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Abstract 19 

The optimal spatial layout of a radar wind profiler (RWP) network for rainfall forecasting, especially 20 

over complex terrain, remains uncertain. This study explores the benefits of assimilating vertical wind 21 

measurements from various RWP network layouts into convective-scale numerical weather prediction 22 

(NWP) through observing system simulation experiments (OSSEs). Synthetic RWP data were 23 

assimilated into the Weather Research and Forecasting (WRF) model using the National Severe Storms 24 

Laboratory three-dimensional variational data assimilation (DA) system for three southwest (SW)-type 25 

heavy rainfall events in the Beijing-Tianjin-Hebei region. Four types of DA experiments were 26 

conducted and compared: a control experiment (CTL) that assimilates data solely from the operational 27 

RWP network, and three additional experiments incorporating foothill (FH), ridge (RD), and combined 28 

foothill-ridge (FH_RD) RWP network layouts. A detailed examination of the 21 July 2023 case reveals 29 

that the FH_RD experiment generally exhibits more skillful storm forecasts in terms of areal coverage, 30 

storm mode, and orientation, benefiting from refined mesoscale wind analysis. Particularly, in the RD 31 

experiment, RWP data assimilation notably reduces wind errors and improves the representation of 32 

mesoscale atmospheric features near the Taihang Mountains upstream of Beijing, crucial for convective 33 

initiation (CI). Aggregated score metrics across all cases also indicate that both FH and RD 34 

experiments offer substantial added value over the operational network alone. Further sensitivity 35 

experiments on vertical resolution and maximum detection height indicate that the RWP system 36 

configuration with the highest detection height achieves the best performance, while lower detection 37 

height degrades forecast quality. These findings highlight the importance of strategic RWP network 38 

placement along the Taihang Mountains' ridge and foothill for short-term quantitative precipitation 39 

forecast in the Beijing-Tianjin-Hebei region.  40 
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1 Introduction 41 

Radar wind profilers (RWPs) are state-of-the-art meteorological observation instruments that 42 

provide wind profiings at 6-min intervals with a vertical resolution ranging from 60 to 240 meters, 43 

enabling the detection of fine-scale atmospheric dynamic structures throughout the troposphere. 44 

Researches have demonstrated the capability of RWP to observe the evolution of mesoscale cyclonic 45 

circulations, shear lines, and low-level jets (LLJs), which are closely associated with the development 46 

of heavy rainfall and convection (Dunn, 1986; Guo et al., 2023; Liu et al., 2003; Wang et al., 2023; 47 

Zhong et al., 1996). The wind observations from RWPs are expected to improve initial conditions and 48 

severe weather forecasts for convective-scale numerical weather prediction (NWP) through data 49 

assimilation (DA). Significant progress has been made in RWP data assimilation, resulting in wind 50 

analysis error reduction and short-term forecast skill enhancement (Benjamin et al., 2004; Bouttier, 51 

2001; Ishihara et al., 2006; Liu et al., 2022; St-James & Laroche, 2005; Wang et al., 2022; Zhang et al., 52 

2016). Furthermore, efforts in developing quality control and observation operator schemes are also 53 

critical to ensuring the reliability of the observations and enhancing assimilation effectiveness (Wang et 54 

al., 2020; C. Wang et al., 2023; Zhang et al., 2016; Zhang et al., 2017). 55 

In China, the deployment of a nationwide RWP network initiated in 2008, with over 260 sites 56 

established by the end of 2024. These sites primarily utilize the 1290 MHz Doppler radar to monitor 57 

the lower and middle atmosphere (Liu et al., 2020). Currently, the nationwide RWP network is 58 

unevenly distributed: the spatial concentration of RWP sites over densely populated metropolitan 59 

regions, such as the Beijing–Tianjin–Hebei region, Yangtze River Delta, and Pearl River Delta, are 60 

above the national average, while the other regions, especially in west-central China, are lagged behind. 61 

Notably, in regions where observation data is relatively abundant, there is still an issue of uneven 62 

spatial distribution of stations, mainly due to the terrain complexity. Taking the RWP network in the 63 

