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Abstract. Chemical transport models (CTM) have wide and profound applications in air quality simulationssimulation and 

managementsmanagement. However, its applications are often constrained by high computational burdens. In this study, 

we developed a neural network based CTM model (FastCTM) to efficiently simulate ten air pollutant composition variables, 15 

including major PM2.5 species of SO4
2−, NO3

−, NH4
+, organic matters and other inorganic components, coarse part of PM10, 

SO2, NO2, CO and O3. The FastCTM has a principle-informed structure by explicitly encoding atmospheric physical and 

chemical processes in a basic simulator. Specifically, in the simulator, five neural network modules are proposed to 

respectively represent five major atmospheric processes of primary emissions, transport, diffusion, chemical reactions and 

depositions. Given 1-hour initial condition data, the FastCTM is able to simulate future 24-hour concentrations of the ten 20 

air pollutants with corresponding meteorology fields and emissions as input. The FastCTM is trained with operational 

forecast data from a numerical CTM model named Community Multiscale Air Quality (CMAQ) in 2018-2022. The well-

trained FastCTM is evaluated comparing to the long-term CMAQ forecast in an independent year 2023, and achieves high 

agreements with mean RMSE values of 9.1, 11.9, 4.4, 4.0, 48.9 and 10.9 μg/m3 and R2 values of 0.8, 0.81, 0.8, 0.83, 0.9 

and 0.7 for PM2.5, PM10, SO2, NO2, CO, and O3. Besides, assessed against hourly site observations of six criteria pollutants, 25 

the RMSE values of FastCTM have small relative differences of 4.3%, 4.2%, -2.8%, -1.7%, -0.3% and -3.2% compared to 

that of CMAQ. The FastCTM model also exhibited reasonable responses of air quality to meteorological variables of air 

temperature, wind speed and planetary boundary layer height, as well as to input pollutant emissions. Furthermore, due to 

the principles-oriented structure, internal chemical and physical process analysis could be performed by FastCTM to 

quantify the specific contribution from each of the five processes for hourly air pollutant concentration changes. In a 30 

nutshell, FastCTM has multi-functional advantages in air pollutant concentration simulations, sensitivity analysis and 

internal process analysis with high computation efficiencies on GPU and accuracy.  

1 Introduction 

Effective air quality management requires an accurate understanding of air pollution conditions in current time and future 
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to take targeted emission cut and control measures (Wang et al., 2010; Council, 2004). Driven by this demand, deterministic 35 

air quality numeric models have been developed to simulate spatiotemporal variances and evolutions of ambient air 

pollutants in the atmosphere (Hakami et al., 2003; Eder et al., 2006). In these models, such as the Community Multiscale 

Air Quality (CMAQ) model, atmospheric physical and chemical processes (e.g., emissions, chemical reaction, horizontal 

advection, and diffusion etc.) are mathematically defined by partial differential equations. The air pollutant and species 

concentrations can be then calculated by solving these complicated equations with numeric methods (Byun and Schere, 40 

2006), which is often time-consuming and requires intense computational resources.(Leal et al., 2017) and requires intense 

computational resources such as high-performance computing (Efstathiou et al., 2024).  

Recent developments in deep learning models provide promising alternative pathways to build fast and data-driven deep 

leaning-based CTM models, owing to the strong capabilities of neural networks in encoding and representing complex 

features, patterns and relationships that could be learned from long-term and large-size data (Lecun et al., 2015; He et al., 45 

2016; Liao et al., 2020). Such deep learning-based CTM models are expected to provide accurate simulations that are 

comparable to the current deterministic numeric CTMs but with much higher computational efficiency and better learnable 

capabilities. However, related advances have been limited due to difficulties in designing proper neural network structures 

to simultaneously achieve the goals of high accuracies, structural interpretations, and long-term simulations (Reichstein et 

al., 2019; Irrgang et al., 2021). In the constructions of deep learning-based CTM models, air quality simulations and 50 

predictions were always viewed as sequence-to-sequence prediction problems (Shi et al., 2015; Zhang et al., 2024) to model 

the spatiotemporal correlations among multiple variables. Therefore, previous studies mainly focused on refining the 

representation capabilities of the neural network by proposing new neural-network operations and structures to improve 

error back-propagation efficiencies and model encoding capabilities (Wang et al., 2018; Huang et al., 2021; Mao et al., 

2021). For example, Xing et al. (2022) developed a deep learning-based module named deepCTM through mimicking 55 

atmospheric photochemical modeling to simulate ozone concentrations. However, these deep learning-based CTMs are 

often structured in an uninterpretable black-box style to generate simulations that reflect the cumulative effect of all 

physical and chemical processes. These black-box models have limitations in modelling error attribution, internal processes 

inspection and knowledge findings etc. (Reichstein et al., 2019).  Besides, current deep learning-based CTMS are generally 

dedicated to specific one function, i.e. either forecast, or sensitivity analysis and transport analysis, while the deterministic 60 

numeric CTM models like CMAQ are multifunctional to conduct species concentration simulation, sensitivity analysis and 

internal process analysis at the same time. Quantifying the contributions of 

Quantifying individual processes would provide fundamental explanations for a model's predictions, and therefore is also 

useful in identifying potential sources of error in the model formulation or its inputs (Liu et al., 2010). With the motivation, 

there are studies dedicated to develop model to learn one specific atmospheric process, i.e. chemical and deposition, in the 65 

CTM model. Kelp et al. (2022) developed a neural network chemical solver for stable long‐term global simulations of 

atmospheric chemistry, learned from the GEOS-Chem model. Xia et al. (2024) simulated 74 chemical species and 229 

reactions following the SAPRC-99 mechanism with an artificial intelligence photochemistry (AIPC) scheme to achieve ~8 

time speed-up. Sturm and Wexler (2020) developed a mass- and energy-conserving framework for using machine learning 

to speed computations with an successful application in a photochemistry example. For the deposition process, Silva et al. 70 

(2019) proposed a deep learning parameterization for ozone dry deposition velocities with accurate predictions in 

independent new date sets, revealing the potential of neural network in encoding complex spatio-temporal latent processes. 

Liu et al. (2025) proposed a Neural Network Emulator, named ChemNNE, for fast chemical concentration modelling, 

which achieved good performance in accuracy and efficiency. Even though these successful applications using deep 
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learning methods to simulate individual atmospheric chemical and physical processes, there is an missing gap in coupling 75 

these NN operator replacements together as an complete deep learning based CTM. 

In this study, we proposed a principles-oriented neural network model (FastCTM), which has explicit structures comparable 

to the traditional numeric CTMs to ensure model explanations, inspections, and revisions. The well-trained FastCTM model 

is capable of achieving multi-functionalities similar to a traditional numeric CTM, such as air quality simulations (forecasts), 

process analysis, emission evaluations, etc. Interpretations of the FastCTM are also widely vowed to improve deep learning 80 

model applications in earth system science and climate studies.The main objective of our study is to build and validate a 

principles-guided neural network based FastCTM that could simulate spatial-temporal fields of hourly concentrations of 

major air pollutant species like a traditional CTM.  The FastCTM could model would bring many benefits with their high 

computation speed, efficient data assimilationindividual contributions from each of the atmospheric processes of transport, 

diffusion, deposition, reaction and fast model updates. Theemission. FastCTM is currently configured to simulate hourly 85 

concentrations of 10 pollutant variablescriteria pollutants critical for health impact assessment and policy-making, 

including and major species of PM2.5 (SO4
2−, NO3

−, NH4
+, organic matters and other inorganic components, coarse part in 

PM10, CO, NO2, SO2 and O3. Interpretations of deep learning network are also widely vowed to improve their applications 

in earth system science and climate studies. The well-trained FastCTM model is capable of performing analysis of internal 

chemical and physical processes. The FastCTM model would bring many benefits with their high computation speed, 90 

efficient data assimilation and fast model updates.  

