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Abstract 19 

The optimal spatial layout of a radar wind profiler (RWP) network for rainfall forecasting, especially 20 

over complex terrain, remains uncertain. This study explores the benefits of assimilating vertical wind 21 

measurements from various RWP network layouts into convective-scale numerical weather prediction 22 

(NWP) through observing system simulation experiments (OSSEs). Synthetic RWP data were 23 

assimilated into the Weather Research and Forecasting (WRF) model using the National Severe Storms 24 

Laboratory three-dimensional variational data assimilation (DA) system for three southwest (SW)-type 25 

heavy rainfall events in the Beijing-Tianjin-Hebei region. Four types of DA experiments were conducted 26 

and compared: a control experiment (CTL) that assimilates data solely from the operational RWP 27 

network, and three additional experiments incorporating foothill (FH), ridge (RD), and combined 28 

foothill-ridge (FH_RD) RWP network layouts. A detailed examination of the 21 July 2023 case reveals 29 

that the FH_RD experiment generally exhibits more skillful storm forecasts in terms of areal coverage, 30 

storm mode, and orientation, benefiting from refined mesoscale wind analysis. Particularly, in the RD 31 

experiment, RWP data assimilation notably reduces wind errors and improves the representation of 32 

mesoscale atmospheric features near the Taihang Mountains upstream of Beijing, crucial for convective 33 

initiation (CI). Aggregated score metrics across all cases also indicate that both FH and RD experiments 34 

offer substantial added value over the operational network alone. Further sensitivity experiments on 35 

vertical resolution and maximum detection height indicate that the RWP system configuration with the 36 

highest detection height achieves the best performance, while lower detection height degrades forecast 37 

quality. These findings highlight the importance of strategic RWP network placement along the Taihang 38 

Mountains' ridge and foothill for short-term quantitative precipitation forecast in the Beijing-Tianjin-39 

Hebei region.  40 



3 
 

1 Introduction 41 

Radar wind profilers (RWPs) are state-of-the-art meteorological observation instruments that 42 

provide wind profiings at 6-min intervals with a vertical resolution ranging from 60 to 240 meters, 43 

enabling the detection of fine-scale atmospheric dynamic structures throughout the troposphere. 44 

Researches have demonstrated the capability of RWP to observe the evolution of mesoscale cyclonic 45 

circulations, shear lines, and low-level jets (LLJs), which are closely associated with the development of 46 

heavy rainfall and convection (Dunn, 1986; Guo et al., 2023; Liu et al., 2003; Wang et al., 2023; Zhong 47 

et al., 1996). The wind observations from RWPs are expected to improve initial conditions and severe 48 

weather forecasts for convective-scale numerical weather prediction (NWP) through data assimilation 49 

(DA). Significant progress has been made in RWP data assimilation, resulting in wind analysis error 50 

reduction and short-term forecast skill enhancement (Benjamin et al., 2004; Bouttier, 2001; Ishihara et 51 

al., 2006; Liu et al., 2022; St-James & Laroche, 2005; Wang et al., 2022; Zhang et al., 2016). Furthermore, 52 

efforts in developing quality control and observation operator schemes are also critical to ensuring the 53 

reliability of the observations and enhancing assimilation effectiveness (Wang et al., 2020; C. Wang et 54 

al., 2023; Zhang et al., 2016; Zhang et al., 2017). 55 

In China, the deployment of a nationwide RWP network initiated in 2008, with over 260 sites 56 

established by the end of 2024. These sites primarily utilize the 1290 MHz Doppler radar to monitor the 57 

lower and middle atmosphere (Liu et al., 2020). Currently, the nationwide RWP network is unevenly 58 

distributed: the spatial concentration of RWP sites over densely populated metropolitan regions, such as 59 

the Beijing–Tianjin–Hebei region, Yangtze River Delta, and Pearl River Delta, are above the national 60 

average, while the other regions, especially in west-central China, are lagged behind. Notably, in regions 61 

where observation data is relatively abundant, there is still an issue of uneven spatial distribution of 62 

stations, mainly due to the terrain complexity. Taking the RWP network in the Beijing–Tianjin–Hebei 63 

(BTH) region as an example, seven RWPs are deployed in Beijing within an area of approximately 100 64 

km ´ 100 km, while there are only 11 profilers in the whole Hebei province (Wang et al., 2022; refer to 65 

blue stars in Fig. 3).  66 

Accurate short-term forecasts of heavy rainfall are crucial for mitigating the risks posed by severe 67 

weather events in the BTH region, one of China's most densely populated and economically vital areas. 68 

The BTH region includes the cities of Beijing and Tianjin, and the Hebei Province, and is bounded by 69 
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the Taihang Mountains to the west and Bohai Bay to the east (Fig. 3). Its complex terrain features with 70 

high elevations in the northwest and north, gradually transitioning into plains in the south and east. The 71 

dominant weather circulations affecting heavy rainfall in the BTH region include the cold vortex, the 72 

cold trough, and the trough-anticyclone patterns (Sheng et al., 2020; Zhao et al., 2018; Zhou et al., 2018). 73 

The complex underlying surface and the interaction with synoptic- and mesoscale weather processes 74 

make the initiation and maintenance mechanisms of convective systems in the BTH region highly unique. 75 

Convective initiation (CI) is especially difficult to predict due to local environmental uncertainties and 76 

the rapid evolution of meteorological variables. The existing RWP network is mainly located in urban 77 

and lowland areas (Fig. 3, blue stars), while the mountainous regions like the Taihang Mountains, where 78 

significant terrain-induced convection occurs, are in shortage of sufficient wind profile observations (Liu 79 

et al., 2020). These observational gaps can lead to suboptimal initial conditions in NWP models, thereby 80 

reducing the accuracy of short-term precipitation forecasts. Therefore, optimizing the distribution of the 81 

RWP network, particularly in the Taihang Mountains, could strengthen the ability to monitor these critical 82 

regions and improve quantitative precipitation forecasts. 83 

Observation System Simulation Experiments (OSSEs) are widely used to assess the impact of 84 

assimilating specific observational data into NWP models (Huang et al., 2022; Zhao et al., 2021a). 85 

Previous studies by Zhang & Pu (2010) and Hu et al. (2017) have demonstrated the effectiveness of 86 

OSSEs in evaluating the benefits of assimilating RWP data for improving forecasts. Recent research 87 

(Bucci et al., 2021; Huo et al., 2023) has also highlighted the advantages of joint assimilation of multiple 88 

observational platforms to enhance analysis of convective dynamics, underlining the importance of an 89 

optimized RWP network. These OSSEs have provided valuable insights into the strategic RWP site 90 

placement to maximize their impact on model performance. To our knowledge, there are few peer-91 

reviewed published research investigating the potential benefit of a RWP network in complex terrain on 92 

mesoscale and convective scale weather forecasts (Bucci et al., 2021; Hu et al., 2017; Huo et al., 2023; 93 

Zhang and Pu, 2010). 94 

To investigate the impact of a RWP network in complex terrain on heavy rainfall forecasts, we 95 

focus on southwest (SW)-type rainfall events associated with southwesterly flow, which constitutes 96 

approximately 40% of the total circulation patterns in the BTH region during early summer (Li et al., 97 

2024; Zhou et al., 2018). When warm, moist air from the south meets the cold air from the Taihang 98 

Mountains, the terrain causes the air to rise, enhancing convective activity. Meanwhile, the topography 99 
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of the Taihang Mountains affects the distribution and intensity of the wind field, particularly during 100 

severe convective weather events (Li et al., 2024; Sheng et al., 2020). For example, a prior study showed 101 

that the quasi-linear convective systems with extreme heavy rainfall primarily occurred at the foothills 102 

of the Taihang Mountains or in the plains close to the foothills (Sheng et al., 2020). To address 103 

observational gaps, simulated RWP stations are strategically placed along the ridge and foothills, 104 

reinforcing the existing operational network.  105 

In this study, the following questions will be addressed. How does the assimilation of RWPs from 106 

ridge and foothill sites combined with that from operational stations impact heavy rainfall forecast in the 107 

BTH region? Do ridge and foothill networks offer added forecast skill over the operational RWP network 108 

on short-term convective-scale NWP? Are the benefits of assimilating RWP observations sensitive to the 109 

vertical resolution and maximum detection height of profilers? Ultimately, this research aims to provide 110 

guidance on optimizing the RWP network to improve forecasting accuracy for heavy rainfall events in 111 

the BTH region, thereby enhancing disaster preparedness and response strategies in the region. 112 

To address these questions, a series of OSSEs are conducted, assuming a perfect model, using 113 

three representative southwest (SW)-type heavy rainfall cases. The remainder of this paper is organized 114 

as follows: Section 2 provides an overview of the NWP model and data assimilation system. Truth and 115 

background simulation configuration, synthetic observations, experiment design, and evaluation methods 116 

are presented in Sect. 3. Section 4 presents the analysis and forecast results for the 21 July 2023 case, as 117 

well as the aggregated performance across all three cases. Section 5 summarizes the key findings and 118 

conclusions. 119 

2 Model and Data Assimilation System 120 

The forecast model used in this study is the version 3.7.1 of the Weather Research and Forecasting 121 

Model (WRF) with the Advanced Research WRF (ARW) dynamic solver (WRF-ARW; Skamarock et 122 

al., 2008). All DA and forecast experiments are performed on a 1.5-km grid of 408×480 horizontal points 123 

and 51 vertical levels with a model top at 50-hPa. The domain is centered in the northern part of China 124 

covering the Beijing–Tianjin–Hebei region (Fig. 3). The physical parameterizations include the National 125 

Severe Storms Laboratory (NSSL) two-moment four-ice category bulk microphysics scheme (Mansell 126 

et al., 2010; Mansell and Ziegler, 2013; Ziegler, 1985), the Rapid Radiative Transfer Model (RRTM) 127 
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longwave radiation scheme (Mlawer et al., 1997), the Dudhia shortwave radiation scheme (Dudhia, 1989), 128 

the Rapid Update Cycle (RUC) land surface scheme (Benjamin et al., 2004), and the Yonsei University 129 

(YSU) planetary boundary layer scheme (Hong et al., 2006). 130 

This research employs the NSSL Experimental Warn-on-Forecast (WoF) 3DVAR system 131 

(NSSL3DVAR) (Gao et al., 2013, 2016; Gao & Stensrud, 2014; Wang et al., 2019; Zhuang et al., 2016), 132 

specifically designed for convective-scale NWP and thunderstorm forecasting (Gao et al., 2024; 133 

Heinselman et al., 2024). In the NSSL3DVAR system, the analysis is derived by minimizing the cost 134 

function defined as the background term Jb and the observation term Jo  plus the constraint term Jc: 135 

