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Abstract.  Regional  ocean  models  enable  generation  of  computationally-affordable  and  regionally-tailored

ensembles  of  near-term  forecasts  and  long-term  projections  of  sufficient  resolution  to  serve  marine  resource

management. Climate change, however, has created marine resource challenges, such as shifting stock distributions,

that  cut  across  domestic  and  international  management  boundaries  and  have  pushed  regional  modeling  efforts

toward “coastwide” approaches. Here we present and evaluate a multidecadal hindcast with a Northeast Pacific

regional implementation of the Modular Ocean Model version 6 with sea ice and biogeochemistry that extends from

the Chukchi Sea to the Baja California Peninsula at 10-km horizontal resolution (MOM6-COBALT-NEP10k, or

NEP10k). This domain includes an Arctic-adjacent system with a broad shallow shelf seasonally covered by sea ice

(the Eastern Bering Sea), a sub-Arctic system with upwelling in the Alaska Gyre and predominant downwelling

winds  and  large  freshwater  forcing  along  the  coast  (the  Gulf  of  Alaska),  and  a  temperate,  eastern  boundary

upwelling ecosystem (the California Current Ecosystem). The coastwide model was able to recreate seasonal and

cross-ecosystem  contrasts  in  numerous  ecosystem-critical  properties  including  temperature,  salinity,  inorganic

nutrients, oxygen, carbonate saturation states, and chlorophyll. Spatial consistency between modeled quantities and

observations  generally  extended  to  plankton  ecosystems,  though  small  to  moderate  biases  were  also  apparent.

Fidelity with  observed zooplankton biomass,  for  example,  was limited to  first-order  seasonal  and cross-system

contrasts. Temporally, simulated monthly surface and bottom temperature anomalies in coastal regions (< 500m

deep) closely matched estimates from data-assimilative ocean reanalyses. Performance, however, was reduced in

some nearshore regions coarsely resolved by the model’s 10-km resolution grid and  for point measurements.The

time  series  of  satellite-based  chlorophyll  anomaly  estimates  proved  more  difficult  to  match  than  temperature.

System-specific ecosystem indicators were also assessed. In the  Eastern Bering Sea,  NEP10k robustly matched

observed variations, including recent large declines, in the area of the summer bottom water “cold pool” (< 2 °C)

which exerts a profound influence on Eastern Bering Sea fisheries. In the Gulf of Alaska, the simulation captured

patterns of sea surface height variability and variations in thermal, oxygen and acidification risk associated with

local modes of inter-annual to decadal climate variability. In the  California Current Ecosystem  , the simulation

robustly captured variations in upwelling indices and coastal water masses, though discrepancies in the latter were

evident  in  the  Southern  California  Bight.  Enhanced  model  resolution  may  reduce  such  discrepancies,  but  any

benefits must be carefully weighed against computational costs given the intended use of this system for ensemble

predictions and projections. Meanwhile, the demonstrated NEP10k skill level herein, particularly in recreating cross-

ecosystem contrasts and the time variation of ecosystem indicators over multiple decades, suggests considerable

immediate utility for coastwide retrospective and predictive applications. 

1 Introduction

The western coasts of the continental U.S., Canada, and Mexico form the eastern bounds of the North

Pacific Gyres, which substantially impact North American climate and support a diverse assemblage of ecosystems,

species and resources. These ecosystems include valuable fisheries that represented roughly 42% of the $4.6 billion
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in commercial U.S. domestic landings in 2020 (National Marine Fisheries Service, 2022). Management of these

interconnected, multi-scale marine resources presents a challenge, particularly with the growing need to account for

changing climate and ocean conditions. Ocean warming, acidification and deoxygenation stand to fundamentally

alter coastal ecosystems (Gruber, 2011), potentially driving fluctuations in living marine resource abundance due to

habitat range shifts (e.g., Pinsky et al., 2013; Christian and Holmes, 2016; Smith et al., 2021; Chasco et al., 2022;

Thompson et al., 2023), recruitment and fish size changes (e.g., Holsman et al.,  2019; Litzoe et al.,  2022), and

heightened competition and predation from invasive species (Grosholz et al., 2000; Zeidberg & Robinson, 2007;

Compton et al.,  2010). Additionally, extreme events such as marine heatwaves (e.g.,  Rogers-Bennett & Catton,

2019; McPherson et. al, 2021) and harmful algal blooms (e.g., Anderson et al., 2015) can degrade foundational

habitats and compromise water quality

Numerical  ocean models  facilitate  both the  understanding of  difficult-to-observe ocean and ecosystem

dynamics, and the forecasting and projection of near-to-long term ocean conditions. Previous regional modeling

efforts  in  the  Northeast  Pacific  Ocean  have  contributed  considerably  to  our  understanding  of  the  Bering  Sea

(Danielson et al., 2011; Hermann et al., 2013; Cheng et al. 2015; Hermann et al., 2016; Pilcher et al., 2019; Kearney

et al., 2020), Gulf of Alaska (Hermann et al. 2009; Hinckley et al. 2009; Cheng et al. 2012; Coyle et al. 2012, 2019;

Danielson et al., 2020; Hauri et al., 2020; Hauri et al., 2024), and the California Current System (Marchesiello et al.,

2001; DiLorenzo et al., 2005; Gruber et al., 2006; Veneziani et al., 2009; Neveu et al., 2016; Van Oostende et al.,

2018; Dussin et al., 2020; Deutsch et al., 2021; Renault et al., 2021) and broader NEP10k domain (Desmet et al.,

2022; Desmet et al., 2023). Predictions and projections from these regionally-tailored ocean models have also been

enlisted to understand and anticipate living marine resource responses to climate variability and change (e.g., Gruber

et al., 2012; Hermann et al., 2016; Holsman et al., 2020; Siedlecki et al., 2016; Howard et al., 2020; Pozo Buil et al.,

2021; Pilcher et al., 2022; Jacox et al., 2023). In a growing number of cases, applications have been extended to

management (e.g., Anderson et al., 2016; Punt et al., 2021; Brodie et al., 2023; Smith et al., 2023; Hollowed et al.,

2024;  ).  Such applications  have  been  hampered,  however,  by  the  use  of  relatively  small  domains  and limited

ensembles to characterize uncertainties. Climate change impacts and species responses traverse the bounds of those

domains thus motivating an integrated “coastwide” modeling framework with rigorously defined uncertainties.

A key challenge is  thus configuring a  “coastwide” modeling framework with sufficient  resolution and

complexity to adequately represent fisheries-critical ocean features across the full domain while also maintaining

low computational cost conducive to generating ensembles (Drenkard et al., 2021). This challenge is made more

acute by the diversity of northeast Pacific ecosystems and the mechanisms by which climate shapes them. The

Bering  Sea,  for  example,  features  one  of  the  world’s  broadest  shallow  continental  shelf  environments  which

supports  benthic  and demersal  fisheries  that  are  amongst  the most  productive in  the world (National  Research

Council, 1996). These fisheries, however, have proven to be highly sensitive to temperature and food fluctuations in

these shallow habitats (Hunt et al., 2002, 2011). Recent warming and reduced food supply in the eastern Bering Sea

(EBS), for example, was linked to the collapse of the snow crab fishery (Szuwalski et al., 2023). Productivity as well
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as benthic and pelagic habitat fluctuations on the eastern Bering shelf are further linked to coupled ocean and sea ice

dynamics (Mueter and Litzow, 2008; Brown and Arrigo, 2013; Hunt et al., 2022), presenting an additional challenge

for ocean modeling systems intended for fisheries applications in this region.

In the Gulf of Alaska (GOA), downwelling winds and abundant freshwater input prevail and contribute to a

strong cyclonic circulation of the Alaska Gyre (Stabeno et al., 2004). Despite the predominance of downwelling

winds, the confluence of the high nitrate waters of the basin with the high iron waters of the shelf (assisted by shelf-

break eddies), as well as upwelling of nitrate by wind stress curl, promote high production in the coastal GOA

(Stabeno  et  al.,  2004;  Hermann et  al.  2009;  Coyle  et  al.  2019).  While  correlation  with  the  El-Nino  Southern

Oscillation (ENSO) can be found (e.g., Bailey et al., 1995; Whitney and Welch, 2002; Amaya et al., 2023b), lower

frequency modes of decadal climate variability tend to predominate (e.g., Di Lorenzo et al., 2008) and are associated

with  marked  decadal-scale  ecosystem  regime  shifts  (Anderson  and  Piatt,  1999;  Hare  and  Mantua,  2000)  and

modulations in fisheries and ecosystem risks (Hauri et al., 2021b, 2024). Cold water temperatures and the proximity

of north Pacific basin waters which are exceptionally rich in dissolved inorganic carbon (DIC) make the Gulf of

Alaska particularly susceptible to ocean acidification (Fabry et al., 2009; Byrne et al., 2010; Mathis et al., 2015).

Periodic on-shelf intrusions of DIC-rich deep Pacific water can suppress the aragonite and calcite saturation states

and stress commercially important crab and shellfisheries (Ladd et al.,  2005). Increased freshwater input due to

deglaciation, which is naturally low in alkalinity, may also exacerbate coastal acidification trends (Reisdorph and

Mathis, 2014; Evans et al., 2014). In off-shore waters, the iron supply strongly modulates ocean productivity, though

the impacts of such variations on fisheries remains speculative (Lippiatt et al., 2010; McKinnell, 2013; Kearney et

al., 2015).

The California Current is one of the four major eastern boundary upwelling systems in the global ocean

(Hill et al.,  1998). Marine resource fluctuations are inextricably linked to variations in the timing, strength and

source waters of this seasonal upwelling (e.g., Bograd et al., 2009). Physical, biogeochemical and marine resource

dynamics of the California Current correspond strongly with ENSO (Ohman et al., 2017; Turi et al., 2018; Cordero-

Quirós et al., 2022) through diverse atmospheric and oceanic teleconnection pathways (Alexander et al., 2002; Jacox

et al., 2015; Frischknecht et al., 2015). While a narrow shelf and modest riverine inputs over much of the coast give

the  California  Current  an  oceanic  character,  the  system nonetheless  supports  significant  benthic  and  demersal

fisheries which are periodically subject to heightened hypoxia and acidification risks common in upwelling systems

(Bograd et al.,  2008; Hauri et al.,  2009; Wolfe et al.,  2023). These risks can be further amplified by processes

resulting from changing land-use such as increased nutrient input, pollution and coastal engineering (e.g., Halpern et

al., 2009; Hughes et al., 2015). The considerable productivity generated by coastal upwelling also supports climate-

sensitive forage fish, highly migratory species, and top predators that are ecologically, economically, and culturally

important.  Projections  suggest  that  upwelling  strength,  seasonality  and  source  water  properties  may shift  with

climate change (Rykaczewski & Dunne, 2010; Rykaczewski et al., 2015; Sydeman et al., 2014; Pozo Buil et al.,

2021) and significantly alter ecosystem productivity and fisheries (McClatchie et al.,  2010; Bograd et al.  2023;
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Jacox et al. 2024). 

Here we present a regional implementation of the modular ocean model (MOM6) with coupled sea ice and

biogeochemistry spanning the Northeast Pacific and assess the degree to which this system can capture fisheries-

critical  mean patterns and fluctuations across the diverse ecosystems of the Northeast  Pacific.  We evaluate the

model’s capacity to represent both large-scale contrasts in ecologically important variables across ecosystems, and

variations in fisheries-oriented diagnostics within each ecosystem. We also assess computational costs to ensure the

feasibility of ensemble predictions. We conclude with an assessment of the model’s current utility for fisheries

applications, and a discussion of priority developments for addressing model biases in order to maximize future

utility in informing fisheries and ecosystem decisions.

2 Methods

2.1 Physical model configuration

The NEP10k model domain (Fig. 1) is designed to cover the western coast of the continental United States

and contiguous regions. It extends from 10.8°N-80.7°N and 156.6°E-105.0°W, measuring 3320 ± 126 km by 7764 ±

58 km (mean ± standard deviation) in the off- and along-shore dimensions, respectively. The model is integrated on

an orthogonal curvilinear grid that consists of 342x816 tracer cells with horizontal resolution averaging 9.7 km ± 0.5

km and a minimum bathymetric depth of 10m. The domain has 4 open boundaries, the longest of which arcs through

the Pacific Ocean and is referenced as the “western” boundary. In the vertical, the model uses 75 z* coordinates,

which are approximately consistent with depth-from-mean-sea-level but are stretched by variations in sea surface

height across all water column layer thicknesses rather than isolating that variability in the surface layer (Adcroft, A.

& Campin, 2004). We prescribe a layer thickness of 2 m from the surface to 8 m depth, between 2.01 m to 2.34 m

thickness between 8 and ~31 m depth, then with spacing gradually increasing to 250 m in the deepest portions of the

model domain. Bathymetry for the NEP10k domain was derived from the 2020 General Bathymetric Chart of the

Oceans (GEBCO Bathymetric Compilation Group, 2020), and is not vertically rounded or truncated. MOM6 does

not need the topography to conform to the vertical level thicknesses but instead can let the bottommost non-vanished

layer vary in thickness to match the topography, and then collapse the layer to zero thickness when the model level

incrops against the topography. Simulations used a baroclinic time step of 400 seconds and a variable barotropic

time step set to maintain stability (Hallberg, 1997; Hallberg and Adcroft, 2009). A longer, 1200 second time step

was used for thermodynamic and biogeochemical tracer calculations as thermodynamic processes tend to evolve

more  slowly  than  the  dynamic  ones.  Past  studies  have  used  a  longer  time  step  for  these  processes  without

compromising their representation while reducing the overall computation time (e.g., Ross et al., 2023). The success

of this strategy for the NEP10k domain will be assessed herein. 
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Figure 1: NEP10k domain and bathymetry. NEP10k domain and bathymetry with a log-normal color scale to emphasize
priority coastal  regions. White coloration indicates non-ocean (i.e.,  land-masked) grid cells that are not computed in model
integrations, which include the Sea of Okhotsk. The agglomerate land mask is outlined in black. Red lines indicate the areas that
are spatially averaged for regional shelf temperature and chlorophyll timeseries. These regions, from north to south, are the
Bering Sea (BS), Gulf of Alaska (GOA), British Columbia (BC), Northern California Current System (NCCS), Central California
Current System (CCCS), and Southern California Current System (SCCS). The southern arc of the Bering Sea polygon traces the
Aleutian Island Chain; The southernmost land bounds of the Southern California Current System and Gulf of Alaska polygons, as
well as both northernmost and southernmost land bounds of the British Columbia polygons roughly correspond with international
geopolitical boundaries. The dark green contour delineates the 500 meter isobath which we use to isolate shelf grid cells (i.e.,
where depth ≤ 500m). 

