
Point-to-Point Responses to Reviewer’s Comments 

We would like to thank for reviewer’s thoughtful comments on our manuscript.  

 

Lyu et al. put forth the 'FastCTM' model which seems to be a reduced complexity model that discretizes 

changes in concentrations for 10 air pollution species. Though interesting, the presentation of methods, 

results, and context of the study needs to be heavily refined before being accepted. The details of the 

study are currently not sufficient as they stand.  

Introduction: 

"The air pollutant and species concentrations can be then calculated by solving these complicated 

equations with numeric methods (Byun and Schere, 2006), which is often time-consuming and requires 

intense computational resources." --> This thought is not very well flushed out. A single reference from 

2006 does not detail at all what makes these models computationally expensive.  

Response: This sentence is revised with two more related references are added, as follows. 

The air pollutant concentrations can be then calculated by solving these complicated equations with 

numeric methods (Byun and Schere, 2006), which is often time-consuming (Leal et al., 2017) and 

require intense computational resources such as high-performance computing (Efstathiou et al., 2024). 

Leal, A. M., Kulik, D. A., Smith, W. R., and Saar, M. O.: An overview of computational methods for 

chemical equilibrium and kinetic calculations for geochemical and reactive transport modeling, Pure 

and Applied Chemistry, 89, 597-643, 2017. 

Efstathiou, C. I., Adams, E., Coats, C. J., Zelt, R., Reed, M., McGee, J., Foley, K. M., Sidi, F. I., Wong, 

D. C., and Fine, S.: Enabling high-performance cloud computing for the Community Multiscale Air 

Quality Model (CMAQ) version 5.3. 3: performance evaluation and benefits for the user community, 

Geoscientific Model Development, 17, 7001-7027, 2024. 

 

"Quantifying the contributions of individual processes would provide fundamental explanations for a 

model's predictions, and therefore is also useful in identifying potential sources of error in the model 

formulation or its inputs (Liu et al., 2010)." --> I find this introduction quite poor. The authors provide 

minimal examples of emulating entire CTMs but give no examples of using ML to emulate and replace 

CTM model components which there are many for chemistry, photolysis, deposition, etc. This needs 

much greater discussion as it shows a lack of awareness by the authors of what currently exists, below 

of which are only several examples: 

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Chalikov, D. V.: New Approach to Calculation of 

Atmospheric Model Physics: Accurate and Fast Neural Network Emulation of Longwave Radiation in 

a Climate Model, Monthly Weather Review, 133, 1370–1383, https://doi.org/10.1175/MWR2923.1, 

2005.  

Kelp, M. M., Jacob, D. J., Lin, H., and Sulprizio, M. P.: An Online-Learned Neural Network Chemical 

Solver for Stable LongTerm Global Simulations of Atmospheric Chemistry, Journal of Advances in 



Modeling Earth Systems, 14, e2021MS002926, https://doi.org/10.1029/2021MS002926, _eprint: 

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2021MS002926, 2022. 

Xia, Z., Zhao, C., Du, Q., Yang, Z., Zhang, M., and Qiao, L.: Advancing Photochemistry Simulation 

in WRF-Chem V4.0: Artificial Intelligence PhotoChemistry (AIPC) Scheme with Multi-Head Self-

Attention Algorithm, https://www.authorea.com/users/816476/articles/1217166-advancing-

photochemistry-simulation-in-wrf-chem-v4-0-artificial-intelligence-photochemistry-aipc-scheme-

with-multi-head-self-attention-algorithm, 2024. 

Zhong, X., Ma, Z., Yao, Y., Xu, L., Wu, Y., and Wang, Z.: WRF–ML v1.0: a bridge between WRF v4.3 

and machine learning parameterizations and its application to atmospheric radiative transfer, 

Geoscientific Model Development, 16, 199–209, https://doi.org/10.5194/gmd16-199-2023, publisher: 

Copernicus GmbH, 2023. 

Silva, S. J., Heald, C. L., Ravela, S., Mammarella, I., and Munger, J. W.: A Deep Learning 

Parameterization for Ozone Dry Deposition Velocities, Geophysical Research Letters, 46, 983–989, 

https://doi.org/10.1029/2018GL081049, tex.copyright: ©2018. American Geophysical Union. All 

Rights Reserved., 2019. 

