
Responses to Editor and Reviewers’ Comments 

 

Responses to Editor 

Many thanks for addressing the reviewers' comments and revising your manuscript. 

The response of the reviewers is diverse. While reviewer #1 indicates technical corrections that I 

would like to ask you to consider carefully, reviewer #2 still has substantial comments concerning 

the approach (see reviewer comments). 

I am inclined to accept this as an scientific debate that should be documented. 

However, this requires a deeper discussion of these points. Please consider the reviewers comments 

carefully. I propose to include this in the discussion section, e.g. as individual subsections. 

For example the reviewers concerns of 

- Accuracy: In fact, literature precedent suggests that they are less accurate and when coupled 

together will have a greater, unexplained uncertainty. 

- Choice of NN: if the deposition component of a CTM is not a computational bottleneck and you 

replace it with a NN solver that is less accurate, then what is the utility of that? 

- Error identification: How do you move beyond a 'black box' model? 

Response: Thank you for your guidance to deepen the discussion of key debates raised by reviewers. 

We have revised the Discussion section by adding three dedicated subsections (4.1-4.3) to explicitly 

address the core concerns: model accuracy/uncertainty, the rationale for neural network (NN) 

component selection, and interpretability beyond "black-box" limitations. These sections integrate 

perspectives from the reviewers and our responses, ensuring the scientific debate is thoroughly 

documented. The revised Discussion section are shown as follows,  

“4 Discussions 

4.1 Model Accuracy and Uncertainty 

One debatable concern is the accuracy of neural network (NN)-based components in integrated 

chemical transport models (CTMs) and the potential for amplified uncertainty when coupling 

multiple NN modules. Literature precedent suggests that individual NN emulators may exhibit lower 

accuracy compared to traditional physical parameterizations, but their integration could introduce 

unexplained uncertainties. This is a valid consideration that aligns with broader discussions in 

Earth system modeling about the trade-offs between computational efficiency and physical fidelity 

(Irrgang et al., 2021). 

In FastCTM, we address this by adopting a principle-informed modular design where each module 

(transport, chemistry, deposition, etc.) is constrained by governing physical/chemical equations 

(e.g., Eqs. 3-14). This distinguishes it from unconstrained "black-box" NN models, as each process 

is guided by known atmospheric dynamics. For example, the transport module explicitly enforces 



mass conservation via upwind schemes (Eqs. 5-7), and the chemical reaction module links reaction 

rates to meteorological conditions (Eq. 12) based on kinetic theory. Our evaluation shows that 

FastCTM maintains high consistency with CMAQ across 119-hour forecasts (Section 3.1), with R2 

values exceeding 0.8 for most pollutants, indicating that physical constraints effectively mitigate 

accuracy losses. 

However, we acknowledge that uncertainty can accumulate when coupling modules, particularly 

for species involved in complex multi-process interactions due to limited chemical constraints in 

our current training datasets(e.g., 𝑁𝐻4
+ , Section 3.1). This is partly due to simplifications in 

FastCTM’s chemical mechanism, which omits some aerosol thermodynamics included in CMAQ. 

Future work will reduce such uncertainties by incorporating additional species (e.g., VOCs) and 

refining process formulations by adding CMAQ’s integrated process rate (IPR) data for supervised 

training of individual modules. 

4.2 Choosing Neural Network Components over Traditional Parameterizations  

One question might arise about the utility of replacing non-bottleneck CTM components (e.g., 

deposition) with NN solvers, given the argument that traditional parameterizations may already be 

accurate and fast. This highlights a critical design choice in FastCTM: balancing computational 

efficiency with fidelity to the parent model (CMAQ).  

It is important to note that even non-bottleneck components in traditional CTMs can benefit from 

NN acceleration in integrated simulations. For example, CMAQ’s deposition module, while not a 

primary computational burden, relies on parameterizations based on similarity theory and limited 

flux measurements (Janhäll, 2015), which may oversimplify complex surface-atmosphere 

interactions (e.g., vegetation-specific uptake). NN-based parameterizations have shown promise in 

improving such processes. Silva et al. (2019), for instance, developed a deep learning model for 

ozone dry deposition that outperformed traditional schemes in independent validation. In FastCTM, 

the deposition module (Eq. 14) leverages NN to capture nonlinear relationships between 

meteorology (e.g., wind speed, land cover) and deposition rates, while retaining compatibility with 

CMAQ’s output. 

