-, as demonstrated in the Table. 1 and Figure S10 — S12 in the

SIy-. For example, R2 values for FastCTM range from 0.68-0.90, whereas the LUR models only achieve 0.06-0.33. This

outcome is;in-faet; anticipated when we consider the complex nature of air quality dynamics- in predicting future air quality.

Air quality is not a static entity, but it varies both spatially and temporally, determined by the joint effects of local emissions

meteorological conditions, and surface features, etc. For instance, the transport of air pollution is a highly dynamic process
that hinges on wind fields and air pollution concentrations in a reciprocal manner. The wind direction and speed dictate the
trajectory along which pollutants travel, while the existing pollutant concentrations in different regions influence the overall

dispersion and mixing patterns. LUR models, which on the other hand predominantly rely on local input data (Wong et al.,
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2021; Cheng etal., 2021), struggle to capture these intricate, non-local interactions. They laek-the-eapaeity-tecannot account
for the far-reaching effects, such as wind-driven pollutant transport and the eonsequentialtemporally accumulated changes

in air quality over larger geographical areas. As far as we know, LUR models have been mostly applied in predicting air

pollution fields in retrieval given corresponding air quality observations as training and constrained input data. They have

been seldom used in air quality forecasts and simulations, as we have demonstrated with the FastCTM model.

Table 1. Performance metrics of LUR models and FastCTM compared against CMAQ

Variable Model RMSE R? NMB
FastCTM 8.78 0.81 -0.15
Liner Model 35.05 0.09 -0.24

PMas
Random Forest 33.08 0.19 -0.25
XGBoost 33.02 0.14 -0.12
FastCTM 11.58 0.80 -0.17
Liner Model 44.66 0.10 -0.23

PMio
Random Forest 45.07 0.19 -0.33
XGBoost 44.53 0.15 -0.21
FastCTM 4.51 0.80 0.09
Liner Model 39.42 0.14 -1.18

SO.
Random Forest 25.74 0.33 -0.65
XGBoost 25.57 0.26 -0.60
FastCTM 4.24 0.83 0.04
Liner Model 21.42 0.27 -0.30

NO»
Random Forest 25.13 0.16 -0.58
XGBoost 23.88 0.15 -0.43
FastCTM 51.84 0.90 0.01
Liner Model 427.67 0.03 6.38

co
Random Forest 83.25 0.08 132
XGBoost 70.06 0.06 1.10
FastCTM 11.46 0.68 0.02
Liner Model 357.97 0.09 -0.46

O3
Random Forest 285.16 0.19 -0.21
XGBoost 291.58 0.15 -0.22

Annually, the daily air quality typically exhibits similar fluctuations to those in other years, which can be primarily
attributed to the cyclical nature of meteorological conditions and pollutant emission patterns. The FastCTM model was
trained using a comprehensive dataset spanning five years, from 2018 to 2022. In light of this, it was crucial to rule out the

possibility that the model was merely reproducing historical averages during the test year of 2023. To this end, the daily
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national average concentrations of PM»s and O3 in 2023, as predicted by FastCTM, were meticulously compared with
those simulated by CMAQ in the same test year, as well as with the CMAQ forecasts from the training years of 2018-2022.
As illustrated in Figure 5,-it-becomes-evident-that the predictions made by FastCTM in 2023 align more closely with the
actual CMAQ forecasts for that year, with R? = 0.94 and 0.72, respectively, for PM> s and O, rather than with the forecasts
with R?=0.54 and 0.59. The NMB was also lower between
FastCTM and CMAQ for the same year, 2023. These results not only validatesvalidate the adaptive learning capabilities

generated from the training data of 2018-2022-Fhis-findin

of the FastCTM model but also indicatesindicate that the model is not reserting-tousing a simplistic approach of taking-the
average-coneentrationaveraging concentrations from the previous five years based on the-time of day. Iastead,it-istikely
ineerperatingHourly time series plots of air pollutant concentrations (Figure S6 in the ST) further demonstrate that FastCTM

appears to incorporate real-time meteorological feedback, adjustingadjust for—any shifts in emission patterns, and

leveragingleverage its learned relationships to provide more accurate and contemporaneous predictions.
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Figure 5: The timeseries-of-daily FastCTM forecasts againstcompared with CMAQ forecasts:, respectively, in training period of

2018-2022 and the evaluation period of 2023 for (a) PM2s and (b) Os. The gaps for FastCTM and CMAQ in 2023 are due to data
unavailability these days.