Response: Given the suggestive comments from the reviewer, we have added an independent 

paragraph in the introduction, to analyze related studies and progress, as follows,  

Quantifying individual processes would provide fundamental explanations for a model's predictions, 

and therefore is also useful in identifying potential sources of error in the model formulation or its 

inputs (Liu et al., 2010). With this motivation, there are studies dedicated to developing models to learn 

one specific atmospheric process, i.e. chemical and deposition, in the CTM model. Kelp et al. (2022) 

developed a neural network chemical solver for stable long‐term global simulations of atmospheric 

chemistry, learned from the GEOS-Chem model. Xia et al. (2024) simulated 74 chemical species and 

229 reactions following the SAPRC-99 mechanism with an artificial intelligence photochemistry 

(AIPC) scheme to achieve around 8-time speed-up. Sturm and Wexler (2020) developed a mass- and 

energy-conserving framework for using machine learning to speed computations with a successful 

application in a photochemistry example. For the deposition process, Silva et al. (2019) proposed a 

deep learning parameterization for ozone dry deposition velocities with accurate predictions in 

independent new date sets, revealing the potential of neural network in encoding complex spatio-

temporal processes. Liu et al. (2025) proposed a Neural Network Emulator, named ChemNNE, for fast 

chemical concentration modelling, which achieved good performance in accuracy and efficiency. Even 

though these successful applications using deep learning methods to simulate individual atmospheric 

chemical and physical processes, there is a missing gap in coupling these NN operator replacements 

together as a complete deep learning based CTM. 

 

"process analysis" --> I don't know what this means 

Response: Revised to “internal chemical and physical process analysis”. 

 

" Interpretations of the FastCTM are also widely vowed to improve deep learning model applications 



in earth system science and climate studies. " --> Not sure how you can claim this given no evidence, 

more aspirational than substantive 

Response: It’s revised as follows, “Interpretations of deep learning network are also widely vowed to 

improve their applications in earth system science and climate studies.”. 

 

"The FastCTM is currently configured to simulate hourly concentrations of 10 pollutant variables, 

including and major species of PM2.5 (SO4 2−, NO3 −, NH4+, organic matters and other inorganic 

components, coarse part in PM10, CO, NO2, SO2 and O3." --> Not sure how many atmospheric 

chemists and climate scientists want a CTM with only ten species. Needs much more motivation. Even 

small chemical mechanisms in operational use have around ~70 species.  

Response: We sincerely appreciate the reviewer's comment, as it raises an important point regarding 

the limited number of pollutant species in the FastCTM model. FastCTM is designed to address real-

time air quality forecasting, where operational usage is critical. The 10 species were selected based on 

their direct relevance to regulatory standards (e.g., PM₂.₅, PM₁₀, O₃, NO₂, SO₂, CO) and their 

dominance in driving health and environmental impacts in urban and industrial regions (e.g., China, 

where PM₂.₅ components like SO₄²⁻, NO₃⁻, and NH₄⁺ account for most of the fine aerosol mass). By 

prioritizing these species, FastCTM balances accuracy with computational speed, making it suitable 

for rapid decision-making in policy and emergency response scenarios. While traditional CTMs (e.g., 

CMAQ) include ~70 species for comprehensive chemical analysis, operational forecasts often focus 

on criteria pollutants and key PM₂.₅ components due to their regulatory importance. FastCTM 

replicates the outputs most frequently used in air quality management, ensuring compatibility with 

existing regulatory frameworks. Besides, FastCTM’s performance was validated against both CMAQ 

simulations and ground observations (Sect. 3.1–3.2). Results show high agreement for all 10 species 

(R² = 0.7–0.9), confirming that the selected variables adequately represent key atmospheric processes. 

We acknowledge that FastCTM may benefit from expanded mechanisms with detailed gas-phase 

chemistry or aerosol microphysics. FastCTM’s design supports incremental integration of additional 

species (e.g., via user-defined modules) without overhauling the core framework. Future versions will 

explore adding VOCs and secondary organics to address broader research needs. 

We clarified the motivation for the 10-species configuration in the Introduction and Section 2.1 and 

Section 4, emphasizing regulatory and operational priorities driving species selection and plans for 

modular expansion in future work, as follows,  

The 10 species were selected based on their direct relevance to regulatory standards (e.g., PM₂.₅, PM₁₀, 

O₃, NO₂, SO₂, CO) and their dominance in driving health and environmental impacts in urban and 

industrial regions. 

FastCTM’s design supports incremental integration of additional species (e.g., via user-defined 

modules) without overhauling the core framework. Future versions will explore adding VOCs and 

secondary organics to address broader research needs. 

 

 



Methods: 

"CMAQ structures" --> I don't know what structures means here 

-Is this predicting only surface level concentrations? 

-I would not really call this model a CTM, this feels more like a reduced order model. There are 

potentially hundreds of chemical species that lead to the formation of PM2.5, O3, etc. And yet you do 

not mention the chemical mechanism at all in the WRF-CMAQ model. This work is basically mapping 

emissions to concentrations in a fairly naive way. 

Response: To rule out the possibilities of FastCTM as a simple model mapping emissions to 

concentrations, we tested the land use regression (LUR) framework with machine learning models of 

random forest, XGBoost, and also a linear regression model. The input data for these LUR models 

include emissions, meteorological forecasts from WRF, and geophysical covariates, the same as those 

used in FastCTM. The LUR model carries out direct mapping from emission and weather data to 10 

pollutants. Results have exhibited LUR’s poor performance in predicting air pollutant concentrations. 

Related studies are included in Section 3.1, as follows.  