2 Data and Methods 

2.1 CTMParent Model Simulations and Datasets 

In this study, the FastCTM model was designed to replicate the parent model CMAQ structures, trained by learning 

CMAQ’s underlying physical and chemical processes among multiple air pollutants including the complicated chemical 95 

reaction, transport, diffusion and deposition. CMAQ has a process analysis (PA) tool to separate out and quantify the 

contributions of individual physical and chemical processes to the changes in the predicted concentrations of a pollutant 

which provide the opportunity to conduct sensitivity analysis by comparing process contributions between CMAQ and 

FastCTM.  

The weather and air quality simulations in 2018~2023 were conducted using a WRF-CMAQ modelling system that consists 100 

of three major components: The meteorology component of Weather Research and Forecast model (WRF, 

v3.4.1)(Michalakes et al., 2005; Skamarock et al., 2008) provides meteorological fields, the emission component provides 

gridded estimates of hourly emissions rates of primary pollutants that matched to model species, and the CTM component 

(CMAQ v5.0.2 (Byun and Schere, 2006)) solves the governing physical and chemical equations to obtain 3-D pollutant 

concentrations fields. WRF-CMAQ simulations are not two-way coupled so that weather and chemistry and chemistry do 105 

not have feedbacks to influence each other. We used hourly average concentrations of dominant PM2.5 components of 

sulfate (SO4), nitrate (NO3), ammonium (NH4), organic carbon (OC) and other components (EC and soil, etc.) and CO, 

SO2, NO2 and O3 in the surface layer. The 10 species were selected based on their direct relevance to regulatory standards 

(e.g., PM₂.₅, PM₁₀, O₃, NO₂, SO₂, CO) and their dominance in driving health and environmental impacts in urban and 

industrial regions. 110 

Meteorological variables used in this study include relative humidity (RH), air temperature (T), wind components (U, V) 

at surface 10 meters height, precipitation (RN), cloud fraction (CFRAC) and planetary boundary layer height (PBLH). 
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Wind speed (WS) was calculated from U and V. The data covered the whole China at a horizontal resolution of 12 km with 

372×426 grid cells. The simulation data of 2018~2022 is used as the training dataset, while the remaining simulation data 

in 2023 is used for independent evaluation. The surface topographic data (HGT, Figure S1 in the supplementary material, 115 

obtained from https://lta.cr.usgs.gov/GTOPO30) and land cover data (Zhang et al., 2020) of urban and tree fraction (LULC) 

are also used to reflect the effects of land surface conditions in this study. 

The original primary emissions used in the aforementioned WRF-CMAQ modelling system are used as input to the 

FastCTM. The large amount of emission data is grouped according to the simulated 10 pollutant variables. Specifically, 

the primary PM2.5 emissions of SO4, NO3, NH4, OC and other components, and gaseous emissions including sulfur oxide 120 

(SO2), nitrogen oxides (NOx, including HONO, NO, and NO2), ammonia (NH3), volatile organic species (VOCs, including 

isoprene (ISOP), terpene (TERP), and other species of VOC) are used in the FastCTM. Annual average emission of NOx, 

SO2, and VOC are respectively depicted in Figure S2-4 in the supplementary material.  

2.2 Guiding Principles in Designing the FastCTM Model Formulations 

2.2.1 FastCTM Model Framework 125 

The deterministic CTM models simulate emissions, transport, deposition, diffusion, and chemical transformations of gases 

and particles in the troposphere through numerically solving the governing equations as follows, 

𝜕𝐶𝑖

𝜕𝑡
= −∇ ∙ (𝑢⃗ 𝐶𝑖) + ∇(𝐾∇𝐶𝑖) + 𝑅𝑖 + 𝐸𝑖 + 𝐷𝑖    (1) 

where 𝐶𝑖 is the concentration of species i, 𝑢 is the air fluid velocity, 𝐾  is the eddy diffusivity tensor, 𝑅𝑖  is the net rate of 

chemical generation of species i, 𝐸𝑖  is the rate of direct addition of the species from primary emissions, and 𝐷𝑖   is the 130 

deposition rate caused by both dry and wet depositions. A detailed description of CMAQ principles is available elsewhere 

(Byun and Schere, 2006)(Byun and Schere, 2006; Appel et al., 2017). Inspired by the traditional numeric CTMs principles 

and equations, the guiding framework of FastCTM was also structured in a similar formulation to represent the dominant 

processes in order to simulate air pollutant spatiotemporal variations.  

2.3 FastCTM Model Formulations 135 

2.3.1 General Model Structure 

In the context of deep learning, hourly air quality simulation is a spatiotemporal sequence-to-sequence learning problem 

to predict the most probable future length-K sequence given the previous length-J sequence as in the following Eq.2, 

𝑌̂𝑡+1, . . . , 𝑌̂𝑡+𝐾  =  𝑎𝑟𝑔max 𝑝 ([𝑌𝑡−𝐽+1, . . . , 𝑌𝑡], [𝑋𝑡−𝐽+1, . . . , 𝑋𝑡 , 𝑋𝑡+1, … , 𝑋𝑡+𝐾])   (2) 

Where the arg max (short for “argument of  the maximum”) function is used to find the p class with the highest predicted 140 

probability. The 𝑋𝑡 ∈ 𝑹
𝑀×𝑁×𝑉𝑋  is the data of 𝑉𝑋 input variables at the spatial grid of 𝑀 × 𝑁 at time t. The 𝑌𝑡 ∈ 𝑹

𝑀×𝑁×𝑉𝑌  

is the data of 𝑉𝑌  predictive variables at time t. Specifically, the FastCTM simulates future K-hour air pollutant 

concentrations, given J-hour air pollutant concentrations[𝑌𝑡−𝐽+1, . . . , 𝑌𝑡] as initial fields and (K+J)-hour meteorological and 

emission conditions [𝑋𝑡−𝐽+1, . . . , 𝑋𝑡 , 𝑋𝑡+1, … , 𝑋𝑡+𝐾]. Previous studies generally used multiple-step input data with J>1 to 

ensure sufficient spatial-temporal correlations contained in the training data (Sum et al., 2022; Xing et al., 2022). Instead, 145 

we use 1-hour initial pollutant concentration (J=1) to simulate 24-hour air quality pollutants (K=24), to ensure FastCTM is 

dedicated to learn air quality changes between neighboring two hours as shown in Figure 1a. In other words, at time 𝑡 = 0, 

FastCTM predicted K-hour air pollutant concentrations of 𝐶𝑡=0, 𝐶𝑡=1, … , 𝐶𝑡=𝐾−1, given the input air pollutant concentration 
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in previous hour 𝐶𝑡=−1  and corresponding meteorological data and emissions at time  𝑡 = 0 ,1,…,K-1. The unit of 

concentrations is μg/m3 for all pollutants.  150 

 
 

 

Figure 1: The(a) General model workflow, and (b) the basic simulator module structure at the time step t of deep learning 

simulation model FastCTM designed according to Eq.1. Arrows and boxes with different colours represent calculation modules 155 

of different atmospheric physical and chemical processes. 