Moreover, FastCTM’s modular architecture allows flexible integration of traditional 

parameterizations as an option. For example, users could replace the NN-based deposition module 

with CMAQ’s original parameterization if higher fidelity to that specific process is prioritized. This 

hybrid approach addresses concerns about unnecessary replacement of robust components while 

retaining the overall speed advantage of NN for bottleneck processes (e.g., chemical reactions, 

which dominate CTM runtime; Xia et al., 2024). 

4.3 Beyond "Black Boxes": Interpretability and Error Identification 

A central goal of FastCTM is to advance beyond opaque deep learning models by enabling process-

level interpretability, addressing concerns about error attribution. Traditional "black-box" NN 

models obscure how individual processes contribute to predictions, hindering error analysis. In 

contrast, FastCTM’s modular design quantifies hourly contributions from transport, diffusion, 



emissions, chemistry, and deposition separately (Section 3.3), allowing targeted identification of 

error sources. For example, in the January 2023 pollution episode (Figure 10), transport was found 

to dominate PM2.5 concentration changes, while deposition acted as a secondary sink This process-

level attribution aligns well with CMAQ’s process analysis (Figure 11), ensuring that uncertainties 

are traced to specific physical processes rather than being attributed to arbitrary model behavior. 

We anticipate that incorporating abundant CMAQ’s integrated process rate (IPR) data for 

supervised training of individual modules will further refine the FastCTM’s process level predictions. 

However, a comprehensive process-oriented error analysis that would further enhancing 

interpretability, for instance isolating and quantifying whether transport or chemistry drives urban-

rural accuracy discrepancies, requires long-term process simulations and systematic perturbations  

plus observational datasets (e.g., tracer experiments) to validate specific processes predictions from 

both CMAQ and FastCTM. 

4.4 Limitations and Future Directions 

FastCTM’s current limitations include simplified vertical dynamics (2D boundary layer 

representation) and incomplete chemical mechanisms, which affect performance during vigorous 

daytime mixing (Section 3.1). A future extension to a 3D framework will improve representation of 

vertical transport and in-cloud chemistry. Additionally, while FastCTM efficiently reproduces 

CMAQ simulations, it does not claim superiority over traditional CTMs across all scenarios; rather, 

it serves as a complementary tool for applications requiring rapid simulations (e.g., ensemble 

forecasting, emission scenario screening). 

By addressing these limitations and engaging with ongoing debates about NN integration in 

atmospheric modeling, FastCTM aims to bridge the gap between computational efficiency and 

physical rigor, providing a flexible framework for air quality research and management.” 

 

Responses to Reviewer #1 

I am grateful to the authors for their responses to my requests. The figures are much improved in 

particular, and I appreciate the additional statistical analysis. I believe that the manuscript is 

acceptable for publication pending copy-editing (there remain some typographical errors, e.g. line 

406: "which could be caused by the reason that increased VOC"). I otherwise have no further 

comment. 

Response: We appreciate your confirmation of the manuscript’s readiness pending copy-editing. 

We have carefully revised the text to correct typographical errors. Thank you for your meticulous 

feedback. 

 

Responses to Reviewer #2 

The reviewers' replies to several of my comments were lackluster and did not address the main text 



at all, instead opting to opine as a comment directly to me. Any reviewer comments I leave should 

be addressed in the text explicitly. The authors responded to my second comment about motivating 

this work in a poor manner. Each component or operator in a CTM has its own physics associated 

with it. Although the authors train individual NN operators with physics/chemistry constraints, this 

does not mean they are any more accurate than a traditional CTM. In fact, literature precedent 

suggests that they are less accurate and when coupled together will have a greater, unexplained 

uncertainty. For example, if the deposition component of a CTM is not a computational bottleneck 

and you replace it with a NN solver that is less accurate, then what is the utility of that? Having a 

"complete" deep learning CTM is ill-posed in a situation when specific CTM model components 

are accurate and fast. Further, as evidenced by the copious comments by Reviewer #1 concerning 

the presentation of results in a robust/quantitiatve manner, just because you incorporate physical 

constraints into the NN operators does not mean that they are more accurate/stable. 