To validate FastCTM model, three land use regression (LUR) models were constructed, namely the 

linear regression model, the random forest model (with the number of trees set at 500), and the 

XGBoost model (with the booster specified as gbtree). These LUR models were developed using the 

same input meteorological data, emission, and geophysical variables. When compared with the 

FastCTM model, the performance of the LUR models was found to be significantly inferior (as 

demonstrated in Figure S10 – S12 in the SI). This outcome is, in fact, anticipated when we consider 

the complex nature of air quality dynamics. Air quality is not a static entity, but it varies both spatially 

and temporally. For instance, the transport of air pollution is a highly dynamic process that hinges on 

wind fields and air pollution concentrations in a reciprocal manner. The wind direction and speed 

dictate the trajectory along which pollutants travel, while the existing pollutant concentrations in 

different regions influence the overall dispersion and mixing patterns. LUR models, which 

predominantly rely on local input data (Wong et al., 2021; Cheng et al., 2021), struggle to capture 

these intricate, non-local interactions. They lack the capacity to account for the far-reaching effects 

such as wind-driven pollutant transport and the consequential changes in air quality over larger 

geographical areas. 

The supplementary Figures exhibit the performances of three machine learning models as follows. 



 
Figure S1: The evaluation performances of linear regression forecasts against CMAQ forecasts in 2023. Panel 

(a) and (b) respectively show RMSE values of criteria pollutants and the PM2.5 components of. Panel (c) and 

(d) respectively show R2 values. It should be noted that RMSE value of CO corresponds to the right axis in panel 

(a).

 
Figure S2: The evaluation performances of random forest forecasts against CMAQ forecasts in 2023. Panel (a) 

and (b) respectively show RMSE values of criteria pollutants and the PM2.5 components of. Panel (c) and (d) 



respectively show R2 values. It should be noted that RMSE value of CO corresponds to the right axis in panel 

(a). 

 
Figure S3: The evaluation performances of XGBoost forecasts against CMAQ forecasts in 2023. Panel (a) and 

(b) respectively show RMSE values of criteria pollutants and the PM2.5 components of. Panel (c) and (d) 

respectively show R2 values. It should be noted that RMSE value of CO corresponds to the right axis in panel 

(a). 

 

 

" A detailed description of CMAQ principles is available elsewhere (Byun and Schere, 2006) " --> I 

find this lazy. This paper is 20 years old and I do not know what you would like the reader to find in 

it.  

Response: The reference provided a detailed description of the theory, model framework, and 

numerical methods. We added another late review study to reflect more recent developments of the 

chemical transport model CMAQ.  

Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O., Hogrefe, C., Luecken, D. J., Bash, J. O., 

Roselle, S. J., Pleim, J. E., and Foroutan, H.: Description and evaluation of the Community Multiscale 

Air Quality (CMAQ) modeling system version 5.1, Geoscientific model development, 10, 1703-1732, 

2017. 

 

"Chemical Reaction Module" --> This just sounds like a first order approximation using idealized rate 

constants. There is a very rich and long history of using ODE solvers to get the solution to complex 

chemical mechanisms. There really is not enough discussion with this module (or really any of the 



preceding module sections). You are highly simplifying each of these processes without an underlying 

discussion of why you are doing so. There already exist data-driven and reduced complexity modeling 

systems that accomplish similar air quality regulation goals (e.g., InMAP, EASIUR, APEEP).  

Response: The simplification of chemical kinetics in FastCTM is motivated by balancing data 

availability with physical interpretability. While traditional CTMs (e.g., CMAQ) use detailed ODE 

solvers for hundreds of species and reactions, FastCTM focuses on key variables and pathways for air 

quality dynamics, such as secondary inorganic aerosol formation (SO₄²⁻, NO₃⁻, NH₄⁺) and ozone 

photochemistry.  

Comparing to other reduced-form modelling systems, models like InMAP and EASIUR focus on 

annual-average exposure, while FastCTM provides hourly-resolved simulations critical for real-time 

management. Unlike reduced-form models that aggregate source impacts, FastCTM quantifies hourly 

contributions from individual processes (transport, chemistry, emissions) via its modular design. 

Furthermore, FastCTM explicitly couples meteorology (PBLH, T, RH) with chemistry, whereas 

InMAP/APEEP assumes static meteorology, limiting their utility in capturing diurnal or synoptic-scale 

variations. Therefore, FastCTM is more like a learnable CTM model in the neural network form with 

some simplifications in input variables and space domain (3D to 2D) by embedding physical principles 

(e.g., mass conservation in transport, Arrhenius-like rate dependencies in chemistry). Besides, the 

modular architecture of FastCTM allows incremental addition of species/reactions (e.g., VOC 

oxidation pathways) without retraining the entire model. Related discussion have been added in the 

section, 

Reduced-form models like InMAP (Tessum et al., 2017) and EASIUR (Gentry et al., 2023) focus on 

annual-average exposure, while FastCTM provides hourly-resolved simulations for real-time 

management. FastCTM quantifies hourly contributions from individual processes (transport, 

chemistry, emissions) via its modular design, rather than aggregating source impacts (e.g., EASIUR’s 

source-receptor matrices) in reduced-form models. Furthermore, FastCTM explicitly couples 

meteorology (PBLH, T, RH) with chemistry, whereas InMAP/APEEP (Muller and Mendelsohn, 2006) 

assumes static meteorology, limiting their utility in capturing diurnal or synoptic-scale variations.  