The core components of the physical ocean model, Modular Ocean Model 6 (MOM6), are described in

Adcroft et al. (2019). A full account of the parameterization choices implemented for the simulations presented in
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this study can be found in the supplemental material (MOM_parameter_doc.all). Here we elaborate on a few choices

(Table A1), highlighting consistencies and contrasts with the recently published Northwest Atlantic configuration

documented in Ross et  al.  (2023).  As in Ross et  al.  (2023),  ocean boundary layer mixing, specifically vertical

turbulent mixing coefficients in the surface layer, are parameterized using the energetic planetary boundary layer

(ePBL) scheme developed by Reichl and Hallberg (2018). However, unlike Ross et al., (2023) we switched to the

submesoscale mixing and restratification scheme of Bodner et al. (2023) from that of Fox-Kemper et al. (2011). The

Bodner parameterization has the advantage of dynamically calculating the submesoscale front length (i.e. the length

scale perpendicular to the front), which can vary significantly seasonally and latitudinally across the ecosystems

represented  in  NEP10k (Bodner  et  al.,  2023).  In  the  ocean  interior  below the  surface  boundary  layer,  mixing

primarily depends on the shear-driven turbulence mixing scheme of Jackson et al. (2008). The standard Jackson

formulation, however, was found to overmix some shelf regions subject to strong tidal motions. This overmixing

was ameliorated by including a scaling factor for the turbulent decay length scale. Bottom drag and horizontal

viscosities  were  parameterized  as  in  Ross  et  al.  (2023).  Unlike  Ross  et  al.  (2023),  the  background  kinematic

viscosity parameter,  KV, was set  to 0.0 m 2 s-1;  this  parameter  is  intended to  supplement  the existing dynamic

viscosity (based on the diapycnal diffusivity, KD) and was determined to be unnecessary for this application. Sea ice

is modeled with Sea Ice Simulator version 2 (SIS2, Adcroft et al., 2019). This sea ice model uses 5 sea-ice thickness

categories and no explicit ridging scheme. The sea ice rheology is an elastic-viscous-plastic scheme (Hibler, 1979)

and a directionally split piecewise constant advection scheme for thickness. The delta-Eddington radiation scheme is

used and the internal thermodynamics are enthalpy conserving (Briegleb and Light, 2007).

2.2 Physical model forcing 

The ocean hindcast simulation was run from 1993 through 2019 on NOAA’s GAEA supercomputer, which

is housed and managed in partnership with the Department of Energy through the National Climate-Computing

Research Center. Hourly atmospheric forcing for NEP10k was prescribed from the European Centre for Medium-

range Weather Forecasts Reanalysis 5 (ERA5; Hersbach et al.,  2020). The bulk formulae of Large and Yeager

(2004) were used to calculate latent and sensible heating after adjusting to the 2m ERA5 reference height. Light

attenuation  and  associated  heating  within  the  water  column  is  calculated  from  Manizza  et  al.  (2005)  using

dynamically varying chlorophyll from the biogeochemical model (Section 2.3).

Daily freshwater runoff is prescribed using output from the Global Flood Awareness System, version 4.0

(GloFAS; Harrigan et al., 2020; Grimaldi et al., 2022) - a hydrological inundation model that is also forced by

ERA5. Freshwater discharge at ocean-adjacent “pit cells” in GloFAS was remapped to the nearest MOM6 coastal

ocean grid cells. “Pit cells” are GloFAS grid cells where the local drain direction indicates that only inward water

flow occurs and is therefore a point of accumulation (e.g., lakes) or a point of egress to the ocean via either ocean

adjacency  or  connectivity  through  other  “pit  cells”  (e.g.,  wetlands).  For  the  Gulf  of  Alaska,  we  substituted

freshwater  discharge  from  Beamer  et  al.,  (2016;  data  served  by  David  Hill,  OSU),  a  model  dedicated  to
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representation  of  freshwater  discharge  and  glacier  mass  balance  in  Alaska,  with  calibration  against  observed

watersheds. 

Open lateral boundary and initial conditions for temperature, salinity, sea surface height and momentum

were prescribed as daily means from the 1/12° Global Ocean Physics Reanalysis (GLORYS12; Jean-Michel et al.,

2021). Tidal forcing was prescribed at the boundaries using amplitude and phase from the Global tidal elevation and

transport atlas version 9 (TPXO; Egbert and Erofeeva, 2002). Tides were implemented as in Ross et al., (2023) with

four semidiurnal constituents (M2, S2, N2, K2), four diurnal constituents (K1, O1, P1, Q1), and two long-period

constituents (Mm and Mf). Initial and boundary conditions were regridded to the NEP10k domain using the xesmf

python software package (Zhuang et al., 2023). Boundary conditions are imposed as in Ross et al. (2023), with

barotropic flows handled with a Flather (1976) boundary condition while baroclinic flows are handled with an

Orlanski (1976) radiation condition; lateral boundary forcing also applies nudging and tracer reservoirs (the latter

retains a memory of water properties exchanged with the modeling domain rather than instantaneous forcing; see

Ross et al.,  2023 for more details). As in Ross et al., (2023), the lateral ocean boundary radiation and nudging

schemes utilize 3 day inflow, 360 day outflow timescales, and both inward and outward tracer reservoir length

scales were 9000 meters (Table A1). No nudging was included in the interior of the domain.

2.3 Biogeochemical model configuration

Biogeochemistry  is  simulated  using  version  3.0  of  the  Carbon,  Ocean  Biogeochemistry  and  Lower

Trophics (COBALTv3.0) model (Stock et al., in press; Ross et al., 2023). COBALTv3.0 includes 40 prognostic state

variables to capture plankton food web dynamics and the cycling of  carbon,  nitrogen, phosphorus,  iron,  silica,

calcium  carbonate,  and  lithogenic  material  in  ocean  and  coastal  environments.  COBALTv3.0  builds  on  prior

COBALT  formulations  (Stock  et  al.,  2014;  2020)  by  adding  a  third  phytoplankton  size  class  following  Van

Oostende et al., (2018). The resulting small, medium and large sizes correspond to the canonical pico-, nano- and

microplankton size classes defined by Sieburth et al., (1978) and enable COBALT to better resolve the range of

phytoplankton  communities  from  oligotrophic  gyres  to  intensely  productive  upwelling  systems.  These  join

diazotrophs to give a total of 4 phytoplankton functional types to go along with a plankton food web including 3

zooplankton functional types and free living bacteria (Stock et al., 2014; 2020). Additional flexibility in zooplankton

feeding,  direct  phytoplankton sinking, and improved photoadaptation and photoacclimation dynamics were also

added (Stock et al., in press) and the formulation enlists an adaptation of the dynamic N:P ratio scheme proposed by

Galbraith and Martiny (2015) and initially presented in Ross et al. (2023).

Initial  and boundary conditions for biogeochemistry were drawn from the same sources as Ross et  al.

(2023). The 2018 World Ocean Atlas (WOA18) was used for macronutrients (NO 3, PO4, SiO4) and oxygen (O2),

with seasonal averages above 800m and annual climatologies below (Boyer et al., 2019; García et al., 2019a,b). The

Empirical  Seawater  Property  Estimation Routines Locally  Interpolated Regressions  (ESPER_LIR) presented by

Carter et al. (2021) were used to provide initial and time-varying (i.e., seasonal, inter-annual to decadal variability,

8

205

210

215

220

225

230

235



and multi-decadal trends) boundary conditions for dissolved inorganic carbon and alkalinity. The input values used

for this calculation were the location, temperature, salinity and date. Boundary conditions for other tracers, which

generally come into more rapid equilibrium with interior  conditions,  were drawn from an earlier  global  ocean

hindcast (Stock et al., 2014).

River carbon, alkalinity, nutrients (N, P, and Si) and oxygen inputs were derived by combining the River

Chemistry for US Coast (RC4USCoast) database (Gomez et al., 2023) for U.S. Waters in the Continental United

States, the Global River Chemistry database (GLORICH, Hartmann et al., 2019) for subarctic/Canadian waters, and

the Arctic Great Rivers Observatory (Holmes et al., 2012; ArcticGro, 2024). To force COBALT, riverine nutrient

inputs are needed for dissolved inorganic and organic nitrogen and phosphorus, particulate nitrogen, phosphorus,

and iron. Direct information on dissolved and particulate organic nutrient inputs was not available in all cases. In

cases where one or both of these values were missing, the ratio of dissolved and/or particulate organic inputs to

dissolved  inorganic  nitrogen  was  estimated  from  the  Global  Nutrient  Export  from  WaterSheds  model

(GlobalNEWS; Mayorga et al.,  2010). This NEWS-derived ratio was then multiplied by the observed inorganic

nitrogen to estimate dissolved and particulate organic fluxes in a manner that preserved their relative importance but

avoided  regional  biases  in  global  Nutrient-load  models  such  as  GlobalNEWS.  Dissolved  organic  nitrogen  and

phosphorus was partitioned into 40% labile, 30% semi-labile and 30% semi-refractory components in COBALT to

be consistent with mean tendencies reported by Wiegner et al. (2006). Particulate phosphate is often the largest

Phosphorus source in rivers, but much of it is buried in nearshore waters before reaching the ocean. Following

Froelich  (1988),  we assumed that  30% of  the  particulate  phosphorus  was  mobilized  in  estuarine  sediments  to

phosphate, with the rest buried. Iron concentrations for all rivers were set to 70 nM (de Baar and de Jong, 2001). As

in Ross et al., 2023, atmospheric CO2 was set using the monthly historical time series of Meinshausen et al. (2017)

updated after 2014 using SSP2-4.5 scenario values (Meinshausen et al., 2020), and nutrient, dust and iron deposition

were based on a 1993-2014 climatology from GFDL’s ESM4.1 model (Dunne et al., 2020; Stock et al., 2020).

2.4 Model spinup and simulation

Similar to Ross et al., (2023), we initialized the 1993-2019 hindcast simulation from rest starting the 1st of

January  1993,  with  ocean  physics  prescribed  from  GLORYS  (described  above),  and  we  initialized  the  ocean

biogeochemistry  from a  10-year  spinup simulation.  We generated  the  spinup simulation  by starting  the  model

integration from rest on the 1st of January 1993 and by repeating ERA5 atmospheric conditions for 1993-1994

(May-December of 1993; January-April 1994; following Stewart et al. 2020) for 10 1-year cycles. Atmospheric CO 2

was maintained as the 12-month, 1993 seasonal climatology and the ocean boundaries were forced with a smoothed,

daily  climatology  (i.e.,  averaged  by  “day  of  year”  and  smoothed  with  a  triangular  filter)  of  the  hindcast’s

GLORYS12 1993-2019  open  boundary  conditions.  River  runoff  was  similarly  prescribed  as  a  smoothed  daily

climatology.  The  biogeochemical  tracer  fields  at  the  end of  this  10-year  spinup  simulation  were  then used  to

initialize biogeochemistry for the 27-year hindcast simulation. 
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The purpose  of  implementing a  spinup was to  omit  drifts  in  the  biogeochemistry  associated  with  the

adjustment of the model from its initialized state, which was generally based on coarse-resolution observation-based

products, to the model’s characteristic solution. We focused on fisheries-relevant variables in the top 500m. We

found that a spinup period of 10 years generally resolved initial model adjustments, which were strongest in the

British  Columbia  region (Fig.  S3).  While  10 years  removed the  strongest  drifts,  subtle  trends  remain in  some

regions,  suggesting the potential  value of longer spinup periods, particularly for representing the deeper ocean.

These spinup sensitivities are left to future NEP10k development efforts.

2.5 Model evaluation

As described in Section 1, the model evaluation focuses on the simulation’s capacity to represent fisheries

and ecosystem-relevant features across and within the diverse ecosystems included within the NEP10k domain. The

model  evaluation therefore  includes comparisons against  both large-scale  physical  and biogeochemical  patterns

spanning the full domain (Section 2.5.1), and ecosystem specific quantities (Section 2.5.2). These latter quantities

were often drawn from Ecosystem Status Reports developed by NOAA fisheries to strategically inform marine

resource management decisions (e.g., Ferriss 2023; Siddon 2023; Leising et al., 2024). Comparisons against spatial

and seasonal patterns were complemented with interannual time series comparisons where possible, the latter serves

as a building block toward making predictive applications.  We note that several comparisons are made against

gridded data  products  that  were also used to  force and initialize the NEP10k hindcast  (i.e.,  GLORYS, TPXO,

WOA23). While these comparisons are not fully independent, they are nonetheless meaningful tests of the capacity

of the regional model to translate horizontal boundary and surface forcing into an interior solution that remains

consistent with observations. The regional model must explain multiple observed interior properties by dynamically

extending from the specified boundaries with a single set of self-consistent explicitly specified dynamics without the

benefit of assimilating, or being informed by, observation from within the domain. Maintaining agreement with

observation-based products in the domain interior thus supports the fidelity of these dynamics. We lastly assess the

computational performance and viability of the model using analyses described in Section 2.5.3.

2.5.1 Full domain comparisons

We  broadly  evaluated  NEP10k  performance  against  gridded  surface  and  3D  observation-based  or

observation-assimilated  physical  and  biogeochemical  products  to  assess  the  simulation’s  coastwide  capacity  to

represent cross-ecosystem patterns. Table A2 summarizes these products and the timeframes analyzed. For spatial

comparisons and calculations, we first plot both the NEP10k results and the comparison product on their native grids

using the python geographic plotting package Cartopy (Met Office, 2022). We then regridded the finer resolution

product  output  (typically  NEP10k  but  not  in  the  case  of  comparisons  against  GLORYS12  and  chlorophyll

comparisons) to the coarser resolution comparison grid using the Earth System Modeling Framework (Hill et al.,

2004)  Python  Regridding  Interface  (ESMPy)  or  xesmf  conservative  regridding  (Zhuang  et  al.,  2023).  Unless
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otherwise  stated,  assessments  include  the  area  weighted,  spatial  mean  bias  (Bias,  NEP10k  -  comparison  data

product), area-weighted root mean squared error (RMSE), the Median Absolute Error (MedAE), and the Pearson

correlation coefficient (R, based on spatial pattern). We omit analysis of model performance in the Chukchi Sea

(i.e., north of the Bering Strait at 66°N) - this region is included in the model integration due to the rectilinear nature

of the grid and our objective to include the entire Bering Sea for which the Chukchi provides a boundary condition.

However, it is not a primary region of interest for this model application and will be assessed in a nascent pan-Arctic

MOM6 configuration (Pagès et al., in prep.).

For  ocean temperature  validations  we compared conditions  against  version 2.1  of  the  Daily  Optimum

Interpolation Sea Surface Temperature product (OISSTv2.1; Huang et al., 2021) and against GLORYS12 for both

surface and subsurface conditions. OISSTv2.1 is generated from multiple temperature data sources and interpolated

to  a  ¼°  global  grid  while  GLORYS12  is  a  global  eddying  (1/12°)  data-assimilative  ocean  reanalysis  that

demonstrates strong coherence with in-situ surface and subsurface temperature records along the U.S. West Coast

(Amaya et al., 2023a). Both reference products have continuous monthly output covering 1993-2019.

