
   

 

1 
 

SuCCESs – a global IAM for exploring the interactions between 
energy, materials, land-use and climate systems in long-term 
scenarios (model version 2024-10-23) 

Tommi Ekholm1, Nadine-Cyra Freistetter1, Tuukka Mattlar1, Theresa Schaber1, Aapo Rautiainen1,2  
1Climate System Modelling, Finnish Meteorological Institute, P.O. BOX 503, 00101 Helsinki, Finland 5 
2Environmental and Natural Resource Economics, Natural Resources Institute Finland (Luke), 
Latokartanonkaari 9, 00790 Helsinki, Finland 
 

Correspondence to: Tommi Ekholm (tommi.ekholm@fmi.fi) 

Abstract. SuCCESs is a bottom-up Integrated Assessment Model (IAM) that represents energy production and use, 10 

materials production, land-use and climate globally. The primary use-case for SuCCESs is to calculate long-term scenarios 

until 2100 that consider the interactions between these systems, for example the greenhouse gas emissions from energy, 

materials and land-use and their impact on climate change. The four systems are hard-linked in SuCCESs and scenarios are 

solved through intertemporal optimization by minimizing discounted system costs to satisfy projected demand and other 

constraints, e.g. climate targets. This yields a long-term equilibrium solution between the modelled systems. This article 15 

introduces the model logic and structure, describes the overall representation of each system, and provides an evaluation by 

comparing the scenarios produced by SuCCESs with different end-of-century radiative forcing targets to those from other 

IAMs. Towards this end, and to demonstrate the capability of SuCCESs for large-scale scenario exploration, we also conduct 

a sensitivity analysis employing Monte Carlo sampling with a 1000-member scenario ensemble for each radiative forcing 

target. Last, we discuss some practical aspects and different ways of using the model in long-term scenario analyses. 20 

1 Introduction 

SuCCESs (Sustainable Climate Change mitigation strategies in Energy-land-material Systems) 1  is a lightweight, 

technologically detailed, global Integrated Assessment Model (IAM) that focuses on representing the interactions between 

energy, materials, land-use and climate systems in long-term scenarios. This article introduces the model’s overall structure, 

describes the representation of each system, and demonstrates its use through a set of mitigation scenarios reaching the RCP 25 

radiating forcing targets by 2100 (van Vuuren et al., 2011), and a sensitivity analysis employing Monte Carlo sampling. 

 
1 Model version used in this manuscript: 2024-10-23 
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IAMs are an essential tool in modelling long-term strategies to mitigate climate change. They are often categorized broadly 

into two types: bottom-up, process-based IAMs and top-down, cost-benefit IAMs (Keppo et al., 2021; Weyant, 2017). Both 

portray greenhouse gas (GHG) emission pathways, their connection to societal and economic functions, and the climate 

change induced by GHG emissions over the long-term, often until 2100 and sometimes beyond. The main differences 30 

between the model types are the driving force for emission reductions and the detail in representing from what activities 

emissions arise and how they can be reduced. Top-down IAMs present economic activity in an aggregated manner and seek 

to calculate economically optimal mitigation pathways by balancing marginal costs and benefits from mitigation, often 

without considering emission sources or technological options for reducing emissions explicitly. For example, DICE 

(Nordhaus, 1992, 2017) – the best-known top-down IAM – considers the aggregate global economy, and uses stylized 35 

mathematical formulas to estimate the impact of climate change and mitigation action on economic output. 

In contrast, bottom-up, process-based IAMs explicitly represent the economic activities that cause GHG emissions, such as 

energy use, industrial production, and transportation. These models also portray explicitly the current and future 

technological options to reduce emissions. They typically require a prescribed climate policy – an emission limit or tax, or a 

temperature target, for example – and model in more detail how these policies affect the activities that produce or reduce 40 

emissions. 

SuCCESs is a bottom-up, process-based IAM. It models explicitly the investments in, and the operation of technological 

processes, and tracks the flows of commodities and emissions to and from these processes. Prominent process-based IAMs 

differ from each other in terms of their solution method, model scope, and the level detail towards technological, geographic 

and policy options (Keppo et al., 2021). Compared to the pool of existing process-based, global IAMs (and combinations of 45 

energy, land-use and climate models), SuCCESs provides a unique combination of using an intertemporal optimization 

solution method with hard-linked modelling of the energy, land-use and climate system. SuCCESs also differs from these 

models in terms of its single-region representation, which was chosen to maintain simplicity and low computational burden.  

Additionally, SuCCESs represents the production of main bulk materials and their linkage to energy use, land-use and 

climate. Similar expansion of model scope has also been pursued in other IAMs recently (Stegmann et al., 2022; Ünlü et al., 50 

2024). Our ongoing model development aims to extend the representation of materials to cover the in-use stock of materials 

in the global economy. 

Given the computational ease of running the model, SuCCESs is particularly suitable for large-scale scenario exploration 

and stochastic applications. To demonstrate this, we conduct a parametric sensitivity analysis of the model using Monte 

Carlo sampling, an exercise similar to (Panos et al., 2023). Also leveraging on the low computational burden, the model 55 

could be supplemented with capabilities for stochastic programming in the future, which would enable to find strategies that 

hedge against modelled uncertainties (Ekholm, 2014; Loulou & Kanudia, 1999). 
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This paper gives an overview of the model logic, its general structure and main features. As the model’s components and 

numerical parameters are subject to updates in the future, this paper focuses on how the model work overall and how the 

subsystems interact, as well as how the model can be used and what kinds of results a user can expect. 60 

Numerical values are provided only in cases where we do not foresee an update to the values to be probable. Many of the 

parameter values are nevertheless specific to some scenario assumptions and are thus likely to be modified by the model user 

for the case-specific needs of each scenario experiment conducted with the model. 