The FastCTM model uses the basic simulator module (Figure 11a) recursively for hourly simulations, using output air 

pollutant concentrations from one step as input to the next-step basic simulator. In contrast to directly learning 

spatiotemporal correlations of predictand itself as in most previous studies (Wang et al., 2018; Shi et al., 2017), the basic 
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simulator (Figure 1b) is formulated following the atmospheric physical and chemical equations and constraints shown in 160 

Eq.1, and was composed of five modules to respectively represent the  physics-chemical processes to improve the model 

performance. The modules for each of the five processes in the basic simulator are described in the following section. The 

time step used in FastCTM was 60 seconds.  

2.32.2 Primary Emissions Module 

Primary pollutants are assumed to be directly emitted into the atmosphere and instantly well-mixed within the PBL. 165 

Therefore, hourly air pollutant concentrations enhancement caused by primary emissions could be described in the 

following Eq.3.  

𝐸𝑚,𝑛,𝑖,𝑡 =
𝑃𝐸𝑚,𝑛,𝑖,𝑡

𝑃𝐵𝐿𝐻×d𝑥×d𝑦
         =

1000×𝑃𝐸𝑚,𝑛,𝑖,𝑡

𝑃𝐵𝐿𝐻×d𝑥×d𝑦
    (3) 

Where 𝐸𝑚,𝑛,𝑘,𝑡 refers to the concentration changes contributed by primary emissions at spatial coordinate (𝑚, 𝑛) for species 

i at time t. The 𝑃𝐸𝑚,𝑛,𝑖,𝑡 is the corresponding total primary emissions within the grid cell per second., which has a unit of 170 

g/s. Considering that the cell size in the FastCTM is 12 km by 12 km, we have d𝑥 = 12000 and d𝑦 are =12000 in this 

study. The boundary layer height PBLH is also in the unit of meter (m). Therefore, resulted air pollutant concentration 

increase by primary emission 𝐸𝑚,𝑛,𝑖,𝑡 has a unit of μg/m3. 

2.32.3 Horizontal Transport Module 

In the FastCTM, horizontal transports usually have significant influences on air quality variations (Lang, 2013). In CMAQ, 175 

the regional transport was in general represented as the divergence of the product of wind field and air pollutant species as 

in Eq.1, inferred from continuity equations and convection equations (Michalakes et al., 2001; Byun and Schere, 2006). 

By decomposing the air mass movement into two orthogonal directions of east-west (x) and north-south (y), they could be 

re-written in the form as shown in Eq. 4, 

∇ ∙ (𝑢⃗ 𝐶𝑖) =  
𝜕(𝐶𝑖𝑈)

𝜕𝑥
+

𝜕(𝐶𝑖𝑉)

𝜕𝑦
   (4) 180 

Where the wind field was represented as 𝑢⃗ , which was then decomposed into 𝑈 and 𝑉, respectively in the x and y directions.  

In the deep learning framework, the partial equation in Eq. 4 could be rewritten in a discrete form as convolution operations 

and inner product calculations as shown in Eq. 5 with a finite difference method. The convolutional kernels of 𝑊𝑥 and 𝑊𝑦 

were defined in an up-wind scheme as shown in Eq. 6 and Eq. 7. 

∇ ∙ (𝑢⃗ 𝐶𝑖) =
𝑊𝑥∗(𝐶𝑖×𝑈)

d𝑥
+

𝑊𝑦∗(𝐶𝑖×𝑉)

d𝑦
  (5) 185 

𝑊𝑥 = {
[−1 1 0] 𝑖𝑓 𝑈 < 0

[0 −1 1] 𝑖𝑓 𝑈 ≥ 0
  (6) 

𝑊𝑦 =

{
 
 

 
 [

0
1
−1
]  𝑖𝑓 𝑉 < 0

[
1
−1
0
]  𝑖𝑓 𝑉 ≥ 0

  (7) 

2.32.4 Diffusion Module 

The turbulence diffusion process ∇(𝐾∇𝐶𝑖) Diffusion involves the physical and chemical processes that disperse pollutants 

in the atmosphere. It’s influenced by meteorological conditions, i.e. atmospheric stability and humidity, and surface features, 190 
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i.e. land terrains and vegetation (Jiang et al., 2021). The turbulence diffusion process ∇(𝐾∇𝐶𝑖) in Eq.1 helps the spread of 

pollutants in the atmosphere. It is expressed as the second-order deviation of species concentrations as shown in Eq. 8. 

They could also be discretized to convolutional operations with finite difference method as shown in Eq. 9, just like that in 

the horizontal transport process module.  

∇(𝐾∇𝐶𝑖) =  
𝜕

𝜕𝑥
(𝐾

𝜕𝐶𝑖

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾

𝜕𝐶𝑖

𝜕𝑦
)  (8) 195 

∇(𝐾∇𝐶𝑖) =
𝑊𝑥∗(𝐾×𝑊𝑥∗𝐶𝑖)

d𝑥×d𝑥
+

𝑊𝑦∗(𝐾×𝑊𝑦∗𝐶𝑖)

d𝑦×d𝑦
  (9)  

𝐾 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐾([𝑇, 𝑅𝐻, 𝑃𝑅𝑆, 𝑃𝐵𝐿𝐻])  (10) 

The turbulent diffusivity 𝐾 is closely related to the meteorological conditions of the atmosphere and  is  simulated with an 

encoder module 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐾  (Eq. 10). The input variables of the 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐾  include temperature 𝑇, humidity 𝑅𝐻, surface 

pressure 𝑃𝑅𝑆, and boundary layer height 𝑃𝐵𝐿𝐻. The 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐾  is determined to be a grid-to-grid regression model based 200 

on the Unet++ model with a nested structure (Zhou et al., 2018; Ronneberger et al., 2015). The 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐾  model consists 

of 5 layers with each layer respectively composed of 16, 32, 64, 128 and 256 filters. 

2.32.5 Chemical Reaction Module 

The air pollutant concentration changes caused by chemical reactions are represented in the following Eq. 11. In the 

equation, the rate of chemical reaction of species i is expressed as the product of a rate constant 𝑘  and a term that is 205 

dependent on the concentrations of its reactants j (Carter, 1990; Carter and Atkinson, 1996).  

𝑅𝑚,𝑛,𝑖,𝑡 = 𝑘𝑚,𝑛,𝑖,𝑡 × 𝑓(𝐶𝑚,𝑛,𝑗,𝑡)  (11) 

Reduced-form models like InMAP (Tessum et al., 2017) and EASIUR (Gentry et al., 2023) focus on annual-average 

exposure, while FastCTM provides hourly-resolved simulations critical for real-time management. FastCTM quantifies 

hourly contributions from individual processes (transport, chemistry, emissions) via its modular design, rather than 210 

aggregating source impacts (e.g., EASIUR’s source-receptor matrices) in reduced-form models. Furthermore, FastCTM 

explicitly couples meteorology (PBLH, T, RH) with chemistry, whereas InMAP/APEEP (Muller and Mendelsohn, 2006) 

assume static meteorology, limiting their utility in capturing diurnal or synoptic-scale variations. Specifically, the air 

pollutant concentration changes caused by chemical reactions are represented in the following Eq. 11. In the equation, the 

rate of chemical reaction of species i is expressed as the product of a rate constant 𝑘 and a term that is dependent on the 215 

concentrations of its reactants j (Carter, 1990; Carter and Atkinson, 1996).  