NEP10k  surface  and  subsurface  salinity  is  compared  against  GLORYS12  reanalysis  as  well  as  the

observation-based NOAA National Centers for Environmental Information (NCEI) 1/10° Northern North Pacific

(nnp; Version 2, Seidov et al., 2023) and Northeast Pacific (nep; Seidov et al., 2017) regional climatologies for

salinity. Annual and seasonal means were downloaded for both nep and nnp regions for the decades 1995-2004 and

2005-2014  (the  second  decade  for  the  older  nep  climatology  only  extends  2005-2012).  To  ensure  temporal

coherence,  we  regrid  NEP10k  separately  for  each  region,  using  only  the  years  represented  by  each  regional

climatology (i.e., 1995-2012 for the nep, 1995-2014 for the nnp). The two decadal, annual and seasonal means for

the regional climatologies are time-weight averaged, and then the regional climatologies and regridded NEP10k

output are combined to a common grid. Where the nnp and nep regions overlap in the GOA (i.e., above 50°N), we

use the values from the more recent nnp climatology. 

 We validated NEP10k mixed layer depth (MLD) against the 1° de Boyer Montégut (2024) monthly MLD

climatology, which incorporates measurements from an assemblage of MBT, XBT, CTD casts and profiling floats,

and defines the MLD as the seawater depth where potential density is 0.03 (kg/m3) greater than the density at a

reference depth of 5m. From NEP10k, we used the MOM6 diagnostic variable MLD_003, which calculates the

mixed layer depth based on a user-defined reference depth (in our case, 5 meters for consistency with de Boyer

Montégut). The mixed layer depth is identified as the depth where the potential density increases by 0.03 kg/m³

relative to the surface reference depth.. We also compared NEP10k MLD against GLORYS12. The approximately-

equivalent  MLD  for  GLORYS12  was  determined  by  first  calculating  the  potential  density  from  monthly

GLORYS12 potential temperature and salinity using the Python implementation of the Gibbs SeaWater (GSW)

Oceanographic Toolbox of TEOS-10 (McDougall and Barker, 2011). We then calculated GLORYS12 MLD using

the same criteria as de Boyer Montegut (2024) and the NEP10k MLD_003 diagnostic (i.e., depth at which potential

density is 0.03 kg/m3 greater than the density at 5m depth at a given location).
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NEP10k sea surface height (SSH) is compared against GLORYS12 sea surface height above geoid (zos),

and absolute dynamic height (adt) above the earth’s geopotential surface (i.e., geoid) from 0.083° resolution satellite

altimetry (CMEMS, 2023). Given the different reference frames for each observation, reanalysis and model product,

we mean-centered each data set by subtracting its respective area-weighted time mean within the NEP10k region, in

order to facilitate direct comparison of seasonal and annual mean sea surface height distribution and gradients.

Tidal  phase and amplitude for  the  M2 and K1 constituents  were  calculated using hourly  NEP10k sea

surface height with the Unified Tidal Analysis and Prediction python software package (Codiga et al., 2011). These

tidal phases and amplitudes were compared against TPXO9 to demonstrate the ability of the model to incorporate

and propagate tidal boundary forcings. We further include additional comparisons of tidal harmonics against several

NOAA tide gauges (https://tidesandcurrents.noaa.gov/) in the tidally-complex eastern Bering Sea and western Gulf

of Alaska. 

NEP10k annual mean surface and subsurface nitrate and phosphate concentrations are compared against the

1° 2023 World Ocean Atlas (WOA23; Garcia et al., 2023a) for the time period 1993-2019. Primary phytoplankton

nutrient limitation was calculated for annual and seasonal mean timeframes following the methods detailed in Stock

et  al.,  (2020).  These  nutrient  limitation  distributions  specifically  illustrate  where  macronutrients  nitrate  and

phosphate or micronutrient iron are the primary nutrient limitation of phytoplankton growth.

Surface chlorophyll is compared against the European Space Agency’s satellite product produced as part of

their Ocean Color Climate Change Initiative (OC-CCI; Sathyendranath et al., 2019; Sathyendranath et al., 2023).

Monthly OC-CCI chlorophyll-a fields from 1998 to 2019 are remapped from 4 km resolution to the coarser NEP10k

grid. NEP10k grid cells where the OC-CCI satellite product is missing data are also masked in the corresponding

month to ensure the annual and seasonal means are spatiotemporally consistent. Chlorophyll values are then log10

transformed before comparison. 

We compare  seasonal  means  of  200 meter-integrated  mesozooplankton carbon biomass  concentrations

against the Coastal and Oceanic Plankton Ecology, Production and Observation Database (COPEPOD; Moriarty and

O’Brien, 2013). As described in Ross et al. (2023), we scale the COPEPOD data set by a factor of 2 because the

zooplankton represented in COBALT’s mesozooplankton diagnostic (medium + large, ranging from 200 to 20,000

μm equivalent spherical diameter) likely represents a larger fraction of zooplankton biomass than in the COPEPOD

observations which are derived from collections that used a net mesh of 333 μm (Moriarty and O’Brien, 2013),

which would exclude some of the size classes in the COBALT diagnostic (Skjoldal et al., 2013). This conversion is

consistent with those typically found when comparing 200 μm and 333 μm mesh nets (Moriarty and O’Brien, 2013;

Shropshire et al., 2020).

Similar  to  inorganic  nutrients,  surface  and  subsurface  dissolved  oxygen  concentrations  are  compared

against 1° WOA23 (García et al., 2023b) for 1993 through 2019 with NEP10k oxygen values being remapped to the

WOA23 grid.  We also compute the hypoxic boundary layer depth,  here defined as the depth at  which oxygen

concentrations drop below 61.7 µmol O2 per kilogram of seawater as in Dussin et al.(2019).
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We compare  annual  and seasonal  mean,  surface  and subsurface  carbonate  chemistry  diagnostics,  total

alkalinity, dissolved inorganic carbon and aragonite saturation state, against corresponding values in the 1° Coastal

Ocean Data Analysis Product in North America (CODAP-NA; Jiang et al., 2021) dataset (Jiang et al., 2022) for the

period of 2004-2018. 

2.5.2 Regional comparisons

The full domain comparisons were complemented with key fisheries-critical regional time series 

comparisons. While regions often have unique fisheries and ecosystem-critical patterns, temperature and chlorophyll

variability are broadly important across ecosystems. We thus complemented the broad spatial comparisons with 

region-specific time series of shelf (defined as grid cells where bottom depth is less than 500 meters) conditions, 

where the subregions are those shown in Fig. 1 and regional shelf extents are depicted in Fig. S2. Both monthly 

climatologies and anomaly (with 12-monthly climatological cycle removed) time series for surface and bottom 

temperatures were compared against GLORYS12, while time series of chlorophyll were compared against OC-CCI. 

For these (and later) timeseries analyses we report the Pearson correlation coefficient within the respective figure as 

well as the Kling-Gupta Efficiency (KGE; Gupta et al., 2009) and its components in the Supplement (Table S1) for a

more comprehensive assessment of the interactions of timeseries correlation, bias and variance. It should be noted, 

the KGE is calculated using the full timeseries rather than the climatology or the anomaly time series and thus the 

Pearson correlation coefficients may differ between the figures and the supplemental table.

For additional environmental context, anomaly time series are depicted against warm and cold episodes of 

the Ocean Niño Index published by the NOAA Climate Prediction Center 

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php), where the warm and cold 

episodes are defined as periods when the 3 month running mean of sea surface temperature (SST) anomaly in the 

Niño3.4 region is above or below 0.5°C, respectively. The purpose of this comparison is to ascertain whether the 

model is able to accurately recreate the strength of the relationship between local variability and this foremost mode 

of global climate variability. Variations in simulation skills for different depth ranges within each subregion were 

also analyzed to assess changes in model fidelity in more inshore and offshore regions.

Additional region-specific assessments are described for the Bering Sea, Gulf of Alaska and California

Current below. Given the length constraints of a single documentation paper, we limited treatment to 2-3 of the most

prominent ecosystem indicators currently used for each system beyond the foundational temperature and chlorophyll

comparisons described above.

Our additional evaluation in the Bering Sea focused on the representation of the Bering Sea cold pool and

sea ice extent. As discussed in Section 1, fluctuations in the bottom area covered by the Bering Sea cold pool,

generally defined as waters with < 2 °C in the summer (Wyllie-Echeverria and Wooster, 1998; Mueter and Litzow,

2008), have been associated with a range of ecosystem impacts (e.g., Clement Kinney, 2022). Cold pool dynamics

are intertwined with sea ice fluctuations, with sea ice also having important implications for the timing of seasonal
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ecosystem transitions (Wyllie-Echeverria and Wooster, 1998; Mueter and Litzow, 2008; Brown and Arrigo, 2013;

Hunt et al., 2022).

For the Bering Sea cold pool we spatially and temporally interpolated daily NEP10k bottom temperature

using the python package xesmf (Zhuang et al., 2023) to correspond with Alaska Fisheries Science Center (AFSC)

Bottom Trawl Survey gear temperature samples collected from 1993-2019. These data are available in the Alaska

Fisheries Science Center coldpool github repository (https://github.com/afsc-gap-products/coldpool). We compared

the Trawl survey station bottom temperatures from the NEP10k simulation against the AFSC data set following the

methods in Kearney, et al. (2021) and analyzed interpolated model output using the cold pool toolset to reproduce

cold pool area (CPA) indices reported by Rohan et al. (2022). 

We compared seasonal Bering Sea sea ice against satellite observations from the National Snow and Ice

Data Center (NSIDC; data set NSIDC0051; Cavalieri et al., 1996). We compared both spatial mean extent in the

entire Bering Sea and temporal coherence in the southeastern Bering Sea.

Hauri et al. (2024) highlight how the interaction of different localized modes of multi-annual to decadal

climate variability can predispose the Gulf of Alaska to extreme physical and biogeochemical events. These climate

variations are most visibly reflected in observed Gulf of Alaska SSH variability. The first principal component of

the detrended and deseasonalized SSH over the Gulf of Alaska (62°N 50°N, 160°W 135°W) was referred to as the

Northern Gulf of Alaska Oscillation (NGAO, Hauri et al., 2021b). A positive phase is associated with weak cyclonic

winds  over  the  subpolar  gyre  resulting  in  a  higher  SSH and  decreased  Ekman-driven  upwelling  (i.e.,  Ekman

suction). This state is associated with warmer temperatures, but reduced prevalence of deep high acidity water. That

is, risks of thermal stress are enhanced while risks of acidification stress are reduced, with the opposite effects for

negative NGAO. The second principal component of the detrended and deseasonalized SSH variability is referred to

as  the  Gulf  of  Alaska  downwelling  index  (GOADI;  Hauri  et  al.,  2024).  The  GOADI  serves  as  a  proxy  of

downwelling strength for Gulf of Alaska coastal waters: a positive index is associated with elevated coastal SSH,

enhanced coastal downwelling, and a reduced risk of the intrusion of cold, acidic and low oxygen water onto the

bottom of the Gulf of Alaska shelf. This intrusion risk is heightened under negative GOADI.

We assessed NEP10k’s ability to generate realistic  NGAO and GOADI patterns by comparing against

satellite  altimetry  from  the  Copernicus  Marine  Environment  Monitoring  Service  (CMEMS,  2023).  Empirical

Orthogonal Function analysis was performed on SSH across the GOA domain in a manner consistent with Hauri et

al., 2021b and Hauri et al., 2024. We then generated composites of ecosystem conditions during the positive vs.

negative phases of the GOADI to assess whether NEP10k can successfully recreate the shelf-scale surface and

benthic condition anomalies that significantly impact living marine resource habitat and wellbeing (Hauri et al.,

2024). 

Fisheries and ecosystems in the California Current are shaped by the timing, strength and the source waters

fueling the strong seasonal upwelling. The system-specific indicators chosen for this region thus focus on these

patterns. First, we compared the vertical mass transport (calculated as the depth-integrated divergence of orthogonal
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horizontal mass transports) at 30m depth to the Coastal Upwelling Transport Index (CUTI) developed by Jacox et al.

(2018). As in Jacox et al., (2018), transports were integrated to 75 km offshore over 1 o Latitude bins. We  assessed

long  term  trends  in  dissolved  oxygen  concentrations  against  those  calculated  at  stations  in  the  California

Cooperative Oceanic Fisheries Investigations (CalCOFI) observation array similar to the methods of Bograd et al.

(2008). We interpolated monthly 3D NEP10k dissolved oxygen to the locations and depths of the CalCOFI bottle

sample  data  (https://calcofi.org/data/oceanographic-data/bottle-database/)  from  1993-2019.  We  then  calculated

linear trends for both NEP10k and CalCOFI at specific station locations. We also include additional comparisons of

NEP10k representation of CalCOFI temperature, salinity and biogeochemistry measurements.

2.5.3 Computational expense and scaling

As mentioned in section 2.2, simulations were conducted on NOAA's Gaea High-Performance Computing 

system. This system consists of HPE-Cray EX 3000 nodes (2 × AMD EPYC 9654, 2.4 GHz base, 96 cores per 

socket), connected via HPE Slingshot 11 — a high-speed interconnect designed for exascale systems. The system 

also features over 150 PB of shared storage using IBM Spectrum Scale parallel file systems. The model runs in a 

distributed-memory configuration using MPI across hundreds to thousands of cores. Additional system details can 

be found in the NOAA RDHPCS documentation 

(https://docs.rdhpcs.noaa.gov/systems/gaea_user_guide.html#system-overview).

As described in Section 1, the viability of the NEP10k configuration for ecosystem applications depends on

its ability to not only simulate fisheries-critical features but also to run with sufficient computational economy to

permit generation of the thousands of years of retrospective forecasts and projections required to provide credible

uncertainty estimates (e.g., Koul et al., 2024; Ross et al., 2024). However, we also recognize that others interested in

running the NEP10k configuration may have different computing resource availability. Therefore, we report the

computational performance under different NEP10k configuration options (i.e., scaling, land masking and time-step

splitting) in order to provide insight into how one might optimize production on a given computing system.

To quantify computational performance, we focused on the scaling of the wall clock time for 1 year of

simulation against the number of processing elements (PEs). Variations in both the number and layout of PEs were

considered. For our baseline production simulations herein, we divided the NEP10k domain (342 columns x 816

rows of tracer grid cells) across 32 x 80 PEs. This division yields a ~10 x 10 grid (i.e., square) decomposition of

model grid cells on each PE. Land processor masking in MOM6 further economizes computational resources by

omitting domain subregions without ocean (i.e., contain only land) grid cells from PE assignment, thus presenting a

domain-specific optimization consideration when selecting a specific PE configuration. We were able to mask 524

PEs with the 32 x 80 PE breakdown so our total PE count for this configuration was 2036 (20% fewer than the

otherwise 2560 PEs required for this breakdown). 