And also in the Section 4, 

Besides, FastCTM may also benefit from expanded mechanisms with detailed gas-phase chemistry or 

aerosol microphysics. FastCTM’s design supports incremental integration of additional species (e.g., 

via user-defined modules) without overhauling the core framework. Future versions will explore 

adding VOCs and secondary organics to address broader research needs. 

Also for the diffusion module and deposition module, related discussions have been added in the 

corresponding sections as follows, 

Diffusion involves the physical and chemical processes that disperse pollutants in the atmosphere. It’s 

influenced by meteorological conditions, i.e. atmospheric stability and humidity, and surface features, 

i.e. land terrains and vegetation (Jiang et al., 2021). 

Air pollutant deposition refers to the process by which atmospheric pollutants are transferred to 

Earth's surfaces (land, water, vegetation) or removed from the air. This phenomenon plays a critical 

role in environmental pollution dynamics and ecosystem impacts. The deposition was closely 



influenced by meteorological conditions and surface characteristics (Janhäll, 2015). For example, 

high wind disperses pollutants, while turbulence enhances dry deposition. Forests and crops act as 

sinks due to large surface areas for adsorption. 

 

-I don't explicitly understand how this is a machine learning model. You describe a sequence-to-

sequence modeling framework reminiscent of an LSTM, but no mention of memory or hyper 

parameters in general. The inclusion of these equations may seem more like a symbolic regression 

kind of ML framework, but the details are sparse and lack substance. Are all the modules trained jointly 

so that error influences each other? Chemistry is constantly affected by other modules (and vice versa) 

yet these interaction terms can't be considered during training at all. That is, how does error propagate 

from one time step to the next in training? Is the underlying WRF-CMAQ simulations two-way 

coupled such that weather influences chemistry and chemistry feedbacks via aerosol effects to 

influence the weather? Not enough details in the underlying simulations or the joint training of modules. 

There are examples of this kind of offline training here: 

Kelp, M. M., Jacob, D. J., Kutz, J. N., Marshall, J. D., and Tessum, C. W.: Toward Stable, General 

Machine-Learned Models of the Atmospheric Chemical System, Journal of Geophysical Research: 

Atmospheres, 125, e2020JD032759, https://doi.org/10.1029/2020JD032759, 2020. 

Yang, X., Guo, L., Zheng, Z., Riemer, N., and Tessum, C. W.: Atmospheric chemistry surrogate 

modeling with sparse identification of nonlinear dynamics, https://doi.org/10.48550/arXiv.2401.06108, 

2024. 

Liu, Z.-S., Clusius, P., and Boy, M.: Neural Network Emulator for Atmospheric Chemical ODE, 

https://doi.org/10.48550/arXiv.2408.01829, 2024. 

Response: (1) The five modules in FastCTM are defined in the form of operator, where operator 

parameters are estimated, rather than in the form of pure predictor mapping concentrations from one 

hour to the next. For example, in the diffusion module, FastCTM learns to encode diffusion coefficient 

𝐾 from meteorological conditions before performing upwind finite difference procedure to solve the 

diffusion process ∇(𝐾∇𝐶𝑖). It’s also the same for processes such as reaction, advection, and deposition. 

Therefore, it is impossible for one process to represent all atmospheric processes simultaneously. The 

independent contribution of each process is depicted in Figure 12 of section 3.3. Each process exhibited 

its patterns of contribution to hourly air pollutant concentration changes, constrained by the form of 

the operator in the processes. The related description is added in Section 2.3 Model Training, 

Even though five modules are defined in FastCTM, individual processes are not trained separately. 

The model was trained as a whole with hour-to-hour air pollutant concentrations, while each process 

could learn its parameters under the constrains of its dedicated formulation. Specifically, FastCTM 

was tuned to minimize the loss function ℒ, which was determined to be L2 loss (Bühlmann and Yu, 

2003) of the regularized mean squared error (MSE) as shown in Eq. 15. 

(2) The configuration of the parent model was added in Section 2.1  

WRF-CMAQ simulations are not two-way coupled so that weather and chemistry do not have feedback 

to influence each other. 



 

"The main objective of our study is to build and validate a principles-guided neural network based 

FastCTM that could simulate spatial-temporal fields of hourly concentrations of major air pollutant 

species like a traditional CTM. Besides, the FastCTM could model individual contributions from each 

of the atmospheric processes of transport, diffusion, deposition, reaction and emission. " --> this should 

be stated earlier. The term "principles-guided" is vague, and I don't really consider this 'like a traditional 

CTM'. You discretize the potential processes that affect air quality outputs, but this is more like a 

traditional reduced complexity model approach. I think a deeper review into the literature would help 

the authors situate their work in this established landscape.  