  (1) 136 

where x and xb are the analysis and background state vectors, respectively; H is the observation operator 137 

projecting analysis into the observational space; and yo is the observation vector. B is the background 138 

error covariance matrix, and R is the observation error covariance matrix. Jc represents weak constraints 139 

which include elastic mass continuity equation and diagnostic pressure equation constraints suitable for 140 

convective-scale data assimilation (Gao et al., 2004; Ge et al., 2012). Analysis variables include the three-141 

dimensional wind fields, air pressure, potential temperature, water vapor mixing ratio, and the 142 

hydrometeors containing the mass mixing ratios for cloud water, rainwater, ice, snow, and graupel (Gao 143 

and Stensrud, 2012). 144 

The NSSL3DVAR system assimilates multi-sensor high-resolution observations like radar radial 145 

velocity and reflectivity (Gao et al., 2013, 2016), sounding and surface data (Hu et al., 2021), and multiple 146 

satellite-retrieved products, such as cloud water path (Pan et al., 2021), total precipitable water (Jones et 147 

al., 2018; Pan et al., 2018), atmospheric motion vectors (Mallick and Jones, 2020; Zhao et al., 2021b, 148 

2022), and Geostationary Lightning Mapper (GLM)-derived water vapor (Fierro et al., 2019a; Hu et al., 149 

2020). To enhance the wind field analysis, particularly in the PBL, this study incorporates a RWP 150 

assimilation module into the system. Since heavy rainfall and other severe weather events require fast 151 

and timely delivery of forecasts and early warning to the public, computationally efficient 3DVAR is 152 

quite suitable for the severe weather forecasts by providing highly efficient and rapid updating analysis 153 

and forecast, such as 15-min cycle intervals. Our focus is to assess the potential impacts of RWP network 154 

enhancements on convective-scale analysis and short-term severe weather prediction with this efficient 155 

DA method, so we did not use the ensemble derived background error covariance, which is also 156 

T -1 T -1
b b

1 1( ) ( ) ( ( ) ) ( ( ) ) ,
2 2b o c cJ J J J H H J= + + = - - + - - +o ox x B x x x y R x y
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incorporated in the variational framework (Gao et al., 2016; Gao & Stensrud, 2014; Wang et al., 2019). 157 

The background error covariance matrix used in this study is constructed as the product of a diagonal 158 

matrix representing the standard deviations of background errors and a spatial recursive filter (Gao et al., 159 

2004, 2013). The standard deviations for the pressure, potential temperature, relative humidity, zonal and 160 

meridional wind components are derived from the statistics of the Rapid Update Cycle (RUC, Benjamin 161 

et al., 2004) 3-hour forecasts over several years (Fierro et al., 2019b; Pan et al., 2021). The background 162 

error correlations are modeled by the recursive filter described by Purser et al. (2003a, b). The recursive 163 

filter can be applied in multiple passes (or outer loops), using different correlation length scales tailored 164 

to the scale of the weather systems represented by the assimilated observations. 165 

3. Experimental design  166 

3.1 Truth run and background run for OSSE 167 

In the OSSE, synthetic RWP observations are generated by adding observation errors to the truth 168 

run. To obtain this truth run, the WRF model is initialized with the fifth-generation European Centre for 169 

Medium-range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate (ERA5; 170 

Hersbach et al., 2020; Hoffmann et al., 2019), based on the model configuration and parameterization 171 

schemes described in Sect. 2. Three SW-type heavy rainfall cases that occurred over the Beijing-Tianjin-172 

Hebei region on 28 June, 12 July, and 21 July of 2023 are selected to construct OSSEs and assess the 173 

impact of RWP data observed from different spatial layout schemes on convective initiation and the 174 

development of storms. For each case, the model is initialized using the ERA5 data and integrated 175 

forward for 15 hours, with the boundary conditions also provided by the hourly ERA5 data. An overview 176 

of composite reflectivity in the truth simulation from the case on 21 July 2023 is shown in Fig. 1 as an 177 

example. This case was characterized by the presence of an upper-level trough gradually moving 178 

eastward into the Beijing-Tianjin-Hebei region, accompanied by a corresponding low-level vortex before 179 

the evening of 20 July. Meanwhile, southeasterly winds at the lower levels continuously transported 180 

moisture, leading to high instability in central Hebei, and in the western and southern parts of Beijing. 181 

The combination of easterly winds and topographical effects created favorable conditions for heavy 182 

precipitation. Several discrete storms initiated and developed in west-central Hebei near the foothills of 183 

the Taihang Mountains (Fig. 1a-c). With the westerly trough moving east and strong southerly airflow 184 
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strengthening water vapor transport, scattered convective cells formed in the vicinity of the boundary 185 

between Hebei and southwestern Beijing around 1900 UTC on 20 July, then aggregated and developed 186 

into a mesoscale convective system in southwest Beijing (Fig. 1d-f). Additionally, convective storms in 187 

west-central Hebei gradually moved northeastward and merged with the mesoscale convective system 188 

(Fig. 1g). The convective system slowly moved northeastward and elongated in the southwest–northeast 189 

direction (Fig. 1h), persisting across west-central Beijing until 0900 UTC on 21 July 2023 (Fig. 2). 190 

 191 
Figure 1. Simulated composite reflectivity (dBZ, shaded) and winds at 700 hPa (m s-1, vectors) for the 192 

truth simulation from 1300 UTC 20 July to 0300 UTC 21 July, 2023. 193 

This study utilizes an OSSE framework with an identical twin setup, where the same numerical 194 

model is used for both the truth simulation and the forecast system. As noted by Hoffman and Atlas 195 

(2016), OSSEs with identical twin setups can lead to overly optimistic assessments of data impacts. 196 

Therefore, the results should be interpreted within that constraint. To mitigate unrealistic assumptions 197 

about observational capabilities and overly optimistic OSSE results, the first-guess background run 198 

(NoDA) uses the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) 199 

forecasts for initial and boundary conditions, which differ from those of the truth run. The 6-h 200 

accumulated precipitation (APCP) forecasts from the truth and background runs are verified against the 201 

rain gauge measurements at national weather stations in the Beijing-Tianjin-Hebei region (Fig. 2). 202 

Compared with the rainfall observations (color-filled dots in Fig. 2 e and f), the truth simulation generally 203 

captured the southwest-to-northeast orientation and northeastward movement of the observed 204 

precipitation in Beijing, although it underpredicted the precipitation in southeastern Hebei (Fig. 2a and 205 
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b). Conversely, NoDA produced a more west-east oriented rainfall pattern south of Beijing, rather than 206 

a southwest-to-northeast band structure. NoDA missed the precipitation in southeastern Hebei (Fig. 2c), 207 

whereas it overpredicted the rainfall in western Hebei and areas along Beijing’s southern border (Fig. 208 

2d). Notably, the NoDA experiment failed to predict the convection in southwestern Beijing during the 209 

CI stage (discussed later in Sect. 4.1.2). 210 

 211 
Figure 2. The 6-h accumulated precipitation (APCP) forecasts (mm, shaded) from 2100 UTC 20 July to 212 

0300 UTC 21 July (left), and from 0300 UTC 21 July to 0900 UTC 21 July, 2023 (right) for (a)-(b) Truth, 213 

(c)-(d) NoDA experiments, and (e)-(f) the rain gauge measurements at national weather stations. The rain 214 
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gauges that did not measure any precipitation are not included here. 215 

3.2 Synthetic RWP observations 216 

The real-time Chinese RWP network provides horizontal wind direction, horizontal wind speed, 217 

and vertical wind speed at 60-240 m intervals, from the ground surface up to 3-10 km, depending on the 218 

operating frequency (Liu et al., 2020). The network comprises three RWP types: high-troposphere, low-219 

troposphere, and boundary layer RWPs, with the majority being boundary layer RWPs operating in the 220 

L band. The China Meteorological Administration's data center provides wind profiling products at 6-, 221 

30-, and 60-min intervals for each operational site. To generate synthetic profiles of zonal and meridional 222 

wind (u and v) components at operational RWP sites within the simulation domain (30 sites total), truth 223 

wind vectors from model grids are interpolated onto each site using the bilinear interpolation method 224 

(Fig. 3, blue stars). Additionally, we assume more observations are available at upstream sites near 225 

Beijing, specifically along the foothill and ridge of the Taihang Mountains (Fig. 3, red and magenta stars). 226 

The spatial locations for the foothill and ridge sites, with a total of 16 sites each, are determined based 227 

on the ETOPO1 Global Relief Model, a 1-arc-minute resolution topographic and bathymetric dataset 228 

provided by NOAA's National Centers for Environmental Information (Amante and Eakins, 2009). In 229 

this study, maximum detection heights of 3, 8, and 12 km, and vertical resolutions of 60 and 120 m have 230 

been chosen to mimic the vertical range and resolution of most real RWP data. The heights where the 231 

winds are measured (H) at each simulated RWP site are as follows: 232 

                   (2) 233 

where Helev is the elevation of the observation site, k is the index number of the vertical level, Hinc and 234 

Hmax are specified vertical resolution and maximum detection height, respectively. The units of all height 235 

variables are meters. Similar to Zhang et al. (2016), 500 m is selected as the first level of wind profile 236 

used for assimilation. The final observations are obtained by adding perturbations to the wind profiles 237 

extracted from the truth run. The perturbations are assumed to be normally distributed Gaussian random 238 

errors with a mean of zero and a standard deviation of 2 m/s (Hu et al., 2017; Huang et al., 2020; Zhao 239 

et al., 2021a). 240 

elev

inc max

(1) 500
( ) (1) ,   if  ( )

H H
H k H k H H k H
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As our focus is to assess the impacts of assimilating wind observations from various RWP network 241 

layouts on convective-scale analysis and short-term severe weather prediction, only synthetic RWP data 242 

are assimilated in this study, excluding conventional observations such as radiosondes, surface weather 243 

stations, and satellite observations. This exclusion simplifies the analysis by isolating the impact of 244 

RWPs but may inflate their relative importance (Hoffman and Atlas, 2016). 245 

 246 
Figure 3. Spatial distribution of the operational RWP network (blue stars), and simulated RWP network 247 

along the foothill (red stars) and ridge (magenta stars) of the Taihang Mountains within the simulation 248 

domain. The terrain is represented by color shading, and the ocean is shown in light blue. 249 

3.3 Experimental Design 250 

 To mimic real-world operations, this OSSE study employs a DA and forecast cycle workflow 251 

similar to the Warn-on-Forecast System (WoFS) real-time Spring Forecast Experiment (SFE) runs, that 252 

is cycling DA for 9 hours at 15-min intervals (Heinselman et al., 2024; Hu et al., 2020; Jones et al., 2018) 253 