Beijing–Tianjin–Hebei (BTH) region as an example, seven RWPs are deployed in Beijing within an 64 

area of approximately 100 km ´ 100 km, while there are only 11 profilers in the whole Hebei province 65 

(Wang et al., 2022; refer to blue stars in Fig. 3).  66 

Accurate short-term forecasts of heavy rainfall are crucial for mitigating the risks posed by 67 

severe weather events in the BTH region, one of China's most densely populated and economically 68 

vital areas. The BTH region includes the cities of Beijing and Tianjin, and the Hebei Province, and is 69 
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bounded by the Taihang Mountains to the west and Bohai Bay to the east (Fig. 3). Its complex terrain 70 

features with high elevations in the northwest and north, gradually transitioning into plains in the south 71 

and east. The dominant weather circulations affecting heavy rainfall in the BTH region include the cold 72 

vortex, the cold trough, and the trough-anticyclone patterns (Sheng et al., 2020; Zhao et al., 2018; Zhou 73 

et al., 2018). The complex underlying surface and the interaction with synoptic- and mesoscale weather 74 

processes make the initiation and maintenance mechanisms of convective systems in the BTH region 75 

highly unique. Convective initiation (CI) is especially difficult to predict due to local environmental 76 

uncertainties and the rapid evolution of meteorological variables. The existing RWP network is mainly 77 

located in urban and lowland areas (Fig. 3, blue stars), while the mountainous regions like the Taihang 78 

Mountains, where significant terrain-induced convection occurs, are in shortage of sufficient wind 79 

profile observations (Liu et al., 2020). These observational gaps can lead to suboptimal initial 80 

conditions in NWP models, thereby reducing the accuracy of short-term precipitation forecasts. 81 

Therefore, optimizing the distribution of the RWP network, particularly in the Taihang Mountains, 82 

could strengthen the ability to monitor these critical regions and improve quantitative precipitation 83 

forecasts. 84 

Observation System Simulation Experiments (OSSEs) are widely used to assess the impact of 85 

assimilating specific observational data into NWP models (Huang et al., 2022; Zhao et al., 2021a). 86 

Previous studies by Zhang & Pu (2010) and Hu et al. (2017) have demonstrated the effectiveness of 87 

OSSEs in evaluating the benefits of assimilating RWP data for improving forecasts. Recent research 88 

(Bucci et al., 2021; Huo et al., 2023) has also highlighted the advantages of joint assimilation of 89 

multiple observational platforms to enhance analysis of convective dynamics, underlining the 90 

importance of an optimized RWP network. These OSSEs have provided valuable insights into the 91 

strategic RWP site placement to maximize their impact on model performance. To our knowledge, 92 

there are few peer-reviewed published research investigating the potential benefit of a RWP network in 93 

complex terrain on mesoscale and convective scale weather forecasts (Bucci et al., 2021; Hu et al., 94 

2017; Huo et al., 2023; Zhang and Pu, 2010). 95 

To investigate the impact of a RWP network in complex terrain on heavy rainfall forecasts, we 96 

focus on southwest (SW)-type rainfall events associated with southwesterly flow, which constitutes 97 

approximately 40% of the total circulation patterns in the BTH region during early summer (Li et al., 98 

2024; Zhou et al., 2018). When warm, moist air from the south meets the cold air from the Taihang 99 
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Mountains, the terrain causes the air to rise, enhancing convective activity. Meanwhile, the topography 100 

of the Taihang Mountains affects the distribution and intensity of the wind field, particularly during 101 

severe convective weather events (Li et al., 2024; Sheng et al., 2020). For example, a prior study 102 

showed that the quasi-linear convective systems with extreme heavy rainfall primarily occurred at the 103 

foothills of the Taihang Mountains or in the plains close to the foothills (Sheng et al., 2020). To address 104 

observational gaps, simulated RWP stations are strategically placed along the ridge and foothills, 105 

reinforcing the existing operational network.  106 

In this study, the following questions will be addressed. How does the assimilation of RWPs from 107 

ridge and foothill sites combined with that from operational stations impact heavy rainfall forecast in the 108 

