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Abstract.  Regional  ocean  models  enable  generation  of  computationally-affordable  and  regionally-tailored

ensembles  of  near-term  forecasts  and  long-term  projections  of  sufficient  resolution  to  serve  marine  resource

management. Climate change, however, has created marine resource challenges, such as shifting stock distributions,

that  cut  across  domestic  and  international  management  boundaries  and  have  pushed  regional  modeling  efforts

toward “coastwide” approaches. Here we present and evaluate a multidecadal hindcast with a Northeast Pacific

(NEP) regional  implementation of  the Modular  Ocean Model  version 6 with sea ice  and biogeochemistry that

extends from the Chukchi Sea to the Baja California Peninsula at 10-km horizontal resolution (MOM6-COBALT-

NEP10k, or “NEP10k”). This domain includes an Arctic-adjacent system with a broad shallow shelf seasonally

covered by sea ice (the Eastern Bering Sea, EBS), a sub-Arctic system with upwelling in the Alaska Gyre and

predominant downwelling winds and large freshwater forcing along the coast (the Gulf of Alaska, GoA), and a

temperate, eastern boundary upwelling ecosystem (the California Current Ecosystem, CCE). The coastwide model

was able to recreate seasonal and cross-ecosystem contrasts in numerous ecosystem-critical properties including

temperature, salinity, inorganic nutrients, oxygen, carbonate saturation states, and chlorophyll. Spatial consistency

between modeled quantities and observations generally extended to plankton ecosystems, though small to moderate

biases were also apparent.  Fidelity with observed zooplankton biomass,  for example,  was limited to first-order

seasonal and cross-system contrasts. Temporally, simulated monthly surface and bottom temperature anomalies in

coastal regions (< 500m deep) closely matched estimates from data-assimilative ocean reanalyses. Performance,

however, was reduced in some nearshore regions coarsely resolved by the model’s 10-km resolution grid, and the

time  series  of  satellite-based  chlorophyll  anomaly  estimates  proved  more  difficult  to  match  than  temperature.

System-specific  ecosystem  indicators  were  also  assessed.  In  the  EBS,  NEP10k  robustly  matched  observed

variations, including recent large declines, in the area of the summer bottom water “cold pool” (< 2 °C) which exerts

a profound influence on EBS fisheries. In the GoA, the simulation captured patterns of sea surface height variability

and variations in thermal,  oxygen and acidification risk associated with local modes of  inter-annual to decadal

climate variability. In the CCE, the simulation robustly captured variations in upwelling indices and coastal water

masses, though discrepancies in the latter were evident in the Southern California Bight. Enhanced model resolution

may reduce such discrepancies, but any benefits must be carefully weighed against computational costs given the

intended use of this system for ensemble predictions and projections. Meanwhile, the demonstrated NEP10k skill

level herein, particularly in recreating cross-ecosystem contrasts and the time variation of ecosystem indicators over

multiple decades, suggests considerable immediate utility for coastwide retrospective and predictive applications. 

1 Introduction

The western coasts of the continental U.S., Canada, and Mexico form the eastern bounds of the North Pacific Gyres,

which substantially impact North American climate and support a diverse assemblage of ecosystems, species and

resources. This includes valuable fisheries that represented roughly 42% of the $4.6 billion in commercial U.S.

domestic landings in 2020 (National Marine Fisheries Service, 2022). Management of these interconnected, multi-
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scale marine resources presents a challenge, particularly with the growing need to account for changing climate and

ocean conditions. Ocean warming, acidification and deoxygenation stand to fundamentally alter coastal ecosystems

(Gruber, 2011), potentially driving fluctuations in living marine resource abundance due to habitat range shifts (e.g.,

Pinsky et al., 2013; Smith et al., 2021; Chasco et al., 2022), recruitment and fish size changes (e.g., Holsman et al.,

2019; Litzoe et al., 2022), and heightened competition and predation from invasive species (Zeidberg & Robinson,

2007; Compton et al., 2010; Grosholz et al., 2000). Additionally, extreme events such as marine heatwaves and

harmful algal blooms can degrade foundational habitats and compromise water quality (e.g., McPherson et. al, 2021;

Rogers-Bennett & Catton, 2019; Anderson et al., 2015).

Numerical ocean models facilitate both the understanding of difficult-to-observe ocean and ecosystem dynamics,

and the forecasting and projection of near-to-long term ocean conditions. Previous regional modeling efforts in the

Northeast Pacific Ocean have contributed considerably to our understanding of the Bering Sea (Cheng et al. 2015;

Danielson et al., 2011; Hermann et al., 2013; Hermann et al., 2016; Kearney et al., 2020; Pilcher et al., 2019), Gulf

of Alaska (Hermann et al. 2009; Hinckley et al. 2009; Cheng et al. 2012; Coyle et al. 2012, 2019; Hauri et al., 2020;

Hauri et al., 2024; Danielson et al., 2020), and the California Current System (Marchesiello et al., 2001; DiLorenzo

et al., 2005; Gruber et al., 2006; Veneziani et al., 2009; Neveu et al., 2016; Van Oostende et al., 2018; Dussin et al.,

2020; Deutsch et al., 2021; Renault et al., 2021) and broader NEP domain (Desmet et al., 2022; Desmet et al., 2023).

Predictions and projections from these regionally-tailored ocean models have also been enlisted to understand and

anticipate living marine resource responses to climate variability and change (e.g., Gruber et al., 2012; Hermann et

al., 2016; Holsman et al., 2020; Siedlecki et al., 2016; Howard et al., 2020; Pozo Buil et al., 2021; Pilcher et al.,

2022; Jacox et al., 2023). In a growing number of cases, applications have been extended to management (e.g.,

Anderson et  al.,  2016; Brodie et  al.,  2023; Hollowed et  al.,  2024; Punt et  al.,  2021; Smith et  al.,  2023).  Such

applications  have  been  hampered,  however,  by  the  use  of  relatively  small  domains  and  limited  ensembles  to

characterize uncertainties. Climate change impacts and species responses traverse the bounds of those domains thus

motivating an integrated “coastwide” modeling framework with rigorously defined uncertainties. 

A key challenge is thus configuring a “coastwide” modeling framework with sufficient resolution and complexity to

adequately  represent  fisheries-critical  ocean  features  across  the  full  domain  while  also  maintaining  low

computational cost conducive to generating ensembles (Drenkard et al., 2021). This challenge is made more acute

by the diversity  of  NEP ecosystems and the  mechanisms by which climate  shapes them. The Bering Sea,  for

example, features one of the world’s broadest shallow continental shelf environments which supports benthic and

demersal fisheries that are amongst the most productive in the world (National Research Council, 1996). These

fisheries, however, have proven to be highly sensitive to temperature and food fluctuations in these shallow habitats

(Hunt et al., 2002, 2011). Recent warming and reduced food supply in the eastern Bering Sea, for example, was

linked to the collapse of the snow crab fishery (Szuwalski et al., 2023). Productivity as well as benthic and pelagic

habitat fluctuations on the eastern Bering shelf are further linked to coupled ocean and sea ice dynamics (Mueter and

Litzow, 2008; Brown and Arrigo, 2013; Hunt et al., 2022), presenting an additional challenge for ocean modeling

systems intended for fisheries applications in this region.
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In the Gulf of Alaska, downwelling winds and abundant freshwater input prevail and contribute to a strong cyclonic

circulation  of  the  Alaska  Gyre  (Stabeno  et  al.,  2004).  Despite  this  predominance  of  downwelling  winds,  the

confluence of the high nitrate waters of the basin with the high iron waters of the shelf (assisted by shelf-break

eddies), as well as upwelling of nitrate by wind stress curl, promote high production in the coastal GoA (Stabeno et

al., 2004; Hermann et al. 2009; Coyle et al. 2019). While effects of the El-Nino Southern Oscillation (ENSO) can be

found (e.g., Bailey et al.,1995; Whitney and Welch, 2002), lower frequency modes of decadal climate variability are

predominant (e.g., Di Lorenzo et al., 2008) and have contributed to marked decadal-scale ecosystem regime shifts

(Anderson and Piatt, 1999; Hare and Mantua, 2000) and modulated fisheries and ecosystem risks (Hauri et al.,

2021b, 2024). Cold water temperatures and the proximity of north Pacific basin waters which are exceptionally rich

in dissolved inorganic carbon (DIC) make the Gulf of Alaska particularly susceptible to ocean acidification (Fabry

et al., 2009; Byrne et al., 2010; Mathis et al., 2015). Periodic on-shelf intrusions of DIC-rich deep Pacific water can

suppress the aragonite and calcite saturation states and stress commercially important crab and shellfisheries (Ladd

et  al.,  2005).  Increased  freshwater  input  due  to  deglaciation,  which  is  naturally  low  in  alkalinity,  may  also

exacerbate coastal acidification trends (Reisdorph and Mathis, 2014; Evans et al., 2014). In off-shore waters, the

iron supply strongly modulates  ocean productivity,  though the  impacts  of  such variations on fisheries  remains

speculative (Lippiatt et al., 2010; McKinnell, 2013; Kearney et al., 2015).

The California Current is one of the four major eastern boundary upwelling systems in the global ocean (Hill et al.,

1998). Marine resource fluctuations are inextricably linked to variations in the timing, strength and source waters of

this seasonal upwelling (e.g., Bograd et al.,  2009). ENSO strongly influences the physical,  biogeochemical  and

marine resource dynamics of the California Current (Ohman et al., 2017; Turi et al., 2018; Cordero-Quirós et al.,

2022) through diverse atmospheric and oceanic teleconnection pathways (Alexander et al., 2002; Jacox et al., 2015;

Frischknecht  et  al.,  2015).  While  a  narrow shelf  and  modest  riverine  inputs  over  much of  the  coast  give  the

California Current an oceanic character, the system nonetheless supports significant benthic and demersal fisheries

which are periodically subject to heightened hypoxia and acidification risks common in upwelling systems (Bograd

et al., 2008; Hauri et al., 2009; Wolfe et al., 2023). The considerable productivity generated by coastal upwelling

also  supports  climate-sensitive  forage  fish,  highly  migratory  species,  and  top  predators  that  are  ecologically,

economically, and culturally important. Projections suggest that upwelling strength, seasonality and source water

properties may shift with climate change (Rykaczewski & Dunne, 2010; Rykaczewski et al., 2015; Sydeman et al.,

2014; Pozo Buil et al., 2021) and significantly alter ecosystem productivity and fisheries (McClatchie et al., 2010;

Bograd et al. 2023; Jacox et al. 2024). 

Here  we  present  a  regional  implementation  of  the  modular  ocean  model  (MOM6)  with  coupled  sea  ice  and

biogeochemistry spanning the NEP and assess the degree to which this system can capture fisheries-critical mean

patterns and fluctuations across the diverse ecosystems of the NEP. We evaluate the model’s capacity to represent

both large-scale contrasts in ecologically important variables across ecosystems, and variations in fisheries-oriented

diagnostics  within  each  ecosystem.  We  also  assess  computational  costs  to  ensure  the  feasibility  of  ensemble

predictions.  We  conclude  with  an  assessment  of  the  model’s  current  utility  for  fisheries  applications,  and  a
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discussion of priority developments for addressing model biases in order to maximize future utility in informing

fisheries and ecosystem decisions.

2 Methods

2.1 Physical model configuration

The NEP model  domain (Fig.  1)  is  designed to cover  the  western coast  of  the  continental  United States  and

contiguous regions. It extends from 10.8°N-80.7°N and 156.6°E-105.0°W, measuring 3320 ± 126 km by 7764 ± 58

km (mean ± standard deviation) in the off- and along-shore dimensions, respectively. The model is integrated on an

orthogonal curvilinear grid that consists of 342x816 tracer cells with horizontal resolution averaging 9.7 km ± 0.5

km and a minimum bathymetric depth of 10 m. The domain has 4 open boundaries, the longest of which arcs

through the Pacific  Ocean and is referenced as  the “western” boundary. In  the vertical,  the model uses  75 z*

coordinates, which are approximately consistent with depth-from-mean-sea-level but are stretched by variations in

sea surface height across all water column layer thicknesses rather than isolating that variability in the surface layer

(Adcroft, A. & Campin, 2004). We prescribe a layer thickness of 2 m from the surface to 8 m depth, between 2.01 m

to 2.34 m thickness between 8 and ~31 m depth, then with spacing gradually increasing to 250 m in the deepest

portions of the model domain. Bathymetry for the NEP10k domain was derived from the 2020 General Bathymetric

Chart of the Oceans (GEBCO Bathymetric Compilation Group, 2020), and is not vertically rounded or truncated.

MOM6 does not need the topography to conform to the vertical level thicknesses but instead can let the bottommost

non-vanished layer vary in thickness to match the topography, and then collapse the layer to zero thickness when the

model level incrops against the topography. Simulations used a baroclinic time step of 400 seconds and a variable

barotropic timestep set to maintain stability (Hallberg, 1997; Hallberg and Adcroft, 2009). A longer, 1200 second

time step was used for thermodynamic and biogeochemical tracer calculations as thermodynamic processes tend to

evolve more slowly than the dynamic ones. Past studies have used a longer time step for these processes without

compromising their representation while reducing the overall computation time (e.g., Ross et al., 2023). The success

of this strategy for the NEP10k domain will be assessed herein. 
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Figure 1: NEP10k domain and bathymetry. NEP10k domain and bathymetry with a log normal color scale to emphasize
priority  coastal  regions.  White  coloration  indicates  non-ocean  (i.e.,  masked)  grid  cells  that  are  not  computed  in  model
integrations, which include the Sea of Okhotsk. The agglomerate land mask is outlined in black. Red lines indicate the areas that
are spatially averaged for regional shelf temperature and chlorophyll timeseries. These regions, from north to south, are the
Bering Sea (BS), Gulf of Alaska (GoA), British Columbia (BC), Northern California Current System (NCCS), Central California
Current System (CCCS), and Southern California Current System (SCCS). 
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The core components of the physical ocean model, Modular Ocean Model 6 (MOM6), are described in Adcroft et al.