3.2 Sensitivity Analysis with FastCTM

The FastCTM model was trained with 5-year meteorological and air quality simulations by WRF-CMAQ. These
simulations used the-same-annualan emission inventory datathat was identical for eachevery year. In this condition, the
FastCTM model has learned the relationships between the air quality and varied meteorology with fixed emissions input.
Considering that the FastCTM model has exhibited high accuracy at an independent evaluation year 2023, when new
meteorological fields are fed into FastCTM, the deep learning model should be able to simulate responses of air pollutant
concentrations to meteorological variables. However, for the response of air pollutant concentrations to emissions, the

training data do not contain relationships between inter-annual varied emissions and air quality under the condition of the
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same annual meteorological fields. Therefore, it is less expected for FastCTM to simulate reliable and correct response
relationships between emissions and air quality. To validate these analyses, we calculated the sensitivities of simulated air

pollutant concentrations to changes in meteorological variables and emissions.

3.2.1 Response of Air Pollutant Concentration to Meteorology
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Figure 6: The FastCTM predicted air pollutant percentage changes respendingin response to changes of T, WS, and PBLH in
Beijing on January 2" (a-c respectively in the left column) and August 1% (d-f respectively in the right column)-), 2023. The air

pollutant concentrations are relative to those at the baseline meteorological conditions.

The responses of six criteria pollutants to meteorological changes simulated by FastCTM are evaluated as exhibited in

Figure 6. For ground-level temperature (T,—O:—cencentrations—have) eclicited a distinct response ewrvaturein Os [iﬁi?ﬁi“: HIB(EE)
concentrations, compared to the other five criteria pollutants. O3 concentrations have slight negative responses to T in [iﬁ!?ﬁi&: HiBE(EE)
January, as shown in Figure 6a, which is probably due-to-strenger-dilution—effects—with-inereased-NOxbecause higher

temperatures increase NO, emissions-with-higherair-temperature, enhancing dilution, O3 concentrations had the strongest [iﬂﬁ?*ﬁiﬁ: FIEER)

(BB THR: FEER)
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positive responses in August among six pollutants, which is consistent with previous observation-based studies (Flaum et
al., 1996). The O3 had larger sensitivities when the air temperature was higher. The gaseous pollutants of CO, NO», and
SO; haveshow, the mestsignificantstrongest, positive respensesresponse, to-aix, temperature, which could be caused by the

shift of chemical equilibrium towards-te the higher release of these gaseous pollutants (Bassett and Seinfeld, 1983; Cox,
1982). The particulate matter pollutants, especially PM o, have the weakest responses inamong six pollutants. Considering
that there are dominating proportions of chemically inert species in particulates, the weak responses of PMz s and PMj are
expected.

For the wind speed and PBLH, the responses of pollutants are-havinghave similar patterns for the same pollutant. First, O3

concentrations exhibited adverse-patterns eentrastopposite, to other pollutants both in January and August. Higher wind
speed would increase the dispersion and transport of air pollutants (Feng et al., 2015; Lv et al., 2017), resulting in lower

pollution levels, which-is-the reasonfor deereasedso, concentrations & decrease as, wind speed

increases, except for Os. The contradictory response of ozone and particulate matter concentrations to PBLH is consistent
with the analysis results of multiple-year observations (Liu and Tang, 2024). Theoretically, the air pollutant concentrations
should exhibit an inverse relationship between air pollution concentrations and PBLH. The actual air pollutant
concentration changes simulated by FastCTM generally fit the theory that there are negative non-tnearnonlinear effects
with increasing PBLH. Meanwhile, the sensitivity is stronger when the PBLH is lower (Figures 6e and 6f), which is
consistent with previous observation-based analysis (Wang et al., 2019; Su et al., 2020). The totally different relationship
of O3 to wind speed and PBLH compared to other pollutants could be due to its high dependence on chemical precursors,
such as NOx and VOC. Concentrations of these precursors could have an inverse relationship with O; at specific locations.
FastCTM model itself is trained with multi-year CMAQ simulations, indicating that it is preconditioned on varied
meteorological fields with the same atmospheric physical and chemical rules. Therefore, the sensitivity of air quality

simulations to meteorology variations could be well learned, especially with the disciplinary-based model FastCTM.