The paper is structured in the following way. Section 2 describes the structure and main features of the model. Section 3 

presents a demonstration of the model, first through four scenarios reaching the RCP radiating forcing targets by 2100 (van 65 

Vuuren et al., 2011) and their comparison to the SSP scenario ensemble (Riahi et al., 2017), then through a sensitivity 

analysis by running a 1000 member scenario ensemble for each radiative forcing target with Monte Carlo sampling of main 

input parameters. Further, in section 4, we provide some practical guidance and viewpoints for model use. Finally, section 5 

presents our concluding thoughts and discusses some future directions for model development and use. 

2 Model structure 70 

SuCCESs is a demand-driven partial equilibrium model that is solved through intertemporal optimization (linear 

programming) assuming perfect foresight. The objective is to minimize discounted system costs while satisfying projected 

commodity demands, adhering to structural equations, and meeting other optionally set constraints, such as climate targets. 

This solution corresponds with a long-term economic equilibrium with fixed, inelastic demands for goods and services under 

assumptions of perfect markets and perfect foresight. With these assumptions, competition between producers leads to a 75 

least-cost solution to fulfil the demand, which concomitantly maximizes the producer surplus (see e.g. Loulou & Labriet, 

2008). 

The model contains hard-linked modules representing the energy system, land-use, materials and climate. Key interactions 

between the modules are the energy, fossil feedstock and biomass requirements for producing materials, bioenergy 

production, and the GHG emissions and sinks within the modules, including a full accounting of terrestrial carbon stocks in 80 

vegetation and soil. In the current version of the model, the demand for materials is specified exogenously, and is thus not 

affected by e.g. investments into energy production. Figure 1 illustrates the overall model structure and main interactions. 
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Figure 1: An overview of the structure of the SuCCESs IAM, it’s modules and their main interactions. 

The model covers the world as a single region, although land-use is represented with ten geographical biomes. The base time 85 

unit for model variables is annual (e.g. energy flows are represented in PJ per year), but the model is solved at a decadal 

resolution (i.e., a single year is representative for a 10-year time period) until 2100. However, an hourly sub-module is used 

to represent the variations in wind and solar electricity production and exogenously varying electricity demand.  

The main variables of the model comprise commodity flows, investments and operation of production processes, land area 

allocation for different uses, terrestrial carbon stocks, GHG emissions, and climate variables, like radiative forcing and 90 

global mean temperature change. All variables represent physical quantities, such as energy flow or production capacity (in 

PJ per year for energy and Mt per year for materials), land area (million km2) or carbon stock (GtC). Economics are 

accounted for through costs for these physical quantities, such as activity cost for running a process or investments costs for 

installing new production capacity. 

A simplified problem statement of SuCCESs is given below. In the notation, lowercase letters refer to model input 95 

parameters and uppercase letters to model variables. 

 
min

 
(1 + 𝛽) 𝑐 ,  𝐾 , + 𝑐 ,  𝐴 , + 𝑐 ,  𝐸 ,  

so that 

𝐼 , , = 𝑖 , ,  𝐴 ,  

𝑂 , , = 𝑜 , ,  𝐴 ,  

   (1) 
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𝑂𝑝,𝑐,𝑡 
𝑝

≥ 𝐼𝑝,𝑐,𝑡 
𝑝

+ 𝑑𝑐,𝑡     ∀𝑐, 𝑡 

𝐴 , ≤ 𝑓 ,  𝐶 ,      ∀𝑝, 𝑡 

𝐶 , = 𝐾 ,      ∀𝑝, 𝑡 

𝐸 , = 𝑒 , ,  𝐴 ,      ∀𝑒, 𝑡, 

and for land-use (in considerably simplified form): 100 

𝑅 , , = 𝑅      ∀𝑡, 

𝐶 , = 𝑟 , , ,  𝑅 , ,
,

     ∀𝑝, 𝑡, 

𝑆 = 𝑠 , ,  𝑅 , ,
,

     ∀𝑡, 

𝐸 , = 𝑆 − 𝑆      ∀𝑡, 

and for climatic state (in vector form): 105 

Γ = ϕ ⋅ Γ + λ ⋅ 𝐸       ∀𝑡, 

where: 

 𝛽 is the (periodic) discount rate, 

 indices 𝑡, 𝑝, 𝑐 and 𝑒 refer to time period, process, commodity and emission type, 

 𝐾 , , 𝐶 ,  and 𝐴 ,  are the investment to, capacity and activity of process 𝑝 at time 𝑡, 110 

 𝐸 ,  is the emission of type 𝑒 at time 𝑡, 

 𝑐 ,  and 𝑐 ,  are the investment and operation costs of process 𝑝 at time 𝑡, 

 𝑐 ,  is the emission penalty of emission type 𝑒 at time 𝑡 (if applicable), 

  𝐼 ,𝑐,  and 𝑂 ,𝑐,  are input and output flows of commodity 𝑐 to or from process 𝑝, 

 𝑖 ,𝑐,  and 𝑜 ,𝑐,  are the ratios of commodity 𝑐 input and output to process 𝑝 activity, 115 

 𝑑𝑐,  is the end-use demand for the commodity 𝑐 at time 𝑡 (𝑑𝑐, = 0 if not applicable for commodity 𝑐), 

 𝑓 ,  is the average capacity/availability factor process 𝑝 at time 𝑡, 

 𝜏  is the lifetime of process 𝑝, and 

 𝑒 , ,  is the emission factor for emission type 𝑝 and process 𝑝 at time 𝑡, 

 indices 𝑏 and 𝑢 refer to biome and land-use type, 120 

 𝑝 refers to processes producing a single land-use commodity, 

 𝑅 , ,  is the land-area in biome 𝑏 for land-use 𝑢 at time 𝑡, 

 𝑅  is the total land-area of biome 𝑏, 
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 𝑟 , , ,  is the yield of the commodity produced by 𝑝 in biome 𝑏 for land-use 𝑢 at time 𝑡, 

 𝑆  is the terrestrial carbon stock at time 𝑡, 125 

 𝑠 , ,  is the terrestrial carbon density per area in biome 𝑏 for land-use 𝑢 at time 𝑡, 

 Γ  is a vector of climatic state variables at time 𝑡, 

 𝜙 is the state-transition matrix of the climatic state, 

 λ is a transfer matrix from the emission vector to the climatic state, and 

 𝐸  is a vector of all emission types at time 𝑡. 130 

 

The objective function is thus to minimize the discounted costs from investments and the operation of the processes. If 

emission pricing is applied, the objective function also accounts for the cost of emissions. The first set of constraints portray 

commodity production and use in the energy and materials systems. These require that all commodity balances are satisfied 

(production is greater than use, including externally specified demand), process activity is constrained by capacity, and 135 

capacity results from investments and retirements (i.e., capacity has a fixed lifespan). Last, GHG emissions arise from 

processes’ activities according to the processes’ emission factors. 