(2019). A full account of the parameterization choices implemented for the simulations presented in this study can

be found in the supplemental material (MOM_parameter_doc.all). Here we elaborate on a few choices (Table A1),

highlighting consistencies and contrasts with the recently published Northwest Atlantic configuration documented in

Ross et al. (2023). As in Ross et al. (2023), ocean boundary layer mixing, specifically vertical turbulent mixing

coefficients in the surface layer, are parameterized using the energetic planetary boundary layer (ePBL) scheme

developed by Reichl and Hallberg (2018). However, unlike Ross et al., (2023) we switched to the submesoscale

mixing and restratification scheme of Bodner et al. (2023) from that of Fox-Kemper et al. (2011). The Bodner

parameterization has the advantage of dynamically calculating the submesoscale front length (i.e. the length scale

perpendicular  to  the  front),  which  can  vary  significantly  seasonally  and  latitudinally  across  the  ecosystems

represented in  NEP10k (Bodner  et  al.,  2023).  In  the  ocean  interior  below the  surface  boundary  layer,  mixing

primarily depends on the shear-driven turbulence mixing scheme of Jackson et al. (2008). The standard Jackson

formulation,  however,  was  found  to  overmix  some  shelf  regions  subject  to  strong  tidal  motions.  This  was

ameliorated by including a scaling factor for the turbulent decay length scale. Bottom drag and horizontal viscosities

were  parameterized  as  in  Ross  et  al.  (2023).  Unlike  Ross  et  al.  (2023),  the  background  kinematic  viscosity

parameter, KV, was set to 0.0 m2 s-1; this parameter is intended to supplement the existing dynamic viscosity (based

on the diapycnal diffusivity, KD) and was determined to be unnecessary for this application. Sea ice is modeled with

Sea Ice Simulator version 2 (SIS2, Adcroft et al., 2019). This sea ice model uses 5 sea-ice thickness categories and

no  explicit  ridging  scheme.  The  sea  ice  rheology  is  an  elastic-viscous-plastic  scheme  (Hibler,  1979)  and  a

directionally split piecewise constant advection scheme for thickness. The delta-Eddington radiation scheme is used

and the internal thermodynamics are enthalpy conserving (Briegleb and Light, 2007). 

2.2 Physical model forcing 

The ocean hindcast  simulation was run from 1993 through 2019 on NOAA’s GAEA supercomputer,  which is

housed  and  managed  in  partnership  with  the  Department  of  Energy  through  the  National  Climate-Computing

Research Center. Hourly atmospheric forcing for NEP10k was prescribed from the European Centre for Medium-

range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5; Hersbach et al., 2020). The bulk formulae of Large and

Yeager (2004) were used to calculate latent and sensible heating after adjusting to the 2m ERA5 reference height.

Light attenuation and associated heating within the water column is calculated from Manizza et al. (2005) using

dynamically varying chlorophyll from the biogeochemical model (Section 2.3).

Daily freshwater runoff is prescribed using output from the Global Flood Awareness System, version 4.0 (GloFAS;

Harrigan  et  al.,  2020;  Grimaldi  et  al.,  2022)  -  a  hydrological  inundation  model  that  is  also forced by  ERA5.

Freshwater discharge at ocean-adjacent “pit cells” in GloFAS was remapped to the nearest MOM6 coastal ocean

grid cells. “Pit cells” are GloFAS grid cells where the local drain direction indicates that only inward water flow

occurs and is therefore a point of accumulation (e.g., lakes) or a point of egress to the ocean via either ocean

adjacency  or  connectivity  through  other  “pit  cells”  (e.g.,  wetlands).  For  the  Gulf  of  Alaska,  we  substituted
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freshwater  discharge  from  Beamer  et  al.,  (2016;  data  served  by  David  Hill,  OSU),  a  model  dedicated  to

representation  of  freshwater  discharge  and  glacier  mass  balance  in  Alaska,  with  calibration  against  observed

watersheds. 

Open lateral  boundary and initial  conditions for  temperature,  salinity,  sea surface height  and momentum were

prescribed as daily means from the 1/12° Global Ocean Physics Reanalysis (GLORYS12; Jean-Michel et al., 2021).

Tidal  forcing was prescribed at  the boundaries using amplitude and phase from the Global tidal  elevation and

transport atlas version 9 (TPXO; Egbert and Erofeeva, 2002). Tides were implemented as in Ross et al., (2023) with

four semidiurnal constituents (M2, S2, N2, K2), four diurnal constituents (K1, O1, P1, Q1), and two long-period

constituents (Mm and Mf). Initial and boundary conditions were regridded to the NEP domain using the xesmf

python software package (Zhuang et al., 2023). Boundary conditions are imposed as in Ross et al. (2023), with

barotropic flows handled with a  Flather (1976) boundary condition while baroclinic flows are handled with an

Orlanski (1976) radiation condition; lateral boundary forcing also applies nudging and tracer reservoirs (the latter

retains a memory of water properties exchanged with the modeling domain rather than instantaneous forcing; see

Ross et al., 2023 for more details). No nudging was included in the interior of the domain. 

2.3 Biogeochemical model configuration

Biogeochemistry  is  simulated  using  version  3.0  of  the  Carbon,  Ocean  Biogeochemistry  and  Lower  Trophics

(COBALTv3.0)  model  (Stock  et  al.,  submitted;  Ross  et  al.,  2023).  COBALTv3.0  includes  40  prognostic  state

variables to capture plankton food web dynamics and the cycling of carbon, nitrogen, phosphorus,  iron, silica,

calcium carbonate,  and  lithogenic  material  in  ocean  and  coastal  environments.  COBALTv3.0  builds  on  prior

COBALT formulations  (Stock  et  al.,  2014;  2020)  by  adding  a  third  phytoplankton  size  class  following  Van

Oostende et al., (2018). The resulting small, medium and large sizes correspond to the canonical pico-, nano- and

microplankton size classes defined by Sieburth et al., (1978) and enable COBALT to better resolve the range of

phytoplankton  communities  from  oligotrophic  gyres  to  intensely  productive  upwelling  systems.  These  join

diazotrophs to give a total of 4 phytoplankton functional types to go along with a plankton food web including 3

zooplankton functional types and free living bacteria (Stock et al., 2014; 2020). Additional flexibility in zooplankton

feeding, direct  phytoplankton sinking, and improved photoadaptation and photoacclimation dynamics were also

added (Stock et al., submitted) and the formulation enlists an adaptation of the dynamic N:P ratio scheme proposed

by Galbraith and Martiny (2015) and initially presented in Ross et al. (2023).

Initial and boundary conditions for biogeochemistry were drawn from the same sources as Ross et al. (2023). The

2018 World Ocean Atlas was used for macronutrients (NO3, PO4, SiO4) and oxygen (O2), with seasonal averages

above 800m and annual climatologies below (Boyer et al., 2019; García et al., 2019a,b). The Empirical Seawater

Property Estimation Routines Locally Interpolated Regressions (ESPER_LIR) presented by Carter et al. (2021) were

used to provide initial and time varying boundary conditions for dissolved inorganic carbon and alkalinity. The input

values used for this calculation were the location, temperature, salinity and date. Boundary conditions for other
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tracers, which generally come into more rapid equilibrium with interior conditions, were drawn from an earlier

global ocean hindcast (Stock et al., 2014).

River carbon, alkalinity, nutrients (N, P, and Si) and oxygen inputs were derived by combining the River Chemistry

for US Coast (RC4USCoast) database (Gomez et al., 2023) for U.S. Waters in the Continental United States, the

Global River Chemistry database (GLORICH, Hartmann et al., 2019) for subarctic/Canadian waters, and the Arctic

Great Rivers Observatory (ArcticGro, 2024; Holmes et al., 2012). To force COBALT, riverine nutrient inputs are

needed for dissolved inorganic and organic nitrogen and phosphorus, particulate nitrogen, phosphorus, and iron.

Direct information on dissolved and particulate organic nutrient inputs was not available in all cases. In cases where

one or  both of  these values  were missing, the ratio  of dissolved and/or  particulate organic inputs to  dissolved

inorganic nitrogen was estimated from the GlobalNEWS database (Mayorga et al., 2010). This NEWS-derived ratio

was then multiplied by the observed inorganic nitrogen to estimate dissolved and particulate organic fluxes in a

manner  that  preserved  their  relative  importance  but  avoided  regional  biases  in  global  N-load  models  such  as

GlobalNEWS. Dissolved organic nitrogen and phosphorus was partitioned into 40% labile, 30% semi-labile and

30% semi-refractory components in COBALT to be consistent with mean tendencies reported by Wiegner et al.

(2006). Particulate phosphate is often the largest P source in rivers, but much of it is buried in nearshore waters

before reaching the ocean. Following Froelich (1988), we assumed that 30% of the particulate phosphorus was

mobilized in estuarine sediments to phosphate, with the rest buried. Iron concentrations for all rivers were set to 70

nM (de Baar and de Jong, 2001). As in Ross et al., 2023, atmospheric CO 2 was set using the monthly historical time

series of Meinshausen et al. (2017) updated after 2014 using SSP2-4.5 scenario values (Meinshausen et al., 2020),

and nutrient, dust and iron deposition were based on a 1993-2014 climatology from GFDL’s ESM4.1 model (Dunne

et al., 2020; Stock et al., 2020).

2.4 Model spinup and simulation

Similar to Ross et al., (2023), we initialized the 1993-2019 hindcast simulation from rest starting the 1st of

January  1993,  with  ocean  physics  prescribed  from GLORYS (described  above),  and  we  initialized  the  ocean

biogeochemistry  from a  10-year  spinup simulation.  We generated the  spinup simulation by starting the model

integration from rest on the 1st of January 1993 and by repeating ERA5 atmospheric conditions for 1993-1994

(May-December of 1993; January-April 1994; following Stewart et al. 2020) for 10 1-year cycles. Atmospheric CO 2

was maintained as the 12-month, 1993 seasonal climatology and the ocean boundaries were forced with a smoothed,

daily  climatology  (i.e.,  averaged  by  “day  of  year”  and  smoothed  with  a  triangular  filter)  of  the  hindcast’s

GLORYS12 1993-2019 open boundary  conditions.  River  runoff  was  similarly  prescribed  as  a  smoothed  daily

climatology.  The biogeochemical  tracer  fields  at  the  end  of  this  10-year  spinup simulation were  then  used to

initialize biogeochemistry for the 27-year hindcast simulation. 
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2.5 Model evaluation

As described in Section 1, the model evaluation focuses on the simulation’s capacity to represent fisheries and

ecosystem-relevant features across and within the diverse ecosystems included within the NEP10k domain. The

model evaluation therefore includes comparisons against  both large-scale physical  and biogeochemical  patterns

spanning the full domain (Section 2.5.1), and ecosystem specific quantities (Section 2.5.2). These latter quantities

were often drawn from Ecosystem Status Reports developed by NOAA fisheries to strategically inform marine

resource management decisions (e.g., Siddon 2023; Ferriss 2023; Leising et al., 2024). Comparisons against spatial

and seasonal patterns were complemented with interannual time series comparisons where possible, the latter serves

as a building block toward making predictive applications. Finally, we assess the computational performance and

viability of the model using analyses described in Section 2.5.3. 

2.5.1 Full domain comparisons

We broadly  evaluated  NEP10k performance against  gridded  surface  and 3D observation-based or  observation-

assimilated physical and biogeochemical products to assess the simulation’s coastwide capacity to represent cross-

ecosystem patterns. Table A2 summarizes these products and the timeframes analyzed. For spatial comparisons and

calculations, we first plot both the NEP10k results and the comparison product on their native grids using the python

geographic plotting package Cartopy (Met Office, 2022). We then regridded the finer resolution product output

(typically NEP10k but not in the case of comparisons against GLORYS12 and chlorophyll comparisons) to the

coarser resolution comparison grid using ESMF (Hill et al., 2004) Python Regridding Interface (ESMPy) or xesmf

conservative regridding (Zhuang et  al.,  2023).  Unless  otherwise stated,  assessments  include the area weighted,

spatial mean bias (Bias, NEP10k - comparison data product), area-weighted root mean squared error (RMSE), the

Median Absolute Error (MedAE), and the Pearson correlation coefficient (R, based on spatial pattern). We omit

analysis of model performance in the Chukchi Sea (i.e., north of the Bering Strait at 66°N) - this region is included in

the model integration due to the rectilinear nature of the grid and our objective to include the entire Bering Sea for

which the Chukchi provides a boundary condition. However, it is not a primary region of interest for this model

application and will be assessed in a nascent pan-Arctic MOM6 configuration (Hedstrom et al., in prep.).

For ocean temperature validations we compared conditions against version 2.1 of the Daily Optimum Interpolation

Sea Surface Temperature product (OISSTv2.1; Huang et al., 2021) and against GLORYS12 for both surface and

subsurface conditions. OISSTv2.1 is generated from multiple temperature data sources and interpolated to a ¼°

global  grid while  GLORYS12 is  a  global  eddying (1/12°)  data-assimilative  ocean reanalysis  that  demonstrates

strong coherence with in-situ surface and subsurface temperature records along the U.S. West Coast (Amaya et al.,

2023). Both reference products have continuous monthly output covering 1993-2019.