Response: These two sentences are moved to the last paragraph of the Introduction section, to make it 

clearer for the general purpose of the study. Unlike the traditional reduced-from models, FastCTM is 

time-resolved with a 60 seconds step to simulate the evolution of air pollutants. It generates hourly air 

quality simulations based on hourly meteorological conditions and emissions. The simulations have 

good correlations with its parent numerical CTM model CMAQ. FastCTM also exhibited reasonable 

responses to emission changes, also in close agreement with that of CMAQ. Besides, internal 

atmospheric processes could also be checked to reflect specific contributions from each process. We 

have added a related literature review on the application of neural networks in simulating atmospheric 

processes in the introduction, as follows. 

Quantifying individual processes would provide fundamental explanations for a model's predictions, 

and therefore is also useful in identifying potential sources of error in the model formulation or its 

inputs (Liu et al., 2010). With this motivation, there are studies dedicated to developing models to learn 

one specific atmospheric process, i.e. chemical and deposition, in the CTM model. Kelp et al. (2022) 

developed a neural network chemical solver for stable long‐term global simulations of atmospheric 

chemistry, learned from the GEOS-Chem model. Xia et al. (2024) simulated 74 chemical species and 

229 reactions following the SAPRC-99 mechanism with an artificial intelligence photochemistry 

(AIPC) scheme to achieve around 8-time speed-up. Sturm and Wexler (2020) developed a mass- and 

energy-conserving framework for using machine learning to speed computations with a successful 

application in a photochemistry example. For the deposition process, Silva et al. (2019) proposed a 

deep learning parameterization for ozone dry deposition velocities with accurate predictions in 

independent new date sets, revealing the potential of neural network in encoding complex spatio-

temporal latent processes. Liu et al. (2025) proposed a Neural Network Emulator, named ChemNNE, 

for fast chemical concentration modelling, which achieved good performance in accuracy and 

efficiency. Even though these successful applications using deep learning methods to simulate 

individual atmospheric chemical and physical processes, there is an missing gap in coupling these NN 

operator replacements together as a complete deep learning based CTM. 

Also in Section 2.3.5 Chemical Reaction Module, the comparison of FastCTM with reduced-form 

models is discussed as follows,  

Reduced-form models like InMAP (Tessum et al., 2017) and EASIUR (Gentry et al., 2023) focus on 

annual-average exposure, while FastCTM provides hourly-resolved simulations for real-time 

management. FastCTM quantifies hourly contributions from individual processes (transport, 

chemistry, emissions) via its modular design, rather than aggregating source impacts (e.g., EASIUR’s 



source-receptor matrices) in reduced-form models. Furthermore, FastCTM explicitly couples 

meteorology (PBLH, T, RH) with chemistry, whereas InMAP/APEEP (Muller and Mendelsohn, 2006) 

assumes static meteorology, limiting their utility in capturing diurnal or synoptic-scale variations. 

 

"Furthermore, CMAQ and FastCTM forecasts were both evaluated by hourly observations from 

national monitoring sites (as shown in Figure S5 in the supplementary material) for six criteria 

pollutants (PM2.5, PM10, SO2, NO2, CO, and O3)." --> What is the point of this if CMAQ is your 

ground truth?  

Response: We agree with the reviewer’s point that it does not make much sense to compare FastCTM 

to station observations. Related comparisons are removed from the manuscript. 

 

Results: 

"Besides, since the FastCTM is a 2-D model only considering atmospheric processes within the 

boundary layer, lower consistency with the CMAQ model during daytime could be due to more active 

vertical turbulence which is not fully represented." --> Isn't the point of having this processed-based 

emulation the ability to attribute errors to processes? This sounds hand-wavy and does not explain the 

variability very well 

Response: We sincerely appreciate the reviewer’s insightful feedback regarding the attribution of 

errors in FastCTM’s daytime performance. The comment highlights a critical aspect of our process-

based emulation framework and motivates a deeper exploration of error sources. FastCTM can 

simulate the contributions from each process. We do not have the CMAQ process analysis in the test 

period. Therefore, it is not possible to attribute FastCTM’s simulation errors to specific processes, by 

comparing the process data of CMAQ. CMAQ uses a non-local closure scheme for vertical diffusion, 

explicitly resolving turbulent mixing across layers. FastCTM’s 2D framework parameterizes this via 

horizontal diffusivity and PBLH, which cannot capture vertical advection or entrainment. Besides, we 

considered a 2-D model in FastCTM, which means process analysis could be different from that of 

CMAQ in its definition natures. We are going to apply FastCTM in 3D dimensions in the later version. 

We added further explanation in this section as follows, 

Besides, since the FastCTM is a 2-D model only considering atmospheric processes within the 

boundary layer, lower consistency with the CMAQ model during the daytime could be due to more 

active vertical turbulence. Studies show that strong vertical mixing of air pollutants to the height above 

PBLH have been found (Li et al., 2017; Tang et al., 2016), which could not be fully represented in 

FastCTM. 