𝑅𝑚,𝑛,𝑖,𝑡 = 𝑘𝑚,𝑛,𝑖,𝑡 × 𝑓(𝐶𝑚,𝑛,𝑗,𝑡) (11) 

𝑘𝑖 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑘([𝑇, 𝑅𝐻, 𝑃𝑅𝑆,𝑊𝑆, 𝑃𝑅𝐸, 𝐶𝐹𝑅𝐴𝐶])  (12) 

The reaction kinetics constant k is generally temperature-dependent. They could also be related to atmospheric pressures 

and moisture humidity in some reaction processes. Therefore, the reaction rate constant 𝑘  is simulated using a spatial 220 

encoder function 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 as shown in Eq. 12, which has the same structure as that of reaction and depositiondiffusion 

encoder modules (Eq. 10). There are 6 input variables of the 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑘 including 𝑇, 𝑅𝐻, 𝑃𝑅𝑆,𝑊𝑆, 𝑅𝑁 and 𝐶𝐹𝑅𝐴𝐶. The 

concentration processor 𝑓 is designed as a simple multi-layer convolutional network with a kernel size of 1 to represent 

high-order and complex relations among different reactants.  

2.32.6 Deposition Module 225 

Air pollutant deposition refers to the process by which atmospheric pollutants are transferred to Earth's surfaces (land, 
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water, vegetation) or removed from the air. This phenomenon plays a critical role in environmental pollution dynamics and 

ecosystem impacts. The deposition was closely influenced by meteorological conditions and surface characteristics (Janhäll, 

2015). For example, high wind disperses pollutants, while turbulence enhances dry deposition. Forests and crops act as 

sinks due to large surface areas for adsorption. Air quality changes due to the deposition process are expressed linearly as 230 

the product of the deposition rate d and the corresponding air pollutants concentrations C, as shown in Eq. 13. The constant 

d is closely related to the current and previous meteorological conditions, terrains and underlying land cover types. 

Therefore, they are all simulated with an Encoder module as shown in Eq. 14.  

𝐷𝑚,𝑛,𝑖,𝑡 = 𝑑𝑚,𝑛,𝑖,𝑡 × 𝐶𝑚,𝑛,𝑖,𝑡  (13) 

𝑑 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑑([𝑊𝑆, 𝑅𝐻, 𝑅𝑁,𝐻𝐺𝑇, 𝐿𝑈𝐿𝐶])  (14) 235 

The model structure and parameter configurations are also the same as that of 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐾  and 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑘. The input data 

variables of 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑑 include WS, RH, RN, HGT and LULC.  

2.43 Model Training 

The FastCTM was programmed with Python3 on the deep learning framework TensorFlow (Abadi et al., 2016). The model 

was trained with the WRF-CMAQ operational forecast data in China for 2018~2022. Considering that on each day we had 240 

120-hour forecasts with a spatial coverage of 426×372 grid cells (each with a size of 12×12 km2) for 9 meteorological 

variables and I=10 air pollutant variables, the total training data have a size of 𝑻𝑫 = 𝑹1826,120,426,372,19 , where 1826 

represents the total counting days from 2018 to 2022. Since the model was set to predict 24-hour PM2.5 concentrations from 

input 1-hour data, the total input sequence length was 25 hours in each training step. Besides, the size 𝑀 × 𝑁 of input data 

𝑋𝑡 to FastCTM was decided to be 150×150, equal to an area of 1800×1800 km2 in 12-km resolution. Therefore, the input 245 

batch data for FastCTM in each step should be in the size of 𝑩𝑫 = 𝑹𝑏,25,150,150,19, where b is the batch size (determined 

as 1 in this study). In the training process, theThe input data 𝑩𝑫 are randomly sliced from the whole training dataset 𝑻𝑫 

in each training iteration. We did not use the fixed area as that in the previous studies, indicating each BD representing 

different spatial and temporal coverages. The random sampling tactics would help model learn inherent physical and 

chemical principles model rather than just statistical spatiotemporal autocorrelations using data in constant spatial area 250 

(Xing et al., 2022) to ensure that the model learns inherent physical and chemical principles rather than just statistical 

spatiotemporal autocorrelations in a fixed area.. Besides, the spatio-temporal random samples contain varied emissions 

which would improve FastCTM adaption to changing emission levels. 

The loss functionEven though five modules are defined in FastCTM, individual processes are not trained separately. The 

model was trained as a whole with hour-to-hour air pollutant concentrations, while each process could learn its parameters 255 

under the constrains of its dedicated formulation. Specifically, FastCTM was tuned to minimize the loss function ℒ, which 

was determined to be L2 loss (Bühlmann and Yu, 2003) of the regularized mean squared error (MSE) as shown in Eq. 15. 

The model was optimized with the Adam optimizer (Kingma and Ba, 2014).  

ℒ =
1

𝐽×𝑁×𝑀×𝐼
∑ ∑ ∑ ∑ (𝐶 𝑚,𝑛,𝑖,𝑡 − 𝐶̃𝑚,𝑛,𝑖,𝑡)

𝐼
𝑖=1

2𝑁
𝑛=1

𝑀
𝑚=1

𝐽
𝑡=1   (15) 

The learning rate was set to be 0.001, and batch size to be 1. The FastCTM model was trained on one entry-level 260 

professional acceleration card of NVIDIA A40 with a running time of 10 hours for every 10000 iterations. A total of 300, 

000 iterations were performed before the remaining model loss  becoming stable.  



 

9 

 

2.54 Model Evaluation 

The main objective of our study is to build and validate a principles-guided neural network based FastCTM that could 

simulate spatial-temporal fields of hourly concentrations of major air pollutant species like a traditional CTM. Besides, the 265 

FastCTM could model individual contributions from each of the atmospheric processes of transport, diffusion, deposition, 

reaction and emission. Therefore, the FastCTM simulations were firstFastCTM were assessed against CMAQ simulations 

using the same input emission data and meteorological fields. The CMAQ model simulated 120-hour forecasts from 0:00 

local time on each day of 2023, while the FastCTM model generated 119-hour forecasts with 1-hour initial input data. The 

119-hour forecasts are achieved by iteratively using an initialized condition from the previous step. The 119-hour forecast 270 

data by the two models were compared hour-by-hour at each corresponding time. For example, when we had 120-hour 

forecast starting at 0:00 on January 1, 2023 at Beijing Local Time (BLT), the data of 0:00 on January 1, 2023 were fed into 

FastCTM to get the 119-hour forecasts until 23:00 on January 5. The 10 species forecasts by FastCTM were compared 

against the CMAQ forecasts at each corresponding hour. Furthermore, CMAQ and FastCTM forecasts were both evaluated 

by hourly observations from national monitoring sites (as shown in Figure S5 in the supplementary material) for six criteria 275 

pollutants (PM2.5, PM10, SO2, NO2, CO, and O3). The metrics of root mean square error (RMSE) and coefficient of 

determination (R2) were calculated daily in each of 119 leading hours on the difference in each of the 158,742 grid cells 

between CMAQ and FastCTM. Therefore, 119 static values for each metric of R2 and RMSE were obtained on each day 

of the independent test year of 2023. The statistic values on each day are then averaged for the same leading hour for 

comparison.  280 

Besides, theThe FastCTM was also assessed from the aspects of sensitivity analysis to emission inputs and meteorological 

fields. For meteorological variables, responses of six criteria pollutant concentrations to T, WS and PBLH were calculated. 

For emissions, responses to paired variables of SO2/NH4 and NOx/VOC emissions were calculated. Finally, the 

contributions byBesides, FastCTM’s capability to simulate responses to emission changes were also evaluated by 

comparing with CMAQ simulations in 11 emission-intervention scenarios. Finally, the contributions of five internal 285 

processes of transport, diffusion, emission, reaction, and deposition were also analyzed and discussed for an example 

pollution episode.  