BTH region? Do ridge and foothill networks offer added forecast skill over the operational RWP network 109 

on short-term convective-scale NWP? Are the benefits of assimilating RWP observations sensitive to the 110 

vertical resolution and maximum detection height of profilers? Ultimately, this research aims to 111 

provide guidance on optimizing the RWP network to improve forecasting accuracy for heavy rainfall 112 

events in the BTH region, thereby enhancing disaster preparedness and response strategies in the 113 

region. 114 

To address these questions, a series of OSSEs are conducted, assuming a perfect model, using 115 

three representative southwest (SW)-type heavy rainfall cases. The remainder of this paper is organized 116 

as follows: Section 2 provides an overview of the NWP model and data assimilation system. Truth and 117 

background simulation configuration, synthetic observations, experiment design, and evaluation 118 

methods are presented in Sect. 3. Section 4 presents the analysis and forecast results for the 21 July 119 

2023 case, as well as the aggregated performance across all three cases. Section 5 summarizes the key 120 

findings and conclusions. 121 

2 Model and Data Assimilation System 122 

The forecast model used in this study is the version 3.7.1 of the Weather Research and 123 

Forecasting Model (WRF) with the Advanced Research WRF (ARW) dynamic solver (WRF-ARW; 124 

Skamarock et al., 2008). All DA and forecast experiments are performed on a 1.5-km grid of 408×480 125 

horizontal points and 51 vertical levels with a model top at 50-hPa. The domain is centered in the 126 

northern part of China covering the Beijing–Tianjin–Hebei region (Fig. 3). The physical 127 
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parameterizations include the National Severe Storms Laboratory (NSSL) two-moment four-ice 128 

category bulk microphysics scheme (Mansell et al., 2010; Mansell and Ziegler, 2013; Ziegler, 1985), 129 

the Rapid Radiative Transfer Model (RRTM) longwave radiation scheme (Mlawer et al., 1997), the 130 

Dudhia shortwave radiation scheme (Dudhia, 1989), the Rapid Update Cycle (RUC) land surface 131 

scheme (Benjamin et al., 2004), and the Yonsei University (YSU) planetary boundary layer scheme 132 

(Hong et al., 2006). 133 

This research employs the NSSL Experimental Warn-on-Forecast (WoF) 3DVAR system 134 

(NSSL3DVAR) (Gao et al., 2013, 2016; Gao & Stensrud, 2014; Wang et al., 2019; Zhuang et al., 2016), 135 

specifically designed for convective-scale Numerical Weather Prediction (NWP) and thunderstorm 136 

forecasting (Gao et al., 2024; Heinselman et al., 2024). In the NSSL3DVAR system, the analysis is 137 

derived by minimizing the cost function defined as the background term Jb and the observation term Jo  138 

plus the constraint term Jc: 139 

  (1) 140 

where x and xb are the analysis and background state vectors, respectively; H is the observation 141 

operator projecting analysis into the observational space; and yo is the observation vector. B is the 142 

background error covariance matrix, and R is the observation error covariance matrix. Jc represents 143 

weak constraints which include elastic mass continuity equation and diagnostic pressure equation 144 

constraints suitable for convective-scale data assimilation (Gao et al., 2004; Ge et al., 2012). Analysis 145 

variables include the three-dimensional wind fields, air pressure, potential temperature, water vapor 146 

mixing ratio, and the hydrometeors containing the mass mixing ratios for cloud water, rainwater, ice, 147 

snow, and graupel (Gao and Stensrud, 2012). 148 

The NSSL3DVAR system assimilates multi-sensor high-resolution observations like radar radial 149 

velocity and reflectivity (Gao et al., 2013, 2016), sounding and surface data (Hu et al., 2021), and 150 

multiple satellite-retrieved products, such as cloud water path (Pan et al., 2021), total precipitable water 151 

(Jones et al., 2018; Pan et al., 2018), atmospheric motion vectors (Mallick and Jones, 2020; Zhao et al., 152 