(Fig. 4). To minimize data contamination from precipitation, DA cycles are performed before widespread 254 

rainfall occurs in the simulation domain, as wind profile accuracy from RWPs can be degraded by falling 255 
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hydrometeors (Zhang et al., 2017). The model initial and boundary conditions for all DA and forecast 256 

experiments are derived from the 12-h GFS forecasts. Unlike the SFE setup, a 6-h free forecast in this 257 

study is launched every hour starting from the sixth hour of the analysis cycles, rather than from the first 258 

hour (Fig. 4). This delayed forecast initiation allows convective systems to develop, as they are typically 259 

not yet initiated or developed during the initial hours of assimilation cycles. For comparison, a first-guess 260 

background run (NoDA) is conducted by advancing the model forward without assimilating any 261 

observations. 262 

 263 

Figure 4. Illustration of the data assimilation and forecast cycle workflow. A 6-h forecast is launched 264 

every hour from the sixth hour to the end of the DA cycles (namely, four separate forecasts). 265 

To investigate the impact of simulated foothill and ridge RWP networks on convective-scale NWP, 266 

four types of DA experiments are performed (Table 1). These experiments differ in their assimilation of 267 

synthetic profiler data from various RWP network spatial layouts. The baseline experiment, CTL, 268 

assimilates synthetic observations from the operational RWP network with a vertical resolution of 60 m 269 

(from 500 m to 8 km height), serving as a benchmark for comparison. This vertical resolution represents 270 

a best-case scenario for RWP capabilities. 271 

Table 1. List of the DA sensitivity experiments based on various spatial layout schemes of a radar wind 272 

profiler (RWP) network over the Beijing-Tianjin-Hebei region. 273 

0h 2h 3h 5h 7h

RWP data are assimilated at 15-min intervals

DA cycles

6-h forecast
4h 6h 8h1h 9h

6-h forecast
6-h forecast

6-h forecast

Experiment Operational  Foothill Ridge 
Maximum 

height (km) 
Vertical 

resolution (m) 

CTL P   8 60 

FH P P  8 60 

RD P  P 8 60 

FH_RD P P P 8 60 
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CTL: control DA experiment;          FH: foothill;           RD: ridge  274 

The second and third types of experiments assimilate the simulated foothill and ridge RWPs, 275 

respectively, in conjunction with data from operational sites (referred to as FH and RD). The fourth type 276 

of experiment FH_RD is performed by assimilating the operational, foothill, and ridge profilers with the 277 

same vertical resolution and maximum detection height as before. Additionally, three sensitivity 278 

experiments FH_RD_V120, FH_RD_H3, FH_RD_H12 are designed to assess the influence of 279 

assimilating RWP data with different vertical resolution (120 m) and maximum detection heights (3 km, 280 

12 km) on the analyses and forecasts, to address the potential usage of real-time data from RWPs 281 

operating at different frequencies. 282 

In all DA experiments, the background errors for zonal and meridional wind components are 283 

specified as 3–6 m/s, gradually increasing with altitude from the surface to 20 km above ground level 284 

(AGL). The observation error is set to 3 m/s, based on sensitivity tests within the 2–6 m/s range and 285 

consistent with previous studies (Hu et al., 2017; Huo et al., 2023; Wang et al., 2022; Zhang et al., 2016). 286 

In the minimization process two outer loops are adopted, each with a prescribed horizontal and vertical 287 

correlation scale for the recursive filter used in the program (Gao et al., 2004; Purser et al., 2003). 288 

Following previous studies (Wang et al., 2022; Zhao et al., 2022). The horizontal correlation scale lengths 289 

are set to be 50 km in the first loop and 20 km in the second loop, while the corresponding vertical 290 

correlation lengths are 5 and 2 grid points, respectively. 291 

3.4 Evaluation metrics 292 

This study examines the impact of RWP DA on wind analyses and forecasts during a southwest 293 

(SW)-type heavy rainfall event on 21 July 2023. To obtain an overall insight into the impact of RWP DA 294 

on wind analyses and forecasts, time series and probability density distributions, as well as vertical 295 

profiles of root-mean-square errors (RMSEs) for wind components during the DA cycles and 6-h free 296 

forecasts are calculated for each type of assimilation experiment. Additionally, subjective diagnostic 297 

analyses of wind vectors improved by assimilation of RWPs are also discussed in more detail. To 298 

investigate the impact on short-term forecasts, both qualitative and quantitative assessments of radar 299 

FH_RD_V120 P P P 8 120 

FH_RD_H3 P P P 3 60 

FH_RD_H12 P P P 12 60 
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reflectivity and accumulated precipitation forecasts are conducted against the truth run. To evaluate the 300 

performance quantitatively, the neighborhood-based equitable threat score (ETS, Clark et al., 2010) is 301 

calculated using a neighborhood radius of 12-km for different thresholds of composite reflectivity (CREF) 302 

and hourly precipitation (HPRCP). Using the same neighborhood radius and thresholds, contingency-303 

table based metrics including the probability of detection (POD), false alarm ratio (FAR), success ratio 304 

(SR), frequency bias (BIAS), and critical success index (CSI) are also calculated to quantify the CREF 305 

and HPRCP forecasts. To account for case-to-case variability, two additional SW-type heavy rainfall 306 

events (28 June and 12 July 2023) are examined. Finally, score metrics are aggregated from each 307 

initialization hour (sixth hour to end of the DA cycles) across three cases, ensuring a fair and consistent 308 

measure of forecast skill. 309 

4 Results and discussion 310 

4.1 21 July 2023 case 311 

4.1.1 The impact on wind fields 312 

The first question we attempt to answer is how the spatial distribution of RWP sites should be 313 

planned to optimize the accuracy of short-range convection-allowing NWP system. The influence of 314 

assimilating RWP data from different networks, as described in Sect. 3.3, on wind analysis and forecast 315 

can be straightforwardly assessed by examining the RMSEs of wind components during the 9-h 316 

assimilation cycles and 6-h free forecasts. For clarity, the time series and probability density distribution 317 

(PDF) of the wind RMSEs from the CTL, FH, RD, and FH_RD experiments are compared in Fig. 5. The 318 

statistics are computed against the truth run at all model levels within the simulation domain shown in 319 

Fig. 3. Overall, the RMSEs of wind analyses from all DA experiments during the analysis cycling 320 

decrease over the first six hours and then gradually increase afterward, exhibiting an evident staircase 321 

pattern (Fig. 5a and c), indicating that the wind field is modified by the NSSL3DVAR system towards 322 

the truth in each analysis cycle. A comparison among all DA experiments reveals that the FH_RD 323 
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experiment yields the smallest wind errors, followed by RD, then FH, with CTL exhibiting the largest 324 

errors. This likely occurs because (a) FH_RD assimilates the largest amount of wind observations, while 325 

CTL assimilates the fewest, and (b) the uncertainties of wind field in the background field are larger in 326 

mountainous regions than flatlands (this issue will be discussed in detail later in this section). The 327 

superiority of FH_RD, RD, and FH over the CTL experiment persists during the subsequent 6-h free 328 

forecasts, highlighting the impact of wind profile observations gathered from ridge and foothill networks. 329 

It is also noted that the difference in the meridional wind among FH, RD, and FH_RD is more pronounced 330 

than that of the zonal wind, which can be related to the varying degree of improvement in the southerly 331 

jet intensity. Generally, the PDF figures show that the distributions of wind analyses are skewed towards 332 

smaller error values compared to those of forecasts, with the wind forecasts exhibiting a heavy tail 333 

towards larger error values (Fig. 5b and d). For example, the analysis errors for the v variable tend to 334 

cluster around 1.6–2.6 m/s, while the PDFs of forecast errors show peaks near 2.0–3.4 m/s. The patterns 335 

in distributions from different assimilation experiments align with the results observed in the time series 336 

analysis. 337 



16 
 

 338 

Figure 5. Time series of root-mean-square errors (RMSEs) for (a) u (m s-1), and (c) v (m s-1) analyses 339 

and forecasts from the CTL (green), FH (blue), RD (red), and FH_RD (magenta) experiments. The thin 340 

grey line separates analysis cycling and 6-h free forecasts. Probability density distribution (PDF) of 341 

RMSEs for (b) u (m s-1), and (d) v (m s-1) analyses (solid) and forecasts (dashed) from four experiments. 342 

To assess the impact of the DA experiments at different altitudes, Fig. 6 presents the vertical 343 

profiles of domain-averaged RMSEs of wind analyses at the end of the assimilation cycles. Compared to 344 

the NoDA experiment, the assimilation of RWPs generally has a positive effect on the wind field 345 

throughout the troposphere. The CTL experiment slightly reduces the wind errors, specifically in the 346 

layer from 850 to 600 hPa for the u component and from 500 to 300 hPa for both components. It is seen 347 

that the DA experiments assimilating ridge and foothill RWPs generally outperform CTL. For the u wind 348 

component, the RD experiment has a comparable RMSE profile to FH below 550 hPa but results in a 349 

much smaller error above (Fig. 6a). In the analysis of the v wind, RD consistently performs better than 350 

FH, except for the layer from 260 to 160 hPa (Fig. 6b). Notably, FH_RD results in the smallest wind 351 

errors across most levels, aligning with the previously observed error trends over time. 352 
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 353 

Figure 6. Vertical profiles of domain-averaged RMSEs for (a) u (m s-1), and (b) v (m s-1) analyses at 354 

2100 UTC 20 July 2023 (end of analysis cycling) from the NoDA (black), CTL (green), FH (blue), RD 355 

(red), and FH_RD (magenta) experiments. 356 

To examine how the RWP DA adjusts the mesoscale airflow, we present the 700-hPa wind vectors 357 

and wind speeds from all experiments as an illustration of the model's dynamic conditions (Fig. 7). For 358 

clarity, Fig. 7b-f compare the differences in wind vectors and wind speeds between the DA experiments 359 

and the corresponding field from the truth run. These differences, considered as wind errors, help evaluate 360 

how assimilating RWPs from different observation networks adjusts the wind field. The red (blue) color 361 

represents positive (negative) wind speed bias compared to the truth. In the NoDA experiment, there is 362 

a notable southeasterly wind bias in Beijing and the mountainous regions to its west, characterized by 363 

excessively high wind speeds. Conversely, the true simulation reveals a strong southwesterly flow (Fig. 364 

7b). Meanwhile, the southwest wind is remarkably weaker in southwestern Hebei (at the foothills of the 365 

Taihang Mountains), and the westerly wind in the upstream Taihang Mountains region is also 366 

underestimated. The CTL experiment significantly reduces the easterly wind bias in Beijing and its 367 

surrounding areas while enhancing the southwesterly winds in Hebei (Fig. 7c). However, unignorable 368 

wind errors persist upstream of Beijing, particularly along the mountainous regions, due to the absence 369 

of operational wind profiler sites. The FH experiment produces wind adjustments similar to those in CTL 370 

but further reduces wind errors in the plains of Hebei by assimilating observations from foothill sites 371 
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(Fig. 7d). Conversely, with the assimilation of RWP data from the ridge network, both RD and FH_RD 372 

significantly reduce positive wind speed errors upstream of Beijing along the mountains, which is crucial 373 

for convection initiation (CI) near the boundary between Hebei and southwestern Beijing (Fig. 7e and f). 374 