The land-use equations presented in Equation (1) are a considerably simplified version the actual set of equations in 

SuCCESs, i.e. its dedicated land-use model CLASH (Ekholm et al., 2024). This simplified set of equations, nevertheless, 

gives an overview of how land-use is modelled: land-area is divided into different biomes, each biome’s area can be 140 

distributed between different land-uses. Each biome and land-use type can yield certain land-use commodities, and their 

vegetation and soil contain a carbon stock. The net CO2 flux from the atmosphere to terrestrial biosphere is calculated as the 

difference of the carbon stock over consecutive time periods. This simplified representation does not portray the dynamics 

for forest growth or soil carbon stocks, however. A full depiction is given in the model description of CLASH (Ekholm et 

al., 2024).  145 

For climate, Equation (1) provides only an abstract portrayal in matrix form, where all climate variables, i.e., atmospheric 

concentrations, radiative forcing and mean temperature increase, are aggregated into a single state vector Γ . A more detailed 

description is given in section 2.4.  

Model users can additionally introduce new case-specific constraints that the model solution needs to satisfy; for example, a 

maximum limit for global mean temperature increase for investigating the cost-effective strategies to reach a specified 150 

temperature target. The following subsections describe each module of SuCCESs in more detail. 

2.1 Energy 

The production and use of energy and materials are modelled using the OSeMOSYS framework (Howells et al., 2011). This 

part of the model is very similar to well-known IAMs such as MESSAGE (Huppmann et al., 2019) or TIAM (Loulou & 

Labriet, 2008). It portrays the production and use of numerous energy and material commodities, and the capacities and 155 
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operation of processes that convert the commodities from one form to another. The processes are described through techno-

economic parameters, including input-output conversion ratios, capital costs, variable costs, capacity factors, and emission 

coefficients; compiled from various sources, such as the IEA Energy Technology Perspectives reports (International Energy 

Agency, 2020a) and numerous industry-specific reports. 

The processes and commodities form a production network. For energy, this starts from the extraction of primary energy, 160 

passes through different transformation processes, and finally leads to the end-use of energy or energy services, depending 

on the sector. The model is driven by specified future demand projections for the end-uses, which it needs to satisfy. 

SuCCESs has been calibrated to IEA and other industry statistics for the base year 2020, and future energy and material 

demands to the SSP2 scenario until 2100 (Riahi et al., 2017). An aggregated overview of the production network is portrayed 

in Figure 2. 165 

 

 

Figure 2: A simplified overview of the energy system structure in SuCCESs.  

2.1.1 Primary energy extraction 

Primary energy extraction covers coal, crude oil, natural gas and uranium. These are represented with the estimated available 170 

resources and their extraction costs for different regions, differentiating between proven and unproven resources according to 

International Energy Agency (2020b) estimates. Estimates for the average cost of extracting fossil fuels (in $/GJ) was 

collected for the 23 largest producing countries, and these estimates were assumed to be representative for respective region. 
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2.1.2 Refining 

The refining sector converts crude oil, natural gas and natural gas liquids into end-use fossil fuels and feedstocks for material 175 

production. Oil refineries process crude oil to a mix of liquified petroleum gases, gasoline, light oil (includes diesel and 

kerosene) and heavy oil. The input-output ratios of these four commodities are determined as a convex combination of four 

operating modes, ranging from low conversion (higher output of heavy fractions) to high conversion (higher output of lighter 

fractions) with reduced overall input-output efficiency due to more energy-intensive conversion. In addition to conventional 

oil refineries, SuCCESs includes the ‘Crude oil to chemicals’ (COTC) concept (Corma et al., 2017; Zhou et al., 2022), which 180 

produces higher shares of feedstocks for materials production than conventional refineries. These can be operated with 

similar convex combination of three operating modes, ranging from higher shares of light feedstock (ethylene) to mid-weight 

feedstock (propylene and C4 olefins) and finally to BTX (benzene, toluene and xylenes). Further conversion of fossil fuels to 

feedstocks can be done through steam cracking and fluid catalytic cracking, providing the model with more flexibility to 

meet the demand of each feedstock. The refining sector also includes the electrolysis-based hydrogen production, and the 185 

conversion of solid biomass into bioliquids. 

2.1.3 Electricity and heat 

Power plants in SuCCESs produce electricity and heat for low-temperature (heat) and high-temperature (steam) uses. Power 

plants are represented primarily through their conversion efficiency from fuel to end-product. Availability factors account for 

downtime, which affects the capacity to meet constant demand level. Efficiency factors and capital costs, including their 190 

assumed development into the future, are primarily based on Krey et al. (2019), although slightly adjusted for 2020 to better 

match with IEA statistics (International Energy Agency, 2024) and interpolated for 2030. Electricity transmission losses are 

assumed to be 8%, based on IEA statistics. 

The share of wind and solar has risen rapidly in electricity generation globally during recent years. The rising market share 

and the temporal variation of their production leads to the ‘cannibalization effect’, which depresses their revenues and thus 195 

limits these technologies’ competitive market potential (e.g. Reichenberg et al., 2023). This can be mitigated through 

electricity storage (e.g. Ekholm & Virasjoki, 2020). Capturing variability in and between wind and solar production and 

electricity demand variation requires a temporally explicit model with sufficient resolution to capture the interplay of these 

variations. Further, modelling electricity storages requires representing chronology of consecutive hours over a sufficient 

timeframe, e.g. for several days. As chronology is not considered in the time-slice-based approach of e.g. OSeMOSYS and 200 

TIMES (Howells et al., 2011; Loulou & Labriet, 2008) or a peak-load factor (Huppmann et al., 2019), we implemented a 

separate, hourly sub-module for electricity. 