3.2.2 Response of Air Pollutant Concentration to Emission

The sensitivity analysis with a “brute force” method can be carried out with the FastCTM model quickly due to its high
computational efficiency on GPU. The responses of PM, s concentrations to doubled emissions of SOz, NOxX were explored
in a winter month of January 2023 (Figure 7). For doubled NOx, the PM, s concentrations exhibited positive responses in

aselargest increases, occurred in-regions-tike, North

most areas of China as shown in Figure 7a. The sig

China, Heilongjiang province in Northeast China, Yangtze River Delta and Sichuan province. In these places, the NOx
emission are relatively large. For doubled SO,, PM> s concentrations increased in almost all China as shown in Figure 7b.

The response was larger in places-ofNorth China, Northeast China and Sichuan basin. The PM> s responses results-of PMo s

simulated by the-FastCTM waswere, generally consistent to previous studies (Li et al., 2022).
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Figure 7: Average predictions of PMzs concentrations in 5 lead-days with doubled emissions in January 2023. Panel (a) refers
to predictions with doubled NOXx, and panel (b) refers to double SO2.
As for ozone, its responses to doubled NOx and VOC are explored as shown in Figure 8. For NOx emission, deereased

Osdecreases in O concentrations in polluted regions like North China, the Yangtze River Delta, and other highly industrial

regions are well simulatedcaptured, by FastCTM. The response is reasonable considering that these regions are generally
abundant with NOx emissions and at VOC-limited conditions. BeubledDoubling VOC emission-teademissions leads to a
significant decrease ofin O; (Figure S13S14 in the supplementary material), which could be caused by the reason that
increased VOC could consume Oj in these regions. The spatial patterns of O3 responses to NOx and VOC are similar to
previous deep learning study trained by emission-controlled simulation data (Xing et al., 2022). However, due to complex

speciation of VOC emissions that’s simplified in the FastCTM, uncertainties for responses of O3 to VOC should be noted.

O, changes with Double NOx in July 2023
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Figure 8: Average predictions of hourly Os concentrations in 5 lead-days with doubled NOx emissions in July 2023.

The sensitivities of FastCTM simulations to emission interventions were contrasted with those of CMAQ. Specifically,
CMAQ was employed to simulate 11 emission scenarios over the two-month periods of January and July 2019 in Southwest
China (Huang et al., 2022). The alterations in emissions relative to the base case are presented in Table 1. Among these

scenarios, 10 involved reduced emissions of major species, with only the no-control scenario exhibiting increased emissions.
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Utilizing the identical emissions and meteorological data, FastCTM also conducted simulations, which were then compared
to those of CMAQ. For the 11 scenarios in question, the changes in air pollutant concentrations relative to the base case at
the locations of 139 national air quality monitoring stations (Figure S+4S15 in the SI) were extracted and compared in the

winter month of January 2019 (Figure 99a) and in summer month of July 2019 (Figure +09b). The results indicated that,

overall, the FastCTM simulations due to emissions changes were in good agreement with those of CMAQ), as reflected in
correlation coefficient R values are around 0.9 for SO,, NO», and negative responses-to-otheremission-controlled-seenarios
jast-as-O; in both summer and winter months. For PM, s and PM, FastCTM exhibited higher consistency with CMAQ-
Seeend in July than in January, with R values around 0.6 for most cases. For CO, FastCTM simulated-targerairpoHutanthas

two aspects.

much better performance in January than in July, with R values of approximately 0.8 and 0.2. Considering that CO

concentration

s.changes are mostly due to physical dispersion
and transport, the decreased performance is probably due to increased vertical mixing in summer, which is not fully
represented in the 2D scheme of FastCTM. Specifically, in January 2019, with-the-exeeption-of NO-except NO,, FastCTM
responded to emission changes with an interquartile range (IQR, 25% - 75% percentile) similar to that of CMAQ (Figure
of-July 2019, as depicted in Figure +0S17, all the criteria pollutants except CO demonstrated a comparable degree of

response to emission reductions.