While the southwest winds in southwestern Hebei remain slightly weaker in RD, FH_RD addresses this 375 

by assimilating ridge RWPs alongside foothill data. However, all DA experiments still show negative 376 

wind speed errors and northwesterly/northeasterly wind direction errors near the border of Shanxi, Hebei, 377 

and Inner Mongolia, with errors even larger than those in NoDA. This is mainly due to the lack of RWP 378 

observations in this tri-provincial border area. As a result, the influence of ridge RWP data may propagate 379 

northward into this region by the RD and FH_RD experiments, significantly reducing positive errors 380 

upstream of Beijing along the mountains but increasing negative errors in this area. 381 
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 382 

Figure 7. (a) 700-hPa wind (vectors) with wind speed (m s-1, color shaded) from the truth run, and 383 

differences between the 700-hPa winds from (b) NoDA, (c) CTL, (d) RD, (e) FH, and (f) FH_RD 384 

experiments and the truth run at 2100 UTC 20 July 2023 (end of analysis cycling). The red (blue) color 385 

represents positive (negative) wind speed bias compared to the truth. 386 
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4.1.2 The impact on reflectivity and precipitation forecasts 387 

The analysis, along with the 3- and 6-h forecasts of composite reflectivity from all experiments, 388 

is compared to the truth run in Fig. 8 and 9. In the southwest of Beijing, a convective system initiates and 389 

develops. As it merges with scattered storms originating in western Hebei near the foothills of the Taihang 390 

Mountains, the system intensifies rapidly. Eventually the convection becomes a southwest-northeast 391 

oriented mesoscale system across the western and central parts of Beijing (Fig. 8a-c). At the initial stage, 392 

the NoDA experiment underestimates convection in Beijing and Hebei (Fig. 8d), but in the 6-h forecast, 393 

NoDA overpredicts the storm coverage and intensity in Beijing and produces excessive spurious 394 

convection in western and northern Hebei (Fig. 8d-f). At analysis time, all DA experiments show 395 

improvement in the location and shape of the convective system in southwestern Beijing, and FH_RD 396 

produces the strongest reflectivity analysis (Fig. 8g, 9a, 9d, and 9g). This implies that the assimilation of 397 

RWP data can improve CI timing and location by capturing the mesoscale flow features in the pre-storm 398 

environment (Fig. 7). The RWP DA also helps alleviate storm displacement and intensity errors and 399 

suppresses spurious cells in subsequent forecasts, owing to a better representation of the storm 400 

environment. Although CTL correctly analyzes the CI near the observed location, its analysis and 3-h 401 

lead-time reflectivity forecast show that the storm intensity in Beijing is still weaker than the truth 402 

simulation, especially over western and central Beijing (Fig. 8g-i). The FH experiment produces stronger 403 

storms with a larger coverage area in Beijing compared to the CTL experiment, although the storm 404 

intensity remains slightly underestimated; however, spurious echoes to the west of Beijing remain evident 405 

in the 6-h forecast (Fig. 9a-c). With the assimilation of ridge RWP data, the RD and FH_RD experiments 406 

further strengthen the CI process and improve the storm pattern and development. A comparison among 407 

all experiments reveals that FH_RD demonstrates overwhelming superiority over the other three DA 408 

experiments in terms of areal coverage, storm mode, and storm orientation (Fig. 9g-i). 409 
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 410 

Figure 8. The composite reflectivity (dBZ, shaded) for (left) analysis, (middle) 3-h forecast, and (right) 411 

6-h forecast from (a)–(c) truth simulation, (d)–(f) NoDA, and (g)–(i) CTL experiments initialized at 2100 412 

UTC 20 July 2023. 413 
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 414 

Figure 9. Same as in Fig. 8, but for the composite reflectivity (dBZ, shaded) from (a)–(c) FH, (d)–(f) 415 

RD, and (g)–(i) FH_RD experiments. 416 

Concerning precipitation, the 1-, 3-, and 6-h accumulated precipitation (APCP) forecasts exhibit 417 

similar behavior to the reflectivity results in terms of rainfall location, onset time, and amount (Fig. 10 418 

and 11). As discussed above, all assimilation experiments predict the initial precipitation area and 419 

intensity in the southwest of Beijing more accurately than NoDA, leading to improvements in subsequent 420 

APCP forecasts in this area. For example, assimilating ridge and foothill RWPs corrects the weaker 421 

biases associated with this storm in the 1- and 3-h forecasts (Fig. 11a-b, d-e, g-h). Meanwhile, the more 422 

west-east oriented heavy rainfall occurring over the south of Beijing in the 6-h forecast of NoDA is 423 

revised by the assimilation experiments, shifting to a southwest-northeast orientation that is closer to the 424 

truth simulation. Although the areal coverage of rainfall in the 1-h forecast is better captured by CTL 425 

compared to NoDA, CTL still tends to underpredict the precipitation amount in southwestern Beijing, 426 
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while overestimation is commonly observed in parts of the mountainous areas to the southwest of Beijing 427 

(Fig. 10g-i). One potential factor contributing to the overpredicted rainfall in the mountainous areas to 428 

the southwest of Beijing is the CTL experiment’s reduction of positive wind errors in Beijing, while 429 

higher wind speeds (compared to the truth) persist along the upstream mountains. This is due to the 430 

absence of operational wind profiler sites. The stronger southwesterly winds of the CTL experiment 431 

enhance moisture transport and convergence in the upstream mountains, leading to overestimated rainfall 432 

in those areas and underpredicted precipitation over Beijing. Both RD and FH_RD experiments yield a 433 

smaller areal coverage of precipitation at the same region, and they also better capture the southwest-434 

northeast orientation of the rainband in southwestern Beijing (Fig. 11d-i), as the large wind errors in the 435 

upstream mountains are remarkably reduce by assimilating RWP data from the ridge network (Fig. 7e 436 

and f). As expected, the APCP forecasts from FH_RD align well with the true rainfall forecasts in terms 437 

of placement, orientation, and amount (Fig. 11g-i vs. 10a-c).  438 
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 439 

Figure 10. The accumulated precipitation (APCP) forecasts (mm, shaded) for (a)-(c) Truth, (d)-(f) NoDA, 440 

and (g)-(i) CTL experiments initialized at 2100 UTC 20 July 2023. The (left) 1-, (middle) 3-, and (right) 441 

6-h forecasts are shown. 442 
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 443 

Figure 11. Same as in Fig. 10, but for the APCP forecasts (mm, shaded) from (a)–(c) FH, (d)–(f) RD, 444 

and (g)–(i) FH_RD experiments. 445 

To quantify the performance of the reflectivity and precipitation forecasts by assimilating RWP 446 

data from different observation networks, categorical performance diagrams and neighborhood-based 447 

ETS are calculated and aggregated over four 6-h free forecasts. These forecasts are launched hourly from 448 

the sixth hour to the end of the analysis cycle. All score metrics are computed for a neighborhood radius 449 

of 12 km. The ETS for composite reflectivity is calculated every 15 minutes, while for APCP, it is 450 

calculated hourly. In the performance diagrams, values of POD, SR (1－FAR), and CSI closer to unity 451 

indicate higher forecast skill, with the perfect forecast located at the upper-right corner of the diagram. 452 

A BIAS value greater (less) than unity indicates overprediction (underprediction). Because of decreased 453 

PODs along with increased FARs, most experiments show a slight decline in forecast scores when the 454 

composite reflectivity threshold increases from 20 to 40 dBZ (Fig. 12). Overall, all DA experiments 455 
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consistently outperform NoDA at all thresholds, exhibiting higher ETS values, except for the CTL (FH 456 

and FH_RD) experiment during the 0-4 h (4-5 h) forecast period at the threshold of 40 dBZ. For most 457 

thresholds and forecast lead times, the assimilation experiments generate higher POD, SR and CSI scores 458 

compared to the NoDA experiments (with the exception of a few instances, primarily at the 40-dBZ 459 

threshold). Among them, the FH_RD, RD, and FH experiments show overwhelming superiority over 460 

CTL for the 0-4 h reflectivity forecasts in terms of ETS, POD, SR and CSI values at all thresholds. For 461 

the 20- and 30-dBZ thresholds, it is evident that FH_RD produces the highest ETS, POD, SR, and CSI 462 

scores during the 0-3 h forecast period. However, the BIAS values of the FH_RD experiment is 463 

comparable to that of other DA experiments and are sometimes slightly worse (Fig. 12a-d). However, 464 

for 40 dBZ, the RD experiment achives slightly higher ETS, POD, SR, and CSI scores than FH_RD does 465 

at most forecast lead times (Fig. 12e and f). It is also worth noting that, for 20- and 30-dBZ thresholds, 466 

FH produces higher ETS , POD, and CSI scores than RD does before the 2-h forecast lead time, while 467 

RD exhibits better forecast skill thereafter (Fig. 12a-d). This suggests that assimilating RWP data from 468 

the foothill network is more effective in the first two hours, while ridge site observations have a more 469 

pronounced positive impact between 2 and 6 hours. Additionally, the period during which FH 470 

outperforms RD shortens when the threshold increases from 20 to 40 dBZ. 471 
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 472 
Figure 12. Aggregate score metrics of 0-6 h composite reflectivity (CREF) forecasts aggregated from 473 

each initialization hour from the sixth hour to the end of the DA cycles for case 1 for the NoDA (black), 474 

CTL (green), FH (blue), RD (red), and FH_RD (magenta) experiments. (left) The performance diagrams, 475 

and (right) the equitable threat score (ETS) for (a)–(b) 20 dBZ, (c)–(d) 30 dBZ, and (e)–(f) 40 dBZ 476 

thresholds, respectively. Results are shown for a neighborhood radius of 12-km. The numbers within the 477 

colored dots in the performance diagrams denote the forecast hour (i.e. 0-, 3- and 6-h forecasts). 478 

A similar trend and behavior are observed in the performance diagrams and ETS figures for the 479 

HPRCP forecast, highlighting the superior performance of the RD and FH_RD experiments (Fig. 13). In 480 



28 
 

general, lower score metrics are obtained when a higher threshold for precipitation forecasts is evaluated, 481 

likely resulting from a lower frequency of occurrence for heavy precipitation. As seen in the CREF 482 

forecast, the FH_RD, RD, and FH experiments show more skillful precipitation forecasts than CTL does. 483 

In terms of the 2.5-mm precipitation forecast, FH_RD generally achieves the highest POD, SR, CSI, and 484 