The scalability  of  the  simulation  with  increasing and decreasing processor  counts  was  explored using

alternative  layouts  with  fewer  PEs  (40 x  40),  a  similar  PE total  but  with  a  more  rectangular  model  grid  cell
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decomposition (a 50 x 50 PE breakdown yielding ~7 x 16 model grid cell subset per PE), and larger numbers of PEs

(50 x 75 and 50 x 100). These experiments allow us to judge the relative efficiency of our base configuration and the

point of diminishing returns as the PE count is increased and growing requirements for inter-PE communication

begin to overwhelm the advantage of  more PEs.  Finally,  we include additional  50 x 75 PE and 50 x 100 PE

simulations with the thermodynamic time stepequal to the baroclinic time step (400 seconds) rather than three times

the baroclinic time step (i.e., 1200 seconds) as was used in the base configuration. These last two experiments allow

us to quantify and demonstrate the computational value of the flexible time stepping that MOM6 enables.

3 Results

3.1 Domain-wide evaluation

3.1.1 Large-scale physical ocean properties 

Annual  mean  SST  and  subsurface  temperatures  broadly  agree  with  the  distribution  and  curvature  of

reference isotherms along the U.S., Canada and Mexico West Coasts (Fig. 2), with temperatures largely falling

within 0.5  oC of OISST (Fig. 2c, RMSE = 0.28oC) and GLORYS12 SST values (Fig. 2f, RMSE = 0.29  oC). A

surface temperature cold bias of just over 0.5  oC is apparent over the eastern Bering Sea, while a warm bias of

similar magnitude is apparent in the nearshore regions of the southern and central California Current System. At

200m depth, larger warm biases relative to GLORYS12 are apparent in the Gulf of Alaska where the northern edge

of the eastward flowing North Pacific Current interacts with the adjacent westward flowing Alaska Stream (Fig. 2l,

Stabeno et al., 2004), and a warm bias of similar magnitude appears in the southwest corner of the domain. These

biases are seasonally persistent during both Boreal winter (January-March, Fig. S1) and summer (July-September,

Fig. S2); as are the cold (Fig. S1c,f) and warm (Fig S2c,f) coastal surface biases, respectively. In all seasons and

across depths above 200m, however, the overall absolute model bias is below 0.38 oC, the RMSE stays below 0.57
oC, and the correlations with OISSTv2.1 and GLORYS12 stay above 0.98 (Fig 2, Fig. S1, Fig S2).

16

480

485

490

495



Figure  2:  Temperature  comparisons.  Annual  mean  surface  and  subsurface  (100m,  200m)  temperature  compared  against
NOAA OISSTv2.1 and the GLORYS12 reanalysis. Values in the left two columns represent the average of the annual means
covering 1993 through 2019. The right column depicts the difference between NEP10k and the respective validation product
along with the area-weighted mean bias and root mean squared error (RMSE) as well as the medium absolute error (MedAE) and
Pearson correlation coefficient (R). The NEP10k model domain below 66°N is outlined in black. Panels a and d show the same
model output.

Similar  to  temperature,  NEP10k  broadly  reproduces  annual  mean  salinity  fields  found  in  regional

climatologies and GLORYS12, with the majority of the domain falling within 0.25 practical salinity units (PSU) of

the reference data sets (Fig. 3). Notable fresh surface biases exceeding 0.5 PSU occur along the coast in the Gulf of

Alaska, Eastern Bering Sea and Northern CCS, coincident with regions of substantial freshwater inputs from rivers

and glacial melt (Fig. 3c,l). Positive salinity biases relative to GLORYS12 occur in the western Bering Sea at the

surface and 100m, and over all depths in the southwest region of the domain (Fig. 3, right panels). In the latter case,

the salty bias coincides with warm biases (Fig. 2). Seasonally, similar generally modest biases can be seen in the

Boreal winter (Fig. S3) and summer (Fig. S4) equivalents. 
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Figure 3: Salinity comparisons. Annual mean surface and subsurface (100m, 200m) salinity compared against NCEI regional
ocean climatologies and the GLORYS12 reanalysis. The regional climatologies are a composite of the northeast Pacific (nep) and
northern north Pacific (nnp) climatologies. The nep climatology extends from 1995-2012 while the updated nnp climatology
(Version 2) covers 1995-2014. Where the two regional climatologies overlap in the GOA (i.e., above 50°N), we use the more
recent nnp climatology. For comparison against the model, we use the same years of NEP10k, with panels a,d,g showing the
model values for average annual mean salinities for 1995-2014 above 50°N (as opposed to average annual mean salinities for
1995-2012 below 50°N). Comparison against GLORYS12 (bottom three rows) covers 1993-2019. Area-weighted bias, and root
mean squared error (RMSE), median absolute error (MedAE) and Pearson correlation coefficient (R) are reported in the right
column of figures depicting the difference between NEP10k and the respective validation product.

Mixed layer depth in NEP10k, defined as the depth at which density is 0.03 kg m -3 greater than at 5m
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depth, exhibits a modest shallow/negative bias relative to the estimates of de Boyer Montégut et al. (2024), with

deeper (positive) biases occurring in the interior ocean near the Bering shelf break (Fig. 4, top row). These biases are

amplified  and  reduced  during  Boreal  winter  (JFM,  Fig.  S5,  top  row)  and  summer  (JAS,  Fig.S6,  top  row),

respectively,  when mixing drivers  (i.e.,  surface  heating/cooling,  wind and storm intensity)  are  correspondingly

modified. Conversely, NEP10k exhibits a positive mean bias when compared against GLORYS12 MLD which is

particularly  pronounced in  the  Bering Sea (Fig.  4,  bottom row) and exhibits  a  reverse  seasonal  response (i.e.,

reduced positive bias in the winter and increased in the summer, Figs. S5&6, bottom row). With the exception of the

deep/  positive  winter  biases  in  the  Bering  Sea,  the  model  represents  MLD spatial  variability  fairly  well  with

significant (p<0.001) correlations exceeding 0.85 across all seasons and comparisons (Fig. 4, Fig. S5, Fig. S6). 

Figure 4: Mixed layer depth comparisons. Climatological mean of mixed layer depth compared against de Boyer Montégut (a-
c) and GLORYS (d-f). Black reference contours in a,b,d, and f are depicted at 5 meter intervals and at 8 meter intervals in c and
f; contours depicting negative values in c and f are drawn with dashed lines. Area-weighted Bias, Root Mean Squared Error
(RMSE), Median Absolute Error (MedAE) and Pearson Correlation Coefficient (R) are reported in the right column figures
depicting NEP10k - respective reference products. All values represent the annual mean for years 1993 through 2019 and the
extent of the NEP10k domain is outlined in black in all figures. Panels a and d show the same model output.

SSH gradients  in the NEP10k hindcast  are  broadly consistent  with GLORYS12 and CMEMS satellite

altimetry (Fig. 5), exhibiting lowest values along the Aleutian Island chain, in the GOA and western Bering Sea and

highest values near 25°N along the western edge of the domain. Similarly to satellite measurement and GLORYS12,

NEP10k also exhibits relatively low SSH along the U.S. west coast (compared with offshore SSH values at the same

latitude), a signature of coastal upwelling. However, the SSH gradients in NEP10k are smaller along the Aleutian

island chain than exhibited in the reference data sets. There is a notable correspondence of this SSH gradient bias

with the Gulf of Alaska subsurface temperature biases noted in Fig. 2, suggesting a potential relationship between
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these two features. 

Figure 5: Sea surface height comparisons. NEP10k average-centered, climatological mean sea surface height comparison for
NEP10k (a & d; identical panels), GLORYS12 (b), CMEMS satellite altimetry (e), and their respective differences (c & f). All
values represent the annual mean (1993- 2019). Area-weighted mean bias (Bias), root mean squared error (RMSE), and median
absolute error (MedAE) and Pearson correlation coefficient (R) are reported in the right column figure depicting the difference
between NEP10k and the comparison product; all correlations are significant (p<0.001). Reference height contours in all panels
are drawn at 0.1 and 0.05 meter intervals for the mean and difference plots, respectively, with negative values shown as dashed
lines. All panels show the extent of the NEP10k domain in black outline. 

Compared against the TPXO data set, which was used as the tidal boundary forcing conditions, NEP10k

reproduces tidal amplitude and phases in the domain interior with high fidelity (Fig. 6). The greatest tidal amplitude

discrepancies occur in the nearshore regions of the eastern Bering Sea (Fig. 6c,f) and partially enclosed features

(e.g., northern Gulf of California and Cook inlet; Fig. 6c). Amplitude biases for the most prominent semidiurnal

(M2) and diurnal (K1) constituents in these nearshore and partially enclosed regions can exceed 20 cm and 10 cm,

respectively. These regions, however, also have the largest overall amplitudes, with values exceeding 1m and 50 cm,

respectively. Such nearshore tidal biases are not  surprising given the relatively coarse 10km resolution enlisted

herein, and we note that skillful tidal simulations extend all the way to the coast in most regions. To investigate

some of these biases further, we include additional, zoomed in maps of the eastern Bering Sea and western Gulf of

Alaska in the supplement (Fig. S12) along with comparison against several tide gauges in that region. Both TPXO

and NEP10k perform well at most tide gauges. Generally, TPXO better approximates tidal harmonic constituents

than NEP10k with  higher  Pearson Correlation coefficients  and/or  lower RMSE (with  exception of  M2 phase).

However, in cases such as the gauge in Anchorage, AK, the bias in M2 amplitude for TPXO is comparable to the
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bias exhibited by NEP10k. Since these biases are opposite signs, the discrepancy between the two gridded products

(i.e., NEP10k-TPXO, shown in the maps in Fig. 6 and Fig. S12) exaggerates the model bias by almost a factor of

two relative to the bias for the gauge. Thus, some of the more severe near-shore differences in Fig. 6 may be a

reflection of how NEP10k and TPXO approximate complex coastline geometry (bottom of Fig. S13) rather than an

exact indication of NEP10k performance. 

Figure 6: M2 and K1 tidal amplitudes and period.  Comparison of tidal constituents M2 (top row) and K1 (bottom row) in
NEP10k against those in the TPXO9 forcing dataset. Filled contours depict tidal amplitude while overlain colored contours depict
tidal phase for the given constituent. Filled contours in the difference plot (c and f) show the difference in amplitude only; Bias,
Root Mean Squared Error (RMSE), Median Absolute Error (MedAE) and Pearson Correlation Coefficient (R) are also reported
in these panels. The extent of the NEP10k domain is outlined in grey in all figures.

3.1.2 Large-scale biogeochemical and ecosystem properties

Macronutrient  concentrations (Nitrate and Phosphate)  exhibit  large-scale agreement with annual World

Ocean Atlas nutrients but significant regional biases are also apparent (Fig. 7-8). The largest high bias occurs along

the Aleutian Island chain and Bering Sea shelf break. In the simulation, the region of elevated surface nutrients

observed in the central Bering Sea extends further south and east in the model. These biases correspond with the

most prominent region of overmixing (Fig. 4). Positive surface nitrate and phosphate biases in affected regions

exceed 5 μmol kg-1 NO3 and 0.25 μmol kg-1 PO4, respectively, and extend with lesser severity onto the Bering Shelf.

The positive surface bias is underlain by negative nitrate and phosphate biases at 200m, reinforcing the likelihood

that the surface high macronutrient bias is linked to excessive mixing rather than excessive nutrients in underlying

source waters. Uncertainty in nitrogen removal processes in shallow Bering shelf sediments (e.g., denitrification and

burial), may also play a role in the perpetuation of biases onto the shelf. Macronutrient concentrations in Gulf of
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Alaska surface waters, in contrast, are biased low by 1.5-3 μmol kg -1 NO3 and 0-0.375 μmol kg-1 PO4, respectively

(Fig  7c,  Fig  8c),  despite  exhibiting  a  combination  of  positive  and  negative  biases  at  depth.  These  biases  are

consistent with shallow mixed layer biases in the Gulf of Alaska (Fig. 4). Finally, the California Current exhibits a

modest  positive  surface  macronutrient  bias.  Despite  these  discrepancies,  the  simulation  generally  exhibits  high

correlations with observed macronutrients (R > 0.96) and RMSEs that are only ~5% of the dynamic range of the

macronutrient  concentrations  across  the  west  coast  ecosystems.  This  skill  extends  to  seasonal  patterns  with

correlation values exceeding 0.8 and RMSE < 10% of the dynamic range in all cases (Fig. S9-S12). Notably, winter

and summer nitrate conditions exhibit more pronounced bias patterns relative to the mean state, with particularly

high levels in the Bering surface waters and low levels in portions of the Gulf of Alaska (Fig. S9c, Fig.S10c).

Conversely, surface phosphate levels over the Bering Shelf are biased low in the winter and high in the summer (Fig

S11c,  Fig.  S12c).  Summer surface  nitrate  levels  along the  CCE (Fig.  S10c)  are  potentially  suggestive  of  over

representation of summer upwelling. 

Figure  7:  Nitrate  comparisons.  Annual  mean  surface  and  subsurface  (100m,  200m)  nitrate  compared  against  WOA23.
Comparison time frames cover 1993-2019. Reference contours are depicted in black at 5 and 1.5 μmol nitrate kg -1 sea water in
the mean state (left and center columns) and difference (right column) plots, respectively; contours representing negative values
in the difference plot are drawn as dashed lines. Bias, Root Mean Squared Error (RMSE), Median Absolute Error (MedAE) and
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Pearson Correlation Coefficient (R) are reported in the right column of figures depicting the difference between NEP10k and
WOA23. The extent of the NEP10k domain is outlined in black in all figures.

Figure 8: Phosphate comparisons. Annual mean surface and subsurface (100m, 200m) phosphate compared against WOA23.
Comparison time frames cover 1993-2019. Reference contours are depicted in black at 0.25 μmol phosphate kg -1 sea water in the
mean state (left and center columns) and difference (right column) plots; contours representing negative values in the difference
plot  are  drawn  as  dashed  lines.  Bias,  Root  Mean  Squared  Error  (RMSE),  Median  Absolute  Error  (MedAE)  and  Pearson
Correlation Coefficient (R) are reported in the right column of figures depicting the difference between NEP10k and WOA23.
The extent of the NEP10k domain is outlined in black in all figures.

While macronutrients play an important role in the biogeochemistry and ecosystem dynamics of the NEP,

iron has been observed to be a limiting or co-limiting nutrient (Browning et al., 2017; Browning and Moore, 2023).