2021b, 2022), and Geostationary Lightning Mapper (GLM)-derived water vapor (Fierro et al., 2019a; Hu 153 

et al., 2020). To enhance the wind field analysis, particularly in the PBL, this study incorporates a RWP 154 

assimilation module into the system. Since heavy rainfall and other severe weather events require fast 155 

and timely delivery of forecasts and early warning to the public, computationally efficient 3DVAR is 156 

T -1 T -1
b b

1 1( ) ( ) ( ( ) ) ( ( ) ) ,
2 2b o c cJ J J J H H J= + + = - - + - - +o ox x B x x x y R x y
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quite suitable for the severe weather forecasts by providing highly efficient and rapid updating analysis 157 

and forecast, such as 15-min cycle intervals. Our focus is to assess the potential impacts of RWP 158 

network enhancements on convective-scale analysis and short-term severe weather prediction with this 159 

efficient DA method, so we did not use the ensemble derived background error covariance, which is 160 

also incorporated in the variational framework (Gao et al., 2016; Gao & Stensrud, 2014; Wang et al., 161 

2019). The background error covariance matrix used in this study is constructed as the product of a 162 

diagonal matrix representing the standard deviations of background errors and a spatial recursive filter 163 

(Gao et al., 2004, 2013). The standard deviations for the pressure, potential temperature, relative 164 

humidity, zonal and meridional wind components are derived from the statistics of the Rapid Update 165 

Cycle (RUC, Benjamin et al., 2004) 3-hour forecasts over several years (Fierro et al., 2019b; Pan et al., 166 

2021). The background error correlations are modeled by the recursive filter described by Purser et al. 167 

(2003a, b). The recursive filter can be applied in multiple passes (or outer loops), using different 168 

correlation length scales tailored to the scale of the weather systems represented by the assimilated 169 

observations. 170 

3. Experimental design  171 

3.1 Truth run and background run for OSSE 172 

In the OSSE, synthetic RWP observations are generated by adding observation errors to the truth 173 

run. To obtain this truth run, the WRF model is initialized with the fifth-generation European Centre 174 

for Medium-range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate (ERA5; 175 

Hersbach et al., 2020; Hoffmann et al., 2019), based on the model configuration and parameterization 176 

schemes described in Sect. 2. Three SW-type heavy rainfall cases that occurred over the 177 

Beijing-Tianjin-Hebei region on 28 June, 12 July, and 21 July of 2023 are selected to construct OSSEs 178 

and assess the impact of RWP data observed from different spatial layout schemes on convective 179 

initiation and the development of storms. For each case, the model is initialized using the ERA5 data 180 

and integrated forward for 15 hours, with the boundary conditions also provided by the hourly ERA5 181 

data. An overview of composite reflectivity in the truth simulation from the case on 21 July 2023 is 182 

shown in Fig. 1 as an example. This case was characterized by the presence of an upper-level trough 183 

gradually moving eastward into the Beijing-Tianjin-Hebei region, accompanied by a corresponding 184 
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low-level vortex before the evening of 20 July. Meanwhile, southeasterly winds at the lower levels 185 

continuously transported moisture, leading to high instability in central Hebei, and in the western and 186 

southern parts of Beijing. The combination of easterly winds and topographical effects created 187 

favorable conditions for heavy precipitation. Several discrete storms initiated and developed in 188 

west-central Hebei near the foothills of the Taihang Mountains (Fig. 1a-c). With the westerly trough 189 

moving east and strong southerly airflow strengthening water vapor transport, scattered convective 190 

cells formed in the vicinity of the boundary between Hebei and southwestern Beijing around 1900 UTC 191 

on 20 July, then aggregated and developed into a mesoscale convective system in southwest Beijing 192 