The electricity sub-module code and data are based on Ekholm & Virasjoki (2020), representing the hourly-level variations 

of wind and solar power capacity factors and electricity demand over four representative weeks, covering combinations 

where the average capacity factors over the week of both production types are either high or low. Variation in demand is 205 
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represented in relation to the average demand. Hourly energy balances require that electricity demand equals to the sum of 

dispatchable generation, variable renewable generation and electricity storage net-discharge in each hour. Dynamic equations 

between consecutive hours account for the dynamics of electricity storages, looping from the last to the first hour of each 

week to avoid end-of-horizon effects. Each week has a weight for the share of a year that it represents. To bridge between 

the hourly sub-module and the main SuCCESs energy module, the weighted sum of the weeks’ production and consumption 210 

needs to be equal to the annual balances. The production capacity for each production process is likewise obtained from the 

main SuCCESs energy module, as well as the changes in technologies’ average capacity factors over the decades. 

Some care is required to interpret the representation of the hourly electricity sub-module properly. Given that SuCCESs is a 

global, single-region model, the accurate representation of the electricity system is not possible. The real-world consists of 

geographically fragmented market areas with constraints for transmission between them, the average capacity factors of 215 

wind and solar and their variability differ between locations, as well as the variability of demand. This cannot be captured in 

a single-region representation. Yet, the model aims to represent the global phenomenon of variability, and the SuCCESs 

electricity sub-module tries to capture and represent this in a physically explicit manner. Additionally, the chronological 

hourly implementation allows the explicit modelling of electricity storages, which are likely to become an important part of 

the electricity system following the rapid increase in wind and solar power, as discussed above. 220 

2.1.4 Industry 

The representation of industry in SuCCESs consists of two approaches: explicit modelling of selected bulk materials’ 

production, and aggregated modelling for the rest of industrial energy use. The explicit part includes specific production 

processes to produce steel, concrete, and plastics, for example, and is presented in more detail in section 2.3. For the 

aggregated industrial production classified as ‘Other industry’, energy use equals the difference between the modelled 225 

explicit processes and the statistics for industrial energy use (International Energy Agency, 2024). For this part, energy 

demand is considered separately between solid, liquid and gaseous fuels, electricity and heat, with perfect substitution 

allowed between fossil and biogenic fuels. 

2.1.5 Transportation 

The transportation sector in SuCCESs considers various transportation modes separately: passenger cars, buses, road freight, 230 

rail passengers and freight, domestic and international aviation, and maritime freight. Demand for each mode is expressed as   

annual passenger-kilometres for passenger transportation, or as annual tonne-kilometres for freight transport. The projections 

are based on the ITF Transport Outlook 2021 (OECD/ITF, 2021) until 2050 and extended to 2100 following the SSP2 

scenario (Riahi et al., 2017). Passenger cars are modelled explicitly through the number of cars, differentiating between 

gasoline, diesel, hybrid and electric vehicles. Due to lack of detailed data and the diversity of the vehicle fleet, other 235 
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transportation modes are considered more abstractly through the average energy use to produce a unit of end-use demand 

(passenger-km or tonne-km), accounting for different energy sources.   

2.1.6 Buildings 

The buildings sector is the least detailed of the energy end-use sectors in the current version of SuCCESs. The sector 

aggregates residential and commercial buildings and adds the other energy-use categories from International Energy Agency 240 

(2024) not included in industry or transportation. As with the ‘Other industry’, the building sector considers directly the 

solid, liquid and gaseous fuels, electricity and heat consumption of the aggregate sectors, with future projections based on 

the SSP2 scenario (Riahi et al., 2017). While substitution between fossil and biofuels is allowed, no explicit modelling of the 

energy services is included in the current version of the model. 

2.2 Land-use 245 

Land-use is represented with a dedicated model, CLASH (Ekholm et al., 2024), which is hard-linked with the rest of the 

SuCCESs IAM. CLASH is a biophysical model that describes the allocation of land area to different uses, including 

production in agriculture and forestry, terrestrial carbon stocks in vegetation and soil, and CH4 and N2O emissions from 

land-use activities. Global land area is divided into ten biomes, and the land area in each can be allocated to different land-

uses, including agriculture, forestry, and primary ecosystems. The biophysical properties of land and vegetation – such as 250 

vegetation carbon density, crop yields and forest growth – are biome-specific and respond to climate change. CLASH is 

parametrized to emulate the dynamic global vegetation model Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-

GUESS) (Lindeskog et al., 2021; B. Smith et al., 2001, 2014) in different future climate scenarios. An overview of CLASH 

is presented in Figure 3. A full description is provided in (Ekholm et al., 2024). 

The energy and materials modules are linked with CLASH through the production of different types of biomass. Crops 255 

satisfy the demand for food crops and livestock feed, but can be used as bioenergy, e.g. as feedstock to crop-to-ethanol 

processes. Wood is produced as three commodities: logs satisfy the material wood demand, pulpwood is used for pulping 

processes to meet paper and board demand, and other wood can be used for energy. The harvest of crops and trees also 

generates agricultural and forestry residues, which can be either collected for energy use, incurring costs and a loss in the 

terrestrial carbon stock, as the harvest residues would otherwise be deposited on the litter carbon stock. The linkage with the 260 

climate module occurs through the CH4 and N2O emissions of agriculture, and through the atmosphere-land carbon flux, 

which is calculated as the change in terrestrial carbon stocks over time. 
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Figure 3: An illustration of the main components in CLASH. Global land-area is divided into 10 biomes, each having different 265 
climatic conditions and thus vegetation growth, crop yields and terrestrial carbon stock dynamics. The area in each biome can be 
allocated to different uses. Cropland is used to produce crops for human consumption, livestock feed and biomass. Secondary 
forests are modelled by age cohorts. Harvesting forests produces timber, pulp wood and energy wood. Terrestrial carbon stocks 
cover vegetation, litter and soil. Vegetation carbon stocks are calculated from the area and biome and land-use specific carbon 
densities. Vegetation produces litter, which partly decomposes into the atmosphere and is partly deposited on soil. Soil carbon 270 
stocks decompose slowly and release carbon dioxide into the atmosphere. The atmosphere-land carbon flux is calculated as the 
change in terrestrial carbon stocks over time. 