The simulated distribution of surface iron exhibits a gradient from inshore highs exceeding 1 nanomoles kg -1 to

offshore lows < 0.25 nanomoles kg-1 (Fig. 9, left panel). This distribution of dissolved iron results in large-scale

patterns of phytoplankton iron limitation in the NEP10k simulation (Fig. 9, right panel) that are consistent with those

observed (e.g., Moore et al., 2013; Hutchins et al., 1998).
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Figure 9: Surface dissolved iron and phytoplankton nutrient limitation. NEP10k simulated annual mean surface dissolved
iron concentrations (left) and climatological mean distribution of the nutrient most limiting to phytoplankton growth (right). In
COBALT, the degree of limitation by N, P, and Fe is expressed as a factor between 0 and 1 (Stock et al., 2020). Nutrient
limitation is then calculated according to Liebig’s Law of the minimum. This most limiting nutrient is indicated in the figure
below. We further differentiate areas where the N, P or Fe limitation term is less than 0.25 more limiting another nutrient, which
effectively indicates areas that are near co-limitation. Timeframe covers 1993-2019. Note: Sparse P limitation occurs near-shore.

Simulated surface chlorophyll is spatially well correlated with satellite-based chlorophyll estimated from

the OC-CCI (Fig. 10) and simulated values are generally within a factor of 2 of those observed, which span 2 orders

of magnitude (i.e., the RMSE of the log10-transformed data is less than 0.3 in all seasons). The simulation, however,

is  generally  biased high  in  the  Gulf  of  Alaska  and Bering  Sea  in  the  boreal  spring  and  summer,  with  biases

exceeding a factor of 2 along the Bering Sea shelf break and along the subpolar/subtropical boundary in the Gulf of

Alaska. The model underestimates OC-CCI based chlorophyll concentration during the fall and winter on the eastern

Bering Sea shelf: while NEP10k-COBALTv3 suggests lower chlorophyll concentrations during these cold and dark

periods,  OC-CCI  estimates  remain  high  in  nearshore  waters.  Indeed,  satellite-based  estimates  suggest  higher

chlorophyll along the Bering coast in fall and winter than in spring and summer. It is notable, however, that satellite-

based chlorophyll estimates are sporadic at high latitudes during these seasons, and OC-CCI uses a chlorophyll

estimation algorithm developed primarily for “case 1”/oceanic water. Vigorously mixed, turbid waters along the

Bering shelf in winter undoubtedly depart  considerably from the algorithm's high degree of water transparency

assumptions. In the CCE, the model is able to match the juxtaposition of coastal chlorophyll highs and subtropical

offshore lows estimated by OC-CCI during the spring and summer upwelling period. Elevated chlorophyll levels do

extend further offshore in the simulation than satellite-estimates suggest. Values are also elevated near the domain

boundary  during  this  period,  likely  due  to  some spurious  boundary  mixing.  Fall  and  winter  conditions  in  the

California Current exhibit a moderate positive bias in offshore waters that generally falls below a factor of 2.
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Figure  10:  Surface  chlorophyll  comparisons.  Seasonal  means  of  surface  chlorophyll  compared  against  OC-CCI  satellite
observations. The three-month seasonal periods include January through March (JFM,a-c), April through June (AMJ,d-f), July
through  September  (JAS,g-i),  and  October  through  December  (OND,j-l).  Comparison  time  frames  cover  1998-2019;  All
chlorophyll  values  were  log10  transformed  prior  to  temporal  averaging.  Bias,  Root  Mean  Squared  Error  (RMSE),  Median
Absolute Error (MedAE) and Pearson Correlation Coefficient  (R) are reported in the right  column of figures depicting the
difference between NEP10k and OC-CCI. Black contours in the right column indicate where the difference = +/- log 10(2) The
extent of the NEP10k domain is outlined in grey in all figures.

Moving up the food web, simulated seasonal mesozooplankton biomass concentrations (Fig. 11) exhibit

similar  large-scale spatial  and seasonal patterns as the COPEPOD database (Moriarty and O’Brien, 2013).  The

patchiness of the observations reduces correlations relative to the smoother physical, nutrient and satellite-based

chlorophyll estimates compared thus far (R ≥ 0.30 for all seasons). However, peak summer concentrations ~50 mg C

m-3 consistent with observed values are evident in the Bering Sea and inshore regions of the Gulf of Alaska in both
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the model and observations. These highs contrast sharply with observed and modeled values ~1-2 mg C m -3 within

the North Pacific subtropical gyre. Intermediate values of ~10-20 are evident in the California Current upwelling.

Both the observed and modeled values are highest during the peak summer upwelling period, though the highest

modeled values are somewhat lower, particularly in nearshore regions. This pattern will be addressed further in the

Discussion. The offshore waters of the Gulf of Alaska and western Bering Sea exhibit summer mesozooplankton

biomass peaks of similar magnitude as the California Current, with simulated values again lower yet comparable to

those observed.

Figure 11: Seasonal zooplankton biomass. Seasonal mean mesozooplankton biomass concentrations for NEP10k on the model
grid (top row), the COPEPOD dataset (middle row), and NEP10k values remapped to the COPEPOD grid where there are
corresponding data from the COPEPOD dataset (bottom row). The bottom row also reports statistics using the log10 normalized
data, specifically the area-weighted mean bias (Bias, NEP10k - COPEPOD), the area-weighted root mean squared error (RMSE),
the median absolute error (MedAE) and the Pearson correlation coefficient (R); all correlation values are significant (p<0.001).
Maps are plotted with a grey background to increase contrast with the patchy observation data.

Simulated oxygen concentrations in the top 200m in the NEP10k are generally spatially consistent with

WOA (Fig. 12). Some biases, however, are apparent below the surface. Most notably, the model has a low oxygen

bias south of the Aleutian Islands at 100m (Fig. 12f). This bias coincides with a warm water bias (Fig. 2) and is

overlain by a fresh/high stratification bias (Figs. 3, 4). As noted above, this is the region where the westward flowing

Alaska Stream and eastward flowing North Pacific Current interact, suggesting that the biases may be linked to a

suboptimal representation of these two currents. Moderately high oxygen biases (i.e., greater than 25 μmol kg -1) are

apparent in the western Bering Sea, eastern Gulf of Alaska and off of Baja at 200m (Fig. 12i), but none are large

enough to compromise NEP10k’s large-scale fidelity to the observed oxygen distribution in the top 200m (i.e., R
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values ≥ 0.9 across depths and seasons, Figs. 12, S14, S15). 

Figure 12: Dissolved oxygen comparisons.  Annual mean surface and subsurface (100m, 200m) dissolved oxygen compared
against WOA23. Comparison time frames cover 1993-2019. Reference contours are depicted in black at 25 μmol oxygen kg -1 sea
water in the mean state (left and center columns) and difference (right column) plots; contours representing negative values in the
difference plot  are drawn as  dashed lines.  Bias,  Root  Mean Squared Error (RMSE),  Median Absolute Error  (MedAE) and
Pearson Correlation Coefficient (R) are reported in the right column of figures depicting the difference between NEP10k and
WOA23. The extent of the NEP10k domain is outlined in black in all figures.

Deeper in the water column, NEP10k robustly simulates the cross-ecosystem variation in the depth of the

hypoxic boundary (i.e., the depth at which oxygen concentration drops below 61.7 μmol oxygen kg-1 sea water, Fig.

13). The hypoxic boundary is shallowest, approaching 100m from the surface, along the southern domain boundary

which lies along the periphery of the broader eastern equatorial Pacific hypoxic zone. The hypoxic boundary then

descends progressively to ~400m in both the model and observations as one moves northward along the California

Coast into Canada, before shoaling again to ~150m in the northern Gulf of Alaska. While these overall patterns are

consistent, the biases discussed in Fig. 12 are echoed in the hypoxic boundary layer depth. The boundary layer is

deeper in the western Bering Sea, eastern Gulf of Alaska and Southern CCS but biased shallow south of the Aleutian

Island Chain and, to a lesser degree in the Northern-to-Central CCS. 

Figure 13: Hypoxic Boundary Layer Depth. Annual mean hypoxic boundary layer depth (i.e., depth at which dissolved oxygen
concentration drops below 61.7 μmol oxygen kg-1 sea water) compared against WOA23. Black reference contours indicate 150
meter and 25 meter intervals in the mean state (a, b) and difference (c) plots, respectively; contours representing negative values
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in c are drawn as dashed lines. Area-weighted mean bias (Bias) and root mean squared error (RMSE), and the median absolute
error (MedAE) and Pearson correlation coefficient (R) are reported in panel c. The extent of the NEP10k domain is outlined in
black in all figures.

Finally,  simulated  carbon  chemistry  patterns  (total  alkalinity,  dissolved  inorganic  carbon  (DIC)  and

aragonite saturation state; Fig. 14-16) broadly capture observation-based estimates reported in CODAP-NA. Low

coastal surface alkalinity patterns consistent with low alkalinity river inputs are apparent in the Gulf of Alaska, and

to a lesser degree, the eastern Bering Sea. Simulated alkalinity increases from these lows toward maximal values in

the North Pacific gyre in a manner consistent with observations, though the simulated values are biased high (Fig.

14 a-c). The largest positive surface alkalinity biases occur in the Western Bering Sea and in the southwest corner of

the domain. These surface alkalinity biases are aligned with positive salinity biases that penetrate to depth (Fig. 3).

The largest subsurface bias, however, occurs at 100m depth in the Gulf of Alaska near the large freshwater outflows

in the Gulf of Alaska. This bias distribution suggests that the low alkalinity freshwater signal in this region may be

overly restricted to the surface in the model, though there does not appear to be a strong positive subsurface salinity

model bias in this region (Fig. 3).
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Figure 14: Total Alkalinity Comparisons. Annual mean surface and subsurface (100m, 200m) total alkalinity compared against
CODAP-NA. Comparison time frames cover 2004-2018. Reference contours are depicted in black at 25 μmol alkalinity kg -1 sea
water in the mean state (left and center columns) and difference (right column) plots. Area-weighted mean bias (Bias) and root
mean squared error (RMSE), and the median absolute error (MedAE) and Pearson Correlation coefficient (R) are reported in the
right column of the difference plots. All correlation values are significant at p<0.001. The extent of the NEP10k domain is
outlined in black in all figures.

Dissolved inorganic carbon has a high bias that is consistent with the high alkalinity bias (compare Figs. 14

and  15).  Like  alkalinity,  the  largest  positive  biases  occurred  along  the  Bering  Sea  shelf  break  and  in  the

southwestern corner of the domain where areas are overmixed (Fig. 4) and exhibit salty biases (Fig. 3). The high

surface DIC bias in the northern Gulf of Alaska, however, is more pronounced than the corresponding high surface

alkalinity bias in this region (i.e., Fig. 13c versus Fig. 14c). The northern Gulf of Alaska is strongly impacted by

river  and glacial  outflows. While some of these freshwater sources (e.g.,  the Copper and Susitna Rivers)  have

observational constraints on DIC and Alk, most do not. Improved constraints may be needed to improve the model

fit in this region.
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Figure 15: Dissolved inorganic carbon comparisons.  Annual mean surface and subsurface (100m, 200m) concentration of
dissolved inorganic carbon compared against CODAP-NA. Comparison time frames cover 2004-2018. Reference contours are
depicted in black at 50 and 25 μmol carbon kg -1 sea water in the mean state (left and center columns) and difference (right
column)  plots,  respectively;  contours  representing negative  values  in  the difference plots  are  drawn as  dashed lines.  Area-
weighted mean bias (Bias) and root mean squared error (RMSE), and the median absolute error (MedAE) and Pearson correlation
coefficient (R) are reported in the right column of the difference plots. All correlation values are significant at p<0.001. The
extent of the NEP10k domain is outlined in black in all figures.

The more pronounced high surface DIC bias in the northern Gulf of Alaska yields aragonite saturation

states that are 0.25-0.5 units lower than CODAP-NA product (Fig. 16). The overall gradient between low saturation

states (higher acidification vulnerability) in the surface waters of the Bering Sea/Gulf of Alaska to high saturation

states (lower acidification vulnerability) in equatorial and subtropical surface waters in the southern parts of the

domain, however, is well captured (Fig. 15c, R = 0.93). Saturation state biases are also small in subsurface waters

where subsaturated waters are more prevalent (Fig. 16, middle and bottom panel), and where valuable shell, crab

and demersal fisheries reside.
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Figure 16. Aragonite saturation state comparisons. Annual mean surface and subsurface (100m, 200m) aragonite saturation
state compared against CODAP-NA. Comparison time frames cover 2004-2018. Reference contours are depicted in black at 0.5
and 0.25 saturation state units in the mean state (left and center columns) and difference (right column) plots, respectively;
contours representing negative values in the difference plots are drawn as dashed lines. Area-weighted mean bias (Bias) and root
mean squared error (RMSE), and the median absolute error (MedAE) and Pearson correlation coefficient (R) are reported in the
right column of the difference plots. All correlation values are significant at p<0.001. The extent of the NEP10k domain is
outlined in black in all figures.

3.2 Region-specific evaluation

Evaluation of NEP10k against observed large-scale physical and biogeochemical patterns in Section 3.1

was generally favorable.  In all  cases,  the model was able to capture the primary physical,  biogeochemical  and

plankton  contrasts  across  ecosystems  within  the  broad  NEP10k domain  with  often  high  but  at  least  moderate

fidelity. As described in Section 1, however, the NEP10k configuration is intended for marine resource applications

both across and within NEP10k subregions, and across management relevant time horizons from seasons to multiple

decades. The evaluation in Section 3.1 provides a foundation for such applications, but is not sufficient. Evaluation

in this section focuses on regional fisheries-critical metrics and their variation across management-relevant seasonal

to multi-decadal time horizons. 

Perhaps the most ubiquitous indicators of ecosystem state across all regions are ocean temperature (surface

and bottom) and surface chlorophyll. These indicators are highly relevant to diverse aspects of ecosystem function,

and long time series of observation-informed estimates are available. Modeled shelf (where depth < 500m) surface
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and bottom temperature climatologies for the regions identified in Fig.  1 exhibit  high correlation (Fig.  17,  left

column) with GLORYS12, but surface temperatures tend to be biased warm in more southerly regions. As initially

illustrated in Fig. 2 and Fig. S2, mean and summer surface temperatures, respectively, in the central and southern

California Current System are 1-2 °C warmer than those observed, but biases in other regions tend to be < 1 °C.

Figure 17: Surface and bottom temperature comparisons for shelf (0-500m) regions. Regional shelf (depth ≤ 500m) surface
and bottom temperature climatologies (left column) and anomaly time series (right column) for the sub-regions delineated in Fig.
1. Comparison of temperature climatologies (left panels) and monthly anomalies (right panels) for surface (orange) and bottom
(purple)  temperatures  for  NEP10k (bold)  and  GLORYS12 (pale).  Axes  for  surface  and  bottom temperature  anomalies  are
separate and offset for improved readability. Pearson correlation coefficients are reported for surface (RSTC, RSTA) and bottom
(RBTC, RBTA) climatology and anomaly comparisons, respectively. Background shading in the monthly anomaly timeseries plots
indicates the oceanic nino index produced by the NOAA Climate Prediction Center for context.