(Fig. 1d-f). Additionally, convective storms in west-central Hebei gradually moved northeastward and 193 

merged with the mesoscale convective system (Fig. 1g). The convective system slowly moved 194 

northeastward and elongated in the southwest–northeast direction (Fig. 1h), persisting across 195 

west-central Beijing until 0900 UTC on 21 July 2023 (Fig. 2). 196 

 197 
Figure 1. Simulated composite reflectivity (dBZ, shaded) and winds at 700 hPa (m s-1, vectors) for the 198 

truth simulation from 1300 UTC 20 July to 0300 UTC 21 July, 2023. 199 

This study utilizes an OSSE framework with an identical twin setup, where the same numerical 200 

model is used for both the truth simulation and the forecast system. As noted by Hoffman and Atlas 201 

(2016), OSSEs with identical twin setups can lead to overly optimistic assessments of data impacts. 202 

Therefore, the results should be interpreted within the that constraint. To mitigate unrealistic 203 

assumptions about observational capabilities and overly optimistic OSSE results, the first-guess 204 

background run (NoDA) uses the National Centers for Environmental Prediction (NCEP) Global 205 
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Forecast System (GFS) forecasts for initial and boundary conditions, which differ from those of the 206 

truth run. The 6-h accumulated precipitation (APCP) forecasts from the truth and background runs are 207 

verified against the rain gauge measurements at national weather stations in the Beijing-Tianjin-Hebei 208 

region (Fig. 2). Compared with the rainfall observations (color-filled dots in Fig. 2 e and f), the truth 209 

simulation generally captured the southwest-to-northeast orientation and northeastward movement of 210 

the observed precipitation in Beijing, although it underpredicted the precipitation in southeastern Hebei 211 

(Fig. 2a and b). Conversely, NoDA produced a more west-east oriented rainfall pattern south of Beijing, 212 

rather than a southwest-to-northeast band structure. NoDA missed the precipitation in southeastern 213 

Hebei (Fig. 2c), whereas it overpredicted the rainfall in western Hebei and areas along Beijing’s 214 

southern border (Fig. 2d). Notably, the NoDA experiment failed to predict the convection in 215 

southwestern Beijing during the CI stage (discussed later in Sect. 4.1.2). 216 
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 217 
Figure 2. The 6-h accumulated precipitation (APCP) forecasts (mm, shaded) from 2100 UTC 20 July 218 

to 0300 UTC 21 July (left), and from 0300 UTC 21 July to 0900 UTC 21 July, 2023 (right) for (a)-(b) 219 

Truth, (c)-(d) NoDA experiments, and (e)-(f) the rain gauge measurements at national weather stations. 220 

The rain gauges that did not measure any precipitation are not included here. 221 

3.2 Synthetic RWP observations 222 

The real-time Chinese RWP network provides horizontal wind direction, horizontal wind speed, 223 

and vertical wind speed at 60-240 m intervals, from the ground surface up to 3-10 km, depending on 224 

the operating frequency (Liu et al., 2020). The network comprises three RWP types: high-troposphere, 225 
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low-troposphere, and boundary layer RWPs, with the majority being boundary layer RWPs operating in 226 

the L band. The China Meteorological Administration's data center provides wind profiling products at 227 

6-, 30-, and 60-min intervals for each operational site. To generate synthetic profiles of zonal and 228 

meridional wind (u and v) components at operational RWP sites within the simulation domain (30 sites 229 

total), truth wind vectors from model grids are interpolated onto each site using the bilinear 230 

interpolation method (Fig. 3, blue stars). Additionally, we assume more observations are available at 231 

upstream sites near Beijing, specifically along the foothill and ridge of the Taihang Mountains (Fig. 3, 232 

red and magenta stars). The spatial locations for the foothill and ridge sites, with a total of 16 sites each, 233 

are determined based on the ETOPO1 Global Relief Model, a 1-arc-minute resolution topographic and 234 

bathymetric dataset provided by NOAA's National Centers for Environmental Information (Amante 235 

and Eakins, 2009). In this study, maximum detection heights of 3, 8, and 12 km, and vertical 236 

resolutions of 60 and 120 m have been chosen to mimic the vertical range and resolution of most real 237 