ETS, along with the smallest BIAS, with RD exhibiting slightly inferior performance (Fig. 13a and b). 485 

For the 5-mm threshold, FH generates the highest POD and ETS in the first 3 hours, whereas RD delivers 486 

the lowest FAR and largest ETS in the subsequent 3-h forecasts (Fig. 13c and d). The RD experiment 487 

outperforms all the other experiments in the 1-, 3-, and 4-h forecasts at the threshold of 10 mm (Fig. 13e 488 

and f). One possible reason for the superior performance of RD compared to FH_RD and FH at higher 489 

thresholds is that, the heavy rainfall coverage forecasted by the RD experiment is the closest to the truth, 490 

while FH_RD exhibits a slight southward displacement error, and FH shows a northward displacement 491 

error (Fig. 11 vs. Fig. 10a-c). This may lead to larger penalties in the calculation of POD and ETS, 492 

resulting in lower scores. 493 



29 
 

 494 
Figure 13. Same as in Fig. 12, but for 1-6 h hourly precipitation amount (HPRCP) forecasts for case 1 495 

at thresholds of 2.5 mm (1st row), 5 mm (2nd row), and 10 mm (3rd row), respectively. 496 

4.1.3 Sensitivity to vertical resolution and detection height 497 

Given the encouraging preliminary results from the FH_RD experiment, ETS figures of CREF 498 

and HPRCP forecasts from three additional sensitivity experiment—FH_RD_V120, FH_RD_H3, and 499 

FH_RD_H12—are compared to examine the relative impact of different vertical resolutions and 500 
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maximum detection heights on the analyses and forecasts (Fig. 14). For reflectivity forecasts at thresholds 501 

of 20-40 dBZ, the 0-3 h ETSs of FH_RD and FH_RD_H12 are comparable. However, the FH_RD_H12 502 

experiment achieves higher forecast scores after 3 hours, highlighting the benefit of a higher detection 503 

height (Fig. 14a-c). Conversely, the FH_RD_H3 experiment (with the lowest detection height of 3 km) 504 

shows the smallest ETS values at 20 and 30 dBZ, while FH_RD_V120 (with a lower vertical resolution 505 

of 120 m) demonstrates the poorest forecast skill at 40 dBZ. Consistent with the CREF forecast, both 506 

FH_RD and FH_RD_H12 show more skillful HPRCP forecasts than FH_RD_V120 and FH_RD_H3. 507 

However, the ETSs of FH_RD are higher than those of FH_RD_H12 at most forecast lead times, which 508 

differs from the reflectivity results. Additionally, FH_RD_H3 produces the lowest ETS values 509 

throughout the 0–6 h forecasts at thresholds of 2.5–10 mm. Generally, the higher the maximum detection 510 

height of RWPs and the denser the vertical distribution of observations, the more significant the positive 511 

impact of RWP DA in terms of ETS. Moreover, a maximum detection height of 8 km seems to be a 512 

reasonable and effective choice, while the reduction of vertical resolution from 60 m to 120 m has less 513 

impact compared to the effect of decreasing the detection altitude to 3 km. 514 

 515 

Figure 14. Equitable threat score (ETS) for 0-6 h CREF forecasts from the FH_RD (solid), 516 
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FH_RD_V120 (dashed), FH_RD_H3 (dotted), and FH_RD_H12 (dashdot) experiments for case 1 at 517 

thresholds of (a) 20, (b) 30, and (c) 40 dBZ, respectively. (d–f) Same as in (a–c), but for 1-6 h HPRCP 518 

forecasts from each experiment at thresholds of (d) 2.5, (e) 5, and (f) 10 mm, respectively. 519 

4.2 Aggregate forecast performance 520 

Considering the variations in weather scenarios and storm environments across cases, we also 521 

examined two additional SW-type heavy rainfall events that occurred over the Beijing-Tianjin-Hebei 522 

region on 28 June and 12 July 2023 to evaluate the impact of RWPs in different spatial layouts on short-523 

term forecasts. Despite the presence of a southwesterly jet stream in all three cases, they produced distinct 524 

storm modes under different weather conditions. To delve deeper into the verification metrics from the 525 

other two cases, we present performance diagrams of CREF and HPRCP forecasts from the FH_RD 526 

experiment as the best assimilation experiment (Fig. 15 and 16). The results from the NoDA experiment 527 

are also shown to provide a clear picture of how RWP observations improve the short-term forecasts 528 

across different cases. For both the NoDA and FH_RD experiments, the forecast skills generally exhibit 529 

lower score metrics and more variability at higher thresholds. Overall, for these two cases, the FH_RD 530 

experiment shows higher POD, CSI, and SR values compared to the NoDA experiment, with more 531 

significant improvements observed in the first 3 hours. Except for the 1-3h precipitation forecasts from 532 

the case 28 June 2023, the BIAS values of FH_RD fall within a reasonable range of 0.8–1.7 for 533 

reflectivity and precipitation, indicating overall good forecast performance. It is noted that some of the 534 

forecast scores do not decrease monotonically with increasing forecast lead time. For example, in the 535 

case 12 July 2023, smaller BIAS and FAR values are obtained for the 3- and 6-h reflectivity and 536 

precipitation forecasts, along with higher CSI. This occurs due to several factors: (a) initial scattered 537 

convection develops into a larger-scale west-east oriented system covering all of Beijing and central-538 

northern Hebei at later times in this case, which models usually capture better; (b) errors in the timing 539 

and location of CI become less significant as convection evolves and forms clearer structures; and (c) for 540 

the free forecasts initialized from the first few hours, convection may not have started until the final 541 

forecast hour. CREF forecasts from FH_RD for the case 28 June 2023 show the best performance in 542 

terms of high POD, SR, and CSI. Meanwhile, persistent underprediction throughout the 1–6 h 543 

precipitation forecasts at all thresholds from this case can mostly be traced back to the difficulty in 544 



32 
 

forecasting small-scale, short-lived, and relatively weak precipitation events. This phenomenon is more 545 

pronounced in the NoDA experiment, manifested by extremely low POD and CSI values. 546 

 547 

Figure 15. Performance diagram for 0-6 h CREF forecasts from the NoDA (black) and FH_RD (magenta) 548 

experiments for the case 28 June 2023 at thresholds of (a) 20, (b) 30, and (c) 40 dBZ, respectively. (d–f) 549 

Same as in (a–c), but for 1-6 h HPRCP forecasts at thresholds of (d) 2.5, (e) 5, and (f) 10 mm, respectively. 550 

The numbers within the colored dots in the performance diagrams denote the forecast hour (i.e. 0-, 3- 551 

and 6-h forecasts). Results are shown for a neighborhood radius of 12-km. 552 
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 553 

Figure 16. Same as in Fig. 15, but for the case 12 July 2023. 554 

To gain a comprehensive view of assimilating RWPs from multiple networks, quantitative 555 

verification parameters (POD, BIAS, FAR, and CSI) from each case are aggregated across all available 556 

forecast times. Figures 17 and 18 display time series of aggregated metrics for CREF forecasts from 557 

NoDA, CTL, FH, RD, FH_RD, FH_RD_V120, FH_RD_H3, and FH_RD_H12 experiments at 20- and 558 

40-dBZ thresholds, respectively. The error bars for NoDA, CTL, FH, RD, and FH_RD in the graphs 559 

represent a 95% confidence interval. Compared to NoDA, all DA experiments exhibit more skillful 0–560 

6h reflectivity forecasts, with higher POD and CSI, and smaller FAR. The BIAS values of the 561 

assimilation experiments are higher than that of the NoDA experiment (close to unity) at the analysis 562 

time, and then decreases slightly in the 1-6 h forecasts. However, the BIAS of NoDA increase 563 

consistently during 1–6 hours, making it farther from unity. Among CTL, FH, RD, and FH_RD, FH_RD 564 

consistently outperforms others, showing the highest POD values across all forecast hours (Fig. 17a). A 565 

slight overprediction bias (1.1–1.2) is observed for all DA experiments at all forecast times (Fig. 17b). 566 

CTL exhibits the largest BIAS in the first 3 hours, while FH's BIAS increases to 1.2 over time. FH_RD 567 

shows the steepest decrease in FAR, indicating the most effective reduction in false alarms (Fig. 17c). 568 
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CTL remains relatively flat and maintains the highest FAR among the four DA experiments throughout 569 

the 0–6h forecasts. The FARs for FH and RD forecasts fall between those of FH_RD and CTL. 570 

Specifically, FH has a lower FAR in the first 3 hours, whereas in the next 3 hours, RD performs better. 571 

Similar trend is also evident in CSI values over time (Fig. 17d). In conclusion, FH_RD consistently 572 

performs best overall across all metrics, followed by RD and FH. CTL underperforms, with less 573 

improvement in score metrics. Sensitivity tests show FH_RD_H12 performs slightly better than FH_RD, 574 

while FH_RD_H3 shows the least improvement. FH_RD_V120 falls between FH_RD_H12 and 575 

FH_RD_H3, consistent with the single-case study in Sect. 4.1.3. 576 

 577 

Figure 17. Time series of (a) Probability of detection (POD), (b) Bias, (c) false alarm ratio (FAR), and 578 

(d) critical success index (CSI) for CREF forecasts aggregated from each initialization hour from the 579 

sixth hour to the end of the DA cycles across three cases (June 28, July 12, July 21 of 2023) at the 580 

threshold of 20 dBZ for the NoDA (black solid), CTL (green solid), FH (blue solid), RD (red solid), 581 

FH_RD (magenta solid), FH_RD_V120 (black dashed), FH_RD_H3 (black dotted), and FH_RD_H12 582 

(black dashdot) experiments. Results are shown for a neighborhood radius of 12-km. Error bars for 583 
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NoDA, CTL, FH, RD, and FH_RD experiments represent a 95% confidence interval. 584 

Similar to the 20-dBZ reflectivity forecast, RWP DA experiments outperform NoDA at 40-dBZ, 585 

although only the POD result in the first 3 hours is statistically significant at the 95% confidence level. 586 

All DA experiments exhibit an overprediction bias (1.1–1.5) throughout the 0–6 h forecasts (Fig. 18b). 587 

Notably, FH shows the highest bias. However, FH also exhibits the highest POD in the first 2 hours and 588 

highest CSI and lowest FAR in the first hour. Subsequently, FH_RD and RD perform better, with FH_RD 589 

slightly outperforming RD in 1–3 h forecasts and RD performing better in 4–6 hours. Some possible 590 

reasons why FH outperforms RD for shorter forecast lengths but RD outperforms FH for longer forecast 591 

lengths are: a) For southwest-type rainfall events, the southwesterly wind propagates from upstream ridge 592 

stations to downstream foothill sites (Li et al., 2024). b) Dynamic forcing of terrain, which has a delayed 593 

effect on triggering and intensifying storms, leading to improved forecasts for later-occurring storms. c) 594 