The NEP10k and GLORYS12 monthly surface and bottom temperature anomaly timeseries (Fig. 17, right

column) have correlations > 0.7 in nearly all regions, with values exceeding 0.9 in many. In the California Current,
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fluctuations  in  both NEP10k and GLORYS12 show a  strong correspondence with  the Nino 3.4  index (shaded

regions), with warm conditions prevalent during warm ONI states and cold conditions prevalent during cold ONI.

The lowest NEP10k-GLORYS12 correlations (R = 0.82 for the surface and R = 0.64 for the bottom) were found in

the smallest, southernmost Southern California Current System (SCCS) region. The relatively complex coastline and

limited resolution of island chains in this region (Fig. S2) may contribute to this decreased skill relative to other

regions, but the correlation for monthly anomalies remains > 0.6 even in this most challenging of systems. SCCS

bottom temperature similarly exhibits the lowest KGE (0.724), attributable to both lower correlation and variance

relative to that seen in GLORYS. This was similarly the case for bottom temperature in British Columbia (BC)

which was the only other region with a KGE below 0.8. 

Matching satellite-derived chlorophyll  climatologies and time series (Fig. 18) proved more challenging

than temperature . The monthly chlorophyll climatologies had moderate (R ≥ 0.8 NCCS, CCCS) to high (R ≥ 0.9,

GOA, BC,  SCCS) consistency with  OC-CCI-based estimates  for  all  systems but  the  Bering Sea  (Fig.  18,  left

column). In the Bering, NEP10k has a pronounced late spring to summer peak approaching 4 mg Chl m -3, while OC-

CCI estimates comparable intermediate concentrations of ~2 mg Chl m -3 for all months but January and December.

Similar, though less marked discrepancies were found in the Gulf of Alaska. In the California Current, chlorophyll

concentrations in both NEP10k and OC-CCI peak in the late spring and summer, consistent with the timing of the

upwelling season. NEP10k estimates tend to drop more rapidly than OC-CCI estimates in the Fall, with the central

CCS exhibiting a secondary fall peak not found in NEP10k. Notably, the shelf chlorophyll comparisons in Figure

18, which focus on temporal chlorophyll variability within a defined region, are not log transformed. This amplifies

the discrepancies at the higher end of the observed range relative to those in full domain, which focus on the model’s

ability to capture order-of-magnitude cross-ecosystem differences (Fig. 10).
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Figure 18: Regional chlorophyll timeseries comparisons. Regional shelf (< 500m) surface chlorophyll monthly climatologies
(left column) and anomaly time series (right column) for the satellite-derived OC-CCI product (orange) and NEP10k (green).
Pearson correlation coefficients are reported for both climatologies and anomalies; background shading in the monthly anomaly
timeseries plots indicates the oceanic nino index produced by the NOAA Climate Prediction Center for context.

KGE for full chlorophyll time series are more moderate than those achieved for temperature, though only

the GOA and the SCCS exhibit values below 0.6. For the GOA, this value was attributable to both the relative bias

and variance while, in the SCCS, lower correlation and relative variance were the primary contributors to a lower

KGE. Regional monthly anomaly timeseries for NEP10k chlorophyll were generally weakly correlated with OC-

CCI (Fig. 18, right column), with most R values slightly below 0.4. While these correlations are significant (p<0.01)

their modest values temper expectations for actionable chlorophyll forecasts. A possible exception is found in the

Northern California Current, where high correlation (R = 0.58) provides some ground for optimism. Conversely,

simulated and OC-CCI chlorophyll anomalies in the Bering Sea were uncorrelated (R = -0.01). We emphasize that
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interpretation  of  both  NEP10k’s  correspondence  and  misfits  in  Fig.  18  must  be  moderated  by  uncertainties

associated with the derivation of satellite-based ocean color products in coastal waters.

3.2.1 Bering Sea-specific indicators

As discussed in Section 1, the eastern Bering Sea has one of the most prolific demersal/benthic fisheries in

the world, and its ecosystem dynamics are strongly shaped by fluctuating seasonal sea ice. Compared to the trawl

results, NEP10k trawl-equivalent bottom temperature (Figure 19) in the Bering Sea tends to be biased slightly warm,

particularly in the mid-shelf region that approximately corresponds with the area of maximum/minimum September

ice edge extent reported by Wang et al., (2014). The model exhibits a modest cold bias, in contrast, on the inner

shelf of the southeastern Bering Sea. The NEP10k model, however, robustly reproduces interannual variability of

the cold pool area (CPA) indices, with best performance at the higher temperature thresholds (Fig. 20). The model

does tend to under-represent the CPA delineated by the coldest threshold (water temperature ≤ -1°C, dark blue Fig.

20). This is emphasized by a particularly low KGE (-.111) which is due to a particularly low relative bias and high

relative variance. KGE for the ≤ -1°C threshold is also low, similarly due to relative variance and bias. However, the

correlation remains high across thresholds and there is minimal bias at the higher thresholds (i.e., water temperature

≤ 1°C or 2°C, lighter blues Fig. 20). Critically, the simulation captures the very small CPAs in recent years that have

been linked to recent declines in the lucrative snow crab fishery (Szuwalski et al., 2023).

Figure 19: Bering Sea cold pool extent.  Comparison with AFSC Bering Sea Summer Trawl. Marker size is scaled by the
number of data annual data points that comprise the mean. The colormap in a and b emphasizes the 2°C transition point for
consistency with the threshold value for identifying the cold pool. The black outline delineates the south eastern Bering Sea;
trawl data collected from this region are used to calculate the Bering Sea summer cold pool extent and index.
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Figure 20: Southeastern Bering Sea cold pool area index.  Comparison of the cold pool index timeseries derived from the
AFSC bottom trawl survey data (top) and the spatially and temporally consistent NEP10k bottom temperature output (bottom)
following the methods described in Rohan et al. (2022) and AFSC coldpool software repository. The plots report the fraction of
the total survey south eastern Bering Sea trawl area (outlined in the figure above) that exhibits bottom temperatures under the
specified thermal thresholds. We report Spearman correlation values between NEP10k and trawl indices in the bottom panel.

The NEP10k simulation does overestimate the sea ice concentration, particularly in the northern Bering sea

(Fig. 21). However the contours for 10% and 50% sea ice concentration correspond with observations fairly well

from January through April, suggesting that the simulation generates a reasonable spring sea ice extent. NEP10k ice

extent timeseries for the southeastern Bering Sea (Fig. S16) are highly correlated with the satellite product, though

NEP10k does overestimate the coverage area, which may be consistent with the ~0.5 °C Bering Sea cold bias noted

in Fig. 2. 
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Figure 21: Bering Seasonal Sea Ice Concentration and Spatial Extent. Comparison of spatial patterns in Bering Sea monthly
mean NEP10k sea  ice  concentration against  NASA Satellite  estimates  (Cavalieri  et  al.,  1996).  Black contours  indicate  the
position of 10% and 50% sea ice concentration.

3.2.2 Gulf of Alaska-specific indicators

NEP10k successfully simulates the two leading localized modes of SSH variability identified by Hauri et

al. (2024) that can predispose the Gulf of Alaska to extreme physical and biogeochemical events (Fig. 22). The first

two principal components (PCs) of the empirical orthogonal analysis of monthly NEP10k SSH in the Gulf of Alaska

have spatial patterns that are consistent with the CMEMS SSH product, with significantly correlated spatial loading

patterns in both cases (EOF1 R = 4.2, EOF2 R = 0.95, Fig. 22, top panels). The NEP10k-generated NGAO and
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GOADI time series are also in good agreement with satellite altimetry observed over the corresponding region and

time frame, particularly at lower frequencies (Fig. 22, bottom panels). These two modes of variability comprise 47%

and 34% of the variance in the model and observed SSH, respectively, suggesting that they may be somewhat over-

prominent in the model relative to other sources of SSH variability. 

Figure 22: GOA SSH EOFs and principal component timeseries. Spatial maps of the first (top row) and second (middle row)
EOFs for satellite (left) and NEP10k (right) SSH variability. These are complemented with timeseries comparisons (monthly,
left;  6  year  running mean,  right)  for  the first  two principal  components  (NGAO, top row; GOADI,  bottom row) from the
empirical orthogonal function analyses of Gulf of Alaska sea surface height for NEP10k (orange) and the CMEMS satellite
product (navy). R values indicate the Pearson Correlation coefficient calculated between NEP10k and the Satellite product, all of
which are significant at p<0.001. X-axis labels indicate January 1st of the specified year.
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Composites  of  environmental  conditions  when  the  second  PC,  the  GOADI,  is  below  or  above  1

demonstrate the impact of downwelling and relaxation of downwelling conditions, respectively on shelf habitat in

the Gulf of Alaska (Fig. 23). Relaxation of downwelling is associated with colder, lower oxygen and more acidic

shelf  waters  from  the  enhanced  intrusion  of  deep  water.  Conversely,  positive  phases  of  the  GOADI  exhibit

significantly warmer bottom temperatures and elevated levels of bottom dissolved oxygen and aragonite saturation

state. 

Figure 23: GOADI composites. Composites of important ecological conditions during the positive (GOADI >1; 44 months out
of 324) and the negative (GOADI < -1; 45 months out of 324) phases of the Gulf of Alaska Downwelling Index (GOADI). Grid
cells are colored where the composite differs significantly from 0 (student t-test, p<0.05).

3.2.3 California Current-specific indicators

Seasonal upwelling plays an important role in CCS ecosystem dynamics, having bottom-up driving effects

on  primary  productivity  in  this  eastern  boundary  upwelling  system  (Section  1,  Jacox  et  al.,  2016).  Summer
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upwelling  conditions  are  evident  in  the  map  of  vertical  velocity  (Fig.  24)  with,  on  average,  a  predominantly

positive/upward signal across the approximate mixed layer depth (30m) over March through August similar to that

reported  in  Jacox et  al.,  (2018).  Monthly  climatologies  of  NEP10k simulated  of  vertical  transport  across  30m

demonstrates high correlation with the Jacox et al., (2018) CUTI metric, with R values above 0.92 at representative

latitudes  (Fig.  24).  Correlations  between  the  Jacox  et  al.,  (2018)  monthly  CUTI  anomaly  timeseries  and

corresponding NEP10k vertical  transport  are  also  significant  but  the  relationship is  strongest  at  more  northern

latitudes (R=0.76 at 45°N) and drops off at more southerly latitudes (R=0.30 at 35°N). The 33N bin also exhibits the

lowest  KGE (0.248)  for  the  full  CUTI  timeseries  comparison,  due  to  both  relatively  low  Pearson  correlation

coefficient and a fairly high relative variance. It is important to note, however, that the NEP10k and the ROMS

model in Jacox et al., (2018) are forced by different atmospheric reanalysis products, thus it may not be surprising

that they differ in high frequency variability. Additionally, the differences in methodologies such as approximating

using a constant reference depth of 30 meters for NEP10k could contribute to departures.

Figure 24: CCS upwelling indices. Spring/summer (Mar-Aug) vertical velocity (map) at 30m depth. 1 degree bins are indicated
in black outline, which are used for integrating vertical transport. This (blue line) is compared against the Jacox et al., (2018)
ROMS CUTI metric (orange line) at several latitudes, decomposing the timeseries into monthly climatology (left) and anomalies
(right). Pearson correlations (R) are reported in the upper right corner of each time series panel; all correlations are significant
(p<0.001).

NEP10k trends in dissolved oxygen reproduce offshore CalCOFI trends (Fig. 25), with strongest declines

occurring at around 300m and becoming less pronounced with depth. In the California Bight, however, NEP10k

exhibits positive trends (most pronounced at 100m depth) where the CalCOFI timeseries exhibit declining trends in

dissolved oxygen levels. Many of the stations exhibiting discrepancies in the NEP10k are not statistically significant
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(p<0.05) and, it should also be noted that some of the timeseries are quite variable, with linear trends being sensitive

to the timeframe analyzed. Indeed, direct point-to-point comparisons against the CalCOFI bottle sample dataset (Fig.

S26-29) demonstrates that, while NEP10k broadly reproduces temperature and salinity (Fig. S26, r ≥ 0.89) and

biogeochemistry (i.e. Fig. S27, r ≥ 0.96) conditions in the southern California Current System, the model was more

challenged to represent the temporal variation observed across decades for individual sampling sites and depth strata

(Fig.  S28).  Agreement  was  best  at  the  surface  and  for  temperature,  but  generally  decreased  with  depth.  Skill

improved when values averaged across the CalCOFI sampling grid were considered (Fig. S29).
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Figure 25:  CCS trends in  dissolved oxygen at  CalCOFI stations. Linear  trends  in  subsurface dissolved oxygen (O2)  at
CalCOFI stations for NEP10k (left) and the CalCOFI dataset (right) calculated over the timeframe of the NEP10k hindcast
(1993-2019). Black markers indicate where station trends are significant (p<0.05), following Bograd et al., (2008).

3.3 Computational performance and scalability

As described in Section 1, the goal of the NEP10k configuration is to provide a simulation capable of

skillfully resolving fisheries-critical features with manageable computational cost to allow for ensemble predictions

and projections. Our baseline simulation averaged just over 5.3 hours of wall clock time per hindcast year while

distributing the 342 x 816 grid (cross-shore x along-shore) across a 32 x 80 decomposition (Fig. 26, green circle)
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and using a 400 second baroclinic time step and a 1200 second thermodynamic and tracer time step. After land

masking,  the run uses 2036 PEs,  yielding roughly 10,800 PE hours per  simulation year on the c5 partition of

NOAA’s Gaea supercomputer. The 27 year hindcast produced herein thus requires ~292,000 PE hours, while 1200

years of retrospective seasonal forecasts (e.g., Ross et al., 2024) would require approximately 13 million PE hours.

Figure 26: Computational scalability efficiency. Amount of computer wall clock time used for completing 1 year of NEP10k
simulation with a given number and configuration of processing elements (PEs).  Markers indicate a  given simulation’s PE
decomposition for diving in the horizontal model domain prior to omitting PEs that do not contain any ocean grid cells. The
diagonal lines indicate constant computational cost (processes × time) relative to the 40 × 40 (blue square) reference simulation.
The two hollow markers represent simulations wherein the thermodynamics time step was set to dynamics time step (i.e. reduced
from 1200 to 400). 

The  NEP10k  computational  cost  is  comparable  to  the  recently  published  Northwest  Atlantic  regional

MOM6 configuration (NWA12) of Ross et al. (2023), which used a 40x40 layout (1200 PEs after land masking) to

generate 1 simulation year in about 9 hours (about 10,800 PE hours per simulation year). While NWA12 was a

larger domain, NEP10k required smaller baroclinic and thermodynamic time steps for stability (400 versus 600

seconds  and  1200  versus  1800  seconds,  respectively).  The  instability  at  longer  time  steps  in  the  NEP10k

configuration  primarily  occurred  in  the  vicinity  of  the  Aleutian  Island  chain  where  strong  currents  could  be

generated within tight channels. 