2.3 Materials 

In the current model version, the material system covers explicitly the production of main bulk materials, capturing their 

energy and fossil and biogenic raw material needs, and process emissions. The covered materials are steel, concrete, 275 

aluminium, copper, zinc, paper, board, tissue, wood logs and plastics. These were selected due to the high the energy-use, 

emission and land-use impacts of their production. Demand projections are specified for each material. Ongoing model 

development is aimed at extending this by including the dynamics of in-use stocks of materials, including stock decay, waste 

generation and recycling. A longer-term aim is to integrate material and energy systems more closely, so that the capacity 

expansion and retirement are accounted for within the material stocks themselves. 280 

Steel production is represented with four different processes: blast furnaces (with and without carbon capture and storage, 

CCS), direct-reduced iron with electric arc furnaces, and recycled steel using electric arc furnaces. Aluminium, copper and 

nickel production cover similarly both the production of virgin material and the use of scrap metal. The scrap production 

routes require significantly less energy but are constrained by the availability projections of scrap materials in the current 

implementation. 285 

The pulp and paper industry covers the production of three pulp types: chemical pulp, mechanical pulp and recycled pulp; 

and three end-products: paper, board and tissue. Chemical and mechanical pulp require pulpwood as input, although in 

different quantities, and both processes have significantly different electricity and steam requirements. While recycled pulp 

requires much less energy input, it is constrained by the availability of recycled paper. The three end-products require the 
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three pulp types in different ratios, with paper being mostly produced from chemical pulp, board from a mix of three, and 290 

tissue using much more recycled pulp than the paper and board. 

Plastics are divided into two categories: thermoplasts, which are easily recyclable, and thermosets, which are not. Both are 

produced from a fixed mixture of six constituent feedstocks: ethylene, propylene, C4+ olefins, BTX, ammonia and methanol; 

in ratios based on Levi & Cullen (2018). Feedstock production is covered in the refining sector, as described in Section 

2.1.2. These feedstocks also serve as inputs for solvents and other petrochemical products, and ammonia for nitrogen 295 

fertilizer production. 

2.4 Climate 

Climate change is modelled with a simplified representation similar to the climate module of the TIAM model (Syri et al., 

2008). Emissions of CO2, CH4 and N2O increase the gases’ atmospheric concentrations, with CH4 and N2O undergoing first-

order decay processes with atmospheric lifetimes of 9.1 and 131 years, respectively (IPCC, 2013). Natural CH4 and N2O 300 

emissions are from Saunois et al. (2020) and Tian et al. (2024), respectively. A four-reservoir model is used for CO2. 

Differing from other similar representations of atmospheric CO2 dynamics (e.g. that in Syri et al., 2008, or Nordhaus 1993 

and 2017), the representation in SuCCESs climate module covers only the carbon exchange between the atmosphere and 

oceans, as the atmosphere-land carbon flux is already covered by CLASH (Ekholm et al., 2024).  The four-reservoir model 

was calibrated following two guiding principles. First, the steady-state net atmosphere-ocean CO2 transfer profile was 305 

calibrated to match the mean of multiple Earth System Models (ESMs) compared in (Joos et al., 2013). Second, the model’s 

remaining free parameters (the initial amount of carbon in the different ocean reservoirs) were calibrated so that the 

atmospheric CO2 stock simulated with the model corresponds to those from the MAGICC model in three alternative 

emissions scenarios (Meinshausen et al., 2011). With this parametrization, the model produces a present-day net atmosphere-

ocean CO2 flux of 2.5 GtC per year, which is consistent with the 2.8±0.4 GtC range reported by Friedlingstein et al. (2023). 310 

Atmospheric CO2, CH4 and N2O concentrations 𝑃 (𝑡) affect radiative forcing RF(𝑡), which is modelled as a logarithmic 

function of CO2 concentration, and a joint radiative forcing effect from CH4 and N2O concentrations, based on (Ramaswamy 

et al., 2001). Radiative forcing from other sources is given exogenously and equals the average of SSP2-2.6 scenarios. The 

total radiative forcing RF(𝑡) is then the sum of the individual components: 

 315 

RF(𝑡) =  RF (𝑡) + RF (𝑡) + RF (𝑡) + RF (𝑡),     (2) 

RFCO2(𝑡) = 𝛼 ln
𝑃 (𝑡)

𝑃 ,
, 

RFCH4(𝑡) = 𝛽 𝑃 (𝑡)– 𝑃 ,  – 𝑓 𝑃 (𝑡), 𝑃 , – 𝑓 𝑃 , , 𝑃 , ,  

RFN2O(𝑡) = 𝛾 𝑃 (𝑡)– 𝑃 ,  – 𝑓 𝑃 , , 𝑃 (𝑡) – 𝑓 𝑃 , , 𝑃 , , 
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𝑓(𝑃 , 𝑃 ) = 0.47 ln(1 + 2.01 ⋅ 10 (𝑃  𝑃 ) . + 5.31 ⋅ 10  𝑃  (𝑃  𝑃 ) . ), 

 320 

with the parameters α, 𝛽 and 𝛾 from (Ramaswamy et al., 2001). As the functions of radiative forcing are non-linear, they 

were linearized in the average concentration between 2020-2100 in SSP2-RCP2.6 scenario to maintain the linear formulation 

of SuCCESs. 