Assimilating wind observations at foothills, capturing local southwesterly flow characteristics, enhances 595 

forecasts of initial moisture lifting and convection triggering. During the first 45 minutes, strong 596 

overprediction leads to high FARs, which quickly decline as the forecast progresses (Fig. 18a and c). 597 

This contributes to an increase in CSI (Fig. 18d). A possible reason is that the model requires time (several 598 

minutes to an hour) to digest and adjust to assimilated wind information. The impact of vertical resolution 599 

and detection height on 40-dBZ reflectivity forecasts is consistent with the results observed at the 20-600 

dBZ threshold. 601 
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 602 

Figure 18. Same as in Figure 17, but for CREF forecasts at the threshold of 40 dBZ. 603 

Consistent with the 20-dBZ reflectivity forecast, FH_RD and FH_RD_H12 consistently achieve 604 

the best performance across all score metrics in HPRCP forecasts, followed by RD and FH (Fig. 19 and 605 

20). Although the improvements are not statistically significant at the 95% confidence level, FH_RD and 606 

FH_RD_H12 exhibit added forecast skill over the NoDA experiment. In contrast, CTL and FH_RD_H3 607 

show smaller improvement across all metrics. At 10-mm threshold, FH produces higher forecast scores 608 

than the others in the first hour, while FH_RD and RD show superiority in 2–4 h and 4–6 h, respectively 609 

(Fig. 20). 610 
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 611 

Figure 19. Same as in Figure 17, but for 1-6 h HPRCP forecasts aggregated from three cases at the 612 

thresholds of 2.5 mm. 613 
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 614 

Figure 20. Same as in Figure 19, but for precipitation forecasts at the threshold of 10 mm. 615 

5. Summary and conclusions 616 

In this research, observing system simulation experiments are performed to study the benefits of 617 

assimilating RWP observations for convective scale short-term heavy rainfall forecasts. Synthetic RWP 618 

observations are assimilated into the WRF model using the NSSL3DVAR DA system for three SW-type 619 

heavy rainfall events that occurred over the Beijing-Tianjin-Hebei region. To investigate the impact of 620 

RWP data observed from multiple networks on convective scale short-term forecasts, the background 621 

run (NoDA), which does not assimilate any observations, and four types of DA experiments are carried 622 

out. A baseline experiment (CTL), which assimilates RWPs from the operational network alone, is first 623 

performed and serves as a benchmark for comparison with subsequent DA experiments. The FH and RD 624 

experiments assimilate simulated RWP observations from the foothill and ridge networks of the Taihang 625 

Mountains in addition to the operational network. The FH_RD experiment is conducted by assimilating 626 
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combined RWP data from the operational, foothill, and ridge sites. Comparison of analyses and forecasts 627 

from these four types of experiments reveals improvements in model initial conditions and short-term 628 

severe weather forecasts by assimilating simulated RWP observations, as well as the added value of 629 

RWPs from the foothill and ridge networks over operational network data. Furthermore, three sensitivity 630 

DA experiments (FH_RD_V120, FH_RD_H3, and FH_RD_H12) are carried out to test the impact of 631 

vertical resolution and maximum detection heights. The purpose of these experiments is to investigate a 632 

potential optimal configuration for the vertical data availability of real-time RWPs to be assimilated in 633 

future convective scale NWP. For each DA experiment, the analysis is cycled for 9 hours at 15-min 634 

intervals, with a 6-h free forecast initiated every hour starting from the sixth hour of the analysis cycles. 635 

First of all, both subjective and objective verifications of the analysis and forecast were performed in 636 

detail for the 21 July 2023 case. Then statistical metrics, including neighborhood-based POD, FAR, BIAS, 637 

and CSI of reflectivity and precipitation forecasts, were aggregated from each initialization hour across 638 

the three cases. The main results are summarized as follows: 639 

1) Comparison of wind analyses and forecasts among the CTL, FH, RD, and FH_RD 640 

experiments reveals that the FH_RD experiment yields the smallest wind errors, both in terms of the 641 

overall domain average and the vertical profile of RMSEs for wind components. Then, it is followed 642 

by RD, then FH, with CTL exhibiting the largest wind errors. A qualitative evaluation of the model’s 643 

initial mesoscale dynamics indicates that the assimilation of RWP data successfully corrects the wind 644 

direction and speed biases in Beijing and its surrounding areas, enhancing the southwesterly jet. 645 

Moreover, both RD and FH_RD (with the assimilation of RWP data from the ridge network) 646 

remarkably reduce large wind errors in the upstream of Beijing along the mountains, which is crucial 647 

for CI in the vicinity of the boundary between Hebei and southwestern Beijing. 648 

2) For the 21 July 2023 event, qualitative verification focused on the convective system 649 

initiated southwest of Beijing, which intensified after merging with storms from western Hebei, 650 

forming a prominent southwest-northeast oriented system across Beijing. The NoDA experiment 651 

initially underestimates convection in Beijing and Hebei but overpredicts storm coverage and 652 

intensity in later forecasts, generating excessive spurious convection. All RWP DA experiments 653 

enhance CI timing and location by capturing mesoscale flow features, subsequently reducing storm 654 

displacement and intensity errors. Nevertheless, the CTL experiment underestimates storm intensity, 655 

while FH still retains some spurious echoes in forecasts. Overall, the FH_RD experiment 656 
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demonstrates significant superiority in areal coverage, storm mode, and orientation compared to the 657 

other DA experiments. The accumulated precipitation forecasts show similar trends to the 658 

reflectivity results regarding rainfall location, onset time, and amount. The forecast statistics indicate 659 

that FH_RD achieves the best performance in reflectivity and precipitation forecasts at lower 660 

thresholds (i.e., 20- and 30-dBZ for CREF, and 2.5-mm for HPRCP), whereas the RD experiment 661 

slightly surpasses FH_RD at the 50-dBZ and 10-mm thresholds. The lower performance of FH_RD 662 

and FH at higher thresholds may be linked to slight displacement errors in heavy precipitation 663 

forecasts, impacting their POD and ETS scores. 664 

3) Quantitative verification results aggregated across the three SW-type heavy rainfall cases 665 

in the Beijing-Tianjin-Hebei region confirm that FH_RD exhibits the best performance in reflectivity 666 

and precipitation forecasts, followed by RD and FH, while CTL shows minimal improvement. An 667 

exception is that at higher thresholds, FH achieves the best scores in the first 1 or 2 hours despite 668 

stronger overprediction, while FH_RD and RD are superior in subsequent hours. This is potentially 669 

attributed to the delayed effect of dynamic forcing from the terrain, as well as improvements in 670 

capturing the initial southwesterly flow and local convection by assimilating wind observations at 671 

the foothills. In addition, the results from sensitivity experiments on vertical resolution and 672 

maximum detection height indicate that FH_RD_H12 exhibits comparable or slightly better 673 

performance compared to FH_RD, benefiting from its higher detection height. Conversely, the 674 

FH_RD_H3 experiment, with the lowest detection height, has the poorest forecast skills among all 675 

DA experiments, while FH_RD_V120 generally falls between FH_RD_H12 and FH_RD_H3. 676 

The results consistently demonstrate that the FH_RD experiment, combining data from ridge, 677 

foothill, and operational wind profiler networks, delivers the most accurate short-term forecasts. 678 

Specifically, the assimilation of RWP data from ridge network significantly reduces wind errors in 679 

complex terrain, such as the Taihang Mountains upstream of Beijing. These regions are critical for 680 

convective initiation in Beijing and its surroundings. The findings highlight the essential role of 681 

integrating both ridge and foothill data in improving overall reflectivity and precipitation forecasts over 682 

the Beijing-Tianjin-Hebei region. Sensitivity experiments on vertical resolution and detection height 683 

further emphasize the importance of high vertical resolution and maximizing detection height in 684 

optimizing the RWP network for enhanced forecast accuracy. 685 

The insights gained from this OSSE study on the impacts of RWP observations on heavy rainfall 686 
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forecasting will inform the design of optimal RWP networks over the Beijing-Tianjin-Hebei region. This 687 

preliminary study lays the groundwork for further research to fully understand the complexities of 688 

precipitation forecasting related to data assimilation. The current investigation focused on three SW-type 689 

heavy rainfall cases occurring in summer over the Beijing-Tianjin-Hebei region, utilizing model-690 

simulated states and observational networks. As the same modeling system is used for the truth run and 691 

forecast system, it does not account for model-related errors that occur in real-world applications. 692 

Consequently, the results might overestimate the actual benefits of RWP assimilation in operational 693 

systems. Furthermore, this study focuses exclusively on assimilating RWP data, without incorporating 694 

conventional observations or satellite data. While this approach simplifies the analysis by isolating the 695 

impact of RWPs, it may inflate their relative importance. Future research directions include: (1) 696 

Expanding the study to other precipitation types and high-impact convective events under diverse 697 

weather scenarios. (2) Evaluating the impact of RWP networks by assimilating RWPs together with more 698 

diverse observation types and incorporating non-identical twin setups to enhance realism and provide 699 

broader operational insights. (3) Investigating the benefits of assimilating real observational data on 700 

convective scale NWP once proposed RWP networks become available. Moreover, future studies can 701 

address the limitations of static background errors in 3DVAR by incorporating flow-dependent 702 

background error covariances estimated from ensemble forecasts. As ensemble-based background error 703 

covariances can dynamically adapt to the evolving state of the atmosphere, the DA system will better 704 

represent the spatial and temporal variability of background errors, particularly in regions with complex 705 

topography or mesoscale features like convective systems. By leveraging flow-dependent background 706 

errors, the analysis can more accurately capture the initial atmospheric state, ultimately leading to more 707 

accurate precipitation predictions. 708 

 709 
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Code and data availability  710 

The WRF model may be downloaded from https://github.com/wrf-model (WRF, 2023). The ERA5 711 

reanalysis and GFS forecast data are accessible from ECMWF 712 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5/) and National Centers for 713 

Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce 714 

(https://rda.ucar.edu/datasets/d084003/dataaccess/), respectively. The source code for WRF model 715 

version 3.7.1,  and the input ERA5 and GFS data used in this study have been archived on Zenodo at 716 

https://doi.org/10.5281/zenodo.14321805. The namelist files for WRF and the assimilation system used 717 

in this study are accessible online (https://doi.org/10.5281/zenodo.14241597). 718 

 719 

Author contributions 720 

JZ and JG conceptualized the study. JZ executed the experiments, analyzed the results, and wrote the 721 

paper. JG supervised the project, provided critical feedback during the experiment implemention stage, 722 

and revised the paper. XZ assisted in the analysis and visualizations.  723 

 724 

Competing interests 725 

The contact author has declared that none of the authors has any competing interests. 726 