NEP10k surface and subsurface salinity is compared against GLORYS12 reanalysis as well as the observation-based

NOAA National Centers for Environmental  Information (NCEI) 1/10° Northern North Pacific (nnp; Version 2,

Seidov et al., 2023) and Northeast Pacific (nep; Seidov et al., 2017) regional climatologies for salinity. Annual and

seasonal means were downloaded for the both nep and nnp regions for the decades 1995-2004 and 2005-2014 (the
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second decade for the older nep climatology only extends 2005-2012). To ensure temporal coherence, we regrid

NEP10k separately for each region, using only the years represented by each regional climatology (i.e., 1995-2012

for the nep, 1995-2014 for the nnp). The two decadal, annual and seasonal means for the regional climatologies are

time-weight averaged, and then the regional climatologies and regridded NEP10k output are combined to a common

grid. Where the nnp and nep regions overlap in the GoA (i.e., above 50°N), we use the values from the more recent

nnp climatology. 

To validate mixed layer depth (MLD), we used the MOM6 diagnostic MLD_003 which is calculated as the seawater

depth where potential density is 0.03 (kg/m3) greater than the density at a user-defined depth of 5m. This reference

depth was selected for consistency with and comparison against the 1° de Boyer Montégut (2024) monthly MLD

climatology, which incorporates measurements from an assemblage of MBT, XBT, CTD casts and profiling floats.

We also compared against GLORYS12, using the same definitions for MLD and the Python implementation of the

Gibbs SeaWater (GSW) Oceanographic Toolbox of TEOS-10 (McDougall and Barker, 2011) to calculate monthly

potential density from GLORYS12 potential temperature and salinity. 

NEP10k sea surface height  (SSH) is compared against  GLORYS12 sea  surface height  above geoid (zos),  and

absolute dynamic height (adt) above the earth’s geopotential surface (i.e., geoid) from 0.083° resolution satellite

altimetry (CMEMS, 2023). Given the different reference frames for each observation, reanalysis and model product,

we mean-centered each data set by subtracting its respective area-weighted time mean within the NEP10k region, in

order to facilitate direct comparison of seasonal and annual mean sea surface height distribution and gradients.

Tidal phase and amplitude for the M2 and K1 constituents were calculated using hourly NEP10k sea surface height

with the Unified Tidal Analysis and Prediction python software package (Codiga et al., 2011). This was compared

against TPXO9 to demonstrate the ability of the model to incorporate and propagate tidal boundary forcings. 

NEP10k annual mean surface and subsurface nitrate and phosphate concentrations are compared against the 1° 2023

World Ocean Atlas (Garcia et al., 2023a) for the time period 1993-2019. Primary phytoplankton nutrient limitation

was calculated for annual and seasonal mean timeframes following the methods detailed in Stock et al., (2020). This

illustrates where macronutrients nitrate and phosphate or micronutrient iron are the primary nutrient limitation of

phytoplankton growth.

Surface chlorophyll is compared against the European Space Agency’s satellite product produced as part of their

Ocean Color Climate Change Initiative (OC-CCI; Sathyendranath et al., 2019; Sathyendranath et al., 2023). Monthly

OC-CCI chlorophyll-a fields from 1998 to 2019 are remapped from 4 km resolution to the coarser NEP10k grid.

NEP10k grid cells where the satellite product is missing data are also masked in the corresponding month to ensure

the annual  and seasonal  means are spatiotemporally  consistent.  Chlorophyll  values  are then log10 transformed

before comparison. 

We compare seasonal means of 200 meter-integrated mesozooplankton carbon biomass concentrations against the

COPEPOD data set (Moriarty and O’Brien, 2013). As described in Ross et al. (2023), we scale the COPEPOD data

set by a factor of 2 because the zooplankton represented in COBALT’s mesozooplankton diagnostic (medium +

large,  ranging  from  200  to  20,000  μm  equivalent  spherical  diameter)  likely  represents  a  larger  fraction  of
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zooplankton biomass than in the COPEPOD observations which are derived from collections that used a net mesh of

333 μm (Moriarty and O’Brien, 2013), which would exclude some of the size classes in the COBALT diagnostic

(Skjoldal et al., 2013). This conversion is consistent with those typically found when comparing 200 μm and 333 μm

mesh nets (Moriarty and O’Brien, 2013; Shropshire et al., 2020).

Similar to inorganic nutrients,  surface and subsurface dissolved oxygen concentrations are compared against 1°

2023 World Ocean Atlas (García et al., 2023b) for 1993 through 2019 with NEP10k oxygen values being remapped

to the WOA23 grid. We also compute the hypoxic boundary layer depth, here defined as the depth at which oxygen

concentrations drop below 61.7 µmol O2 per kilogram of seawater as in Dussin et al., 2019. 

We compare annual and seasonal mean, surface and subsurface carbonate chemistry diagnostics, total alkalinity,

dissolved inorganic carbon and aragonite saturation state, against corresponding values in the 1° Coastal Ocean Data

Analysis Product in North America (CODAP-NA; Jiang et al., 2021) dataset (Jiang et al., 2022) for the period of

2004-2018. 

2.5.2 Regional comparisons

The full  domain  comparisons  were complemented  with  key  fisheries-critical  regional  time series  comparisons.

While regions often have unique fisheries and ecosystem-critical patterns, temperature and chlorophyll variability

are broadly important across ecosystems. We thus complemented the broad spatial comparisons with region-specific

time series  of  shelf  (defined  as  grid cells  where  bottom depth is  less  than  500 meters)  conditions,  where the

subregions are those shown in Fig. 1. Both monthly climatologies and anomaly (with 12-monthly climatological

cycle removed) time series for surface and bottom temperatures were compared against GLORYS12, while time

series of chlorophyll were compared against OC-CCI. For context, anomaly time series are depicted against warm

and  cold  episodes  of  the  Ocean  Niño  Index  published  by  the  NOAA  Climate  Prediction  Center

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php),  where  the  warm and  cold

episodes are defined as periods when the 3 month running mean of SST anomaly in the Niño3.4 region is above or

below 0.5°C, respectively. The purpose of this comparison is to ascertain whether the model is able to accurately

recreate  the  strength  of  the  relationship  between  local  variability  and  this  foremost  mode  of  global  climate

variability. Variations in simulation skills for different depth ranges within each subregion were also analyzed to

assess changes in model fidelity in more inshore and offshore regions.

Additional region-specific assessments are described for the Bering Sea, Gulf of Alaska and California Current

below. Given the  length constraints  of  a  single  documentation paper,  we limited treatment to  2-3 of  the most

prominent ecosystem indicators currently used for each system beyond the foundational temperature and chlorophyll

comparisons described above.

Our additional evaluation in the Bering Sea focused on the representation of the Bering Sea cold pool and sea ice

extent. As discussed in Section 1, fluctuations in the bottom area covered by the Bering Sea cold pool, generally

defined as waters with < 2 °C in the summer (Wyllie-Echeverria and Wooster, 1998; Mueter and Litzow, 2008),

have been associated with a range of ecosystem impacts (e.g., Clement Kinney, 2022). Cold pool dynamics are
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intertwined with sea ice fluctuations, with sea ice also having important implications for the timing of seasonal

ecosystem transitions (Wyllie-Echeverria and Wooster, 1998; Mueter and Litzow, 2008; Brown and Arrigo, 2013;

Hunt et al., 2022).

For the Bering Sea cold pool we spatially and temporally interpolated daily NEP bottom temperature using the

python package xesmf (Zhuang et al., 2023) to correspond with Alaska Fisheries Science Center (AFSC) Bottom

Trawl Survey gear temperature samples collected from 1993-2019. These data are available in the Alaska Fisheries

Science Center coldpool github repository (https://github.com/afsc-gap-products/coldpool). We compared the Trawl

survey station bottom temperatures from the NEP10k simulation against the AFSC data set following the methods in

Kearney, et al. (2021) and analyzed interpolated model output using the cold pool toolset to reproduce cold pool

area (CPA) indices reported by Rohan et al. (2022). 

 We compared seasonal Bering Sea sea ice against satellite observations from the National Snow and Ice Data

Center (NSIDC; data set NSIDC0051; Cavalieri et al., 1996). We compared both spatial mean extent in the entire

Bering Sea and temporal coherence in the southeastern Bering Sea.

Hauri et al. (2024) highlight how the interaction of different localized modes of multi-annual to decadal climate

variability  can  predispose  the  Gulf  of  Alaska  to  extreme  physical  and  biogeochemical  events.  These  climate

variations are most visibly reflected in observed Gulf of Alaska SSH variability. The first principal component of

the detrended and deseasonalized SSH over the Gulf of Alaska (62°N 50°N, 160°W 135°W) was referred to as the

Northern Gulf of Alaska Oscillation (NGAO, Hauri et al., 2021b). A positive phase is associated with weak cyclonic

winds  over  the  subpolar  gyre  resulting  in  a  higher  SSH and  decreased  Ekman-driven  upwelling  (i.e.,  Ekman

suction). This state is associated with warmer temperatures, but reduced prevalence of deep high acidity water. That

is, risks of thermal stress are enhanced while risks of acidification stress are reduced, with the opposite effects for

negative NGAO. The second principal component of the detrended and deseasonalized SSH variability is referred to

as  the  Gulf  of  Alaska  downwelling  index  (GOADI;  Hauri  et  al.,  2024).  The  GOADI  serves  as  a  proxy  of

downwelling strength for Gulf of Alaska coastal waters: a positive index is associated with elevated coastal SSH,

enhanced coastal downwelling, and a reduced risk of the intrusion of cold, acidic and low oxygen water onto the

bottom of the Gulf of Alaska shelf. This intrusion risk is heightened under negative GOADI.

We assessed NEP10k’s ability to generate realistic NGAO and GOADI patterns by comparing against  satellite

altimetry from CMEMS (CMEMS, 2023). Empirical Orthogonal Function analysis was performed on SSH across

the  GoA domain  in  a  manner  consistent  with  Hauri  et  al.,  2021b and Hauri  et  al.,  2024.  We then  generated

composites  of  ecosystem conditions  during  the  positive  vs.  negative  phases  of  the  GOADI  to  assess  whether

NEP10k can successfully recreate the shelf-scale surface and benthic condition anomalies that significantly impact

living marine resource habitat and wellbeing (Hauri et al., 2024). 

Fisheries and ecosystems in the California Current are shaped by the timing, strength and the source waters fueling

the strong seasonal upwelling. The system-specific indicators chosen for this region thus focus on these patterns.

First,  we  compared  the  vertical  mass  transport  (calculated  as  the  depth-integrated  divergence  of  orthogonal

horizontal mass transports) at 30m depth to the Coastal Upwelling Transport Index (CUTI) developed by Jacox et al.
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(2018). As in Jacox et al., (2018), transports were integrated to 75 km offshore over 1 o Latitude bins. We also

assessed long term trends in dissolved oxygen concentrations against those calculated at stations in the California

Cooperative Oceanic Fisheries Investigations (CalCOFI) observation array similar to the methods of Bograd et al.

(2008). We interpolated monthly 3D NEP10k dissolved oxygen to the locations and depths of the CalCOFI bottle

sample  data  (https://calcofi.org/data/oceanographic-data/bottle-database/)  from  1993-2019.  We  then  calculated

linear trends for both NEP10k and CalCOFI at specific station locations. 

2.5.3 Computational expense and scaling

As described in Section 1, the viability of the NEP10k configuration for ecosystem applications depends on its

ability to not only simulate fisheries-critical features but also to run with sufficient computational economy to permit

generation  of  the  thousands  of  years  of  retrospective  forecasts  and  projections  required  to  provide  credible

uncertainty estimates (e.g., Ross et al., 2024; Koul et al., 2024). To quantify computational performance, we focused

on the scaling of the wall clock time for 1 year of simulation against the number of processing elements (PEs).

Variations in both the number and layout of PEs were considered. 

For our baseline production simulations herein, we divided the NEP10k domain (342 columns x 816 rows of tracer

grid cells) across 32 x 80 PEs. This yields an ~10 x 10 grid (i.e., square) decomposition of model grid cells on each

PE. Land processor masking in MOM6 further economizes computational resources by omitting domain subregions

without ocean (i.e., contain only land) grid cells from PE assignment, thus presenting a domain-specific optimization

consideration when selecting a specific PE configuration. We were able to mask 524 PEs with the 32 x 80 PE

breakdown so our total PE count for this configuration was 2036 (20% fewer than the otherwise 2560 PEs required

for this breakdown). 