 

"It is important to note that the relatively low R2 values observed for NH4+ can be attributed to the 

fact that it is the sole cation included in the FastCTM model without a corresponding acid-base balance, 

which may affect the model's predictive accuracy." --> I don't see how this is the reason. WRF-CMAQ 

has many base pairings that can neutralize NH4+ that are not represented here. I don't recall 



conservation of mass as a constraint in your chemical module. Furthermore, how do you know that 

NH4+ does not precipitate out as it is very hydrophilic.  

Response: We appreciate the reviewer’s critical assessment of the NH4+ prediction performance and 

agree that our initial explanation simplified the issue. FastCTM’s chemical module (Eq. 11–12) 

approximates NH4+ dynamics using a data-driven approach trained on CMAQ outputs. While CMAQ 

explicitly resolves NH4+ formation via reactions with HNO3 (NH3 + HNO3 → NH4NO3) and H2SO4 

(2NH3 + H2SO4 → (NH4)2SO4), FastCTM does not explicitly encode these pathways. Instead, the 

neural network learns relationships between NH4+ and precursor emissions (NH3, NOx, SO2) and 

meteorological variables (e.g., temperature, humidity). This simplification omits acid-base equilibria 

and aerosol thermodynamics, which are critical for partitioning NH4+ between gas and particle phases. 

The reviewer correctly notes that FastCTM’s chemical module does not enforce mass conservation. 

While CMAQ rigorously tracks nitrogen and sulfur species across gas, aerosol, and aqueous phases, 

FastCTM’s neural network predicts NH4+ concentrations directly from emissions and meteorology 

without explicit mass-balance constraints. This can lead to unphysical predictions, especially when 

precursor emissions (e.g., NH3) are over/underestimated or when thermodynamic conditions (e.g., high 

humidity) favor aerosol formation. The low R² for NH4+ primarily reflects FastCTM’s simplified 

chemical mechanism, which lacks explicit acid-base pairing and aerosol thermodynamics. We have 

revised the text accordingly in Section 3.1, as follows, 

While CMAQ explicitly resolves 𝑁𝐻4
+ formation reactions, FastCTM does not explicitly encode these 

pathways. Instead, the neural network implicitly learns relationships between 𝑁𝐻4
+ and precursor 

emissions (NH3, NOx, SO2) and meteorological variables (e.g., temperature, humidity). This 

simplification omits acid-base equilibria and aerosol thermodynamics, which are critical for 

partitioning 𝑁𝐻4
+  between gas and particle phases. The low R² for 𝑁𝐻4

+  primarily reflects 

FastCTM’s simplified chemical mechanism in this part, which could be improved by adding related 

species in the simulation. 

 

-I actually believe it is quite concerning that the RMSEs vary diurnally. You should also plot the WRF-

CMAQ and FastCTM time series against each other. A diurnal error actually may suggest that you are 

not correctly learning the atmospheric dynamics of the system well. You may be predicting an average 

concentration across all time and that's why you see a diurnal error profile. 

"FastCTM forecasts using zero values as input air quality data were almost the same as that using 

ordinary input in the long leading hours, indicating that FastCTM simulations in long leading hours 

are not affected by initial conditions, just like deterministic numeric CTMs (such as CMAQ)" --> This 

is hard to conclude, you need to plot actual concentration time series instead of RMSEs. It seems like 

the error is always the same, this could mean the FastCTM always predicts the same values given the 

time of day. More results need to be presented.  

Response: As reviewer kindly pointed, FastCTM possibly has taken average pollutant concentration 

from five-year training data in 2018-2022. In order to confirm that FastCTM was able to predict air 

quality based on given meteorological conditions and emissions, daily average FastCTM simulation 

in the fifth leading day (leading hours 96-119) in the test year of 2023 is compared with daily average 

CMAQ simulations in 2023 and in the training years of 2018-2022. Results revealed that FastCTM 



forecasts are generally in good correlation with CMAQ forecasts in 2023, rather than that in 2018-

2023. It means FastCTM has learned the evolution rules of air pollutant concentrations, instead of just 

giving average air pollutant concentration according to time of the year. Related results have been 

added in the manuscript in section 3.1.1, as follows.  

Annually, the daily air quality typically exhibits similar fluctuations to those in other years, which can 

be primarily attributed to the cyclical nature of meteorological conditions and pollutant emission 

patterns. The FastCTM model was trained using a comprehensive dataset spanning five years, from 

2018 to 2022. In light of this, it was crucial to rule out the possibility that the model was merely 

reproducing historical averages during the test year of 2023. To this end, the daily national average 

concentrations of PM2.5 and O3 in 2023, as predicted by FastCTM, were meticulously compared with 

those simulated by CMAQ in the same test year, as well as with the CMAQ forecasts from the training 

years of 2018-2022. As illustrated in Figure 5, it becomes evident that the predictions made by 

FastCTM in 2023 align more closely with the actual CMAQ forecasts for that year, rather than with 

the forecasts generated from the training data of 2018-2022. This finding not only validates the 

adaptive learning capabilities of the FastCTM model but also indicates that the model is not resorting 

to a simplistic approach of taking the average concentration from the previous five years based on the 

time of day. Instead, it is likely incorporating real-time meteorological feedback, adjusting for any 

shifts in emission patterns, and leveraging its learned relationships to provide more accurate and 

contemporaneous predictions.  