RWP data. The heights where the winds are measured (H) at each simulated RWP site are as 238 

followsSynthetic wind profile at each simulated RWP site is assumed to be at the height H, which is 239 

defined as follows: 240 

                   (2) 241 

where Helev is the elevation of the observation site, k is the index number of the vertical level, Hinc and 242 

Hmax are specified vertical resolution and maximum detection height, respectively. The units of all 243 

height variables are meters. Similar to Zhang et al. (2016), 500 m is selected as the first level of wind 244 

profile used for assimilation. The final observations are obtained by adding perturbations to the wind 245 

profiles extracted from the truth run. The perturbations are assumed to be normally distributed 246 

Gaussian random errors with a mean of zero and a standard deviation of 2 m/s (Hu et al., 2017; Huang 247 

et al., 2020; Zhao et al., 2021a). 248 

As our focus is to assess the impacts of assimilating wind observations from various RWP 249 

network layouts on convective-scale analysis and short-term severe weather prediction, only synthetic 250 

RWP data are assimilated in this study, excluding conventional observations such as radiosondes, 251 

surface weather stations, and satellite observations. This exclusion simplifies the analysis by isolating 252 

the impact of RWPs but may inflate their relative importance (Hoffman and Atlas, 2016). 253 
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 254 
Figure 3. Spatial distribution of the operational RWP network (blue stars), and simulated RWP network 255 

along the foothill (red stars) and ridge (magenta stars) of the Taihang Mountains within the simulation 256 

domain. The terrain is represented by color shading, and the ocean is shown in light blue. 257 

3.3 Experimental Design 258 

 To mimic real-world operations, this OSSE study employs a DA and forecast cycle workflow 259 

similar to the Warn-on-Forecast System (WoFS) real-time Spring Forecast Experiment (SFE) runs, that 260 

is cycling DA for 9 hours at 15-min intervals (Heinselman et al., 2024; Hu et al., 2020; Jones et al., 261 

2018) (Fig. 4). To minimize data contamination from precipitation, DA cycles are performed before 262 

widespread rainfall occurs in the simulation domain, as wind profile accuracy from RWPs can be 263 

degraded by falling hydrometeors (Zhang et al., 2017). The model initial and boundary conditions for 264 

all DA and forecast experiments are derived from the 12-h GFS forecasts. Unlike the SFE setup, a 6-h 265 

free forecast in this study is launched every hour starting from the sixth hour of the analysis cycles, 266 

rather than from the first hour (Fig. 4). This delayed forecast initiation allows convective systems to 267 

develop, as they are typically not yet initiated or developed during the initial hours of assimilation 268 
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cycles. For comparison, a first-guess background run (NoDA) is conducted by advancing the model 269 

forward without assimilating any observations. 270 

 271 

Figure 4. Illustration of the data assimilation and forecast cycle workflow. A 6-h forecast is launched 272 

every hour from the sixth hour to the end of the DA cycles (namely, four separate forecasts). 273 

To investigate the impact of simulated foothill and ridge RWP networks on convective-scale 274 

NWP, four types of DA experiments are performed (Table 1). These experiments differ in their 275 

assimilation of synthetic profiler data from various RWP network spatial layouts. The baseline 276 

experiment, CTL, assimilates synthetic observations from the operational RWP network with a vertical 277 

resolution of 60 m (from 500 m to 8 km height), serving as a benchmark for comparison. This vertical 278 

resolution represents a best-case scenario for RWP capabilities. 279 

Table 1. List of the DA sensitivity experiments based on various spatial layout schemes of a radar wind 280 

profiler (RWP) network over the Beijing-Tianjin-Hebei region. 281 

CTL: control DA experiment;          FH: foothill;           RD: ridge  282 

0h 2h 3h 5h 7h

RWP data are assimilated at 15-min intervals

DA cycles

6-h forecast
4h 6h 8h1h 9h

6-h forecast
6-h forecast

6-h forecast

Experiment Operational  Foothill Ridge 
Maximum 

height (km) 
Vertical 

resolution (m) 