Computational  scaling  tests  showed  that  increases  in  throughput  were  achievable  but  returns  fell

considerably  below the  ideal  1:1  scaling  between  the  processor  count  and  the  wall  clock  time  (Fig.  26).  An

approximate doubling of PEs from 2038 to nearly 4000, for example, only decreased the wall clock time for a

simulation year from ~5.3 hours to ~4.2 hours (compare the green circle and the purple diamond in Fig. 26). The
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decreased scaling is not unexpected as higher processor counts decompose the model grid into increasingly granular

tiles, taxing communication across PEs. This effect can also be seen when comparing the performance of the 32x80

baseline setting, which maximizes the number of interior to exterior cells on a PE by decomposing the 342x816 grid

into squares, versus the approximately 10% slower 50x50 decomposition that relies on rectangular elements. Scaling

from the base configuration to lower processor counts, in contrast, is relatively strong, supporting the viability of

running simulations on smaller supercomputing systems.

Consistent  with  the  findings  of  Ross  et  al.  (2023),  we found considerable computational  benefit  from

leveraging MOM6’s capacity to have a longer thermodynamic and tracer time step than the baroclinic time step

(closed versus open symbols in Fig. 26). Throughput was nearly doubled when the thermodynamics and tracer time

step was three times longer than the baroclinic time step. 

4 Discussion

There  were  three  primary  design  criteria  for  the  NEP10k  model.  The  first  was  that  a  “coastwide”

configuration was needed to address coastwide challenges arising from climate change, such as shifting fisheries

distributions across state and international boundaries. The second was that the model must resolve and accurately

reproduce  enough  of  the  physical  and  biogeochemical  drivers  of  ocean  change  in  and  across  the  disparate

ecosystems within the domain to support ecosystem and fisheries applications. The third was that the model must be

suited,  both  computationally  and  in  terms  of  model  skill,  for  ensemble  predictions  and  projections.  The

comprehensive  model  evaluation  herein  suggests  that  the  NEP10k  configuration  meets  these  design  criteria

sufficiently  to  provide  a  basis  for  initial  applications  and a  robust  foundation  for  further  model  improvement.

Comparison against large-scale physical and biogeochemical patterns in Section 3.1 showed that a single physical-

biogeochemical  modeling framework could robustly capture the primary physical  and biogeochemical  contrasts

between the EBS, GOA and CCE (Figs 2-5, 7-8, 12-15). Simulation fidelity extended to seasonal patterns in most

quantities (Fig. 17-18, Figs. S1-S15) and robust matches to interannual variations for many, even within limited

regions  of  the  domain  (Figs.  16,  19,  21,  24-25).  While  biases  were  present,  and at  times prominent,  the  skill

achieved supports  NEP10k’s current  utility.  The Discussion will  focus on model characteristics  contributing to

successes, and on further model developments that may ameliorate current limitations.

A  central  challenge  for  NEP10k  was  the  representation  of  physical  and  biogeochemical  processes

governing a large range of ecosystems, from subtropical to polar and oligotrophic to eutrophic. Success in this

regard requires model formulations and parameterizations that are robust across regimes. For ocean physics, one

advance that led to notable improvement was the replacement of the submesoscale restratification parameterization

of Fox-Kemper et al. (2011) with that of Bodner et al. (2023). The Fox-Kemper parameterization requires a single

choice for the submesoscale front length while Bodner diagnoses the front length from the ocean state, revealing

considerable variability with season and latitude. Smaller front lengths at high latitudes proved critical to limiting
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deep mixing biases in the western Bering Sea, while longer front lengths further south were critical in limiting

shallow mixed layer biases in the Gulf of Alaska and California Current (Fig. 4). Though the more dynamic Bodner

scheme did not eliminate MLD biases, we did find that it improved them considerably relative to the Fox-Kemper et

al. (2011) parameterization, where a single characteristic submesoscale frontal length scale forced one to exacerbate

one bias or the other (Fig. S18). 

For biogeochemistry, starting with a model designed for global applications provided a sound starting point

for  achieving  cross-system skill.  Evaluation  of  the  shelf-scale  fidelity  of  global  models,  however,  is  generally

limited by their often coarse resolution (e.g., Stock et al., 2014; 2020). A key addition to extend skill in NEP10k to

coastal regions was an additional phytoplankton size class, which allowed the model to better resolve the coastal

diatoms responsible for high chlorophyll concentrations along the coast. This expanded formulation was initially

developed  by  Van Oostende  et  al.,  (2018)  for  use  in  the  California  Current,  where  it  was  shown to  improve

resolution  of  both  very  high  coastal  chlorophyll  concentrations  and  the  biogeochemical  signals  that  can  be

associated with them (e.g., coastal hypoxia). These benefits can be seen in the generally high coastal (relative to

open ocean) chlorophyll levels along the U.S. West Coast (Fig. 10) and the robust depiction of the hypoxic boundary

layer depth (Fig. 13). The most glaring chlorophyll bias is the model’s tendency to underestimate winter/fall OC-

CCI-estimated chlorophyll in the nearshore EBS (Fig. 10), which degrades the seasonal chlorophyll fidelity for this

region (Fig. 18). Satellite-based estimates in shallow regions of the EBS actually peak during these months despite

cold, dark and vigorously mixed conditions, suggesting potential contamination of chlorophyll estimates in turbid

coastal waters (Dierrson, 2010; Schofield et al., 2013). A recent study in the Arctic, for example, suggests that

global satellite chlorophyll algorithms may overestimate chlorophyll by over a factor of 2 (Li et al., 2024).

Other chlorophyll and plankton misfits require additional scrutiny. The tendency to overestimate offshore

spring and summer chlorophyll  along the margin separating the Gulf of Alaska and the California Current,  for

example, may reflect biases in dust delivery, dust solubility or iron scavenging in this iron-limited region. The

relatively persistent and strong iron limitation in the offshore waters of the California Current in NEP10k, however,

may already exceed the “mosaic” of alternating N and Fe limitation suggested by some prior studies (Messie and

Chavez, 2015; Moore et al., 2013; Till et al., 2019). A spatially indiscriminate iron tuning is thus unlikely to resolve

these biases.  They may also arise,  however,  from misrepresented grazing controls.  NEP10k skill  in  simulating

mesozooplankton biomass is limited to capturing first-order cross-ecosystem and seasonal biomass contrasts (Fig.

11) with the patchiness in mesozooplankton biomass in net tow data being under-represented. There are also some

systematic biases, such as the tendency for mesozooplankton populations to be displaced offshore and biased low

relative  to  observations  during  the  summer  upwelling  season  in  the  California  Current.  Previous  work  (e.g.,

Batchelder et al., 2002) has suggested that zooplankton may enlist diurnal vertical migration to avoid being swept

offshore, alternating between surface feeding in offshore currents at night and predator avoidance in inshore flowing

currents during the day. Such behavior is not included in NEP10k, but could increase mesozooplankton biomass and

shift the distribution inshore.
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Capturing  mean  spatial  and  seasonal  patterns  is  a  critical  starting  point  for  any  model  intended  for

ecosystem/fisheries  science  and management  applications.  Many applications,  however,  require  the  capacity  to

anticipate change across seasonal to multi-decadal management time horizons (Tommasi et al., 2017). The robust

representation of surface and bottom temperature variability (Fig. 16) provides a promising start  in this regard.

Temperature anomalies are a first-order indicator of ecosystem conditions and a primary determinant of habitat

viability  (e.g.,  Deutsch et  al.,  2015),  and temperature  extremes  are  a  primary source  of  ecosystem stress  in  a

changing climate (e.g., Frölicher et al., 2018). The robust representation of surface and bottom water anomalies at a

regional scale and for shallower waters (< 500m), combined with the growing capacity of global prediction systems

to anticipate fluctuations in large-scale climate drivers (e.g., ENSO) supports the potential viability of predictive

applications. Retrospective forecast experiments are underway to assess this. NEP10k was less successful, however,

in capturing coastal chlorophyll anomalies (Fig. 17). The correlation with monthly chlorophyll anomalies was only

marginally significant in most systems, approaching useful levels (i.e., R~0.6) in the NCCS. This weaker correlation

was not necessarily surprising, given the volatile and patchy nature of coastal chlorophyll and observing challenges

in  such  environments,  but  points  to  the  need  for  further  scrutiny  of  both  the  model  and  observations  before

predictive chlorophyll applications can be realized in most systems.

Possibly the most critical  metrics for ecosystems and fisheries applications considered herein were the

region-specific  quantities  considered  in  Figs.  18-25.  These  were  drawn  from  existing  management-linked

documents, such as the “State of the Ecosystem” reports created by NOAA’s National Marine Fisheries Service to

strategically  inform  management  decisions.  Evaluations  against  the  admittedly  limited  set  of  region-specific

fisheries metrics herein was generally positive. Perhaps the most striking of these successes is the fidelity with

which NEP10k reproduces the Bering Sea cold pool relative to over 2 decades of Alaska Fisheries Science Center

bottom trawl data (Figs. 19-20). The model’s representation of these metrics was improved during the course of

development when an excess of shear-driven mixing on the Bering shelf was identified and addressed with an

adjustment of Jackson et al. (2008) shear mixing parameterization. The addition of a simple scaling factor for the

geometric limitation imposed by this formulation was found to be the most effective way to pragmatically calibrate

the  shear  driven  mixing  to  better  produce  observed  values  for  both  mixing  and  bottom temperature.  A  more

comprehensive analysis of  this  parameterization and its  impact  on Bering Sea dynamics is  currently underway

(Seelanki  et  al.,  in  prep)  and will  inform regional  MOM6 shear  mixing parameterization for mixed turbulence

regimes. 

While NEP10k’s overall  representation of variations in Bering Sea cold pool extent was excellent,  the

model did underestimate the summer extent of the coldest bottom water (< -1°C, darkest blue in Fig. 19). This

seemingly conflicts with NEP10k’s overrepresentation of seasonal sea ice extent (Figs. 20 & S16) since greater sea

ice extent and coverage tends to be associated with a more extensive cold pool (e.g.,Wyllie-Echeverria & Wooster,

1998). The model does achieve substantial  winter levels of cold bottom water (Fig. S19), but they erode more

quickly than observed in May and June, just prior to the trawl season. This decline in bottom coverage by the coldest
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watermass category coincides with a  dramatic monthly reduction in NEP10k’s SEBS sea ice extent  relative to

satellite estimates (Fig. S20, May - April and June - May). The drivers of this bias will be explored. We emphasize,

however, that simulated Bering Sea ice variations in NEP10k are highly correlated with observations (Fig. S16)

suggesting the potential for predictive applications despite the mean sea ice bias.

NEP10k  reproduction  of  localized  modes  of  low-frequency  climate  variability  in  the  Gulf  of  Alaska

(NGAO and GOADI, correlation with satellite-derived PCs > 0.65, Fig. 22) holds promise for potential for multi-

year to decadal fisheries applications in the GOA. These modes of variability map on to important ecosystem drivers

such  as  bottom  temperature  and  aragonite  saturation  state  (Fig.  22,  Fig.  S17)  and  can  contribute  to  extreme

compound events that can have severe consequences for marine ecosystems (Hauri et al., 2024). Understanding of

the relationships between SSH variability and shelf ecosystem conditions will be aided by the growing availability

of physical and biogeochemical observations of GOA bottom conditions. Increasing horizontal resolution of the

NEP10k configuration may further improve representations of important regional GOA ecosystem features. For

example, sea surface heights south of the Aleutian Island Chain, central to the Alaska Gyre, are lower than observed

in reference datasets (Fig. 5) and could improve with better resolution of opposing horizontal flows, specifically the

southwestward Alaska stream and eastward Subarctic or Aleutian Current.  Higher resolution may also improve

representation of transports through the Aleutian Island chain, which can significantly impact water mass properties

in the Bering Sea (Stabeno et al.,1999). 

Finally, in the California Current system, our regional assessment focused on ecosystem-critical seasonal

upwelling and source water trends. NEP10k’s climatological vertical transport at 30m along the continental U.S.

west coast is highly correlated (i.e., R values ≥ 0.93, Fig. 24) with the CUTI metric published by Jacox et al., (2018).

Similarly, reproduction of multi-decadal trends in dissolved O 2 (Fig. 25) observed in the CalCOFI record was an

important  benchmark,  indicative  of  the  model's  ability  to  capture  processes  driving  ecologically  consequential

deoxygenation in the southern CCE (Bograd et al., 2008). While these findings further support the suitability of the

current NEP10k configuration for ecological applications, continued model development will seek to understand and

improve localized performance. For example, warm/cold biased climatological surface/bottom temperatures in both

CCCS and  SCCS (Fig.  17),  underrepresentation  of  climatological  upwelling  and  low correlation  in  upwelling

monthly anomalies (33N in Fig. 24), and underrepresentation of deoxygenation trends in the Southern California

Bight (200m, 300m depth in Fig. 25) suggests we may not be adequately representing the physical processes that

influence these conditions due to excessive stratification in the southern CCE. Given the complex bathymetry and

circulation that impacts these processes in southern California Bight (e.g., Hickey 1992), this is another instance

where increased spatial resolution may improve model performance. Indeed at 10km resolution, the SCCS shelf

(where depth ≤ 500m) extends as little as a single grid cell (or less) offshore. However, while higher resolution (i.e.,

~5km) simulations are currently underway, any benefits of doubling horizontal resolution will need to be balanced

against the roughly eight-fold increase in computational cost (i.e., two-fold for each horizontal dimension and an

additional two-fold increase for the necessity of shortening the timestep needed to maintain Courant–Friedrichs–
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Lewy stability). For applications wherein many-fold higher resolution is necessary, it  may be more practical to

utilize a smaller, higher-resolution nested domain (e.g., modeling the Salish Sea in Khangaonkar et al., 2018) that

can be forced by the NEP10k at the open boundaries, rather than increasing resolution for the full NEP10k domain.

Continued NEP10k development will incorporate comparison against a broader array of local observation datasets

similar  to  that  of  CalCOFI.  Such  extensive  observation  records  are  invaluable  for  better  understanding  and

evaluating model performance, particularly in regions that may not be well represented in relatively coarse, gridded

data products. However, it is important to approach such comparisons with realistic expectations. As shown in Fig.

S28,  NEP10k  poorly  reproduces  temporal  variability  (i.e.,  low  Pearson  correlation  coefficients)  of  repeated

samplings of individual stations across multiple years. This is not surprising since the NEP10k hindcast does not

assimilate observations and, thus, any biases in the mean locations of fronts and other features is compounded by

stochastic mesoscale and submesoscale features whose precise locations and timing will not match those observed.

Indeed, more coherent patterns emerge after averaging over such features (e.g., Fig. S29, Fig. 17, Fig. 20), which

demonstrates  that  NEP10k  strength  and  utility  is  in  representing  reasonable  approximations  of  ecologically-

important environmental conditions rather than exact reproduction of in situ observations.