 727 

Acknowledgements 728 

This work was jointly supported by the National Natural Science Foundation of China (U2142209, 729 

42325501 and 42375018), and the China Meteorological Administration Training Centre Key Research 730 

Program (2023CMATCZDIAN08). Dr. Jidong Gao kindly provided internal review which led to 731 

improvement of the manuscript. ChatGPT (GPT-4; OpenAI’s large-scale language-generation model) 732 

was used to improve the writing style of this article.  733 



43 
 

References 734 

Amante, C. and Eakins, B. W.: ETOPO1 arc-minute global relief model : procedures, data sources and 735 
analysis, 2009. 736 

Benjamin, S. G., Grell, G. A., Brown, J. M., Smirnova, T. G., and Bleck, R.: Mesoscale Weather 737 
Prediction with the RUC Hybrid Isentropic–Terrain-Following Coordinate Model, Monthly Weather 738 
Review, 132, 473–494, https://doi.org/10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2, 739 
2004a. 740 

Benjamin, S. G., Schwartz, B. E., Szoke, E. J., and Koch, S. E.: The Value of Wind Profiler Data in U.S. 741 
Weather Forecasting, Bulletin of the American Meteorological Society, 85, 1871–1886, 742 
https://doi.org/10.1175/BAMS-85-12-1871, 2004b. 743 

Bouttier, F.: The use of profiler data at ECMWF, metz, 10, 497–510, https://doi.org/10.1127/0941-744 
2948/2001/0010-0497, 2001. 745 

Bucci, L. R., Majumdar, S. J., Atlas, R., Emmitt, G. D., and Greco, S.: Understanding the response of 746 
tropical cyclone structure to the assimilation of synthetic wind profiles, Monthly Weather Review, 747 
https://doi.org/10.1175/MWR-D-20-0153.1, 2021. 748 

Clark, A. J., Gallus, W. A., and Weisman, M. L.: Neighborhood-Based Verification of Precipitation 749 
Forecasts from Convection-Allowing NCAR WRF Model Simulations and the Operational NAM, 750 
Weather and Forecasting, 25, 1495–1509, https://doi.org/10.1175/2010WAF2222404.1, 2010. 751 

Dudhia, J.: Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a 752 
Mesoscale Two-Dimensional Model, Journal of Atmospheric Sciences, 46, 3077–3107, 753 
https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989. 754 

Dunn, L.: An Example of Subjective Interpretation of Network Profiler Data in Real-Time Forecasting, 755 
Weather and Forecasting, 1, 219–225, https://doi.org/10.1175/1520-756 
0434(1986)001<0219:AEOSIO>2.0.CO;2, 1986. 757 

Fierro, A. O., Wang, Y., Gao, J., and Mansell, E. R.: Variational Assimilation of Radar Data and GLM 758 
Lightning-Derived Water Vapor for the Short-Term Forecasts of High-Impact Convective Events, 759 
Monthly Weather Review, 147, 4045–4069, https://doi.org/10.1175/MWR-D-18-0421.1, 2019a. 760 

Fierro, A. O., Wang, Y., Gao, J., and Mansell, E. R.: Variational Assimilation of Radar Data and GLM 761 
Lightning-Derived Water Vapor for the Short-Term Forecasts of High-Impact Convective Events, 762 
Monthly Weather Review, 147, 4045–4069, https://doi.org/10.1175/MWR-D-18-0421.1, 2019b. 763 

Gao, J. and Stensrud, D. J.: Assimilation of Reflectivity Data in a Convective-Scale, Cycled 3DVAR 764 
Framework with Hydrometeor Classification, Journal of the Atmospheric Sciences, 69, 1054–1065, 765 
https://doi.org/10.1175/JAS-D-11-0162.1, 2012. 766 

Gao, J. and Stensrud, D. J.: Some Observing System Simulation Experiments with a Hybrid 3DEnVAR 767 
System for Storm-Scale Radar Data Assimilation, Monthly Weather Review, 142, 3326–3346, 768 
https://doi.org/10.1175/MWR-D-14-00025.1, 2014. 769 

Gao, J., Xue, M., Brewster, K., and Droegemeier, K. K.: A Three-Dimensional Variational Data Analysis 770 
Method with Recursive Filter for Doppler Radars, Journal of Atmospheric and Oceanic Technology, 21, 771 



44 
 

457–469, https://doi.org/10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2, 2004. 772 

Gao, J., Smith, T. M., Stensrud, D. J., Fu, C., Calhoun, K., Manross, K. L., Brogden, J., Lakshmanan, V., 773 
Wang, Y., Thomas, K. W., Brewster, K., and Xue, M.: A Real-Time Weather-Adaptive 3DVAR Analysis 774 
System for Severe Weather Detections and Warnings, Weather and Forecasting, 28, 727–745, 775 
https://doi.org/10.1175/WAF-D-12-00093.1, 2013. 776 

Gao, J., Fu, C., Stensrud, D. J., and Kain, J. S.: OSSEs for an Ensemble 3DVAR Data Assimilation 777 
System with Radar Observations of Convective Storms, Journal of the Atmospheric Sciences, 73, 2403–778 
2426, https://doi.org/10.1175/JAS-D-15-0311.1, 2016. 779 

Gao, J., Heinselman, L. P., Xue, M., Wicker, L. J., Yussouf, N., Stensrud, D. J., and Droegemeier, K. K.: 780 
The Numerical Prediction of Severe Convective Storms: Advances in Research and Applications, 781 
Remaining Challenges, and Outlook for the Future., in: Encyclopedia of Atmospheric Sciences, Elsevier, 782 
2024. 783 

Ge, G., Gao, J., and Xue, M.: Diagnostic Pressure Equation as a Weak Constraint in a Storm-Scale Three-784 
Dimensional Variational Radar Data Assimilation System, Journal of Atmospheric and Oceanic 785 
Technology, 29, 1075–1092, https://doi.org/10.1175/JTECH-D-11-00201.1, 2012. 786 

Guo, X., Guo, J., Zhang, D., and Yun, Y.: Vertical divergence profiles as detected by two wind‐profiler 787 
mesonets over East China: Implications for nowcasting convective storms, Quart J Royal Meteoro Soc, 788 
149, 1629–1649, https://doi.org/10.1002/qj.4474, 2023. 789 

Heinselman, P. L., Burke, P. C., Wicker, L. J., Clark, A. J., Kain, J. S., Gao, J., Yussouf, N., Jones, T. 790 
A., Skinner, P. S., Potvin, C. K., Wilson, K. A., Gallo, B. T., Flora, M. L., Martin, J., Creager, G., 791 
Knopfmeier, K. H., Wang, Y., Matilla, B. C., Dowell, D. C., Mansell, E. R., Roberts, B., Hoogewind, K. 792 
A., Stratman, D. R., Guerra, J., Reinhart, A. E., Kerr, C. A., and Miller, W.: Warn-on-Forecast System: 793 
From Vision to Reality, Weather and Forecasting, 39, 75–95, https://doi.org/10.1175/WAF-D-23-0147.1, 794 
2024. 795 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, 796 
C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., 797 
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., 798 
Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., 799 
Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay, P., Rozum, I., 800 
Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Quart J Royal Meteoro Soc, 801 
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. 802 

Hoffman, R. N. and Atlas, R.: Future Observing System Simulation Experiments, Bulletin of the 803 
American Meteorological Society, 97, 1601–1616, https://doi.org/10.1175/BAMS-D-15-00200.1, 2016. 804 

Hoffmann, L., Günther, G., Li, D., Stein, O., Wu, X., Griessbach, S., Heng, Y., Konopka, P., Müller, R., 805 
Vogel, B., and Wright, J. S.: From ERA-Interim to ERA5: the considerable impact of ECMWF’s next-806 
generation reanalysis on Lagrangian transport simulations, Atmos. Chem. Phys., 19, 3097–3124, 807 
https://doi.org/10.5194/acp-19-3097-2019, 2019. 808 

Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an Explicit Treatment of 809 
Entrainment Processes, Monthly Weather Review, 134, 2318–2341, 810 



45 
 

https://doi.org/10.1175/MWR3199.1, 2006. 811 

Hu, H., Sun, J., and Zhang, Q.: Assessing the Impact of Surface and Wind Profiler Data on Fog 812 
Forecasting Using WRF 3DVAR: An OSSE Study on a Dense Fog Event over North China, Journal of 813 
Applied Meteorology and Climatology, 56, 1059–1081, https://doi.org/10.1175/JAMC-D-16-0246.1, 814 
2017. 815 

Hu, J., Fierro, A. O., Wang, Y., Gao, J., and Mansell, E. R.: Exploring the Assimilation of GLM-Derived 816 
Water Vapor Mass in a Cycled 3DVAR Framework for the Short-Term Forecasts of High-Impact 817 
Convective Events, Monthly Weather Review, 148, 1005–1028, https://doi.org/10.1175/MWR-D-19-818 
0198.1, 2020. 819 

Hu, J., Gao, J., Wang, Y., Pan, S., Fierro, A. O., Skinner, P. S., Knopfmeier, K., Mansell, E. R., and 820 
Heinselman, P. L.: Evaluation of an experimental WARN‐ON‐FORECAST 3DVAR analysis and forecast 821 
system on quasi‐real‐time short‐term forecasts of high‐impact weather events, QJR Meteorol Soc, 147, 822 
4063–4082, https://doi.org/10.1002/qj.4168, 2021. 823 

Huang, Y., Wang, X., Kerr, C., Mahre, A., Yu, T.-Y., and Bodine, D.: Impact of Assimilating Future 824 
Clear-Air Radial Velocity Observations from Phased-Array Radar on a Supercell Thunderstorm Forecast: 825 
An Observing System Simulation Experiment Study, Monthly Weather Review, 148, 3825–3845, 826 
https://doi.org/10.1175/MWR-D-19-0391.1, 2020. 827 

Huang, Y., Wang, X., Mahre, A., Yu, T.-Y., and Bodine, D.: Impacts of assimilating future clear-air 828 
radial velocity observations from phased array radar on convection initiation forecasts: An observing 829 
system simulation experiment study, Monthly Weather Review, https://doi.org/10.1175/MWR-D-21-830 
0199.1, 2022. 831 

Huo, Z., Liu, Y., Shi, Y., Chen, B., Fan, H., and Li, Y.: An Investigation on Joint Data Assimilation of a 832 
Radar Network and Ground-Based Profiling Platforms for Forecasting Convective Storms, Monthly 833 
Weather Review, 151, 2049–2064, https://doi.org/10.1175/MWR-D-22-0332.1, 2023. 834 