"However, implementing such a comprehensive process-oriented error analysis would require 

extensive retrospective simulations with systematic perturbation of individual modules, along with 

detailed validation against process-specific observational data (e.g., tracer studies, chamber 

experiments). This would demand substantial computational resources and time that extend beyond 

the scope of the current study." 

--> This response is also lacking. The authors champion FastCTM as a tool that is able to circumvent 

the computational cost of a CTM, but then running a simple error analysis would "demand 

substantial computational resources". There is no need to run tracer studies or use chamber 

experiments but a simple error analysis visualized similarly to Figure 10 would be helpful. 

Otherwise, is this not the same as being a 'black box' model, which you claim to move beyond? 

Response: We sincerely appreciate your detailed comments, which have helped strengthen the 

manuscript. We apologize for any previous oversights in addressing your concerns and have revised 

the main text extensively to incorporate our responses explicitly, particularly in the new subsections 

of the Discussion. 

1. Accuracy and uncertainty of coupled NN modules 

As highlighted in Section 4.1, we acknowledge that coupling NN modules may introduce 

uncertainties, as noted in the literature. To mitigate this, FastCTM adopts a principle-informed 

design where each module is constrained by physical/chemical equations (e.g., mass conservation 

in transport, kinetic theory in reactions). Our evaluation shows high consistency with CMAQ (R² > 

0.8 for most pollutants), but we also explicitly discuss limitations (e.g., lower R² for NH₄⁺ due to 

simplified aerosol thermodynamics) and plans to reduce uncertainties using CMAQ’s integrated 

process rate (IPR) data for supervised module training in the future. 

2. Utility of NN for non-bottleneck components 

Section 4.2 now addresses the utility of applying NNs to non-bottleneck components, clarifying our 

rationale on three fronts. First, we explain that even efficient traditional parameterizations have 



known limitations (e.g., in deposition) where NNs can offer significant improvements. Second, we 

highlight that FastCTM is a flexible, hybrid framework that allows users to retain original CMAQ 

modules if they prioritize fidelity for a specific process. Finally, we emphasize that accelerating any 

component contributes to a crucial reduction in overall runtime, which is vital for computationally 

demanding applications like ensemble forecasting. 

3. Beyond "black-box" models: interpretability and error analysis 

Section 4.3 demonstrates that FastCTM’s modular design enables process-level attribution (e.g., 

Figure 10 shows transport dominating PM₂.₅ changes in a pollution episode). While comprehensive 

process-oriented error analysis (e.g., isolating urban-rural discrepancies) is beyond the current scope, 

we outline plans to use observational datasets (e.g., tracer studies) for such analyses, enhancing 

transparency. 

4. Integration of responses into the main text 

All key points from our responses are now incorporated into the revised manuscript, particularly in 

the Discussion subsections. We have ensured that all the concerns raised (e.g. uncertainty 

accumulation, "black-box" risks) are explicitly addressed in the text, not just in replies to reviewers. 

The revised texts in the Discussion section are shown as follows,  

“4 Discussions 

4.1 Model Accuracy and Uncertainty 

One debatable concern is the accuracy of neural network (NN)-based components in integrated 

chemical transport models (CTMs) and the potential for amplified uncertainty when coupling 

multiple NN modules. Literature precedent suggests that individual NN emulators may exhibit lower 

accuracy compared to traditional physical parameterizations, but their integration could introduce 

unexplained uncertainties. This is a valid consideration that aligns with broader discussions in 

Earth system modeling about the trade-offs between computational efficiency and physical fidelity 

(Irrgang et al., 2021). 

In FastCTM, we address this by adopting a principle-informed modular design where each module 

(transport, chemistry, deposition, etc.) is constrained by governing physical/chemical equations 

(e.g., Eqs. 3-14). This distinguishes it from unconstrained "black-box" NN models, as each process 

is guided by known atmospheric dynamics. For example, the transport module explicitly enforces 

mass conservation via upwind schemes (Eqs. 5-7), and the chemical reaction module links reaction 

rates to meteorological conditions (Eq. 12) based on kinetic theory. Our evaluation shows that 

FastCTM maintains high consistency with CMAQ across 119-hour forecasts (Section 3.1), with R2 

values exceeding 0.8 for most pollutants, indicating that physical constraints effectively mitigate 

accuracy losses. 