5 Conclusions

The results presented herein demonstrate that NEP10k is “fit to purpose” - in terms of both model skill and

computation cost - for numerous living marine resource management applications across multiple time horizons.

The model also establishes a basis for community evaluation to assess against a much broader set of fisheries and

ecosystem metrics,  and a  basis  for  co-development  with fisheries  scientists  and managers  to  address  identified

limitations and maximize model utility.  As part  of  NOAA’s Changing Ecosystems and Fisheries  Initiative,  the

community contributing to this effort  has grown tremendously, facilitated by the open development of MOM6,

COBALT, as well as pre-processing and analytical scripts made available via the CEFI GitHub. With increasing

input from collaborators and co-development with end-users, ongoing model development will prioritize NEP10k

representation of key ecosystem indicators to maximize utility of climate change projections and forecasts for living

marine resource management.
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Appendix A

Table A1. Notable parameters, their current names and associated values used in the physical ocean (MOM6) 
component of the model and relevant references. BGC denotes biogeochemistry; SAL denotes self-attraction and 
loading. Bold text indicates where parameter choices differ from Ross et al. (2023). Comprehensive documentation 
of physical MOM6 parameters can be found in MOM_parameter_doc.all (supplemental materials).

Parameter
(as appears in MOM_parameter_doc.all)

Value
(as appears in MOM_parameter_doc.all if differs)

Reference

Vertical coordinate 
(REGRIDDING_COORDINATE_MODE,
ALE_COORDINATE_CONFIG)

 75-layer z  ∗
(Z*, FILE:vgrid_75_2m.nc,dz)

Adcroft et al. (2019)

Baroclinic time step 
(DT)

400 seconds

Thermodynamics and BGC time step 
(DT_THERM)

1200 seconds

Planetary boundary layer parameterization
(EPBL_MSTAR_SCHEME, EPBL_VEL_SCALE_SCHEME)

Energetics based planetary boundary layer (ePBL)
(REICHL_H18, REICHL_H18)

Reichl  and  Hallberg
(2018)

Mixed-Layer Restratification
(USE_BODNER23)

Bodner et al. (2023) formulation
(TRUE)

Bodner et al. (2023)

Biharmonic viscosity 
(SMAGORINSKY_AH)

Smagorinsky coefficient (SMAG_BI_CONST)
Resolution-dependent (AH_VEL_SCALE)

Maximum of Smagorinsky and resolution-dependent viscosities
(TRUE)

 0.015
 0.01 Δx

3 m4 s−1 (0.01)

Griffies  and  Hallberg
(2000)

Adcroft et al. (2019)
Bottom boundary layer mixing efficiency
(BBL_EFFIC)

0.0

Background kinematic viscosity
(KV) *NOTE: this term is additive to the viscosity calculated
internally

1.0 × 10−6 m2 s−1

(0.0)

Background diapycnal diffusivity
(KD)

1.0 × 10−6 m2 s−1

Boundary conditions (example for open boundary 001)
Sea level and barotropic velocity Baroclinic velocity
(OBC_SEGMENT_001)

(OBC_SEGMENT_001_VELOCITY_NUDGING_TIMES
CALES)

Tracers 
(OBC_TRACER_RESERVOIR_LENGTH_SCALE_OUT)
(OBC_TRACER_RESERVOIR_LENGTH_SCALE_IN)

Flather scheme
(FLATHER,ORLANSKI,NUDGED,ORLANSKI_TAN,NUDGED_TA
N) 
Radiation  and  nudging  scheme  (3  day  inflow,  360  day  outflow
timescales)
(3.0, 360.0)

Reservoirs with 9000 meter length scales
(9000.0)
(9000.0)

Flather (1976)
Marchesiello  et  al.
(2001), Orlanski (1976)

Tidal SAL coefficient
(SAL_SCALAR_VALUE)

0.01 Irazoqui Apecechea et al.
(2017),  Stepanov  and
Hughes (2004)

Opacity scheme
(OPACITY_SCHEME, PEN_SW_NBANDS)

three-band with chlorophyll 
(MANIZZA_05, 3)

Manizza (2005)
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Table A2. Ocean diagnostics used for evaluating the NEP10k hindcast

Diagnostic
(Fig. #)

NEP10k Variable
(original units)

Sampling Reference Dataset
Comparison
Timeframe

if blank:
1993-01-01 to

2019-12-31
Time Depth

Name
reference

Variable
(original units)

Horizontal
Resolution

Temperature
(Fig. 2)

thetao (°C)
Annual and seasonal mean

climatology

Surface
OISSTv2.1

Huang et al., 2021
sst

(°C)
¼°

Surface, 100m, 200m
GLORYS12

Jean-Michel et al., 2021
thetao
(°C)

1/12°

Salinity
(Fig. 3)

so
Annual and seasonal mean

climatology
Surface, 100m, 200m

NCEI nnp and nepP Regional
Climatologies

Seidov et al., 2023, 2017
s_an 1/10°

1995-01-01 to
2014-12-31 (nnp)
2012-12-31 (nep)

GLORYS12
Jean-Michel et al., 2021

so 1/12°

Mixed Layer Depth
(Fig. 4)

MLD_003
(m)

Annual and seasonal mean
climatology

-

de Boyer Montégut, 2024
mld_dr003

(m)
1°

GLORYS12
Jean-Michel et al., 2021

thetao (°C),
so, deptho (m)

1/12°

Mean Sea Level
(Fig. 5)

ssh
(m)

Annual and seasonal mean
climatology

Surface

GLORYS12
Jean-Michel et al., 2021

zos
(m)

1/12°

Gridded satellite altimetry
CMEMS, 2023

adt
(m)

¼°
GOA EOF & PCA

(Fig. 22)
Monthly means

Tidal amplitude and
phase

(Fig. 6)

ssh
(m)

Hourly means Surface
TPXO9

Egbert & Erofeeva, 2002
ha (m),

hp (°GMT)
1/6°

1993-02-01 to
1993-02-28

Inorganic Nutrients
(Figs. 7,8)

no3, po4
(mol kg-1)

Annual and seasonal mean
climatology

Surface, 100m, 200m
WOA23

Garcia et al., 2023a
n_an , p_an
(μmol kg-1)

1°

Surface Chlorophyll
(Fig. 10)

chlos
(kg m-3)

Seasonal Mean
Climatologies

Surface
OC-CCI v6.0

Sathyendranath et al., 2023
chlor_a
(mg m-3)

4km
1998-01-01 to

2019-12-31Regional Surface
Chlorophyll Variability

(Fig. 18)

Monthly mean climatology
and anomalies

Zooplankton Biomass
(Fig. 11)

mesozoo_200
(mol m-2 C)

Seasonal Mean
Climatologies

0-200m integrated
COPEPOD

Moriarty and O’Brien, 2013
cmass

(mg C m-3)
site locations

Dissolved Oxygen
(Fig. 12)

o2
(μmol kg-1)

Annual and seasonal mean
climatology

Surface, 100m, 200m

WOA23
Garcia et al., 2023b

o_an 1°Hypoxic Boundary
Layer Depth

(Fig. 13)
Monthly means -

Total Alkalinity,
Dissolved Inorganic
Carbon, Aragonite

Saturation State
(Figs. 14,15,16)

talk, dissic
(mol m-3)

omega_arag

Annual and seasonal mean
climatology

Surface, 100m, 200m
CODAP-NA

Jiang et al., 2022

TA_an, DIC_an
(μmol kg-1)

OmegaA_an

1°
2004-01-01 to

2018-12-31
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Table A2. (continued)

Regional Surface &
Bottom Temperature

Variability
(Fig. 17)

tos, tob
(°C)

Monthly mean climatology
and anomalies

Surface, Bottom
GLORYS12

Jean-Michel et al., 2021
Thetao, bottomT

(°C)
1/12°

Bering Sea Bottom
Temperature
(Figs. 19, 20)

tob
(°C)

Daily means Bottom
AFSC Bottom Trawl Survey

Rohan et al., 2022
gear_temperature

(°C)
stations

Bering Sea Sea Ice
Extent

(Fig. 21)
siconc

Monthly mean
climatologies

-
NASA Satellite Sea Ice

Concentration
DiGirolamo et al., 2022

25km

Upwelling Index/
Vertical transport

(Fig. 24)

umo, vmo
(kg s-1)

Monthly mean climatology
and anomalies

30m
CUTI

Jacox et al., 2018
CUTI

(m2 s-1)
1°

CalCOFI O2 trends
(Fig. 25)

o2
(μmol kg-1)

Monthly means
50m, 100m, 200m,
300m, 400m, 500m

CalCOFI
https://calcofi.org/data/

oceanographic-data/bottle-
database/

Oxy_µmol/Kg
(µmol kg-1)

stations
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Code availability

The source code for each component of the model has been archived at https://doi.org/10.5281/zenodo.13936294

(Drenkard et al., 2023a). The GitHub repositories for MOM6 can be found at https://github.com/mom-ocean/MOM6

(last  access:  2  August  2024)  and  https://github.com/NOAA-GFDL/MOM6  (last  access:  2  August  2024).

Repositories  for  other  model  components  are  also  available  at  https://github.com/NOAA-GFDL (last  access:  2

August 2024). Codes for generating regional MOM6 initial conditions, boundary conditions and other necessary

model  inputs  as  well  as  diagnostic  scripts  are  maintained  on  the  NOAA  CEFI  GitHub  Repository:

https://github.com/NOAA-GFDL/CEFI-regional-MOM6/.  Alaska  Fisheries  Science  Center  (AFSC)  R code  base

used for the Bering Sea Cold Pool Analyses can be found on github: https://github.com/afsc-gap-products/coldpool,

which utilizes the AFSC akgfmaps toolset, also on github: https://github.com/afsc-gap-products/akgfmaps. 

Data availability

All model output and that was analyzed and the corresponding analysis codes used in preparing this paper has been

published  at  https://doi.org/10.5281/zenodo.13936240 (Drenkard  et  al.,  2023b).  Model  parameter,  forcing,  and

initial  condition  files  are  published  at  https://doi.org/10.5281/zenodo.13936479  (Drenkard  et  al.,  2023c).  The

datasets used for model validation and comparison are tabulated in Appendix Table 2 with associated URL or DOI

where the data can be downloaded are listed as follows: OISSTv2.1 (https://www.ncei.noaa.gov/products/optimum-

interpolation-sst, Huang et al., 2021); GLORYS12 reanalysis (https://doi.org/10.48670/moi-00021, Jean-Michel et

al.,  2021);  NCEI  Northern  North  Pacific  Regional  Climatology  Version  2

(https://www.ncei.noaa.gov/products/northern-north-pacific-regional-climatology,  Seidov  et  al.,  2023);  NCEI

Northeast  Pacific  Regional  Climatology  (https://www.ncei.noaa.gov/products/northeast-pacific-regional-

climatology;  Seidov  et  al.,  2017);  de  Boyer  Montégut  Mixed  layer  depth  over  the  global  ocean

(https://doi.org/10.17882/98226, de Boyer Montégut, 2024); Global Ocean Gridded L 4 Sea Surface Heights And

Derived  Variables  (https://doi.org/10.48670/moi-00148;  CMEMS,  2023);  OSU  TPXO9  Tide  Model

(https://www.tpxo.net/home, Egbert and Erofeeva, 2002); World Ocean Atlas 2023 Nitrate, Phosphate, and Oxygen

output (https://ncei.noaa.gov/access/world-ocean-atlas-2023/, Garcia et al., 2023a,b); ESA Ocean Colour Climate

Change Initiative (Ocean_Colour_cci): Global chlorophyll-a data products gridded on a geographic projection at

4km  resolution,  Version  6.0  (https://www.oceancolour.org/,

https://catalogue.ceda.ac.uk/uuid/b0ec72a28b6a4829a33ed9adc215d5bc/,  Sathyendranath  et  al.,  2019);

COPEPOD-2012  (https://www.st.nmfs.noaa.gov/copepod/biomass/biomass-fields.html,  Moriarty  and  O’Brien,

2013);  CODAP-NA  total  alkalinity,  DIC,  and  aragonite  saturation  (https://doi.org/10.25921/g8pb-zy76,

https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0270962.html, Jiang et al., 2022); NOAA NCEP Ocean

Niño  Index  (https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt );
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AFSC bottom trawl gear temperature data (https://github.com/afsc-gap-products/coldpool/tree/main/data, Rohan et

al.,  2022);  NASA  NSIDC  Sea  Ice  Concentrations  from  Nimbus-7  SMMR  and  DMSP  SSM/I-SSMIS  Passive

Microwave  Data,  Version  2  (https://doi.org/10.5067/MPYG15WAA4WX,  DiGirolamo  et  al.,  2022);  Coastal

Upwelling Transport Index (CUTI;  https://oceanview.pfeg.noaa.gov/products/upwelling/dnld; Jacox et al.,  2018);

California  Cooperative  Oceanic  Fisheries  Investigations  (CalCOFI)  Bottle  Database

(https://calcofi.org/data/oceanographic-data/bottle-database/). 

The datasets used to create the model forcing and the URL or DOI where the data can be downloaded are listed as

follows: GLORYS12 reanalysis (https://doi.org/10.48670/moi-00021, Jean-Michel et al., 2021); OSU TPXO9 Tide

Model  (https://www.tpxo.net/home,  Egbert  and  Erofeeva,  2002);  World  Ocean  Atlas  2018

(https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18);  GloFAS  (https://doi.org/10.24381/cds.a4fdd6b9);

Coastal freshwater discharge simulations for the Gulf  of Alaska,  1931-2021 (https://doi.org/10.24431/rw1k7d3);

ERA5  (https://doi.org/10.24381/cds.adbb2d47,  Hersbach  et  al.,  2023),  Carter  et  al.  (2021)  alkalinity  and  DIC

estimation  algorithm  (ESPER;  https://doi.org/10.5281/zenodo.5512697);  RC4USCoast

(https://doi.org/10.25921/9jfw-ph50,  Gomez  et  al.,  2022);  Global  River  Chemistry  database  (GLORICH,

https://doi.org/10.1594/PANGAEA.902360,  Hartmann  et  al.,2019);  GlobalNEWS2

(https://doi.org/10.1016/j.envsoft.2010.01.007,  Mayorga  et  al.,  2010);  ArcticGro

(https://www.arcticgreatrivers.org/data,  Holmes  et  al.,  2012);  Meinshausen  et  al.  (2017)  atmospheric  CO 2

(https://doi.org/10.22033/ESGF/input4MIPs.1118,  Meinshausen  and  Vogel,  2016;

https://doi.org/10.22033/ESGF/input4MIPs.9866,

Meinshausen and Nicholls, 2018); GFDL ESM4.1 model output model output prepared for CMIP6 CMIP historical

(https://doi.org/10.22033/ESGF/CMIP6.8597).
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