 

Figure 5: The timeseries of FastCTM forecasts against CMAQ forecasts. 

 

Figure 3 is unwieldy. There are 60 mulitplots and not well labeled on the figure. Here you should show 

spatial differences in terms of both absolute and relative error. Seems like FastCTM does not capture 

the highest concentration values, which is concerning given that is the largest impact on health and 

climate. Hard to have any substantive discussion of results without any quantitative measure regarding 

Figure 3. 

Response: As the reviewer suggested, we revised the manuscript in the section as follows,  

The spatial distributions of the mean absolute error (MAE) and the normalized mean absolute error 

(NMAE) are presented in Figure 3. For the six criteria pollutants, the MAE values are higher in 

polluted areas. This could be attributed to the complex and dynamic nature of pollutant interactions 

in such regions. In polluted environments, there are often multiple sources of emissions, complex 

chemical reactions, and variable meteorological conditions that can lead to greater discrepancies 

between the model-predicted and actual pollutant concentrations. Conversely, the NMAE values 



exhibit an opposite trend, being lower in polluted areas. In these regions, the NMAE values are 

typically around 0.2, in contrast to the relatively higher values of approximately 1 in cleaner areas. 

The NMAE is a normalized metric that takes into account the magnitude of the actual pollutant 

concentrations. A lower NMAE in areas with high pollution levels suggests that the FastCTM model 

is effectively capturing the overall magnitude and trends of pollutant concentrations relative to the 

reference CMAQ model. 

 

Figure 4: Spatial distribution of mean absolute error (panels a, c, e, g, i, and k) and normalized mean absolute 

error for the six criteria pollutants (panels b, d, f, h, j and l) of FastCTM comparing to CMAQ in 2023.  

 

 

Section 3.1.2. Again, I don't see why this comparison makes sense. You do not incorporate any station 

data, so why would you make comparisons against it? The WRF-CMAQ model is the ground truth 

here. 

Response: We agree with the reviewer’s point that related comparisons between FastCTM to station 

observations are removed from the manuscript.  

 

Sections 3.2: These don't have much meaning if we do not understand how the FastCTM model 

behaves in relation to the parent model 

Response: We agree with the reviewer’s comment that more analysis are needed to verify FastCTM’s 

capabilities to capture the impact of changes in emissions, especially compared to the parent model of 

WRF-CMAQ. We added a comparison between FastCTM and CMAQ under 11 emission scenarios in 

the winter month of January 2019 and in the summer month of July 2019. The results signified that the 

FastCTM simulations manifested a good agreement with those of CMAQ, which was manifested in 

two principal aspects. Firstly, the FastCTM model forecasted positive responses to augmented 

emissions in the no-control (NCtrl) scenario and negative responses in the other emission-controlled 

scenarios just like CMAQ. This implies that when emissions were unrestricted and increased, as in the 



NCtrl scenario, FastCTM could capture the increasing trend as that of CMAQ. In scenarios where 

emissions were reduced, they both predicted a decline. Secondly, in scenarios characterized by more 

substantial emission reductions, the FastCTM model simulated a more pronounced decrease in air 

pollutant concentrations. This is of particular significance as it shows the model's sensitivity to the 

magnitude of emission inputs. It suggests that the FastCTM model is not only capable of discerning 

changes in emission scenarios but can also reflect the degree of impact on air quality, thereby 

reinforcing its reliability and utility in simulating air quality dynamics in agreement with CMAQ. 

Related results in the manuscript are shown as follows.  

The sensitivities of FastCTM simulations to emission interventions were contrasted with those of 

CMAQ. Specifically, CMAQ was employed to simulate 11 emission scenarios over the two-month 

periods of January and July 2019 in Southwest China (Huang et al., 2022). The alterations in 

emissions relative to the base case are presented in Table 1. Among these scenarios, 10 involved 

reduced emissions of major species, with only the no-control scenario exhibiting increased emissions. 