3 Results 

3.1 Forecast Performance by FastCTM 

3.1.1 Evaluation of FastCTM forecasts against CMAQ forecasts 290 

The FastCTM has exhibited strong and stable strengths in reproducing CMAQ forecasts for a long-lasting forecast period 

of 119 hours evaluated in 2023 (Figure 2). The average RMSE values for six criteria pollutants of PM2.5, PM10, SO2, NO2, 

CO, and O3 are respectively 9.1, 11.9, 4.4, 4.0, 48.9 and 10.9 μg/m3.  For R2 values, they are 0.8, 0.81, 0.8, 0.83, 0.9 and 

0.7. As for PM2.5 components, RMSE values are 1.68, 2.68, 1.52, 1.98 and 4.25 μg/m3 respectively for SO4
2−, NO3

−, NH4
+, 

organic matters and other inorganic components, while the R2 values are 0.72, 0.6, 0.3, 0.83 and 0.68. The low R2 value of 295 

NH4
+ could be caused by insufficient chemical reactions represent in FastCTM as not enough chemicals considered in the 

model. Compared to the ~5ppb (~10.5 μg/m3) in the previous study by Xing et al. (2022), the FastCTM model has similar 

RMSE values in forecasting O3. To test the influences of initial condition on FastCTM long-term simulations, FastCTM 
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forecasts using zero values as input air quality data were almost the same as that using ordinary input in the long leading 

hours. Results indicating that FastCTM simulations in long leading hours are not affected by initial conditions (Figure S5 300 

in the SI), just like deterministic numeric CTMs (such as CMAQ). In other words, the insensitivities of FastCTM to initial 

conditions indicate that it has well learned and encoded the most physical and chemical principles in CMAQ CTM, rather 

than just spatio-temporal correlations among air quality sequences. 

 

Figure 2: The evaluation performances of FastCTM forecasts against CMAQ forecasts in 2023. Panel (a) and (b) respectively 305 

show RMSE values of criteria pollutants and the PM2.5 components. Panel (c) and (d) respectively show R2 values. It should be 

noted that RMSE value of CO corresponds to the right axis in panel (a). 

. Hourly RMSE values have apparent diurnal variations with lower RMSE values in the nighttime than that in the daytime. 

This is probably due to more active physical and chemical processes in the daytime, which is the header to simulate for 

FastCTM. Besides, since the FastCTM is a 2-D model only considering atmospheric processes within the boundary layer, 310 

lower consistency with the CMAQ model during daytime could be due to more active vertical turbulence which is not fully 

represented. It is important to note that the relatively low R2 values observed for  NH4
+ can be attributed to the fact that it 

is the sole cation included in the FastCTM model without a corresponding acid-base balance, which may affect the model's 

predictive accuracy.. Strong vertical mixing of air pollutants to the height above PBLH have been found (Li et al., 2017; 

Tang et al., 2016), which could not be not fully represented in FastCTM. It is important to note that the relatively low R2 315 

values observed for NH4
+. While CMAQ explicitly resolves NH4

+ formation reactions, FastCTM does not explicitly encode 

these pathways. Instead, the neural network implicitly learns relationships between NH4
+ and precursor emissions (NH3, 

NOx, SO2) and meteorological variables (e.g., temperature, humidity). This simplification omits acid-base equilibria and 

aerosol thermodynamics, which are critical for partitioning NH4
+ between gas and particle phases. The low R² for NH4

+ 

primarily reflects FastCTM’s simplified chemical mechanism in this part, which could be improved by adding related 320 

species in the simulation.  设置了格式: 英语(英国)
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Figure 2: The evaluation performances of FastCTM forecasts against CMAQ forecasts in 2023. Panel (a) and (b) respectively 

show RMSE values of criteria pollutants and the PM2.5 components of.  Panel (c) and (d) respectively show  R2 values.The spatial 

distributions of the mean absolute error (MAE) and the normalized mean absolute error (NMAE) are presented in Figure 325 

3. For all six pollutants under consideration, it is a notable finding that the MAE values tend to be higher in polluted areas. 

This can be attributed to the complex and dynamic nature of pollutant interactions in such regions. In polluted environments, 

there are often multiple sources of emissions, complex chemical reactions, and variable meteorological conditions that can 

lead to greater discrepancies between the model - predicted and actual pollutant concentrations. Conversely, the NMAE 

values exhibit an opposite trend, being lower in polluted areas. In these regions, the NMAE values typically hover around 330 

0.2, in contrast to the relatively higher values of approximately 1 in cleaner areas. The NMAE is a normalized metric that 

takes into account the magnitude of the actual pollutant concentrations. A lower NMAE in areas with high pollution levels 

suggests that the FastCTM model is effectively capturing the overall magnitude and trends of pollutant concentrations 

relative to the reference CMAQ model. The Air quality forecasts starting from 00:00 a.m. on March 4th, 2023 (Figure S6 

in the SI) It should be noted that RMSE value of CO corresponds to the right axis in panel (a). 335 

Furthermore, we tested the influences of initial condition on FastCTM long-term simulations. As shown in Figure S6 in 

the SI, FastCTM forecasts using zero values as input air quality data were almost the same as that using ordinary input in 

the long leading hours, indicating that FastCTM simulations in long leading hours are not affected by initial conditions, 

just like deterministic numeric CTMs (such as CMAQ). In other words, the insensitivities of FastCTM to initial conditions 

indicate that it has well learned and encoded the most physical and chemical principles in CMAQ CTM, rather than just 340 

spatio-temporal correlations among air quality sequences.  
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Figure 3: Air quality forecast examples of CMAQ and FastCTM at leading time of 24, 48, 72, 94 and 120 hours starting from 

0:00 on March 4th, 2023. Panel A-F respectively refers to PM2.5, PM10, CO, SO2, NO2 and O3. The 1-5 sub-panels in the first row 

(1-5) in each panel are the CMAQ forecasts, while the 6-10 sub-panels in the second row are FastCTM forecasts.   350 

Air quality forecasts (Figure 3) starting from 00:00 a.m. on March 4th, 2023 demonstrated the strong capabilities of 

FastCTM in modeling the complex spatio-temporal changes in a large spatial domain and over a relatively long period. In 

this period, air quality experienced rapid deterioration. For the pollutants except for O3, both CMAQ and FastCTM 

simulations have predicted very high concentrations at the 24th-hour forecast in the areas of the North China and Sichuan 

Basin area. During the next four days, the air quality was first cleaned up but then became worse, which was reflected both 355 

in the CMAQ and FastCTM. Generally, in this complicated process, the FastCTM generated very similar forecasts to that 

of the CMAQ forecasts in a long-term period over a large area. The O3 generally has a close relationship with the ratio of 

VOCs/NOx, the increased NO2 could lead to decreased O3 due to titration effect (Ren and Xie, 2022). The results have 

indicated that, with FastCTM, hourly ground-level concentrations of major air pollutants can be generated fast with high 

reducibility to CMAQ.  360 

设置了格式: 英语(美国)

设置了格式: 英语(英国)
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3.1.2 Evaluation of FastCTM forecasts against station observations 

 

 

Figure 3: The evaluation performances of PM2.5 forecasts by FastCTM (a) and CMAQ (b) against observations  in 2023.   

The FastCTM forecasts also have comparable performances to CMAQ forecasts in the evaluation against observations at 365 

national monitoring sites as shown in Figure 4. Generally, both the FastCTM and CMAQ forecasts have lower accuracies 

in the daytime than that during  the night. For FastCTM, average RMSE values for PM2.5, PM10, SO2, NO2, CO, and O3 are 

respectively 36.7, 67.9, 31.05, 24.7, 482.1 and 36.2 μg/m3, compared to that of 35.2, 65.2, 31.9, 25.2, 483.4 and 35.0 μg/m3 

for CMAQ. The relative difference for the RMSE values of FastCTM to CMAQ are respectively 4.3%, 4.2%, -2.8%, -

1.7%, -0.3% and -3.2%. The differences between FastCTM and CMAQ are within a small range of ±5%. In consideration 370 

that the FastCTM model was trained with CMAQ simulations, their close evaluation performances are well within 

expectations.  