However, we acknowledge that uncertainty can accumulate when coupling modules, particularly 

for species involved in complex multi-process interactions due to limited chemical constraints in 

our current training datasets(e.g., 𝑁𝐻4
+ , Section 3.1). This is partly due to simplifications in 

FastCTM’s chemical mechanism, which omits some aerosol thermodynamics included in CMAQ. 



Future work will reduce such uncertainties by incorporating additional species (e.g., VOCs) and 

refining process formulations by adding CMAQ’s integrated process rate (IPR) data for supervised 

training of individual modules. 

4.2 Choosing Neural Network Components over Traditional Parameterizations  

One question might arise about the utility of replacing non-bottleneck CTM components (e.g., 

deposition) with NN solvers, given the argument that traditional parameterizations may already be 

accurate and fast. This highlights a critical design choice in FastCTM: balancing computational 

efficiency with fidelity to the parent model (CMAQ).  

It is important to note that even non-bottleneck components in traditional CTMs can benefit from 

NN acceleration in integrated simulations. For example, CMAQ’s deposition module, while not a 

primary computational burden, relies on parameterizations based on similarity theory and limited 

flux measurements (Janhäll, 2015), which may oversimplify complex surface-atmosphere 

interactions (e.g., vegetation-specific uptake). NN-based parameterizations have shown promise in 

improving such processes. Silva et al. (2019), for instance, developed a deep learning model for 

ozone dry deposition that outperformed traditional schemes in independent validation. In FastCTM, 

the deposition module (Eq. 14) leverages NN to capture nonlinear relationships between 

meteorology (e.g., wind speed, land cover) and deposition rates, while retaining compatibility with 

CMAQ’s output. 

Moreover, FastCTM’s modular architecture allows flexible integration of traditional 

parameterizations as an option. For example, users could replace the NN-based deposition module 

with CMAQ’s original parameterization if higher fidelity to that specific process is prioritized. This 

hybrid approach addresses concerns about unnecessary replacement of robust components while 

retaining the overall speed advantage of NN for bottleneck processes (e.g., chemical reactions, 

which dominate CTM runtime; Xia et al., 2024). 

4.3 Beyond "Black Boxes": Interpretability and Error Identification 

A central goal of FastCTM is to advance beyond opaque deep learning models by enabling process-

level interpretability, addressing concerns about error attribution. Traditional "black-box" NN 

models obscure how individual processes contribute to predictions, hindering error analysis. In 

contrast, FastCTM’s modular design quantifies hourly contributions from transport, diffusion, 

emissions, chemistry, and deposition separately (Section 3.3), allowing targeted identification of 

error sources. For example, in the January 2023 pollution episode (Figure 10), transport was found 

to dominate PM2.5 concentration changes, while deposition acted as a secondary sink This process-

level attribution aligns well with CMAQ’s process analysis (Figure 11), ensuring that uncertainties 

are traced to specific physical processes rather than being attributed to arbitrary model behavior. 

We anticipate that incorporating abundant CMAQ’s integrated process rate (IPR) data for 

supervised training of individual modules will further refine the FastCTM’s process level predictions. 

However, a comprehensive process-oriented error analysis that would further enhancing 

interpretability, for instance isolating and quantifying whether transport or chemistry drives urban-



rural accuracy discrepancies, requires long-term process simulations and systematic perturbations  

plus observational datasets (e.g., tracer experiments) to validate specific processes predictions from 

both CMAQ and FastCTM. 

4.4 Limitations and Future Directions 

FastCTM’s current limitations include simplified vertical dynamics (2D boundary layer 

representation) and incomplete chemical mechanisms, which affect performance during vigorous 

daytime mixing (Section 3.1). A future extension to a 3D framework will improve representation of 

vertical transport and in-cloud chemistry. Additionally, while FastCTM efficiently reproduces 

CMAQ simulations, it does not claim superiority over traditional CTMs across all scenarios; rather, 

it serves as a complementary tool for applications requiring rapid simulations (e.g., ensemble 

forecasting, emission scenario screening). 

By addressing these limitations and engaging with ongoing debates about NN integration in 

atmospheric modeling, FastCTM aims to bridge the gap between computational efficiency and 

physical rigor, providing a flexible framework for air quality research and management.” 

 

Thank you again for your insightful feedback, which has significantly improved the rigor and clarity 

of our work. 

 

 