Table 2. The emission change details of the emission scenarios

Scenario abbreviation Sector NOx VOCs SO2 Cco PMzs PMC
Industrial ~ 30% 30% 30% 30% 30% 30%

nocontrol NCtrl
Traffic 20% 20% 20% 20% 20% 20%
Industrial  -36%  -35%  -48%  -23% -9% -9%
medianX MedX
Traffic -40%  -10% 0 -26%  -10%  -10%
Industrial  -26%  -20%  -38%  -13% -4% -4%
medianY MedY :
Traffic -30% 0% 0 -16% -5% -5%
. Industrial  -36%  -10%  -48%  -23% -9% -9%
medianZ MedZ -
Traffic -40% 0% 0 -26%  -10%  -10%
Industrial  -10%  -10%  -18% 0 0 0
median-3 Med-3
Traffic -10% 0% 0 0 0 0
Industrial  -16%  -20%  -28% -3% 0 0
median-2 Med-2 -
Traffic -20% 0% 0 -6% 0 0
Industrial ~ -26% -35% -38% -13% -4% -4%
median-1 Med-1 ;
Traffic -30%  -10% 0 -16% -5% -5%
. Industrial  -36%  -50%  -48%  -23% -9% -9%
median0 MedO0
Traffic -40% -20% 0 -26% -10%  -10%
median+1 Med+1 Industrial  -46%  -65%  -58% -33% -19% -19%
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Traffic -50%  -30% 0 -36%  -20%  -20%
. Industrial  -55%  -70%  -80%  -40% -40%  -40%
median2030 Med30 -
Traffic -60%  -40% 0 -40%  -40%  -40%
. Industrial  -80%  -80%  -90% -60% -50%  -50%
median2035 Med35 -
Traffic -80%  -60% 0 -60%  -50%  -50%
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bl

FastCTM model used a principles-constrained formulation framework. As shown in Eq.4, atmospheric chemical reactions
are in the Atkinson form, which independently estimate the reaction rate from meteorological conditions and polynomials
of reactantsreactant concentrations in multiple powers. The principle-based formulation should be the reason for the
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relatively significant and reasonable response simulations of PM2s and O3 to precursor emissions, even though the
FastCTM itself is not trained by emission-controlled CMAQ scenario simulations. The remaining uncertainties should be
attributed to the reason that FastCTM only considered environmental chemical reactants in part eemparingcompared to
that of the CMAQ model (Binkowski and Roselle, 2003).

3.3 Internal Processes Analysis with FastCTM

The FastCTM is a principles-guided deep neural network to individually simulate the dominant atmospheric physical and
chemical processes as defined in Eq.1. The processes are calculated numerically with critical parameters describing the

processes being estimated by deep learning encoders. The hourly

concentration changes inequal the sum of the changes produced by, each process. Figure 11 depicts an example during the

night-time of January 13, 2023, when hourly PM, s concentration changes significantly. Between the two hours of 18:00
and 19:00, hourly PM> s concentrations have-significantly-changedchange markedly in neighbouring areas of Shandong,
Hebei, and Henan provinces as shown in the red rectangle (denoted as Area A hereafter) in Figure 11c. In this example,
strong northern wind prevails, leading pollutants mevingto move southward. For PMa 5 concentration changes caused by
primary emissions (Figure 8d), it’s is determined by the primary emission and the mixing volumes determined by PBLH.
resemblanece-to-theclosely resembles total PMy s concentration changes. In the transport process, air pollutants move from
one area to another, determined by the wind fields as shown in Eq.4. When the northern clean air prevails as in-the Area A,
changes should be negative in the upstream direction and positive in the downstream direction. The transport process
simulated by FastCTM sticks to this pattern. As known to us, the diffusion process will bring pollutants from a region of
high concentration to one of low concentration. Its contribution is low as shown in Figure 11f, which is reasonable
considering the relatively large grid cell size of +2-km12km and short simulation period of 1 hour. PM; s concentration
changes caused by the diffusion process constituted a small proportion compared to other processes. The activities of
chemical reactions are determined by both meteorological conditions and related precursor concentrations. PM,s
contribution changes between T1 and T2 caused by chemical reactions are lower in the areas to the north of Area A because
the cold and clean air in this area is not favourable for chemical reactions. The deposition is the dominant process that led
to PM 5 concentration reductions where regional transport was not significant. In general, depesitionsdeposition rates were
proportional to PMa 5 concentrations as shown in Figure 8h (Davis and Swall, 2006). It should be noted that FastCTM
simulated air quality in a 2-D domain rather than in 3-D, the deposition eeuldmay also include the vertical transport of air