The scalability of the simulation with increasing and decreasing processor counts was explored using alternative

layouts with fewer PEs (40 x 40), a similar PE total but with a more rectangular model grid cell decomposition (a 50

x 50 PE breakdown yielding ~7 x 16 model grid cell subset per PE), and larger numbers of PEs (50 x 75 and 50 x

100).  These  experiments  allow us  to  judge  the  relative  efficiency  of  our  base  configuration  and  the  point  of

diminishing returns as the PE count is increased and growing requirements for inter-PE communication begin to

overwhelm the advantage of more PEs. Finally, we include additional 50 x 75 PE and 50 x 100 PE simulations with

the thermodynamic and tracer time steps set to be equal to the baroclinic time step (400 seconds) rather than 1200

seconds in the base configuration. These experiments allow us to quantify and demonstrate the computational value

of the flexible time stepping that MOM6 enables.
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3 Results

3.1 Domain-wide evaluation

3.1.1 Large-scale physical ocean properties 

Annual  mean SST and subsurface  temperatures  broadly  agree  with the  distribution and  curvature  of  reference

isotherms along the U.S., Canada and Mexico West Coasts (Fig. 2), with temperatures largely falling within 0.5 oC

of OISST (Fig. 2c, RMSE = 0.28oC) and GLORYS12 SST values (Fig. 2f, RMSE = 0.29 oC). A surface temperature

cold bias of just over 0.5  oC is apparent over the eastern Bering Sea, while a warm bias of similar magnitude is

apparent in the nearshore regions of the southern and central California Current System. At 200m depth, larger

warm biases relative to GLORYS12 are apparent in the Gulf of Alaska where the northern edge of the eastward

flowing North Pacific Current interacts with the adjacent westward flowing Alaska Stream (Fig. 2l, Stabeno et al.,

2004),  and a warm bias of similar magnitude appears in the southwest corner of the domain. These biases are

seasonally persistent during both Boreal winter (January-March, Fig. S1) and summer (July-September, Fig. S2); as

are the cold (Fig. S1c,f) and warm (Fig S2c,f) coastal surface biases, respectively. In all seasons and across depths

above 200m, however, the overall absolute model bias is below 0.38 oC, the RMSE stays below 0.57 oC, and the

correlations with OISSTv2.1 and GLORYS12 stay above 0.98 (Fig 2, Fig. S1, Fig S2). 
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Figure  2:  Temperature  comparisons.  Annual  mean  surface  and  subsurface  (100m,  200m)  temperature  compared  against
NOAA OISSTv2.1 and the GLORYS12 reanalysis. Values in the left two columns represent the average of the annual means
covering 1993 through 2019. The right column depicts the difference between NEP10k and the respective validation product
along with the area-weighted mean bias and root mean squared error (RMSE) as well as the medium absolute error (MedAE) and
Pearson correlation coefficient (R). The NEP10k model domain below 66°N is outlined in black. Panels a and d show the same
model output.

Similar to temperature, NEP10k broadly reproduces annual mean salinity fields found in regional climatologies and

GLORYS12, with the majority of the domain falling within 0.25 practical salinity units (PSU) of the reference data

sets (Fig. 3). Notable fresh surface biases exceeding 0.5 PSU occur along the coast in the Gulf of Alaska, Eastern

Bering Sea and Northern CCS, coincident with regions of substantial freshwater inputs from rivers and glacial melt

(Fig. 3c,l). Positive salinity biases relative to GLORYS12 occur in the western Bering Sea at the surface and 100m,

and over all depths in the southwest region of the domain (Fig. 3, right panels). In the latter case, the salty bias

coincides with warm biases (Fig. 2). Seasonally, similar generally modest biases can be seen in the Boreal winter

(Fig. S3) and summer (Fig. S4) equivalents. 
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Figure 3: Salinity comparisons. Annual mean surface and subsurface (100m, 200m) salinity compared against NCEI regional
ocean climatologies and the GLORYS12 reanalysis. The regional climatologies are a composite of the northeast Pacific (nep) and
northern north Pacific (nnp) climatologies. The nep climatology extends from 1995-2012 while the updated nnp climatology
(Version 2) covers 1995-2014. Where the two regional climatologies overlap in the GoA (i.e., above 50°N), we use the more
recent nnp climatology. For comparison against the model, we use the same years of NEP10k, with panels a,d,g showing the
model values for average annual mean salinities for 1995-2014 above 50°N (as opposed to average annual mean salinities for
1995-2012 below 50°N). Comparison against GLORYS12 (bottom three rows) covers 1993-2019. Area-weighted bias, and root
mean squared error (RMSE), median absolute error (MedAE) and Pearson correlation coefficient (R) are reported in the right
column of figures depicting the difference between NEP10k and the respective validation product.

Mixed layer depth in NEP10k, defined as the depth at which density is 0.03 kg m -3 greater than at 5m depth, exhibits

a modest shallow/negative bias relative to the estimates of de Boyer Montégut et al. (2024), with deeper (positive)

biases occurring in the interior ocean near the Bering shelf break (Fig. 4, top row). These biases are amplified and
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reduced during Boreal  winter (JFM, Fig.  S5, top row) and summer (JAS, Fig.S6, top row), respectively, when

mixing drivers (i.e., surface heating/cooling, wind and storm intensity) are correspondingly modified. Conversely,

NEP10k exhibits a positive mean bias when compared against GLORYS12 MLD which is particularly pronounced

in the Bering Sea (Fig. 4, bottom row) and exhibits a reverse seasonal response (i.e., reduced positive bias in the

winter and increased in the summer, Figs. S5&6, bottom row). With the exception of the deep/ positive winter biases

in the Bering Sea, the model represents MLD spatial variability fairly well with significant (p<0.001) correlations

exceeding 0.85 across all seasons and comparisons (Fig. 4, Fig. S5, Fig. S6). 

Figure 4: Mixed layer depth comparisons. Climatological mean of mixed layer depth compared against de Boyer Montégut (a-
c) and GLORYS (d-f). Black reference contours in a,b,d, and f are depicted at 5 meter intervals and at 8 meter intervals in c and
f; contours depicting negative values in c and f are drawn with dashed lines. Area-weighted Bias, Root Mean Squared Error
(RMSE), Median Absolute Error (MedAE) and Pearson Correlation Coefficient (R) are reported in the right column figures
depicting NEP10k - respective reference products. All values represent the annual mean for years 1993 through 2019 and the
extent of the NEP10k domain is outlined in black in all figures. Panels a and d show the same model output.

SSH gradients in the NEP10k hindcast are broadly consistent with GLORYS12 and CMEMS satellite altimetry (Fig.

5), exhibiting lowest values along the Aleutian Island chain, in the GoA and western Bering Sea and highest values

near 25°N along the western edge of the domain. Similarly to satellite measurement and GLORYS12, NEP10k also

exhibits relatively low SSH along the U.S. west coast (compared with offshore SSH values at the same latitude), a

signature of coastal upwelling. However, the SSH gradients in NEP10k are smaller along the Aleutian island chain

than exhibited in the reference data sets. There is a notable correspondence of this SSH gradient bias with the Gulf

of Alaska subsurface temperature biases noted in Fig.  2,  suggesting a potential relationship between these two

features. 
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Figure 5: Sea surface height comparisons.  NEP average-centered,  climatological mean sea surface height comparison for
NEP10k (a & d; identical panels), GLORYS12 (b), CMEMS satellite altimetry (e), and their respective differences (c & f). All
values represent the annual mean (1993- 2019). Area-weighted mean bias (Bias), root mean squared error (RMSE), and median
absolute error (MedAE) and Pearson correlation coefficient (R) are reported in the right column figure depicting the difference
between NEP10k and the comparison product; all correlations are significant (p<0.001). Reference height contours in all panels
are drawn at 0.1 and 0.05 meter intervals for the mean and difference plots, respectively, with negative values shown as dashed
lines. All panels show the extent of the NEP10k domain in black outline. 

Compared against the TPXO data set, which was used as the tidal boundary forcing conditions, NEP10k reproduces

tidal  amplitude  and  phases  in  the  domain  interior  with  high  fidelity  (Fig.  6).The  greatest  tidal  amplitude

discrepancies occur in the nearshore regions of the eastern Bering Sea (Fig. 6c,f) and partially enclosed features

(e.g., northern Gulf of California and Cook inlet; Fig. 6c). Amplitude biases for the most prominent semidiurnal

(M2) and diurnal (K1) constituents in these nearshore and partially enclosed regions can exceed 20 cm and 10 cm,

respectively. These regions, however, also have the largest overall amplitudes, with values exceeding 1m and 50 cm,

respectively. Such nearshore tidal biases are not surprising given the relatively coarse 10km resolution enlisted

herein, and we note that skillful tidal simulations extend all the way to the coast in most regions.
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Figure 6: M2 and K1 tidal amplitudes and period.  Comparison of tidal constituents M2 (top row) and K1 (bottom row) in
NEP10k against those in the TPXO9 forcing dataset. Filled contours depict tidal amplitude while overlain colored contours depict
tidal phase for the given constituent. Filled contours in the difference plot (c and f) show the difference in amplitude only; Bias,
Root Mean Squared Error (RMSE), Median Absolute Error (MedAE) and Pearson Correlation Coefficient (R) are also reported
in these panels. The extent of the NEP10k domain is outlined in grey in all figures.

3.1.2 Large-scale biogeochemical and ecosystem properties

Macronutrient concentrations (Nitrate and Phosphate) exhibit large-scale agreement with annual World Ocean Atlas

nutrients but significant regional biases are also apparent (Fig. 7-8). The largest high bias occurs along the Aleutian

Island chain and Bering Sea shelf break. In the simulation, the region of elevated surface nutrients observed in the

central Bering Sea extends further south and east in the model. This aligns with the most prominent region of

overmixing (Fig. 4). Positive surface nitrate and phosphate biases in affected regions exceed 5 μmol kg -1 NO3 and

0.25 μmol kg-1 PO4, respectively, and extend with lesser severity onto the Bering Shelf. The positive surface bias is

underlain  by  negative  nitrate  and  phosphate  biases  at  200m,  reinforcing  the  likelihood  that  the  surface  high

macronutrient  bias  is  linked  to  excessive  mixing  rather  than  excessive  nutrients  in  underlying  source  waters.

Uncertainty in nitrogen removal process in shallow Bering shelf sediments (e.g., denitrification and burial), may also

play a role in the perpetuation of biases onto the shelf. Macronutrient concentrations in Gulf of Alaska surface

waters, in contrast, are biased low by 1.5-3 μmol kg-1 NO3 and 0-0.375 μmol kg-1 PO4, respectively (Fig 7c, Fig 8c),

despite exhibiting a combination of positive and negative biases at depth. This is consistent with shallow mixed

layer  biases  in  the  Gulf  of  Alaska  (Fig.  4).  Finally,  the  California  Current  exhibits  a  modest  positive  surface

macronutrient bias. Despite these discrepancies, the simulation generally exhibits high correlations with observed

macronutrients (R > 0.96) and RMSEs that are only ~5% of the dynamic range of the macronutrient concentrations

across the west coast ecosystems. This skill extends to seasonal patterns with correlation values exceeding 0.8 and
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RMSE < 10% of the dynamic range in all cases (Fig.  S9-S12).  Notably,  winter and summer nitrate conditions

exhibit more pronounced bias patterns relative to the mean state, with particularly high levels in the Bering surface

waters and low levels in portions of the Gulf of Alaska (Fig. S9c, Fig.S10c). Conversely, surface phosphate levels

over the Bering Shelf are biased low in the winter and high in the summer (Fig S11c, Fig. S12c). Summer surface

nitrate levels along the CCE (Fig. S10c) are potentially suggestive of over representation of summer upwelling. 

Figure  7:  Nitrate  comparisons. Annual  mean  surface  and  subsurface  (100m,  200m)  nitrate  compared  against  WOA23.
Comparison time frames cover 1993-2019. Reference contours are depicted in black at 5 and 1.5 μmol nitrate kg -1 sea water in
the mean state (left and center columns) and difference (right column) plots, respectively; contours representing negative values
in the difference plot are drawn as dashed lines. Bias, Root Mean Squared Error (RMSE), Median Absolute Error (MedAE) and
Pearson Correlation Coefficient  (R) are  reported in  the right  column of  figures  depicting the difference between NEP and
WOA23. The extent of the NEP10k domain is outlined in black in all figures.
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Figure 8: Phosphate comparisons. Annual mean surface and subsurface (100m, 200m) phosphate compared against WOA23.
Comparison time frames cover 1993-2019. Reference contours are depicted in black at 0.25 μmol phosphate kg-1 sea water in the
mean state (left and center columns) and difference (right column) plots; contours representing negative values in the difference
plot  are  drawn  as  dashed  lines.  Bias,  Root  Mean  Squared  Error  (RMSE),  Median  Absolute  Error  (MedAE)  and  Pearson
Correlation Coefficient (R) are reported in the right column of figures depicting the difference between NEP10k and WOA23.
The extent of the NEP10k domain is outlined in black in all figures.

While macronutrients play an important role in the biogeochemistry and ecosystem dynamics of the NEP, iron has

been observed to be a limiting or co-limiting nutrient (Browning et al., 2017; Browning and Moore, 2023). The

simulated distribution of surface iron exhibits a gradient from inshore highs exceeding 1 nanomoles kg -1 to offshore

lows < 0.25 nanomoles kg-1 (Fig. 9, left panel). This results in large-scale patterns of phytoplankton iron limitation

in the NEP10k simulation (Fig. 9, right panel) that are consistent with those observed (e.g., Moore et al., 2013;

Hutchins et al., 1998).

22

545

550

https://doi.org/10.5194/gmd-2024-195
Preprint. Discussion started: 18 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 9: Surface dissolved iron and phytoplankton nutrient limitation. NEP10k simulated annual mean surface dissolved
iron concentrations (left) and climatological mean distribution of the nutrient most limiting to phytoplankton growth (right). In
COBALT, the degree of limitation by N, P, and Fe is expressed as a factor between 0 and 1 (Stock et al.,  2020). Nutrient
limitation is then calculated according to Liebig’s Law of the minimum. This most limiting nutrient is indicated in the figure
below. We further differentiate areas where the N, P or Fe limitation term is less than 0.25 more limiting another nutrient, which
effectively indicates areas that are near co-limitation. Timeframe covers 1993-2019. Note: Sparse P limitation occurs near-shore. 