The change in global mean temperature is calculated using a three-reservoir model adopted from the simple climate model 

FaIR (Leach et al., 2021). The FaIR implementation transforms the reservoirs into a three-component impulse-response 325 

representation, where the temperature change Δ𝑇(𝑡) is the sum of the components 𝑆𝑖(𝑡): 

 Δ𝑇(𝑡) =  𝑆 (𝑡)
∈{ , , }

,     (3) 

𝑆𝑖(𝑡) = 𝑞
𝑖
 𝑅𝐹(𝑡) 1 − 𝑒

−
∆𝑡

𝑑𝑖  +  𝑆𝑖(𝑡 − ∆𝑡)𝑒
−

∆𝑡

𝑑𝑖  

where 𝑞  and 𝑑  are respectively the default radiative response parameters and timescales of FaIRv2.0.0, and ∆𝑡 is the model 

time step, i.e. ten years. 

3 Comparison between historical data, SuCCESs and SSP scenarios  330 

As a demonstration of SuCCESs, we run a baseline scenario and three scenarios with end-of-century targets for radiative 

forcing and compare the model’s main results to historical estimates and SSP2 scenarios with corresponding radiative 

forcings (Riahi et al., 2017; Rogelj et al., 2018). In this setting, SuCCESs finds the least-cost strategy to reach the specified 

radiative forcing level by 2100. To align more closely with the SSP scenarios, we constrain the land-use to match the 

harmonized LUH2 land-use SSP2 scenario (Hurtt et al., 2020). No additional constraints were imposed on the model, such as 335 

limiting the rate of technology deployment or annual investments. We present the comparison in two parts: Section 3.1 

portrays the scenarios produced by SuCCESs under standard parametrization; while Section 3.2, presents a sensitivity 

analysis with a random sampling of the main input parameters, leading to a 1000 scenario sample for each radiative forcing 

target. 

3.1 Scenarios from a standard SuCCESs parametrization 340 

Figure 4 shows the main energy flows from the four SuCCESs scenarios, along with historical values of fossil and biomass 

primary energy supply, electricity use and variable renewable electricity (VRE) from International Energy Agency (2024). 

These are compared to the range of SSP2 scenarios. The SuCCESs results for the year 2020 closely match the IEA statistics 

with a minor exception in bioenergy, which results from that SuCCESs does not include traditional bioenergy use.  

 345 
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Figure 4: Comparison of a) coal, b) crude oil, c) natural gas, d) biomass and e) electricity use, and f) electricity generation by wind 
and solar between historical values (grey), and baseline, RCP4.5, RCP2.6 and RCP1.9 scenarios (indicated by colour) from 
SuCCESs (thick lines) and other IAMs from the SSP database (thin lines, with shaded areas indicating the range). 
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When compared with the SSP scenarios, the most notable differences occur with the baseline scenario without a radiative 350 

forcing target. Whereas coal use increases steadily in the SSP baseline scenarios and VRE generation remains modest, the 

converse happens in the SuCCESs baseline. This reflects the recent and rapid decline in wind and solar power costs, which is 

accounted for in the SuCCESs technology parametrization, but assumably occurs only later in the SSP scenarios. Natural gas 

use, however, grows strongly in the SuCCESs baseline, as it offers a low-cost solution to cover the gap between the variable 

wind and solar generation and demand. Oil use remains approximately at current levels in the SuCCESs baseline, driven by 355 

efficiency improvements and electrification in transportation, whereas most SSP2 baseline scenarios project increasing oil 

use. 

In the scenarios with radiative forcing targets, the SuCCESs scenarios exhibit many key features of the SSP2 mitigation 

scenarios: fossil fuel use declines, with coal having the most pronounced effect; while biomass use, electrification and VRE 

generation increase with more stricter climate targets. The SuCCESs scenarios do not exhibit a full phase-out of crude oil 360 

and natural gas, however, and biomass use remains lower than in the SSP2-1.9 scenarios. These stem from the absence of 

transportation biofuels in the SuCCESs solutions, as transportation energy demand is satisfied with electricity and some 

residual fossil fuel use. Although the presented scenarios included land-use constraints that restrict maximum bioenergy 

potentials, we have made similar observations in mitigation scenarios without constrained land-use. This suggests that 

SuCCESs prefers biosphere carbon sink enhancement over cropland expansion and biofuel production as a cost-effective 365 

mitigation measure. 

Figure 5 presents similar comparisons for CO2 emissions from fossil fuels and industrial processes, net CO2 emissions from 

land-use, and anthropogenic CH4 and N2O emissions. For land-use emissions, we present the net CO2 emissions from 

managed land and deforestation, rather than presenting total CO2 flux between the atmosphere and terrestrial ecosystems. 

Historical estimates for these emissions are drawn from the IGCC (Smith et al., 2023) and PRIMAP-hist (Gütschow et al., 370 

2016, 2024) datasets. The SuCCESs results align well with the historical estimates, particularly when considering the notable 

uncertainty in land-use CO2 emissions and anthropogenic CH4 and N2O emissions. 

When comparing to the SSP2 scenarios, baseline fossil CO2 emissions show a difference similar to what was observed with 

fossil fuel use in Figure 4. However, in scenarios with a radiative forcing limit, SuCCESs results align well with the range of 

their SSP2 counterparts. Net CO2 emissions from land-use exhibit a declining trend in line with both the historical estimates 375 

and SSP2 scenarios, with stricter radiative forcing targets leading to negative land-use emissions by mid-century. Baseline 

CH4 emissions remain lower than in the SSP2 scenarios particularly due to a lower projected headcount of ruminant 

livestock. Similarly, baseline N2O emissions remain lower than in the SSP2 scenarios, primarily due to the more modest 

growth of cropland N2O emissions. The current implementation for cropland N2O emissions in SuCCESs is to apply a 

constant emission factor for the cropland area, which doesn’t account for e.g. changes in nitrogen fertilizer application over 380 

time. One direction for future model development is a better integration of nitrogen fertilizer use, crop yields, and cropland 

N2O emissions, which is likely to correct this difference between scenarios. 
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Figure 5: Comparison of a) fossil and industry CO2 emissions, b) land-use CO2 emissions, c) CH4 emissions and d) N2O emissions 385 
between historical estimates (grey), and baseline, RCP4.5, RCP2.6 and RCP1.9 scenarios (indicated by colour) from SuCCESs 
(thick lines) and other IAMs from the SSP database (thin lines, with shaded areas indicating the range). 