pollutants to the upper air above PBL (Zhao et al., 2020).
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Figure 10: An example of the PM2s concentration at T1 (18:00, panel a) and T2 (19:00, panel b) on January 13, 2023 (with the
forecast leading time of 42 hours) and hourly changes (panel c). Changes caused by each of the five dominant processes are
depicted in panels d-h.

Simulated

contributions of five major atmespherie-physical-and-chemical-processes;-assimulated-by FastCTM-and CMAQ;-on to
hourly PMz s concentration changes are compared between FastCTM and CMAQ at 139 stations (Figure +2)-Speetficatly;

the-simulationouteomes-of atmospherieS15) in the Sichuan-Chongging region from October 12, 2024, to October 16, 2024.

as shown in boxplots of Figure 11. Overall, the simulation results of the process contributions by FastCTM and its parent

model CMAQ were relatively consistent. Higher degrees of consistency were found in simulations of emissions, advection
processes, and diffusion processes demonstrated-arelatively-high degree of consisteney-between the two models. Regarding
the-simulation-ofContributions from chemical reactions;-while-the-spatial-distribution-of high-value-areas-in-the FastCTM

Fesu-l-ts—waﬁ—eempa-r—ab%e—te—t-ha% of %Q—t-he—ﬁmtﬂ-a%ed—va-l—ues—m—FastCTM were—notablyhigher—Correspondingly;
isexhibited overestimation eeunterbalanced—the

re-differenee-in-compared to CMAQ, while contributions from deposition

were underestimated. The differences in the simulated deposition and reaction contributions between the two models could

be due to d—}ﬁfefenees—l-ﬂ—hew—they—ﬁeﬁesem—t-hese—lncomnlete representation of mﬂuencmg factors. Overall the simulation

his-, given the

complexity of the two processes. In general. the consistency md*ea{es—bha{—éespﬁ%sem%diﬁ’eﬁeﬂees—m—ehﬁnagm{ﬁd%ef
rtain Tmulation EastCTM—is—eapabl £ “hw;n th sential-featur: £ at h related—t
Frat-proeess 15 FastCTM-is-eapable-of-eapturingth ntialfeatures—ofatmospherie pr refated—+

s—concentration—changes;similar to- CMAQ-—Such-—consisteneybetween the two models provides confidence in the

reliability of FastCTM for simulating and understanding the complex interplay of atmospheric processes that govern PM s

levels.
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Figure 11: An-exampleBoxplots of eentributionshourly PM2s contribution changes from five major atmospheric processes to
PM. s-changes-(pgim®)-by- CMAQ-(first row)at 139 evaluation stations from October 13, 2024, to October 16, 2024, simulated by
(a) CMAQ and (b) FastCTM-{second-row)-at 23:00-on-October-13,2024.

4 Discussions

FheFastCTM wwasis a neural network-based CTM model ferspeedingupdesigned to accelerate air quality simulations and
forecasts. ComparingCompared to the—previeusexisting deep learning based CTMs, the—FastCTM hasoffers more
functionalities like-aakin to traditional EFM-—First-itis-able-to-simulateCTMs. It simulates 10 air pollutants, including
criteria gas pollutants, coarse particulate matter, and five species concentrations of PMys. The-FastCTM has-relatively
highshows strong agreements in long-term forecasts with the-conventional €FM-Besides—CTMs. Furthermore, after
approximately two days of simulation, FastCTM simulations-are-notrelatedto-itspredictions demonstrate independence
from initial eendition-ofinputair quality fields-afteraround-two-day-simulation;-which-indieatesconditions, suggesting that
itthe model has wellsuccessfully learned the inherentunderlying physical and chemical processesmechanisms embedded in
the CTM rather than enly-thespatial-temporal-auto-correlations-of input-time-series-data—Meanwhilesimply memorizing
spatiotemporal autocorrelations. Additionally, it has exhibited reasonable responses to precursor emission changes and

meteorological condition changes in the-sensitivity analysis. FurthermereMorcover, the internal processes in the FastCTM
model werecheekableare accessible and interpretable bythrough analyzing the contributions of dominant atmospheric
chemical and physical processes separately. These processes are encoded within FastCTM by designing dedicated neural
network modules.