: Spatial distribution of mean absolute error (panels a, c, e, g, i, and k) and normalized mean absolute error for the six criteria 

pollutants (panels b, d, f, h, j and l) of FastCTM comparing to CMAQ in 2023. 

Defining the warm season as the months from April to September and the winter and cold season as the remaining months, 375 

the FastCTM model exhibited comparable performances. As shown in Figure 4 (with detailed information in Figure S7 in 
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the SI), the coefficient of determination R2 values for the six criteria pollutants were 0.82, 0.8, 0.8, 0.82, 0.91, and 0.7 in 

the warm season, and 0.8, 0.79, 0.78, 0.83, 0.88, and 0.68 in the cold season, respectively. To assess the performance 

variations of FastCTM across different spatial locations, comparative evaluations were carried out in urban and rural areas 

as well as in inland and coastal regions. Generally, FastCTM demonstrated slightly higher accuracies in rural areas 380 

compared to urban areas (as presented in Figure S8 in the SI). This outcome is reasonable given the more intricate emission 

and chemical processes prevalent in urban settings (Guo et al., 2014). Similarly, FastCTM exhibited comparable 

performances in inland areas to those in coastal areas, with the exception of PM₂.₅ and PM₁₀ (Figure S9 in the SI). 

 

Figure 4: The mean evaluation R2 values for all 119 leading hours of FastCTM forecasts in warm/cold seasons, rural/urban areas 385 

and coastal/inland areas. 

To validate FastCTM model, three land use regression (LUR) models were constructed, namely the linear regression model, 

the random forest model (with the number of trees set at 500), and the XGBoost model (with the booster specified as 

gbtree). These LUR models were developed using the same input meteorological data, emission, and geophysical variables. 

When compared with the FastCTM model, the performance of the LUR models was found to be significantly inferior (as 390 

demonstrated in Figure S10 – S12 in the SI). This outcome is, in fact, anticipated when we consider the complex nature of 

air quality dynamics. Air quality is not a static entity, but it varies both spatially and temporally. For instance, the transport 

of air pollution is a highly dynamic process that hinges on wind fields and air pollution concentrations in a reciprocal 

manner. The wind direction and speed dictate the trajectory along which pollutants travel, while the existing pollutant 

concentrations in different regions influence the overall dispersion and mixing patterns. LUR models, which predominantly 395 

rely on local input data (Wong et al., 2021; Cheng et al., 2021), struggle to capture these intricate, non-local interactions. 

They lack the capacity to account for the far-reaching effects such as wind-driven pollutant transport and the consequential 

changes in air quality over larger geographical areas.  

Annually, the daily air quality typically exhibits similar fluctuations to those in other years, which can be primarily 

attributed to the cyclical nature of meteorological conditions and pollutant emission patterns. The FastCTM model was 400 

trained using a comprehensive dataset spanning five years, from 2018 to 2022. In light of this, it was crucial to rule out the 

possibility that the model was merely reproducing historical averages during the test year of 2023. To this end, the daily 

national average concentrations of PM2.5 and O3 in 2023, as predicted by FastCTM, were meticulously compared with 

those simulated by CMAQ in the same test year, as well as with the CMAQ forecasts from the training years of 2018-2022. 
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As illustrated in Figure 5, it becomes evident that the predictions made by FastCTM in 2023 align more closely with the 405 

actual CMAQ forecasts for that year, rather than with the forecasts generated from the training data of 2018-2022. This 

finding not only validates the adaptive learning capabilities of the FastCTM model but also indicates that the model is not 

resorting to a simplistic approach of taking the average concentration from the previous five years based on the time of day. 

Instead, it is likely incorporating real-time meteorological feedback, adjusting for any shifts in emission patterns, and 

leveraging its learned relationships to provide more accurate and contemporaneous predictions.  410 

 

Figure 5: The timeseries of FastCTM forecasts against CMAQ forecasts. 

3.2 Sensitivity Analysis with FastCTM 

The FastCTM model was trained with 5-year meteorological and air quality simulations by WRF-CMAQ. These 

simulations used the same  annual emission inventory data for each year. In this condition, the FastCTM model has learned 415 

the relationships between the air quality and varied meteorology with fixed emissions input. Considering that the FastCTM 

model has exhibited high accuracy at an independent evaluation year 2023 when new meteorological fields are fed into 

FastCTM, the deep learning model should be able to simulate responses of air pollutant concentrations to meteorological 

variables. However, for the response of air pollutant concentrations to emissions, the training data do not contain 

relationships between inter-annual varied emissions and air quality under the condition of same annual meteorological 420 

fields. Therefore, it is less expected for FastCTM to simulate reliable and correct response relationships between emissions 

and air quality. To validate these analyses, we calculated the sensitivities of simulated air pollutant concentrations to 

changes in meteorological variables and emissions.  
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3.2.1 Response of Air Pollutant Concentration to Meteorology  
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Figure 6: The FastCTM predicted air pollutant percentage changes responding to changes of T, WS, and PBLH in Beijing on 

January 2nd (a-c respectively in the left column) and August 1st (d-f respectively in the right column) , 2023. The air pollutant 

concentrations are relative to those at the baseline meteorological conditions.   430 

The responses of six criteria pollutants to meteorological changes simulated by FastCTM are evaluated as exhibited in 

Figure 56. For ground-level temperature T, O3 concentrations have distinct response curvature compared to the other five 

criteria pollutants. O3 concentrations have slight negative responses to T in January as shown in Figure 6a, which is 

probably due to stronger dilution effects with increased NOx emissions with higher air temperature. O3 concentrations had 

the strongest positive responses in August among six pollutants, which is consistent with previous observation-based 435 

studies (Flaum et al., 1996). The O3 had larger sensitivities when the air temperature was higher. The gaseous pollutants of 

CO, NO2 and SO2 have the most significant positive responses to air temperature, which could be caused by the shift of 

chemical equilibrium towards to the higher release of these gaseous pollutants (Bassett and Seinfeld, 1983; Cox, 1982). 

The particulate matter pollutants, especially PM10, have the weakest responses in six pollutants. Considering that there are 

dominating proportions of chemically inert species in particulates, the weak responses of PM2.5 and PM10 are expected.  440 

For the wind speed and PBLH, the responses of pollutants are having similar patterns for the same pollutant. First, O3 



 

20 

 

concentrations exhibited adverse patterns contrast to other pollutants both in January and August. Higher wind speed would 

increase the dispersion and transport of air pollutants (Feng et al., 2015; Lv et al., 2017) resulting in lower pollution levels, 

which is the reason for decreased concentrations along increased with increasing wind speed, except for O3. The 

contradictory response of ozone and particulate matter concentrations to PBLH is consistent with the analysis results of 445 

multiple-year observations (Liu and Tang, 2024).  Theoretically, the air pollutant concentrations should exhibit an inverse 

relationship between air pollution concentrations and PBLH. The actual air pollutant concentration changes simulated by 