Ishihara, M., Kato, Y., Abo, T., Kobayashi, K., and Izumikawa, Y.: Characteristics and Performance of 835 
the Operational Wind Profiler Network of the Japan Meteorological Agency, Journal of the 836 
Meteorological Society of Japan, 84, 1085–1096, https://doi.org/10.2151/jmsj.84.1085, 2006. 837 

Jones, T. A., Wang, X., Skinner, P., Johnson, A., and Wang, Y.: Assimilation of GOES-13 Imager Clear-838 
Sky Water Vapor (6.5 μm) Radiances into a Warn-on-Forecast System, Monthly Weather Review, 146, 839 
1077–1107, https://doi.org/10.1175/MWR-D-17-0280.1, 2018. 840 

Li, N., Guo, J., Wu, M., Zhang, F., Guo, X., Sun, Y., Zhang, Z., Liang, H., and Chen, T.: Low-Level Jet 841 
and Its Effect on the Onset of Summertime Nocturnal Rainfall in Beijing, Geophysical Research Letters, 842 
51, e2024GL110840, https://doi.org/10.1029/2024GL110840, 2024. 843 

Liu, B., Guo, J., Gong, W., Shi, L., Zhang, Y., and Ma, Y.: Characteristics and performance of wind 844 
profiles as observed by the radar wind profiler network of China, Atmos. Meas. Tech., 13, 4589–4600, 845 
https://doi.org/10.5194/amt-13-4589-2020, 2020. 846 

Liu, D., Huang, C., and Feng, J.: Influence of Assimilating Wind Profiling Radar Observations in Distinct 847 
Dynamic Instability Regions on the Analysis and Forecast of an Extreme Rainstorm Event in Southern 848 
China, Remote Sensing, 14, 3478, https://doi.org/10.3390/rs14143478, 2022. 849 



46 
 

Mallick, S. and Jones, T. A.: Assimilation of GOES-16 satellite derived winds into the warn-on-forecast 850 
system, Atmospheric Research, 245, 105131, https://doi.org/10.1016/j.atmosres.2020.105131, 2020. 851 

Mansell, E. R. and Ziegler, C. L.: Aerosol Effects on Simulated Storm Electrification and Precipitation 852 
in a Two-Moment Bulk Microphysics Model, Journal of the Atmospheric Sciences, 70, 2032–2050, 853 
https://doi.org/10.1175/JAS-D-12-0264.1, 2013. 854 

Mansell, E. R., Ziegler, C. L., and Bruning, E. C.: Simulated Electrification of a Small Thunderstorm 855 
with Two-Moment Bulk Microphysics, Journal of the Atmospheric Sciences, 67, 171–194, 856 
https://doi.org/10.1175/2009JAS2965.1, 2010. 857 

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for 858 
inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 859 
102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997. 860 

Pan, S., Gao, J., Stensrud, D. J., Wang, X., and Jones, T. A.: Assimilation of Radar Radial Velocity and 861 
Reflectivity, Satellite Cloud Water Path, and Total Precipitable Water for Convective-Scale NWP in 862 
OSSEs, Journal of Atmospheric and Oceanic Technology, 35, 67–89, https://doi.org/10.1175/JTECH-D-863 
17-0081.1, 2018. 864 

Pan, S., Gao, J., Jones, T. A., Wang, Y., Wang, X., and Li, J.: The Impact of Assimilating Satellite-865 
Derived Layered Precipitable Water, Cloud Water Path, and Radar Data on Short-Range Thunderstorm 866 
Forecasts, Monthly Weather Review, 149, 1359–1380, https://doi.org/10.1175/MWR-D-20-0040.1, 867 
2021. 868 

Purser, R. J., Wu, W.-S., Parrish, D. F., and Roberts, N. M.: Numerical Aspects of the Application of 869 
Recursive Filters to Variational Statistical Analysis. Part I: Spatially Homogeneous and Isotropic 870 
Gaussian Covariances, Monthly Weather Review, 131, 1524–1535, https://doi.org/10.1175//1520-871 
0493(2003)131<1524:NAOTAO>2.0.CO;2, 2003a. 872 

Purser, R. J., Wu, W. S., Parrish, D. F., and Roberts, N. M.: Numerical Aspects of the Application of 873 
Recursive Filters to Variational Statistical Analysis. Part II: Spatially Inhomogeneous and Anisotropic 874 
General Covariances, Monthly Weather Review, 131, 1536–1548, 2003b. 875 

Sheng, J., Zheng, Y., and Shen, X.: Climatology and environmental conditions of two types of quasi-876 
linear convective systems with extremely intense weather in North China, Acta Meteorologica Sinica, 877 
78(6), 877–898, 2020. 878 

Shu-yuan, L., Yongguang, Z., and Zuyu, T.: The analysis of the relationship between pulse of LLJ and 879 
heavy rain using wind profiler data, Journal of tropical meteorology, 2003. 880 

Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Wang, W., Huang, X.-Y., and Duda, M.: A 881 
Description of the Advanced Research WRF Version 3, UCAR/NCAR, 882 
https://doi.org/10.5065/D68S4MVH, 2008. 883 

St-James, J. S. and Laroche, S.: Assimilation of Wind Profiler Data in the Canadian Meteorological 884 
Centre’s Analysis Systems, Journal of Atmospheric and Oceanic Technology, 22, 1181–1194, 885 
https://doi.org/10.1175/JTECH1765.1, 2005. 886 

Wang, C., Chen, Y., Chen, M., and Shen, J.: Data assimilation of a dense wind profiler network and its 887 



47 
 

impact on convective forecasting, Atmospheric Research, 238, 104880, 888 
https://doi.org/10.1016/j.atmosres.2020.104880, 2020. 889 

Wang, C., Chen, M., and Chen, Y.: Impact of Combined Assimilation of Wind Profiler and Doppler 890 
Radar Data on a Convective-Scale Cycling Forecasting System, Monthly Weather Review, 150, 431–891 
450, https://doi.org/10.1175/MWR-D-20-0383.1, 2022. 892 

Wang, C., Chen, Y., Chen, M., and Huang, X.-Y.: Evaluation of two observation operator schemes for 893 
wind profiler radar data assimilation and its impacts on short-term forecasting, Atmospheric Research, 894 
283, 106549, https://doi.org/10.1016/j.atmosres.2022.106549, 2023a. 895 

Wang, S., Guo, J., Xian, T., Li, N., Meng, D., Li, H., and Cheng, W.: Investigation of low-level 896 
supergeostrophic wind and Ekman spiral as observed by a radar wind profiler in Beijing, Front. Environ. 897 
Sci., 11, 1195750, https://doi.org/10.3389/fenvs.2023.1195750, 2023b. 898 

Wang, Y., Gao, J., Skinner, P. S., Knopfmeier, K., Jones, T., Creager, G., Heiselman, P. L., and Wicker, 899 
L. J.: Test of a Weather-Adaptive Dual-Resolution Hybrid Warn-on-Forecast Analysis and Forecast 900 
System for Several Severe Weather Events, Weather and Forecasting, 34, 1807–1827, 901 
https://doi.org/10.1175/WAF-D-19-0071.1, 2019. 902 

Zhang, L. and Pu, Z.: An Observing System Simulation Experiment (OSSE) to Assess the Impact of 903 
Doppler Wind Lidar (DWL) Measurements on the Numerical Simulation of a Tropical Cyclone, 904 
Advances in Meteorology, 2010, 743863, https://doi.org/10.1155/2010/743863, 2010. 905 

Zhang, X., Luo, Y., Wan, Q., Ding, W., and Sun, J.: Impact of Assimilating Wind Profiling Radar 906 
Observations on Convection-Permitting Quantitative Precipitation Forecasts during SCMREX, Weather 907 
and Forecasting, 31, 1271–1292, https://doi.org/10.1175/WAF-D-15-0156.1, 2016. 908 

Zhang, Y., Chen, M., and Zhong, J.: A Quality Control Method for Wind Profiler Observations toward 909 
Assimilation Applications, Journal of Atmospheric and Oceanic Technology, 34, 1591–1606, 910 
https://doi.org/10.1175/JTECH-D-16-0161.1, 2017. 911 

Zhao, J., Gao, J., Jones, T. A., and Hu, J.: Impact of Assimilating High-Resolution Atmospheric Motion 912 
Vectors on Convective Scale Short-Term Forecasts: 1. Observing System Simulation Experiment 913 
(OSSE), Journal of Advances in Modeling Earth Systems, 13, e2021MS002484, 914 
https://doi.org/10.1029/2021MS002484, 2021a. 915 

Zhao, J., Gao, J., Jones, T. A., and Hu, J.: Impact of Assimilating High-Resolution Atmospheric Motion 916 
Vectors on Convective Scale Short-Term Forecasts: 2. Assimilation Experiments of GOES-16 Satellite 917 
Derived Winds, Journal of Advances in Modeling Earth Systems, 13, e2021MS002486, 918 
https://doi.org/10.1029/2021MS002486, 2021b. 919 

Zhao, J., Gao, J., Jones, T., and Hu, J.: Impact of Assimilating High-Resolution Atmospheric Motion 920 
Vectors on Convective Scale Short-Term Forecasts: 3. Experiments With Radar Reflectivity and Radial 921 
Velocity, Journal of Advances in Modeling Earth Systems, 14, e2022MS003246, 922 
https://doi.org/10.1029/2022MS003246, 2022. 923 

Zhao, N., Yue, T., Li, H., Zhang, L., Yin, X., and Liu, Y.: Spatio-temporal changes in precipitation over 924 
Beijing-Tianjin-Hebei region, China, Atmospheric Research, 202, 156–168, 925 
https://doi.org/10.1016/j.atmosres.2017.11.029, 2018. 926 



48 
 

Zhong, S., Fast, J. D., and Bian, X.: A Case Study of the Great Plains Low-Level Jet Using Wind Profiler 927 
Network Data and a High-Resolution Mesoscale Model, Monthly Weather Review, 124, 785–806, 928 
https://doi.org/10.1175/1520-0493(1996)124<0785:ACSOTG>2.0.CO;2, 1996. 929 

Zhou, S., Yang, J., Wang, W., Gong, D., Shi, P., and Gao, M.: Shift of daily rainfall peaks over the 930 
Beijing–Tianjin–Hebei region: An indication of pollutant effects?, Intl Journal of Climatology, 38, 5010–931 
5019, https://doi.org/10.1002/joc.5700, 2018. 932 

Zhuang, Z., Yussouf, N., and Gao, J.: Analyses and forecasts of a tornadic supercell outbreak using a 933 
3DVAR system ensemble, Advances in Atmospheric Sciences, 33, 544–558, 934 
https://doi.org/10.1007/s00376-015-5072-0, 2016. 935 

Ziegler, C. L.: Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. Part 936 
1: Model Development and Preliminary Testing, Journal of Atmospheric Sciences, 42, 1487–1509, 937 
https://doi.org/10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2, 1985. 938 

 939 