Utilizing the identical emissions and meteorological data, FastCTM also conducted simulations, which 

were then compared to those of CMAQ. For the 11 scenarios in question, the changes in air pollutant 

concentrations relative to the base case at the locations of 139 national air quality monitoring stations 

(Figure S14 in the SI) were extracted and compared in the winter month of January 2019 (Figure 9) 

and in summer month of July 2019 (Figure 10). The results indicated that, overall, the FastCTM 

simulations were in good agreement with those of CMAQ reflected in two aspects. First, FastCTM 

predicted positive responses to increased emissions in the nocontrol (NCtrl) scenario and negative 

responses to other emission-controlled scenarios just as CMAQ. Second, FastCTM simulated larger 

air pollutant concentration decrease in those scenarios with higher emission reductions. Specifically, 

in January 2019, with the exception of NO₂, FastCTM responded to emission changes with an 

interquartile range (IQR, 25% - 75% percentile) similar to that of CMAQ (Figure 9). For NO₂, in the 

same emission reduction scenarios, FastCTM simulated lower NO₂ values. In the summer month of 

July 2019, as depicted in Figure 10, all the criteria pollutants except CO demonstrated a comparable 

degree of response to emission reductions. The comparison suggests that the FastCTM model is not 

only capable of discerning changes in emission scenarios but can also reflect the degree of impact on 

air quality, thereby reinforcing its reliability and utility in simulating air quality dynamics in tandem 

with CMAQ. It should be noted that in both months, FastCTM exhibited slightly larger median values, 

suggesting its greater sensitivity to emission interventions.  

Table 1. The emission change details of emission scenarios 

Scenario 
abbreviati

on 
Sector NOx VOCs SO2 CO PM2.5 PMC 

nocontrol NCtrl 
Industrial 30% 30% 30% 30% 30% 30% 

Traffic 20% 20% 20% 20% 20% 20% 

medianX MedX 
Industrial -36% -35% -48% -23% -9% -9% 

Traffic -40% -10% 0 -26% -10% -10% 

medianY MedY Industrial -26% -20% -38% -13% -4% -4% 



Traffic -30% 0% 0 -16% -5% -5% 

medianZ MedZ 
Industrial -36% -10% -48% -23% -9% -9% 

Traffic -40% 0% 0 -26% -10% -10% 

median-3 Med-3 
Industrial -10% -10% -18% 0 0 0 

Traffic -10% 0% 0 0 0 0 

median-2 Med-2 
Industrial -16% -20% -28% -3% 0 0 

Traffic -20% 0% 0 -6% 0 0 

median-1 Med-1 
Industrial -26% -35% -38% -13% -4% -4% 

Traffic -30% -10% 0 -16% -5% -5% 

median0 Med0 
Industrial -36% -50% -48% -23% -9% -9% 

Traffic -40% -20% 0 -26% -10% -10% 

median+1 Med+1 
Industrial -46% -65% -58% -33% -19% -19% 

Traffic -50% -30% 0 -36% -20% -20% 

median2030 Med30 
Industrial -55% -70% -80% -40% -40% -40% 

Traffic -60% -40% 0 -40% -40% -40% 

median2035 Med35 
Industrial -80% -80% -90% -60% -50% -50% 

Traffic -80% -60% 0 -60% -50% -50% 

 



 

Figure 9: Air pollutant concentration changes in terms of base case simulated by CMAQ (subplots of a, c, e, g, 

i and k in first column) and by FastCTM (subplots of b, d, f, h, j and l in second column) in January 2019. 

 



 

Figure 10: Air pollutant concentration changes in terms of base case simulated by CMAQ (subplots of a, c, e, 

g, i, and k in the first column) and by FastCTM (subplots of b, d, f, h, j, and l in the second column) in July 2019. 

 

Figure 8: These color bars are difficult to discern changes in concentrations. Does adding d through h 

yield panels a or b? Again, individual contribution doesn't matter if we don't know how the model 

actually behaves.  

Response: Adding panel d through h yield panel c. To validate the process analysis by FastCTM, its 

simulation results are compared to those by CMAQ. We added related results and discussion in Section 

3.3 as follows,  

In this study, we further selected the data recorded at 23:00 on October 13, 2024, to compare the 



impacts of the five major atmospheric physical and chemical processes, as simulated by FastCTM and 

CMAQ, on PM2.5 concentration changes (Figure 12). Emissions, advection processes, and diffusion 

processes demonstrated a relatively high degree of consistency between the two models. Regarding the 

simulation of chemical reactions, while the spatial distribution of high-value areas in the FastCTM 

results was comparable to that of CMAQ, the simulated values in FastCTM were notably higher. 

Correspondingly, FastCTM overestimated the contribution of the deposition process. This 

overestimation counterbalanced the impact of the higher chemical reaction values. The difference in 

the simulated deposition contributions between the two models could be due to differences in how they 

represent these influencing factors. Overall, the simulation results of the process contributions by 

FastCTM and its parent model CMAQ were relatively consistent. This consistency indicates that, 

despite some differences in the magnitude of certain process simulations, FastCTM is capable of 

capturing the essential features of atmospheric processes related to PM2.5 concentration changes, 

similar to CMAQ. Such consistency provides confidence in the reliability of FastCTM for simulating 

and understanding the complex interplay of atmospheric processes of PM2.5. 

 

Figure 5: An example of contributions from five major atmospheric processes to PM2.5 changes (μg/m3) by CMAQ 

(first row) and FastCTM (second row) at 23:00 on October 13, 2024. 

 