Simulated surface chlorophyll is spatially well correlated with satellite-based chlorophyll estimated from the OC-

CCI (Fig. 10) and simulated values are generally within a factor of 2 of those observed, which span 2 orders of

magnitude (i.e., the RMSE of the log10-transformed data is less than 0.3 in all seasons). The simulation, however, is

generally biased high in the Gulf of Alaska and Bering Sea in the boreal spring and summer, with biases exceeding a

factor of 2 along the Bering Sea shelf break and along the subpolar/subtropical boundary in the Gulf of Alaska. The

model underestimates OC-CCI based chlorophyll concentration during the fall and winter on the eastern Bering Sea

shelf: while NEP10k-COBALTv3 suggests lower chlorophyll concentrations during these cold and dark periods,

OC-CCI estimates remain high in nearshore waters. Indeed, satellite-based estimates suggest higher chlorophyll

along the Bering coast in fall and winter than in spring and summer. It is notable, however, that satellite-based

chlorophyll estimates are sporadic at high latitudes during these seasons, and OC-CCI uses a chlorophyll estimation

algorithm developed primarily for “case 1”/oceanic water. Vigorously mixed, turbid waters along the Bering shelf in

winter undoubtedly depart considerably from the algorithm's high degree of water transparency assumptions. In the

CCE,  the  model  is  able  to  match the  juxtaposition of  coastal  chlorophyll  highs and subtropical  offshore  lows

estimated by OC-CCI during the spring and summer upwelling period. Elevated chlorophyll levels do extend further

offshore in the simulation than satellite-estimates suggest. Values are also elevated near the domain boundary during

this period, likely due to some spurious boundary mixing. Fall and winter conditions in the California Current

exhibit a moderate positive bias in offshore waters that generally falls below a factor of 2.

23

555

560

565

570

575

https://doi.org/10.5194/gmd-2024-195
Preprint. Discussion started: 18 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure  10:  Surface  chlorophyll  comparisons.  Seasonal  means  of  surface  chlorophyll  compared  against  OC-CCI  satellite
observations. The three-month seasonal periods include January through March (JFM,a-c), April through June (AMJ,d-f), July
through  September  (JAS,g-i),  and  October  through  December  (OND,j-l).  Comparison  time  frames  cover  1998-2019;  All
chlorophyll  values  were  log10  transformed  prior  to  temporal  averaging.  Bias,  Root  Mean  Squared  Error  (RMSE),  Median
Absolute Error  (MedAE) and Pearson Correlation Coefficient  (R) are reported in the right column of figures depicting the
difference between NEP and OC-CCI. Black contours in the right column indicate where the difference = +/- log 10(2) The extent
of the NEP10k domain is outlined in grey in all figures.
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Moving up the food web, simulated seasonal mesozooplankton biomass concentrations (Fig. 11) exhibit similar

large-scale spatial and seasonal patterns as the COPEPOD database (Moriarty and O’Brien, 2013). The patchiness of

the observations reduces correlations  relative  to  the  smoother  physical,  nutrient  and satellite-based chlorophyll

estimates  compared thus far  (R ≥ 0.30 for  all  seasons).  However,  peak summer concentrations ~50 mg C m -3

consistent with observed values are evident in the Bering Sea and inshore regions of the Gulf of Alaska in both the

model and observations. These highs contrast sharply with observed and modeled values ~1-2 mg C m -3 within the

North Pacific subtropical gyre. Intermediate values of ~10-20 are evident in the California Current upwelling. Both

the observed and modeled values are highest during the peak summer upwelling period, though the highest modeled

values  are  somewhat  lower,  particularly  in  nearshore  regions.  This  pattern  will  be  addressed  further  in  the

Discussion. The offshore waters of the Gulf of Alaska and western Bering Sea exhibit summer mesozooplankton

biomass peaks of similar magnitude as the California Current, with simulated values again lower yet comparable to

those observed.

Figure 11: Seasonal zooplankton biomass. Seasonal mean mesozooplankton biomass concentrations for NEP10k on the model
grid (top row), the COPEPOD dataset (middle row), and NEP10k values remapped to the COPEPOD grid where there are
corresponding data from the COPEPOD dataset (bottom row). The bottom row also reports statistics using the log10 normalized
data, specifically the area-weighted mean bias (Bias, NEP10k - COPEPOD), the area-weighted root mean squared error (RMSE),
the median absolute error (MedAE) and the Pearson correlation coefficient (R); all correlation values are significant (p<0.001).
Maps are plotted with a grey background to increase contrast with the patchy observation data.
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Simulated oxygen concentrations in the top 200m in the NEP10k are generally spatially consistent with WOA (Fig.

12). Some biases, however, are apparent below the surface. Most notably, the model has a low oxygen bias south of

the Aleutian Islands at 100m (Fig. 12f). This bias coincides with a warm water bias (Fig. 2) and is overlain by a

fresh/high stratification bias (Figs. 3, 4). As noted above, this is the region where the westward flowing Alaska

Stream  and  eastward  flowing  North  Pacific  Current  interact,  suggesting  that  the  biases  may  be  linked  to  a

suboptimal representation of these two currents. Moderately high oxygen biases (i.e., greater than 25 μmol kg -1) are

apparent in the western Bering Sea, eastern Gulf of Alaska and off of Baja at 200m (Fig. 12i), but none are large

enough to compromise NEP10k’s large-scale fidelity to the observed oxygen distribution in the top 200m (i.e., R

values ≥ 0.9 across depths and seasons, Figs. 12, S14, S15). 

Figure 12: Dissolved oxygen comparisons.  Annual mean surface and subsurface (100m, 200m) dissolved oxygen compared
against WOA23. Comparison time frames cover 1993-2019. Reference contours are depicted in black at 25 μmol oxygen kg -1 sea
water in the mean state (left and center columns) and difference (right column) plots; contours representing negative values in the
difference plot  are  drawn as  dashed lines.  Bias,  Root Mean Squared Error (RMSE),  Median Absolute Error (MedAE) and
Pearson Correlation Coefficient  (R) are  reported in  the right  column of  figures  depicting the difference between NEP and
WOA23. The extent of the NEP10k domain is outlined in black in all figures.

Deeper in the water column, NEP10k robustly simulates the cross-ecosystem variation in the depth of the hypoxic

boundary (i.e., the depth at which oxygen concentration drops below 61.7 μmol oxygen kg-1 sea water, Fig. 13).

The hypoxic boundary is shallowest,  approaching 100m from the surface, along the southern domain boundary

which lies along the periphery of the broader eastern equatorial Pacific hypoxic zone. The hypoxic boundary then
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descends progressively to ~400m in both the model and observations as one moves northward along the California

Coast into Canada, before shoaling again to ~150m in the northern Gulf of Alaska. While these overall patterns are

consistent, the biases discussed in Fig. 12 are echoed in the hypoxic boundary layer depth. The boundary layer is

deeper in the western Bering Sea, eastern Gulf of Alaska and Southern CCS but biased shallow south of the Aleutian

Island Chain and, to a lesser degree in the Northern-to-Central CCS. 

Figure 13: Hypoxic Boundary Layer Depth. Annual mean hypoxic boundary layer depth (i.e., depth at which dissolved oxygen
concentration drops below 61.7 μmol oxygen kg -1 sea water) compared against WOA23. Black reference contours indicate 150
meter and 25 meter intervals in the mean state (a, b) and difference (c) plots, respectively; contours representing negative values
in c are drawn as dashed lines. Area-weighted mean bias (Bias) and root mean squared error (RMSE), and the median absolute
error (MedAE) and Pearson correlation coefficient (R) are reported in panel c. The extent of the NEP10k domain is outlined in
black in all figures.

Finally,  simulated  carbon  chemistry  patterns  (total  alkalinity,  dissolved  inorganic  carbon  (DIC)  and  aragonite

saturation state;  Fig.  14-16) broadly capture observation-based estimates  reported in  CODAP-NA. Low coastal

surface alkalinity patterns consistent with low alkalinity river inputs are apparent in the Gulf of Alaska, and to a

lesser degree, the eastern Bering Sea. Simulated alkalinity increases from these lows toward maximal values in the

North Pacific gyre in a manner consistent with observations, though the simulated values are biased high (Fig. 14 a-

c). The largest positive surface alkalinity biases occur in the Western Bering Sea and in the southwest corner of the

domain. These are aligned with salty biases that penetrate to depth (Fig. 3). The largest subsurface bias, however,

occurs at 100m depth in the Gulf of Alaska near the large freshwater outflows in the Gulf of Alaska. This suggests

that the low alkalinity freshwater signal in this region may be overly restricted to the surface in the model, though

there does not appear to be a strong subsurface salty model bias in this region (Fig. 3).
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Figure 14: Total Alkalinity Comparisons. Annual mean surface and subsurface (100m, 200m) total alkalinity compared against
CODAP-NA. Comparison time frames cover 2004-2018. Reference contours are depicted in black at 25 μmol alkalinity kg -1 sea
water in the mean state (left and center columns) and difference (right column) plots. Area-weighted mean bias (Bias) and root
mean squared error (RMSE), and the median absolute error (MedAE) and Pearson Correlation coefficient (R) are reported in the
right column of the difference plots. All correlation values are significant at p<0.001. The extent of the NEP10k domain is
outlined in black in all figures.

Dissolved inorganic carbon has a high bias that is consistent with the high alkalinity bias (compare Figs. 14 and 15).

Like alkalinity, the largest positive biases occurred along the Bering Sea shelf break and in the southwestern corner

of the domain where areas are overmixed (Fig. 4) and exhibit salty biases (Fig. 3). The high surface DIC bias in the

northern Gulf of Alaska, however, is more pronounced than the corresponding high surface alkalinity bias in this

region (i.e.,  Fig.  13c versus  Fig.  14c).  The northern Gulf  of  Alaska is  strongly impacted by river  and glacial

outflows.  While  some  of  these  freshwater  sources  (e.g.,  the  Copper  and  Susitna  Rivers)  have  observational

constraints on DIC and Alk, most do not. Improved constraints may be needed to improve the model fit in this

region
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Figure 15: Dissolved inorganic carbon comparisons.  Annual mean surface and subsurface (100m, 200m) concentration of
dissolved inorganic carbon compared against CODAP-NA. Comparison time frames cover 2004-2018. Reference contours are
depicted in black at 50 and 25 μmol carbon kg -1 sea water in the mean state (left and center columns) and difference (right
column) plots,  respectively;  contours  representing negative values in  the difference plots  are  drawn as  dashed lines.  Area-
weighted mean bias (Bias) and root mean squared error (RMSE), and the median absolute error (MedAE) and Pearson correlation
coefficient (R) are reported in the right column of the difference plots. All correlation values are significant at p<0.001. The
extent of the NEP10k domain is outlined in black in all figures.

The more pronounced high surface DIC bias in the northern Gulf of Alaska yields aragonite saturation states that are

0.25-0.5 units lower than CODAP-NA product (Fig. 16). The overall gradient between low saturation states (higher

acidification vulnerability) in the surface waters of the Bering Sea/Gulf of Alaska to high saturation states (lower

acidification vulnerability) in equatorial and subtropical surface waters in the southern parts of the domain, however,

is well captured (Fig. 15c, R = 0.93). Saturation state biases are also small in subsurface waters where subsaturated

waters are more prevalent (Fig. 16, middle and bottom panel), and where valuable shell, crab and demersal fisheries

reside.
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Figure 16. Aragonite saturation state comparisons. Annual mean surface and subsurface (100m, 200m) aragonite saturation
state compared against CODAP-NA. Comparison time frames cover 2004-2018. Reference contours are depicted in black at 0.5
and 0.25 saturation state units in the mean state (left and center columns) and difference (right column) plots, respectively;
contours representing negative values in the difference plots are drawn as dashed lines. Area-weighted mean bias (Bias) and root
mean squared error (RMSE), and the median absolute error (MedAE) and Pearson correlation coefficient (R) are reported in the
right column of the difference plots. All correlation values are significant at p<0.001. The extent of the NEP10k domain is
outlined in black in all figures.

3.2 Region-specific evaluation

Evaluation  of  NEP10k  against  observed  large-scale  physical  and  biogeochemical  patterns  in  Section  3.1  was

generally favorable. In all cases, the model was able to capture the primary physical, biogeochemical and plankton

contrasts across ecosystems within the broad NEP10k domain with often high but at least moderate fidelity. As

described in Section 1, however, the NEP10k configuration is intended for marine resource applications both across

and within NEP10k subregions, and across management relevant time horizons from seasons to multiple decades.

The evaluation in Section 3.1 provides a foundation for such applications, but is not sufficient. Evaluation in this

section focuses on regional fisheries-critical metrics and their variation across management-relevant seasonal to

multi-decadal time horizons. 
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Perhaps the most ubiquitous indicators of ecosystem state across all regions are ocean temperature (surface and

bottom) and surface chlorophyll. These indicators are highly relevant to diverse aspects of ecosystem function, and

long time series of observation-informed estimates are available. Modeled shelf (where depth < 500m) surface and

bottom temperature climatologies for the regions identified in Fig. 1 exhibit high correlation (Fig. 17, left column)

with GLORYS12, but surface temperatures tend to be biased warm in more southerly regions. As initially illustrated

in Fig. 2 and Fig. S2, mean and summer surface temperatures, respectively, in the central and southern California

Current System are 1-2 °C warmer than those observed, but biases in other regions tend to be < 1 °C. 