FastCTM generally fit the theory that there are negative non-linear effects with increasing PBLH. Meanwhile, the 

sensitivity is stronger when the PBLH is lower (Figures 6e and 6f), which is consistent with previous observation-based 

analysis (Wang et al., 2019; Su et al., 2020). The totally different relationship of O3 to wind speed and PBLH compared to 450 

other pollutants could be due to its high dependence on chemical precursors, such as NOx and VOC. Concentrations of 

these precursors could have an inverse relationship with O3 at specific locations. FastCTM model itself is trained with 

multi-year CMAQ simulations, indicating that it is preconditioned on varied meteorological fields with the same 

atmospheric physical and chemical rules. Therefore, the sensitivity of air quality simulations to meteorology variations 

could be well learned, especially with the disciplinary-based model FastCTM.  455 

3.2.12 Response of Air Pollutant Concentration to Emission  

The sensitivity analysis with a “brute force” method can be carried out with the FastCTM model quickly due to its high 

computational efficiency on GPU. The responses of PM2.5 concentrations to doubled emissions of SO2, NOx were explored 

in a winter month of January 2023 (Figure 67). For doubled NOx, the PM2.5 concentrations exhibited positive responses in 

most areas of China as shown in Figure 6a7a. The most significant increase occurred in regions like North China, 460 

Heilongjiang province in Northeast China, Yangtze River Delta and Sichuan province. In these places, the NOx emission 

are relatively large. For doubled SO2, PM2.5 concentrations increased in almost all China as shown in Figure 6b7b. The 

response was larger in places of North China, Northeast China and Sichuan basin. The responses results of PM2.5 simulated 

by the FastCTM was generally consistent to previous studies (Li et al., 2022). 
 465 

 

Figure 7: Average predictions of PM2.5 concentrations in 5 lead-days with doubled emissions in January 2023. Panel (a) refers 

to predictions with doubled NOx and panel (b) refers to double SO2. 

As for ozone, its responses to doubled NOx and VOC are explored as shown in Figure 78. For NOx emission, decreased 

O3 concentrations in polluted regions like North China, Yangtze River Delta and other highly industrial regions are well 470 

simulated by FastCTM (Figure 7a).. The response is reasonable considering that these regions are generally abundant with 
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NOx emissions and at VOC-limited conditions. Doubled VOC emission lead to significant decrease of O3 (Figure S7S13 

in the supplementary material), which could be caused by the reason that increased VOC could consume O3 in these regions. 

The spatial patterns of O3 responses to NOx and VOC are similar to previous deep learning study trained by emission-

controlled simulation data (Xing et al., 2022).  However, due to complex speciation of VOC emissions that’s simplified in 475 

the FastCTM, uncertainties for responses of O3 to VOC should be noted.  

 

Figure 8: Average predictions of hourly O3 concentrations in 5 lead-days with doubled NOx emissions in July 2023. 

WeThe sensitivities of FastCTM simulations to emission interventions were contrasted with those of CMAQ. Specifically, 

CMAQ was employed to simulate 11 emission scenarios over the two-month periods of January and July 2019 in Southwest 480 

China (Huang et al., 2022). The alterations in emissions relative to the base case are presented in Table 1. Among these 

scenarios, 10 involved reduced emissions of major species, with only the no-control scenario exhibiting increased emissions. 

Utilizing the identical emissions and meteorological data, FastCTM also conducted simulations, which were then compared 

to those of CMAQ. For the 11 scenarios in question, the changes in air pollutant concentrations relative to the base case at 

the locations of 139 national air quality monitoring stations (Figure S14 in the SI) were extracted and compared in the 485 

winter month of January 2019 (Figure 9) and in summer month of July 2019 (Figure 10). The results indicated that, overall, 

the FastCTM simulations were in good agreement with those of CMAQ reflected in two aspects. First, FastCTM predicted 

positive responses to increased emissions in the nocontrol (NCtrl) scenario and negative responses to other emission-

controlled scenarios just as CMAQ. Second, FastCTM simulated larger air pollutant concentration decrease in those 

scenarios with higher emission reductions. Specifically, in January 2019, with the exception of NO₂, FastCTM responded 490 

to emission changes with an interquartile range (IQR, 25% - 75% percentile) similar to that of CMAQ (Figure 9). For NO₂, 

in the same emission reduction scenarios, FastCTM simulated lower NO₂ values. In the summer month of July 2019, as 

depicted in Figure 10, all the criteria pollutants except CO demonstrated a comparable degree of response to emission 

reductions. The comparison suggests that the FastCTM model is not only capable of discerning changes in emission 

scenarios but can also reflect the degree of impact on air quality, thereby reinforcing its reliability and utility in simulating 495 

air quality dynamics in tandem with CMAQ. It should be noted that in both months, FastCTM exhibited slightly larger 

median values, suggesting its greater sensitivity to emission interventions.  
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Table 1. The emission change details of emission scenarios 

Scenario abbreviation Sector NOx VOCs SO2 CO PM2.5 PMC 

nocontrol NCtrl 
Industrial 30% 30% 30% 30% 30% 30% 

Traffic 20% 20% 20% 20% 20% 20% 

medianX MedX 
Industrial -36% -35% -48% -23% -9% -9% 

Traffic -40% -10% 0 -26% -10% -10% 

medianY MedY 
Industrial -26% -20% -38% -13% -4% -4% 

Traffic -30% 0% 0 -16% -5% -5% 

medianZ MedZ 
Industrial -36% -10% -48% -23% -9% -9% 

Traffic -40% 0% 0 -26% -10% -10% 

median-3 Med-3 
Industrial -10% -10% -18% 0 0 0 

Traffic -10% 0% 0 0 0 0 

median-2 Med-2 
Industrial -16% -20% -28% -3% 0 0 

Traffic -20% 0% 0 -6% 0 0 

median-1 Med-1 
Industrial -26% -35% -38% -13% -4% -4% 

Traffic -30% -10% 0 -16% -5% -5% 

median0 Med0 
Industrial -36% -50% -48% -23% -9% -9% 

Traffic -40% -20% 0 -26% -10% -10% 

median+1 Med+1 
Industrial -46% -65% -58% -33% -19% -19% 

Traffic -50% -30% 0 -36% -20% -20% 

median2030 Med30 
Industrial -55% -70% -80% -40% -40% -40% 

Traffic -60% -40% 0 -40% -40% -40% 

median2035 Med35 
Industrial -80% -80% -90% -60% -50% -50% 

Traffic -80% -60% 0 -60% -50% -50% 
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 500 

Figure 9: Air pollutant concentration changes in terms of base case simulated by CMAQ (subplots of a, c, e, g, i and k in first 

column) and by FastCTM (subplots of b, d, f, h, j and l in second column) in January 2019. 
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Figure 10: Air pollutant concentration changes in terms of base case simulated by CMAQ (subplots of a, c, e, g, i, and k in the 505 

first column) and by FastCTM (subplots of b, d, f, h, j, and l in the second column) in July 2019. 

FastCTM model used a principles-constrained formulation approach in designing the FastCTM model framework. As 

shown in Eq.4, atmospheric chemical reactions are in the Atkinson form which independently estimate the reaction rate 

from meteorological conditions and polynomials of reactants concentrations in multiple powers. The principle-based 

formulation should be the reason for the relatively significant and reasonable response simulations of PM2.5 and O3 to 510 
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precursor emissions, even though the FastCTM itself is not trained by emission-controlled CMAQ scenario simulations. 

The remaining uncertainties should be attributed to the reason that FastCTM only considered environmental chemical 

reactants in part comparing to that of CMAQ model (Binkowski and Roselle, 2003).  

3.3 Internal Processes Analysis with FastCTM 

 515 

Figure 8: An example of the PM2.5 concentration at T1 (18:00, panel a) and T2 (19:00, panel b) on January 13, 2023 (with the 

forecast leading time of 42 hours) and hourly changes (panel c). Changes caused by each of the five dominant processes are 

depicted in panels d-h. 