3.2 Sensitivity analysis 

The purpose of IAMs is to explore a range of potential futures, and each resulting scenario is always a function of the model 

structure and input data. Therefore, the scenarios presented above in Section 3.1 are only a small subset of possible futures 390 

that SuCCESs can produce. Given that SuCCESs is computationally lightweight2, it can easily run a large set of scenarios, 

allowing for a broad scenario exploration across a wide range of alternative futures. 

 
2 A single run with the current model version takes approximately 10 seconds with a standard laptop using CPLEX solver. 

2000 2020 2040 2060 2080 2100

-2
0

0
2

0
4

0
6

0
8

0

F
o

ss
il 

C
O

2
 (

G
t y

e
a

r−
1 )

a)

2000 2020 2040 2060 2080 2100

-1
0

-5
0

5

L
a

n
d

−
u

se
 C

O
2 
(G

t 
ye

a
r−

1 )

b)

2000 2020 2040 2060 2080 2100

0
1

0
0

3
0

0
5

0
0

7
0

0

C
H

4 
(M

t 
ye

a
r−

1
)

c)

2000 2020 2040 2060 2080 2100

0
5

10
15

2
0

2
5

N
2O

 (
M

t 
ye

a
r−

1 )
d)

Historical RCP1.9 RCP2.6 RCP4.5 Baseline

SuCCESs SSP2 scenarios

https://doi.org/10.5194/gmd-2024-196
Preprint. Discussion started: 29 October 2024
c© Author(s) 2024. CC BY 4.0 License.



   

 

17 
 

To demonstrate this, and to assess how sensitive SuCCESs is to changes in input assumptions, we conducted a simple 

sensitivity analysis where the main input parameters are varied around their default values using Monte Carlo sampling, after 

which the model is solved for the radiative forcing targets as in Section 3.1. We are aware of a single study (Panos et al., 395 

2023) where a process-based, bottom-up IAM has been used with Monte Carlo sampling, using a sample size of 1000 for 

four scenario families. Our approach is similar in that we also run 1000 scenarios for each radiative forcing target. However, 

the implementations differ slightly. The aim of Panos et al. (2023) was to quantify future uncertainty resulting from 

parameter uncertainty, therefore using realistic probability distributions for the input parameters to represent this uncertainty. 

As our aim is to investigate the sensitivity of SuCCESs to changes in input parameters, we vary each parameter within a 400 

uniformly sampled +/-20% range around its default value. For production technologies, the varied parameters include 

variable and capital costs, input-activity ratios, capacity factors, lifetimes, and start years. For land-use we varied the 

vegetation carbon densities, crop yields and forest fire probabilities; and for model-wide parameters the discount rate, 

projected commodity and service demands, and the amount of fossil fuel resources. No correlations are set between different 

parameters’ variations. The +/-20% range was chosen, as it spans small variations that are plausible (e.g. the capital cost of 405 

wind power in 2050 is 960 $/kW instead of 1200 $/kW), but which can still be large-enough to affect the results. The 

variation of future demands required us to relax the land-use constraints, whereby the lower bound of cropland, pasture and 

secondary forest areas in each biome were set to 90% of the LUH2 SSP2 scenario values. 

Similar to the results in Section 3.1, the results for main energy flows are presented in Figure 6 and GHG emissions in Figure 

7. Even relatively small changes in the input parameters induce large changes in fossil fuel use in the baseline scenario, with 410 

the SuCCESs scenario ensemble spanning a wider range than the SSP2 scenarios used as a reference here. Natural gas use 

increases strongly in many scenarios without a radiative forcing target, and these scenarios also exhibit high electricity 

consumption and low generation with coal and wind. In scenarios with stricter radiative forcing targets, the range of fossil 

fuel use is more constrained. The range of electricity use and VRE generation in the SuCCESs ensemble spans most of the 

range that the SSP2 ensemble covers. However, the scenario ensemble members exhibit bioenergy use that reaches only the 415 

lower range of SSP2-1.9 scenarios in 2100. Nevertheless, electricity use, VRE and bioenergy are more prominent in 

scenarios with more strict radiative forcing targets. 

Similarly, CO2 emissions from fossil fuel and industry (Figure 7) vary widely in the baseline scenario ensemble, but are 

effectively constrained by the radiative forcing target. Net CO2 emissions from managed land show less variations across the 

different radiative forcing cases, but lower radiative forcing targets consistently lead to more negative emissions during the 420 

latter half of the century. Some ‘spikes’ appear in certain periods, resulting from forest clearing in that period, and these 

occur jointly with the increase of biomass use observed in Figure 6 panel d). The behaviour of CH4 and N2O emissions is 

more stable, responding predictably to the radiative forcing targets.  
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Figure 6: Comparison of a) coal, b) crude oil, c) natural gas, d) biomass and e) electricity use, and f) electricity generation by wind 425 
and solar between historical values (grey), and baseline, RCP4.5, RCP2.6 and RCP1.9 scenarios (indicated by colour) from 
SuCCESs (lines) and the range from other IAMs’ results in the SSP database (shaded areas). 
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 430 

Figure 7: Comparison of a) fossil and industry CO2 emissions, b) land-use CO2 emissions, c) CH4 emissions and d) N2O emissions 
between historical estimates (grey), and baseline, RCP4.5, RCP2.6 and RCP1.9 scenarios (indicated by colour) from SuCCESs 
(lines) and the range from other IAMs’ results in the SSP database (shaded areas). 