Figure 17: Surface and bottom temperature comparisons for shelf (0-500m) regions. Regional shelf (depth ≤ 500m) surface
and bottom temperature climatologies (left column) and anomaly time series (right column) for the sub-regions delineated in Fig.
1. Comparison of temperature climatologies (left panels) and monthly anomalies (right panels) for surface (orange) and bottom
(purple)  temperatures  for  NEP10k (bold)  and  GLORYS12 (pale).  Axes  for  surface and  bottom temperature  anomalies  are
separate and offset for improved readability. Pearson correlation coefficients are reported for surface (R STC, RSTA) and bottom
(RBTC, RBTA) climatology and anomaly comparisons, respectively. Background shading in the monthly anomaly timeseries plots
indicates the oceanic nino index produced by the NOAA Climate Prediction Center for context. 
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The NEP10k and GLORYS12 monthly surface and bottom temperature anomaly timeseries (Fig. 17, right column)

have  correlations  >  0.7  in  nearly  all  regions,  with  values  exceeding  0.9  in  many.  In  the  California  Current,

fluctuations in  both NEP10k and GLORYS12 show a strong correspondence with the Nino 3.4 index (shaded

regions), with warm conditions prevalent during warm ONI states and cold conditions prevalent during cold ONI.

The lowest NEP10k-GLORYS12 correlations (R = 0.82 for the surface and R = 0.64 for the bottom) were found in

the  smallest,  southernmost  Southern  California  Current  System (SCCS).  The  relatively  complex  coastline  and

limited resolution of island chains in this region may contribute to this decreased skill relative to other regions, but

the correlation remains > 0.6 even in this most challenging of systems.

Matching satellite-derived chlorophyll climatologies and time series proved more challenging than temperature (Fig.

18). The monthly chlorophyll climatologies had  moderate (R ≥ 0.8 NCCS, CCCS) to high (R  ≥ 0.9, GoA, BC,

SCCS) consistency with OC-CCI-based estimates for all systems but the Bering Sea (Fig. 18, left column). In the

Bering, NEP10k has a pronounced late spring to summer peak approaching 4 mg Chl m -3, while OC-CCI estimates

comparable intermediate concentrations of ~2 mg Chl m-3 for all months but January and December. Similar though

less marked discrepancies were found in the Gulf of Alaska. In the California Current, chlorophyll concentrations in

both NEP10k and OC-CCI peak in the late spring and summer, consistent with the timing of the upwelling season.

NEP10k estimates tend to drop more rapidly than OC-CCI estimates in the Fall, with the central CCS exhibiting a

secondary fall peak not found in NEP10k.
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Figure 18: Regional chlorophyll timeseries comparisons. Regional shelf (< 500m) surface chlorophyll monthly climatologies
(left column) and anomaly time series (right column) for the satellite-derived OC-CCI product (orange) and NEP10k (green).
Pearson correlation coefficients are reported for both climatologies and anomalies; background shading in the monthly anomaly
timeseries plots indicates the oceanic nino index produced by the NOAA Climate Prediction Center for context.

Regional monthly anomaly timeseries for NEP10k chlorophyll were generally weakly correlated with OC-CCI (Fig.

18, right column), with most R values slightly below 0.4. While these correlations are significant (p<0.01) their

modest  values  temper  expectations  for  actionable  chlorophyll  forecasts.  A  possible  exception  is  found  in  the

Northern California Current, where high correlation (R = 0.58) provides some ground for optimism. Conversely,

simulated and OC-CCI chlorophyll anomalies in the Bering Sea were uncorrelated (R = -0.01). We emphasize that

interpretation  of  both  NEP10k’s  correspondence  and  misfits  in  Fig.  18  must  be  moderated  by  uncertainties

associated with the derivation of satellite-based ocean color products in coastal waters.
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3.2.1 Bering Sea-specific indicators

As discussed in Section 1, the eastern Bering Sea has one of the most prolific demersal/benthic fisheries in the

world,  and its  ecosystem dynamics are strongly shaped by fluctuating seasonal sea ice.  Compared to the trawl

results, NEP10k trawl-equivalent bottom temperature (Figure 19) in the Bering Sea tends to be biased slightly warm,

particularly in the mid-shelf region that approximately corresponds with the area of maximum/minimum September

ice edge extent reported by Wang et al., (2014). The model exhibits a modest cold bias, in contrast, on the inner

shelf of the southeastern Bering Sea. The NEP10k model, however, robustly reproduces interannual variability of

the CPA indices, with best performance at the higher temperature thresholds (Fig. 20). The model does tend to

under-represent the CPA delineated by the coldest threshold (water temperature ≤ -1°C, dark blue Fig. 20) but there

is minimal bias at the higher thresholds (i.e., water temperature ≤ 1°C or 2°C, lighter blues Fig. 20). Critically, the

simulation captures the very small CPAs in recent years, which have been linked to recent declines in the lucrative

snow crab fishery (Szuwalski et al., 2023). 

Figure 19: Bering Sea cold pool extent.  Comparison with AFSC Bering Sea Summer Trawl. Marker size is scaled by the
number of data annual data points that comprise the mean. The colormap in a and b emphasizes the 2°C transition point for
consistency with the threshold value for identifying the cold pool. The black outline delineates the south eastern Bering Sea;
trawl data collected from this region are used to calculate the Bering Sea summer cold pool extent and index. 
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Figure 20: Southeastern Bering Sea cold pool area index.  Comparison of the cold pool index timeseries derived from the
AFSC bottom trawl survey data (top) and the spatially and temporally consistent NEP10k bottom temperature output (bottom)
following the methods described in Rohan et al. (2022) and AFSC coldpool software repository. The plots report the fraction of
the total survey south eastern Bering Sea trawl area (outlined in the figure above) that exhibits bottom temperatures under the
specified thermal thresholds. We report Spearman correlation values between NEP10k and trawl indices in the bottom panel. 

The NEP10k simulation does overestimate the sea ice concentration, particularly in the northern Bering sea (Fig.

21). However the contours for 10% and 50% sea ice concentration correspond with observations fairly well from

January through April,  suggesting that the simulation generates a reasonable spring sea ice extent.  NEP10k ice

extent timeseries for the southeastern Bering Sea (Fig. S16) are highly correlated with the satellite product, though

NEP10k does overestimate the coverage area, which may be consistent with the ~0.5 °C Bering Sea cold bias noted

in Fig. 2. 
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Figure 21: Bering Seasonal Sea Ice Concentration and Spatial Extent. Comparison of spatial patterns in Bering Sea monthly
mean NEP10k sea ice  concentration against  NASA Satellite  estimates  (Cavalieri  et  al.,  1996).  Black contours  indicate  the
position of 10% and 50% sea ice concentration.

3.2.2 Gulf of Alaska-specific indicators

NEP10k successfully simulates the two leading localized modes of SSH variability identified by Hauri et al. (2024)

that can predispose the Gulf of Alaska to extreme physical and biogeochemical events (Fig. 22). The first two

principal components (PCs) of the empirical orthogonal analysis of monthly NEP10k SSH in the Gulf of Alaska

have spatial patterns that are consistent with the CMEMS SSH product, with significantly correlated spatial loading

patterns in both cases (EOF1 R = 4.2, EOF2 R = 0.95, Fig. 22, top panels). The NEP10k-generated NGAO and

GOADI time series are also in good agreement with satellite altimetry observed over the corresponding region and
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time frame, particularly at lower frequencies (Fig. 22, bottom panels). These two modes of variability comprise 47%

and 34% of the variance in the model and observed SSH, respectively, suggesting that they may be somewhat over-

prominent in the model relative to other sources of SSH variability. 

Figure 22: GoA SSH EOFs and principal component timeseries. Spatial maps of the first (top row) and second (middle row)
EOFs for satellite (left) and NEP10k (right) SSH variability. These are complemented with timeseries comparisons (monthly,
left;  6  year  running mean,  right)  for  the first  two principal  components  (NGAO, top row; GOADI,  bottom row) from the
empirical orthogonal function analyses of Gulf of Alaska sea surface height for NEP10k (orange) and the CMEMS satellite
product (navy). R values indicate the Pearson Correlation coefficient calculated between NEP10k and the Satellite product, all of
which are significant at p<0.001. X-axis labels indicate January 1st of the specified year. 

Composites of environmental conditions when the second PC, the GOADI, is below or above 1 demonstrate the

impact of downwelling and relaxation of downwelling conditions, respectively on shelf habitat in the Gulf of Alaska
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(Fig. 23). Relaxation of downwelling is associated with colder, lower oxygen and more acidic shelf waters from the

enhanced intrusion of deep water. Conversely, positive phases of the GOADI exhibit significantly warmer bottom

temperatures and elevated levels of bottom dissolved oxygen and aragonite saturation state. 

Figure 23: GOADI composites. Composites of important ecological conditions during the positive (GOADI >1; 44 months out
of 324) and the negative (GOADI < -1; 45 months out of 324) phases of the Gulf of Alaska Downwelling Index (GOADI). Grid
cells are colored where the composite differs significantly from 0 (student t-test, p<0.05). 

3.2.3 California Current-specific indicators

Seasonal upwelling plays an important  role in  CCS ecosystem dynamics,  having bottom-up driving effects  on

primary productivity in this eastern boundary upwelling system (Section 1, Jacox et al., 2016). Summer upwelling

conditions are evident in the map of vertical velocity (Fig. 24) with, on average, a predominantly positive/upward

signal across the approximate mixed layer depth (30m) over March through August similar to that reported in Jacox

et al.,  (2018).  Monthly climatologies of  NEP10k simulated of  vertical  transport  across  30m demonstrates high

correlation with the Jacox et al., (2018) CUTI metric, with R values above 0.92 at representative latitudes (Fig. 24).
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Correlations between the Jacox et al., (2018) monthly CUTI anomaly timeseries and corresponding NEP10k vertical

transport are also significant but the relationship is strongest at more northern latitudes (R=0.76 at 45°N) and drops

off at more southerly latitudes (R=0.30 at 35°N). It is important to note, however, that the NEP10k and the ROMS

model in Jacox et al., (2018) are forced by different atmospheric reanalysis products, thus it may not be surprising

that they differ in high frequency variability. Additionally, the differences in methodologies such as approximating

using a constant reference depth of 30 meters for NEP10k could contribute to departures. 

Figure 24: CCS upwelling indices. Spring/summer (Mar-Aug) vertical velocity (map) at 30m depth. 1 degree bins are indicated
in black outline, which are used for integrating vertical transport. This (blue line) is compared against the Jacox et al., (2018)
ROMS CUTI metric (orange line) at several latitudes, decomposing the timeseries into monthly climatology (left) and anomalies
(right). Pearson correlations (R) are reported in the upper right corner of each time series panel; all correlations are significant
(p<0.001).
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NEP10k trends in dissolved oxygen reproduce offshore CalCOFI trends (Fig. 25), with strongest declines occurring

at around 300m and becoming less pronounced with depth. In the California Bight, however, NEP exhibits positive

trends (most pronounced at 100m depth) where the CalCOFI timeseries exhibit declining trends in dissolved oxygen

levels. Many of the stations exhibiting discrepancies in the NEP10k are not statistically significant (p<0.05) and, it

should  also  be  noted  that  some  of  the  timeseries  are  quite  variable,  with  linear  trends  being  sensitive  to  the

timeframe analyzed.

Figure 25:  CCS trends in dissolved oxygen at  CalCOFI stations. Linear  trends in  subsurface dissolved oxygen (O2)  at
CalCOFI stations for NEP10k (left) and the CalCOFI dataset (right) calculated over the timeframe of the NEP10k hindcast
(1993-2019). Black markers indicate where station trends are significant (p<0.05), following Bograd et al., (2008).
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3.3 Computational performance and scalability

As described in Section 1, the goal of the NEP10k configuration is to provide a simulation capable of skillfully

resolving  fisheries-critical  features  with  manageable  computational  cost  to  allow for  ensemble  predictions  and

projections.  Our  baseline  simulation  averaged  just  over  5.3  hours  of  wall  clock  time  per  hindcast  year  while

distributing the 342 x 816 grid (cross-shore x along-shore) across a 32 x 80 decomposition (Fig. 26, green circle)

and using a 400 second baroclinic time step and a 1200 second thermodynamic and tracer time step. After land

masking, the run uses  2036 PEs, yielding roughly 10,800 PE hours per  simulation year  on the c5 partition of

NOAA’s Gaea supercomputer. The 27 year hindcast produced herein thus requires ~292,000 PE hours, while 1200

years of retrospective seasonal forecasts (e.g., Ross et al., 2024) would require approximately 13 million PE hours.

Figure 26: Computational scalability efficiency. Amount of computer wall clock time used for completing 1 year of NEP10k
simulation with a given number and configuration of processing elements  (PEs).  Markers indicate a  given simulation’s  PE
decomposition for diving in the horizontal model domain prior to omitting PEs that do not contain any ocean grid cells. The
diagonal lines indicate constant computational cost (processes × time) relative to the 40 × 40 (blue square) reference simulation.
The two hollow markers represent simulations wherein the thermodynamics time step was set to dynamics time step (i.e. reduced
from 1200 to 400). 

The  NEP10k  computational  cost  is  comparable  to  the  recently  published  Northwest  Atlantic  regional  MOM6

configuration (NWA12) of Ross et al. (2023), which used a 40x40 layout (1200 PEs after land masking) to generate

1 simulation year  in about 9 hours  (about 10,800 PE hours per  simulation year).  While NWA12 was a larger

domain, NEP10k required smaller baroclinic and thermodynamic time steps for stability (400 versus 600 seconds

and 1200 versus 1800 seconds, respectively).  The instability at longer time steps in the NEP10k configuration
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primarily occurred in the vicinity of the Aleutian Island chain where strong currents could be generated within tight

channels. 