Previous deep learning-based models for emission sensitivity analysis were generalbytypically trained byusing simulations
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with a group of different emission scenarios, whereas the FastCTM model was trained byusing CMAQ simulations of

unvaried annual emissions. The relativereasenablerespenses-reasonably accurate simulations of responses to emissions
and meteorological data revealedindicate that the guiding principles used-informulating-thebehind FastCTM have-helped

the-medelenable it to better learn the inherent physical and chemical processes withinin the training data. Considering the

high ecemputation—computational consumption byof conventional EFMCTMs, FastCTM weould—+reduce
substantialsubstantially reduces computational reseureesrequirements.

Fhe-FastCTM has the capabilities to generate hourly pollutant simulations with nearly equal aeceuraciesaccuracy to
thatthose produced by CMAQ-CFM;, as evaluated byagainst observations at national monitoring sites. There—are

stitHowever, differences and potential errors remain within-the FastCTM, arising from inadequate representations of actual

atmospheric processes and mechanisms. First, there-several processes are missing pe were considered within
thefrom FastCTM. The chemical reactions in traditional CMAQ are weryhighly complex and invelves—manyinvolve
numerous organic and inorganic species in gaseous and aqueous phases. The-FastCTM has justonly modeled potential

chemical reactions among several-atmosphere-compositions—Besidesa limited number of atmospheric species. Additionally,

long-range air pollutant transport in the upper atmosphere above the planetary boundary layer was not considered within

the FastCTM model. The remaining uncertainties of FastCTM compared to CMAQ could be further reduced afterthrough

carefully detailingincorporating additional atmospheric processes with properly designed neural network modules.

It should also be noted that atmospheric physical and chemical processes are defined in principles-guided neural network
modules in FastCTM. Their specific formulation was learned and optimized to minimize the sum of loss errors of all species

concentrations, rather than being supervised by data of actual internal processes in CMAQ. The actual contributions of

atreach process to pollutant concentration changes by—each—ofthese—pro eouldcan be calculated withusing the
integrated process rate (IPR) analysis and integrated reaction rate (IRR) analysis tools within CMAQ. Future studies could
use these IPR and IRR results to supervise the simulated processes in FastCTM to further improve its simulation
aeeuraetesaccuracy and robustness. FastCTM may also benefit from expanded mechanisms withincorporating detailed gas-
phase chemistry or aerosol microphysics. FastCTM’s design-—supperts—incremental-integration—of-modular, principle-
informed architecture facilitates targeted updates to integrate additional species (e.g., via—user-defined—modules)

witheutVOCs or secondary organics) by focusing modifications on relevant processes rather than overhauling the

eoreentire framework. However, adding new species, especially those participating in multiple atmospheric processes,

requires updating associated modules and retraining the model with the expanded set of variables to ensure the model learns

the new species’ interactions with existing pollutants and processes. Future versienswork will explore adding VOCs-and

secondary—erganies—to—address—broader—research—needs-such expansions, leveraging the framework's modularity to

streamline updates while retraining to incorporate the new species and their dynamics. FastCTM will also be extend to 3D

dimension to improve its representation for processes such as vertical mixing, vertical wind gradient, and in-cloud

chemistrieschemistry.

Data availability. The land use and land cover data are available at the Data Sharing and Service Portal of the Chinese
Academy of Science (http://data.casearth.cn/en/sdo/detail/5ebe2a9908415d14083a4¢24). The CTM simulation data and

source code files of the exact version used to produce the results used in this paper isare available at
https://doi.org/10.5281/zenodo.13757211 on Zenodo (Lyu, 2024). The configuration files for running models of WRF
v3.4.1 and CAMQ v5.0.2 are also available at https://doi.org/10.5281/zenodo.5152621 (Hu, 2021).
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