4 Using the model 

The SuCCESs IAM is openly available on GitHub3, where further practical instructions on using the model can be found. To 435 

run the model, General Algebraic Modeling System (GAMS) and a suitable optimization solver are required. Although a 

linear programming (LP) solver is preferred to take advantage of the model's linear formulation, we have also run the model 
 

3 https://github.com/SuCCESsIAM/SuCCESsIAM 
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successfully with nonlinear (NLP) solvers. Straight out of the box, the model produces results that closely align with the 

baseline scenario presented in Section 3.1. SuCCESs has a minimal number of ‘custom’ constraints that steer the scenarios 

toward specific behaviour. Instead, modellers can introduce additional constraints related to land-use, climate variables, 440 

technological deployment, and other factors as needed in each modelling experiment. Alternative scenario specification can 

be created by varying the input parameters, as demonstrated through Monte Carlo sampling in Section 3.2. The main file, 

‘SuCCESs.gms’, includes a dedicated section where scenario files containing additional constraints or parameter variations 

can be introduced. 

To assist new users in exploring the SuCCESs model output, a Python toolbox is also available for download on GitHub4. 445 

The toolbox includes instructions for getting started, a list of the essential output variables with descriptions, and ready-to-

use python code for data processing and plotting. The README file within the GitHub repository provides guidance on 

setting up the toolbox, including troubleshooting tips for installing the necessary gdx-pandas package, which is required for 

reading GAMS model output in the GDX format. 

The toolbox is organized into multiple python files categorized by topic. We strongly recommend that new users closely 450 

follow the import function of the toolbox (import_gdx.py), which cleans and filters the data in various ways and filters out 

the essential output variables (essential_outputs.txt). Other files contain basic calculations and aggregations, such as 

converting GHG emissions to CO2-equivalents. The basic plotting functions within the toolbox serve three primary purposes: 

first, to demonstrate the various types of outputs; second, to provide a starting library for users' own analyses; and third, to 

offer a quick control tool for verifying the plausibility of model runs. It is important to note that the plotting functions are not 455 

exhaustive but serve as a foundation for further customization. Finally, the toolbox features a Jupyter notebook tutorial 

(tutorial.ipynb) that showcases all provided functions and plots, facilitating an intuitive learning experience for new users. 

5 Conclusions 

SuCCESs is a bottom-up, global IAM with hard-linked energy, materials, land-use and climate modules. Its key novelty is in 

the hard-linked integration of energy, material, and climate modules, as well as a comprehensive land-use model, coupled 460 

with an intertemporal optimalization solution (Keppo et al., 2021). While most models operate with 11 to 61 regions (Keppo 

et al., 2021), SuCCESs adopts a more aggregated approach by representing the world as a single region, but preserving some 

regional detail in land-use through the 10 climate zones of CLASH. This simplified geographic resolution – together with the 

linear programming implementation of the intertemporal optimization problem – makes SuCCESs computationally 

lightweight: a single scenario run takes roughly 10 seconds on a standard laptop using the CPLEX solver. 465 

When running scenarios with radiative forcing targets for year 2100 (van Vuuren et al., 2011), SuCCESs produced results 

that closely match historical estimates of energy use and GHG emissions, and align well with the range of scenarios 

 
4 https://github.com/SuCCESsIAM/SuCCESsIAM-toolbox  
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observed in the SSP scenario ensemble (Riahi et al., 2017). However, SuCCESs also differs from the SSP scenario ensemble 

in some respects: SuCCESs scales down coal power and uses more wind and solar energy already in its baseline, relies less 

on bioenergy for mitigation, and does not phase-out crude oil or natural gas fully even under the ambitious 1.9 Wm-2 470 

radiative forcing target.  

Yet, the sensitivity analysis of Section 3.2 revealed that some of these observations are features of the default model 

parameterization. Even small to moderate variations in input parameters (up to +/-20%) can result in a diverse set of 

scenarios, spanning in some cases a broader range than those observed in the SSP scenario ensemble. This is reminiscent of 

the fact that any given model is not fixated to a set of results, but translates inputs into outcomes, with results that are 475 

inherently dependent on the underlying input data and assumptions. As model inputs are bound to change over time through 

updates, we chose not to present much of the input data here in the paper, as they are likely to become outdated. This 

observed diversity in the resulting scenarios also aligns with one of the main purposes of IAMs and scenario models in 

general: to explore a broad range of potential futures and illuminate the long-term consequences of different policy and 

technology pathways (Trutnevyte et al., 2016).  480 

SuCCESs’ computational efficiency makes it particularly well-suited for large-scale scenario explorations. For instance, as 

demonstrated in Section 3.2, it can easily produce large scenario ensembles e.g. through Monte Carlo sampling – an 

approach rarely applied in bottom-up IAM. We know so far only one study where a bottom-up IAM has been run with 

Monte Carlo sampling (Panos et al., 2023). Looking ahead, the model could be extended to a stochastic programming 

framework, allowing it to endogenously acknowledge the uncertainty and learning on selected input parameters and find 485 

optimal hedging strategies to mitigate risks, e.g. in climate sensitivity and future technologies  (e.g. as in Schaber et al., 

2024). We know a few such experiments carried out with bottom-up IAMs, although with relatively limited scenario trees 

focusing on a single source of uncertainty (Labriet et al., 2012; Loulou & Kanudia, 1999; Syri et al., 2008). 

This paper documents the initial version of SuCCESs and some early scenario experiments. Current model development 

focuses on expanding the material module to include in-use stocks of materials and creating a regionalized version of the 490 

model with more detailed representation of the electricity system. Additional to broadening the model scope and improving 

its representation of the world, we are working on how the model is used, e.g. doing large-scale scenario exploration and 

analysing the preconditions for selected future events. We believe that broadening the existing set of models, models’ scope 

and innovative modelling approaches can yield new insights into diverse pathways the world could take towards a 

sustainable future. This can lead to even more valuable tools for exploring such possibilities and guiding decision-makers 495 

through complex questions regarding sustainability and climate policy. 

 

Code availability. The current version of SuCCES is available in GitHub: https://github.com/SuCCESsIAM/SuCCESsIAM 

under the MIT License. We have archived on Zenodo the version used in this paper (DOI: 10.5281/zenodo.13981520), as 

well as the results and scripts used to plot the results in Section 3 (DOI: 10.5281/zenodo.13981206). 500 
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