Computational scaling tests showed that increases in throughput were achievable but returns fell considerably below

the ideal 1:1 scaling between the processor count and the wall clock time (Fig. 26). An approximate doubling of PEs

from 2038 to nearly 4000, for example, only decreased the wall clock time for a simulation year from ~5.3 hours to

~4.2 hours (compare the green circle and the purple diamond  in Fig. 26). The decreased scaling is not unexpected as

higher processor counts decompose the model grid into increasingly granular tiles, taxing communication across

PEs. This effect can also be seen when comparing the performance of the 32x80 baseline setting, which maximizes

the  number  of  interior  to  exterior  cells  on  a  PE  by  decomposing  the  342x816  grid  into  squares,  versus  the

approximately  10%  slower  50x50  decomposition  that  relies  on  rectangular  elements.  Scaling  from  the  base

configuration  to  lower  processor  counts,  in  contrast,  is  relatively  strong,  supporting  the  viability  of  running

simulations on smaller supercomputing systems.

Consistent with the findings of Ross et al. (2023), we found considerable computational benefit from leveraging

MOM6’s capacity to have a longer thermodynamic and tracer time step than the baroclinic time step (closed versus

open symbols in Fig. 26). Throughput was nearly doubled when the thermodynamics and tracer time step was three

times longer than the baroclinic time step. 

4 Discussion

There were three primary design criteria for the NEP10k model. The first was that a “coastwide” configuration was

needed to address coastwide challenges arising from climate change, such as shifting fisheries distributions across

state and international boundaries. The second was that the model must resolve and accurately reproduce enough of

the physical and biogeochemical drivers of ocean change in and across the disparate ecosystems within the domain

to support ecosystem and fisheries applications. The third was that the model must be suited, both computationally

and in terms of model skill, for ensemble predictions and projections.  The comprehensive model evaluation herein

suggests  that  the  NEP10k  configuration  meets  these  design  criteria  sufficiently  to  provide  a  basis  for  initial

applications and a robust foundation for further model improvement. Comparison against large-scale physical and

biogeochemical patterns in Section 3.1 showed that a single physical-biogeochemical modeling framework could

robustly capture the primary physical and biogeochemical contrasts between the EBS, GoA and CCE (Figs 2-5, 7-8,

12-15). Simulation fidelity extended to seasonal patterns in most quantities (Fig. 17-18, Figs. S1-S15) and robust

matches to interannual variations for many, even within limited regions of the domain (Figs. 16, 19, 21, 24-25).

While  biases  were  present,  and  at  times  prominent,  the  skill  achieved  supports  NEP10k’s  current  utility.  The

Discussion will focus on model characteristics contributing to successes, and on further model developments that

may ameliorate current limitations.   

A central challenge for NEP10k was the representation of physical and biogeochemical processes governing a large

range of ecosystems, from subtropical to polar and oligotrophic to eutrophic.  Success in this regard requires model
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formulations and parameterizations that  are robust  across  regimes.  For  ocean physics,  one advance that  led to

notable improvement was the replacement of the submesoscale restratification parameterization of Fox-Kemper et

al. (2011) with that of Bodner et al. (2023). The Fox-Kemper parameterization requires a single choice for the

submesoscale front length while Bodner diagnoses the front length from the ocean state, revealing considerable

variability with season and latitude.  Smaller front lengths at high latitudes proved critical to limiting deep mixing

biases in the western Bering Sea, while longer front lengths further south were critical in limiting shallow mixed

layer biases in the Gulf of Alaska and California Current (Fig. 4). Though the more dynamic Bodner scheme did not

eliminate MLD biases, we did find that it improved them considerably relative to the Fox-Kemper et al. (2011)

parameterization, where a single characteristic submesoscale frontal length scale forced one to exacerbate one bias

or the other (Fig. S18). 

For biogeochemistry, starting with a model designed for global applications provided a sound starting point for

achieving cross-system skill. Evaluation of the shelf-scale fidelity of global models, however, is generally limited by

their often coarse resolution (e.g., Stock et al., 2014; 2020). A key addition to extend skill in NEP10k to coastal

regions was an additional phytoplankton size class, which allowed the model to better resolve the coastal diatoms

responsible for high chlorophyll concentrations along the coast. This expanded formulation was initially developed

by Van Oostende et al., (2018) for use in the California Current, where it was shown to improve resolution of both

very high coastal chlorophyll concentrations and the biogeochemical signals that can be associated with them (e.g.,

coastal hypoxia). These benefits can be seen in the small (and generally high) coastal chlorophyll biases along the

U.S. West Coast (Fig. 10) and the robust depiction of the hypoxic boundary layer depth (Fig. 13). The most glaring

chlorophyll bias is the model’s tendency to underestimate winter/fall OC-CCI-estimated chlorophyll in the nearshore

EBS (Fig. 10), which degrades the seasonal chlorophyll fidelity for this region (Fig. 17). Satellite-based estimates in

shallow regions of the EBS actually peak during these months despite cold, dark and vigorously mixed conditions,

suggesting potential contamination of chlorophyll estimates in turbid coastal waters (Dierrson, 2010; Schofield et

al.,  2013).  A recent study in the Arctic,  for example,  suggests that  global satellite chlorophyll algorithms may

overestimate chlorophyll by over a factor of 2 (Li et al., 2024). 

Other chlorophyll and plankton misfits require additional scrutiny. The tendency to overestimate offshore spring and

summer chlorophyll along the margin separating the Gulf of Alaska and the California Current, for example, may

reflect biases in dust delivery, dust solubility or iron scavenging in this iron-limited region. The relatively persistent

and strong iron limitation in the offshore waters of the California Current in NEP10k, however, may already exceed

the “mosaic” of alternating N and Fe limitation suggested by some prior studies (Messie and Chavez, 2015; Moore

et al., 2013; Till et al., 2019). A spatially indiscriminate iron tuning is thus unlikely to resolve these biases.  They

may  also  arise,  however,  from misrepresented  grazing  controls.  NEP10k  skill  in  simulating  mesozooplankton

biomass  is  limited  to  capturing  first-order  cross-ecosystem and  seasonal  biomass  contrasts  (Fig.  11)  with  the

patchiness in mesozooplankton biomass in net tow data being under-represented. There are also some systematic

biases, such as the tendency for mesozooplankton populations to be displaced offshore and biased low relative to

observations during the summer upwelling season in the California Current. Previous work (e.g., Batchelder et al.,
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2002)  has  suggested  that  zooplankton  may  enlist  diurnal  vertical  migration  to  avoid  being  swept  offshore,

alternating between surface feeding in offshore currents at night and predator avoidance in inshore flowing currents

during the day.  Such behavior is not included in NEP10k, but could increase mesozooplankton biomass and shift

the distribution inshore.

Capturing  mean  spatial  and  seasonal  patterns  is  a  critical  starting  point  for  any  model  intended  for

ecosystem/fisheries  science  and management  applications.  Many applications,  however,  require the  capacity  to

anticipate change across seasonal to multi-decadal management time horizons (Tommasi et al., 2017). The robust

representation of surface and bottom temperature variability (Fig.  16) provides a promising start  in this regard.

Temperature anomalies are a first-order indicator of ecosystem conditions and a primary determinant of habitat

viability  (e.g.,  Deutsch  et  al.,  2015),  and temperature  extremes  are  a  primary source  of  ecosystem stress  in  a

changing climate (e.g., Frölicher et al., 2018). The robust representation of surface and bottom water anomalies at a

regional scale and for shallower waters (< 500m), combined with the growing capacity of global prediction systems

to anticipate fluctuations in large-scale climate drivers (e.g., ENSO) supports the potential viability of predictive

applications. Retrospective forecast experiments are underway to assess this. NEP10k was less successful, however,

in capturing coastal chlorophyll anomalies (Fig. 17). The correlation with monthly chlorophyll anomalies was only

marginally  significant  in  most  systems,  approaching  useful  levels  (i.e.,  R~0.6)  in  the  NCCS.   This  was  not

necessarily surprising, given the volatile and patchy nature of coastal chlorophyll and observing challenges in such

environments,  but points to the need for  further scrutiny of both the model and observations before predictive

chlorophyll applications can be realized in most systems.

Possibly the most critical  metrics  for  ecosystems and fisheries applications considered herein were the region-

specific quantities considered in Figs. 18-25. These were drawn from existing management-linked documents, such

as the “State of the Ecosystem” reports created by NOAA’s National Marine Fisheries Service to strategically

inform management decisions.  Evaluations against the admittedly limited set of region-specific fisheries metrics

herein was generally  positive.  Perhaps the most  striking of  these successes is  the fidelity  with which NEP10k

reproduces the Bering Sea cold pool relative to over 2 decades of Alaska Fisheries Science Center bottom trawl data

(Figs. 19-20). The model’s representation of these metrics was improved during the course of development when an

excess of shear-driven mixing on the Bering shelf was identified and addressed with an adjustment of Jackson et al.

(2008) shear mixing parameterization. The addition of a simple scaling factor for the geometric limitation imposed

by this formulation was found to be the most effective way to pragmatically calibrate the shear driven mixing to

better produce observed values for both mixing and bottom temperature. A more comprehensive analysis of this

parameterization and its impact on Bering Sea dynamics is currently underway (Seelanki et al., in prep) and will

inform regional MOM6 shear mixing parameterization for mixed turbulence regimes. 

While NEP10k’s overall representation of variations in Bering Sea cold pool extent was excellent, the model did

underestimate the summer extent of the coldest bottom water (< -1°C, darkest blue in Fig. 19).  This seemingly

conflicts with NEP10k’s overrepresentation of seasonal sea ice extent (Figs. 20 & S16) since greater sea ice extent

and coverage tends to be associated with a more extensive cold pool (e.g.,Wyllie-Echeverria & Wooster, 1998).  The
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model  does,  however,  achieve  substantial  winter  levels  of  cold bottom water  (Fig.  S19),  they just  erode  more

quickly than observed in May and June, just prior to the trawl season. This coincides with a dramatic monthly

reduction in NEP10k’s SEBS sea ice extent relative to satellite estimates (Fig. S20, May - April and June - May).

The drivers of this bias will be explored. We emphasize,  however,  that  simulated Bering Sea ice variations in

NEP10k are  highly  correlated  with observations (Fig.  S16)  suggesting the potential  for  predictive  applications

despite the mean sea ice bias.

NEP10k reproduction of localized modes of low-frequency climate variability in the Gulf of Alaska (NGAO and

GOADI, correlation with satellite-derived PCs > 0.65, Fig. 22) holds promise for potential for multi-year to decadal

fisheries applications in the GoA. These modes of variability map on to important ecosystem drivers such as bottom

temperature and saturation state (Fig. 22, Fig. S17) and can contribute to extreme compound events that can have

severe consequences for marine ecosystems (Hauri et al., 2024). Understanding of the relationships between SSH

variability and shelf ecosystem conditions will be aided by the growing availability of physical and biogeochemical

observations of GoA bottom conditions. Increasing horizontal resolution of the NEP10k configuration may further

improve representations of important regional GoA ecosystem features. For example, sea surface heights south of

the Aleutian Island Chain, central to the Alaska Gyre, are lower than observed in reference datasets (Fig. 5) and

could improve with better resolution of opposing horizontal flows, specifically the southwestward Alaska stream

and  eastward  Subarctic  or  Aleutian  Current.  Higher  resolution  may  also  improve  representation  of  transports

through the Aleutian Island chain, which can significantly impact water mass properties in the Bering Sea (Stabeno

et al.,1999). 

Finally, in the California Current system, our regional assessment focused on ecosystem-critical seasonal upwelling

and source water trends. NEP10k’s climatological vertical transport at 30m along the continental U.S. west coast is

highly correlated (i.e., R values ≥ 0.93, Fig. 24) with the CUTI metric published by Jacox et al., (2018). Similarly,

reproduction of multi-decadal trends in dissolved O2 (Fig. 25) observed in the CalCOFI record was an important

benchmark, indicative of the model's ability to capture processes driving ecologically consequential deoxygenation

in the southern CCE (Bograd et al., 2008). While these findings further support the suitability of the current NEP10k

configuration  for  ecological  applications,  continued  model  development  will  seek  to  understand  and  improve

localized performance. For example, warm/cold biased climatological surface/bottom temperatures in both CCCS

and SCCS (Fig.  17),  underrepresentation of climatological  upwelling and low correlation in upwelling monthly

anomalies  (33N in Fig.  24),  and underrepresentation of  deoxygenation trends in  the Southern California  Bight

(200m, 300m depth in Fig. 25) suggests we may not be adequately representing the physical processes that influence

these conditions  due to excessive stratification in the southern CCE. Given the complex bathymetry and circulation

that  impacts  these  processes  in  southern  California  Bight  (e.g.,  Hickey  1992),  this  is  another  instance  where

increased  spatial  resolution  may  improve  model  performance.  However,  while  higher  resolution  (i.e.,  ~5km)

simulations are currently underway, any benefits of doubling resolution will need to be balanced against the roughly

eight-fold increase in computational cost.
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5 Conclusions

The results  presented  herein  demonstrate  that  NEP10k is  “fit  to  purpose”  -  in  terms  of  both  model  skill  and

computation cost - for numerous living marine resource management applications across multiple time horizons.