The FastCTM is a principles-guided deep neural network to individually simulate the dominant atmospheric physical and 

chemical processes as defined in Eq.1. The processes are calculated numerically with critical parameters describing the 520 

processes being estimated by deep learning encoders. The hourly variations are equal to the sums of air pollutants’ 

concentration changes in each process. Therefore, the contributions of these processes to air pollutant concentrations 

changes could be elaborately calculated. Figure 8Figure 11 depicts an example during the night-time of January 13, 2023 

when hourly PM2.5 concentration changes significantly. Between the two hours of 18:00 and 19:00, hourly PM2.5 

concentrations have significantly changed in neighbouring areas of Shandong, Hebei and Henan provinces as shown in the 525 

red rectangle (denoted as Area A hereafter) in Figure 8c11c. In this example, strong northern wind prevails leading 

pollutants moving southward.  

For PM2.5 concentration changes caused by primary emissions (Figure 8d), it’s determined by the primary emission and the 

mixing volumes determined by PBLH. In this episode, the hourly PM2.5 changes are mostly determined by the transport 

process (Figure 8e11e) since its spatial pattern has the most resemblance to the total PM2.5 concentration changes. In the 530 

transport process, air pollutants move from one area to another determined by the wind fields as shown in Eq.4. When the 

northern clean air prevails as in the Area A, changes should be negative in the upstream direction and positive in the 

downstream direction. The transport process simulated by FastCTM sticks to this pattern. As known to us, the diffusion 

process will bring pollutants from a region of high concentration to one of low concentration. Its contribution is low as 

shown in Figure 8f11f, which is reasonable considering the relatively large grid cell size of 12 km and short simulation 535 

period of 1 hour. PM2.5 concentration changes caused by the diffusion process constituted a small proportion compared to 

other processes. The activities of chemical reactions are determined by both meteorological conditions and related precursor 

concentrations. PM2.5 contribution changes between T1 and T2 caused by chemical reactions are lower in the areas to the 
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north of Area A because the cold and clean air in this area is not favourable for chemical reactions. The deposition is the 

dominant process that led to PM2.5 concentration reductions where regional transport was not significant. In general, 540 

depositions were proportional to PM2.5 concentrations as shown in Figure 8h (Davis and Swall, 2006). It should be noted 

that FastCTM simulated air quality in a 2-D domain rather than in 3-D, the deposition could also include the vertical 

transport of air pollutants to the upper air above PBL (Zhao et al., 2020).  

 

Figure 11: An example of the PM2.5 concentration at T1 (18:00, panel a) and T2 (19:00, panel b) on January 13, 2023 (with the 545 

forecast leading time of 42 hours) and hourly changes (panel c). Changes caused by each of the five dominant processes are 

depicted in panels d-h. 

In this study, we further selected the data recorded at 23:00 on October 13, 2024, to compare the impacts of the five major 

atmospheric physical and chemical processes, as simulated by FastCTM and CMAQ, on PM2.5 concentration changes 

(Figure 12). Specifically, the simulation outcomes of atmospheric emissions, advection processes, and diffusion processes 550 

demonstrated a relatively high degree of consistency between the two models. Regarding the simulation of chemical 

reactions, while the spatial distribution of high-value areas in the FastCTM results was comparable to that of CMAQ, the 

simulated values in FastCTM were notably higher. Correspondingly, FastCTM overestimated the contribution of the 

deposition process. This overestimation counterbalanced the impact of the higher chemical reaction values. The difference 

in the simulated deposition contributions between the two models could be due to differences in how they represent these 555 

influencing factors. Overall, the simulation results of the process contributions by FastCTM and its parent model CMAQ 

were relatively consistent. This consistency indicates that, despite some differences in the magnitude of certain process 

simulations, FastCTM is capable of capturing the essential features of atmospheric processes related to PM2.5 concentration 

changes, similar to CMAQ. Such consistency provides confidence in the reliability of FastCTM for simulating and 

understanding the complex interplay of atmospheric processes that govern PM2.5 levels. 560 
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Figure 12: An example of contributions from five major atmospheric processes to PM2.5 changes (μg/m3) by CMAQ (first row) 

and FastCTM (second row) at 23:00 on October 13, 2024. 

4 Discussions 

The FastCTM was a neural network-based CTM model for speeding up air quality simulations and forecasts. Comparing 565 

to the previous deep learning based CTMs, the FastCTM has more functionalities like a  traditional CTM. First, it is able 

to simulate 10 air pollutants including criteria gas pollutants, coarse particulate matter, and five species concentrations of 

PM2.5. The FastCTM has relatively high agreements in long-term forecasts with the conventional CTM. Besides, FastCTM 

simulations are not related to its initial condition of input air quality  fields after around two-day simulation, which indicates 

that it has well learned the inherent physical and chemical processes in CTM rather than only the spatial-temporal auto-570 

correlations of input time-series data. Meanwhile, it has exhibited reasonable responses to precursor emission changes and 

meteorological condition changes in the sensitivity analysis. Furthermore, the internal processes in the FastCTM model 

were checkable and interpretable by analyzing the contributions of dominant atmospheric chemical and physical processes 

separately. These processes are encoded within FastCTM by designing dedicated neural network modules.  

Previous deep learning-based models for emission sensitivity analysis were generally trained by simulations with a group 575 

of different emission scenarios, whereas the FastCTM model was trained by CMAQ simulations of unvaried annual 

emissions. The relative reasonable responses simulations to emissions and meteorological data  revealed that the principles 

used in formulating the FastCTM have helped the model to better learn inherent physical and chemical processes within 

the training data. Considering the high computation consumption by conventional CTM, FastCTM would reduce 

substantial computational resources.  580 

The FastCTM has the capabilities to generate hourly pollutant simulations with nearly equal accuracies to that by CMAQ 

CTM, evaluated by observations at national monitoring sites. There are still differences and potential errors within the 

FastCTM, arising from inadequate representations of actual atmospheric processes and mechanisms. First, there are missing 

processes were considered within the FastCTM. The chemical reactions in traditional CMAQ are very complex and 

involves many organic and inorganic species in gaseous and aqueous phases. The FastCTM has just modeled potential 585 

chemical reactions among several atmosphere compositions. Besides, long-range air pollutant transport in the upper 

atmosphere above the planetary boundary layer was not considered within the FastCTM model. The remaining uncertainties 

of FastCTM compared to CMAQ could be further reduced after carefully detailing atmospheric processes with properly 

designed neural network modules.  
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It should also be noted that atmospheric physical and chemical processes are defined in principles-guided neural network 590 

modules in FastCTM. Their specific formulation was learned and optimized to minimize the sum loss errors of all species 

concentrations, rather than being supervised by data of actual internal processes in CMAQ. The actual contributions of air 

pollutant concentration changes by each of these processes could be calculated with the integrated process rate (IPR) 

analysis and integrated reaction rate (IRR) analysis tools within CMAQ. Future studies could use these IPR and IRR results 

to supervise the simulated processes in FastCTM to further improve its simulation accuracies and robustness. FastCTM 595 

may also benefit from expanded mechanisms with detailed gas-phase chemistry or aerosol microphysics. FastCTM’s design 

supports incremental integration of additional species (e.g., via user-defined modules) without overhauling the core 

framework. Future versions will explore adding VOCs and secondary organics to address broader research needs. FastCTM 

will also extend to 3D dimension to improve its representation for processes such as vertical mixing, vertical wind gradient 

and in-cloud chemistries.  600 
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