The model also establishes a basis for community evaluation to assess against a much broader set of fisheries and

ecosystem metrics,  and a basis for  co-development with fisheries  scientists  and managers to  address identified

limitations  and  maximize  model  utility.  As  part  of  NOAA’s  Climate,  Ecosystems and  Fisheries  Initiative,  the

community contributing to this effort has grown tremendously, facilitated by the open development of MOM6,

COBALT, as well as pre-processing and analytical scripts made available via the CEFI GitHub. With increasing

input from collaborators and co-development with end-users, ongoing model development will prioritize NEP10k

representation of key ecosystem indicators to maximize utility of climate change projections and forecasts for living

marine resource management.

Appendix A

Table A1. Notable parameters, their current names and associated values used in the physical ocean (MOM6) 
component of the model and relevant references. BGC denotes biogeochemistry; SAL denotes self-attraction and 
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loading. Bold text indicates where parameter choices differ from Ross et al. (2023). Comprehensive documentation 
of physical MOM6 parameters can be found in MOM_parameter_doc.all (supplemental materials). 

Parameter
(as appears in MOM_parameter_doc.all)

Value
(as appears in MOM_parameter_doc.all if differs)

Reference

Vertical coordinate 
(REGRIDDING_COORDINATE_MODE,
ALE_COORDINATE_CONFIG)

 75-layer z  ∗
(Z*, FILE:vgrid_75_2m.nc,dz)

Adcroft et al. (2019)

Baroclinic time step 
(DT)

400 seconds

Thermodynamics and BGC time step 
(DT_THERM)

1200 seconds

Planetary boundary layer parameterization
(EPBL_MSTAR_SCHEME, EPBL_VEL_SCALE_SCHEME)

Energetics based planetary boundary layer (ePBL)
(REICHL_H18, REICHL_H18)

Reichl  and  Hallberg
(2018)

Mixed-Layer Restratification
(USE_BODNER23)

Bodner et al. (2023) formulation
(TRUE)

Bodner et al. (2023)

Biharmonic viscosity 
(SMAGORINSKY_AH)

Smagorinsky coefficient (SMAG_BI_CONST)
Resolution-dependent (AH_VEL_SCALE)

Maximum of Smagorinsky and resolution-dependent viscosities
(TRUE)

 0.015
 0.01 Δx

3  m4 s−1 (0.01)

Griffies  and  Hallberg
(2000)

Adcroft et al. (2019)

Bottom boundary layer mixing efficiency
(BBL_EFFIC)

0.0

Background kinematic viscosity
(KV) *NOTE: this term is additive to the viscosity calculated
internally

1.0 × 10−6 m2 s−1

(0.0)

Background diapycnal diffusivity
(KD)

1.0 × 10−6 m2 s−1

Boundary conditions (example for open boundary 001)
Sea level and barotropic velocity Baroclinic velocity 
(OBC_SEGMENT_001)

(OBC_SEGMENT_001_VELOCITY_NUDGING_TIMESC
ALES)

Tracers 
(OBC_TRACER_RESERVOIR_LENGTH_SCALE_OUT)
(OBC_TRACER_RESERVOIR_LENGTH_SCALE_IN)

Flather scheme
(FLATHER,ORLANSKI,NUDGED,ORLANSKI_TAN,NUDGED_TA
N) 
Radiation  and  nudging  scheme  (3  day  inflow,  360  day  outflow
timescales)
(3.0, 360.0)

Reservoirs with 9000 meter length scales
(9000.0)
(9000.0)

Flather (1976)
Marchesiello  et  al.
(2001), Orlanski (1976)

Tidal SAL coefficient
(SAL_SCALAR_VALUE)

0.01 Irazoqui Apecechea et al.
(2017),  Stepanov  and
Hughes (2004)

Opacity scheme
(OPACITY_SCHEME, PEN_SW_NBANDS)

three-band with chlorophyll 
(MANIZZA_05, 3)

Manizza (2005)

Table A2. Ocean diagnostics used for evaluating the NEP10k hindcast

47

https://doi.org/10.5194/gmd-2024-195
Preprint. Discussion started: 18 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Diagnostic
(Fig. #)

NEP10k Variable
(original units)

Sampling Reference Dataset Comparison
Timeframe

if blank:
1993-01-01 to

2019-12-31
Time Depth

Name 
reference

Variable
(original units)

Horizontal
Resolution

Temperature
(Fig. 2)

thetao (°C)
Annual and seasonal mean

climatology

Surface
OISSTv2.1

Huang et al., 2021
sst 

(°C)
¼°

Surface, 100m, 200m 
GLORYS12

Jean-Michel et al., 2021
thetao
(°C)

1/12°

Salinity
(Fig. 3)

so
Annual and seasonal mean

climatology
Surface, 100m, 200m 

NCEI NNP and NEP Regional
Climatologies

Seidov et al., 2023, 2017 
s_an 1/10°

1995-01-01 to
2014-12-31 (nnp)
2012-12-31 (nep)

GLORYS12
Jean-Michel et al., 2021 so 1/12°

Mixed Layer Depth
(Fig. 4)

MLD_003 
(m)

Annual and seasonal mean
climatology

-

de Boyer Montégut, 2024 mld_dr003 
(m)

1°

GLORYS12
Jean-Michel et al., 2021

thetao (°C),
so, deptho (m)

1/12°

Mean Sea Level
(Fig. 5)

ssh 
(m)

Annual and seasonal mean
climatology

Surface

GLORYS12
Jean-Michel et al., 2021

zos
(m)

1/12°

Gridded satellite altimetry
CMEMS, 2023

adt 
(m)

¼°
GoA EOF & PCA

(Fig. 22)
Monthly means

Tidal amplitude and
phase 

(Fig. 6)

ssh
(m)

Hourly means Surface
TPXO9

Egbert & Erofeeva, 2002
ha (m),

hp (°GMT)
1/6°

1993-02-01 to
1993-02-28

Inorganic Nutrients
(Figs. 7,8)

no3, po4
(mol kg-1)

Annual and seasonal mean
climatology

Surface, 100m, 200m 
WOA23 

Garcia et al., 2023a
n_an , p_an
(μmol kg-1)

1°

Surface Chlorophyll
(Fig. 10)

chlos
(kg m-3)

Seasonal Mean
Climatologies

Surface
OC-CCI v6.0

Sathyendranath et al., 2023
chlor_a
(mg m-3)

4km
1998-01-01 to

2019-12-31Regional Surface
Chlorophyll Variability

(Fig. 18)

Monthly mean climatology
and anomalies 

Zooplankton Biomass
(Fig. 11)

mesozoo_200
(mol m-2 C)

Seasonal Mean
Climatologies

0-200m integrated
COPEPOD

Moriarty and O’Brien, 2013
cmass 

(mg C m-3)
site locations

Dissolved Oxygen
(Fig. 12)

o2
(μmol kg-1)

Annual and seasonal mean
climatology

Surface, 100m, 200m

WOA23
Garcia et al., 2023b o_an 1°

Hypoxic Boundary
Layer Depth

(Fig. 13)
Monthly means -

Total Alkalinity,
Dissolved Inorganic
Carbon, Aragonite

Saturation State
(Figs. 14,15,16)

talk, dissic 
(mol m-3)

omega_arag

Annual and seasonal mean
climatology

Surface, 100m, 200m
CODAP-NA

Jiang et al., 2022

TA_an, DIC_an
(μmol kg-1)

OmegaA_an

1°
2004-01-01 to

2018-12-31

Table A2. (continued)
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Regional Surface &
Bottom Temperature

Variability
(Fig. 17)

tos, tob 
(°C)

Monthly mean climatology
and anomalies 

Surface, Bottom
GLORYS12

Jean-Michel et al., 2021
Thetao, bottomT

(°C)
1/12°
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Code availability

The source code for each component of the model has been archived at https://doi.org/10.5281/zenodo.13936294

(Drenkard et al., 2023a). The GitHub repositories for MOM6 can be found at https://github.com/mom-ocean/MOM6

(last  access:  2  August  2024)  and  https://github.com/NOAA-GFDL/MOM6  (last  access:  2  August  2024).

Repositories  for  other  model  components  are  also  available  at  https://github.com/NOAA-GFDL (last  access:  2

August 2024). Codes for generating regional MOM6 initial conditions, boundary conditions and other necessary

model  inputs  as  well  as  diagnostic  scripts  are  maintained  on  the  NOAA  CEFI  GitHub  Repository:

https://github.com/NOAA-GFDL/CEFI-regional-MOM6/.  Alaska  Fisheries  Science  Center  (AFSC) R code base

used for the Bering Sea Cold Pool Analyses can be found on github: https://github.com/afsc-gap-products/coldpool,

which utilizes the AFSC akgfmaps toolset, also on github: https://github.com/afsc-gap-products/akgfmaps. 

Data availability

All model output and that was analyzed and the corresponding analysis codes used in preparing this paper has been

published  at  https://doi.org/10.5281/zenodo.13936240 (Drenkard  et  al.,  2023b).  Model  parameter,  forcing,  and

initial  condition  files  are  published  at  https://doi.org/10.5281/zenodo.13936479  (Drenkard  et  al.,  2023c).  The

datasets used for model validation and comparison are tabulated in Appendix Table 2 with associated URL or DOI

where the data can be downloaded are listed as follows: OISSTv2.1 (https://www.ncei.noaa.gov/products/optimum-

interpolation-sst, Huang et al., 2021); GLORYS12 reanalysis (https://doi.org/10.48670/moi-00021, Jean-Michel et

al.,  2021);  NCEI  Northern  North  Pacific  Regional  Climatology  Version  2
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(https://www.ncei.noaa.gov/products/northern-north-pacific-regional-climatology,  Seidov  et  al.,  2023);  NCEI

Northeast  Pacific  Regional  Climatology  (https://www.ncei.noaa.gov/products/northeast-pacific-regional-

climatology;  Seidov  et  al.,  2017);  de  Boyer  Montégut  Mixed  layer  depth  over  the  global  ocean

(https://doi.org/10.17882/98226, de Boyer Montégut, 2024); Global Ocean Gridded L 4 Sea Surface Heights And

Derived  Variables  (https://doi.org/10.48670/moi-00148;  CMEMS,  2023);  OSU  TPXO9  Tide  Model

(https://www.tpxo.net/home, Egbert and Erofeeva, 2002); World Ocean Atlas 2023 Nitrate, Phosphate, and Oxygen

output (https://ncei.noaa.gov/access/world-ocean-atlas-2023/, Garcia et al.,  2023a,b); ESA Ocean Colour Climate

Change Initiative (Ocean_Colour_cci): Global chlorophyll-a data products gridded on a geographic projection at

4km  resolution,  Version  6.0  (https://www.oceancolour.org/,

https://catalogue.ceda.ac.uk/uuid/b0ec72a28b6a4829a33ed9adc215d5bc/, Sathyendranath et al., 2019); COPEPOD-

2012 (https://www.st.nmfs.noaa.gov/copepod/biomass/biomass-fields.html, Moriarty and O’Brien, 2013); CODAP-

NA  total  alkalinity,  DIC,  and  aragonite  saturation  (https://doi.org/10.25921/g8pb-zy76,

https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0270962.html,  Jiang  et  al.,  2022);   NOAA  NCEP

Ocean  Niño  Index  (https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/

detrend.nino34.ascii.txt);  AFSC  bottom  trawl  gear  temperature  data

(https://github.com/afsc-gap-products/coldpool/tree/main/data,  Rohan  et  al.,  2022);  NASA  NSIDC  Sea  Ice

Concentrations  from  Nimbus-7  SMMR  and  DMSP  SSM/I-SSMIS  Passive  Microwave  Data,  Version  2

(https://doi.org/10.5067/MPYG15WAA4WX, DiGirolamo et al., 2022); Coastal Upwelling Transport Index (CUTI;

https://oceanview.pfeg.noaa.gov/products/upwelling/dnld;  Jacox  et  al.,  2018);  California  Cooperative  Oceanic

Fisheries Investigations (CalCOFI) Bottle Database (https://calcofi.org/data/oceanographic-data/bottle-database/). 

The datasets used to create the model forcing and the URL or DOI where the data can be downloaded are listed as

follows: GLORYS12 reanalysis (https://doi.org/10.48670/moi-00021, Jean-Michel et al., 2021); OSU TPXO9 Tide

Model  (https://www.tpxo.net/home,  Egbert  and  Erofeeva,  2002);  World  Ocean  Atlas  2018

(https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18);  GloFAS  (https://doi.org/10.24381/cds.a4fdd6b9);

ERA5  (https://doi.org/10.24381/cds.adbb2d47,  Hersbach  et  al.,  2023),  Carter  et  al.  (2021)  alkalinity  and  DIC

estimation  algorithm  (ESPER;  https://doi.org/10.5281/zenodo.5512697);  RC4USCoast

(https://doi.org/10.25921/9jfw-ph50,  Gomez  et  al.,  2022);  Global  River  Chemistry  database  (GLORICH,

https://doi.org/10.1594/PANGAEA.902360,  Hartmann  et  al.,2019);  GlobalNEWS2

(https://doi.org/10.1016/j.envsoft.2010.01.007,  Mayorga  et  al.,  2010);  ArcticGro

(https://www.arcticgreatrivers.org/data,  Holmes  et  al.,  2012);  Meinshausen  et  al.  (2017)  atmospheric  CO2

(https://doi.org/10.22033/ESGF/input4MIPs.1118,  Meinshausen  and  Vogel,  2016;

https://doi.org/10.22033/ESGF/input4MIPs.9866,

Meinshausen and Nicholls, 2018); GFDL ESM4.1 model output model output prepared for CMIP6 CMIP historical

(https://doi.org/10.22033/ESGF/CMIP6.8597).
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