CTL P   8 60 

FH P P  8 60 

RD P  P 8 60 

FH_RD P P P 8 60 

FH_RD_V120 P P P 8 120 

FH_RD_H3 P P P 3 60 

FH_RD_H12 P P P 12 60 
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The second and third types of experiments assimilate the simulated foothill and ridge RWPs, 283 

respectively, in conjunction with data from operational sites (referred to as FH and RD). The fourth type 284 

of experiment FH_RD is performed by assimilating the operational, foothill, and ridge profilers with the 285 

same vertical resolution and maximum detection height as before. Additionally, three sensitivity 286 

experiments FH_RD_V120, FH_RD_H3, FH_RD_H12 are designed to assess the influence of 287 

assimilating RWP data with different vertical resolution (120 m) and maximum detection heights (3 km, 288 

12 km) on the analyses and forecasts, to address the potential usage of real-time data from RWPs 289 

operating at different frequencies. 290 

In all DA experiments, the background errors for zonal and meridional wind components are 291 

specified as 3–6 m/s, gradually increasing with altitude from the surface to 20 km above ground level 292 

(AGL). The observation error is set to 3 m/s, based on sensitivity tests within the 2–6 m/s range and 293 

consistent with previous studies (Hu et al., 2017; Huo et al., 2023; Wang et al., 2022; Zhang et al., 294 

2016). In the minimization process two outer loops are adopted, each with a prescribed horizontal and 295 

vertical correlation scale for the recursive filter used in the program (Gao et al., 2004; Purser et al., 296 

2003). Following previous studies (Wang et al., 2022; Zhao et al., 2022). The horizontal correlation 297 

scale lengths are set to be 50 km in the first loop and 20 km in the second loop, while the corresponding 298 

vertical correlation lengths are 5 and 2 grid points, respectively. 299 

3.4 Evaluation metrics 300 

This study examines the impact of RWP DA on wind analyses and forecasts during a southwest 301 

(SW)-type heavy rainfall event on 21 July 2023. To obtain an overall insight into the impact of RWP 302 

DA on wind analyses and forecasts, time series and probability density distributions, as well as vertical 303 

profiles of root-mean-square errors (RMSEs) for wind components during the DA cycles and 6-h free 304 

forecasts are calculated for each type of assimilation experiment. Additionally, subjective diagnostic 305 

analyses of wind vectors improved by assimilation of RWPs are also discussed in more detail. To 306 

investigate the impact on short-term forecasts, both qualitative and quantitative assessments of radar 307 

reflectivity and accumulated precipitation forecasts are conducted against the truth run. To evaluate the 308 

performance quantitatively, the neighborhood-based equitable threat score (ETS, Clark et al., 2010) is 309 

calculated using a neighborhood radius of 12-km for different thresholds of composite reflectivity 310 

(CREF) and hourly precipitation (HPRCP). Using the same neighborhood radius and thresholds, 311 
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contingency-table based metrics including the probability of detection (POD), false alarm ratio (FAR), 312 

success ratio (SR), frequency bias (BIAS), and critical success index (CSI) are also calculated to 313 

quantify the CREF and HPRCP forecasts. To account for case-to-case variability, two additional 314 

SW-type heavy rainfall events (28 June and 12 July 2023) are examined. Finally, score metrics are 315 

aggregated from each initialization hour (sixth hour to end of the DA cycles) across three cases, 316 

ensuring a fair and consistent measure of forecast skill. 317 

4 Results and discussion 318 

4.1 21 July 2023 case 319 

4.1.1 The impact on wind fields 320 

The first question we attempt to answer is how the spatial distribution of RWP sites should be 321 

planned to optimize the accuracy of short-range convection-allowing NWP system (Potvin and Flora, 322 

2015). The influence of assimilating RWP data from different networks, as described in Sect. 3.3, on 323 

wind analysis and forecast can be straightforwardly assessed by examining the RMSEs of wind 324 

components during the 9-h assimilation cycles and 6-h free forecasts. For clarity, the time series and 325 

probability density distribution (PDF) of the wind RMSEs from the CTL, FH, RD, and FH_RD 326 

experiments are compared in Fig. 5. The statistics are computed against the truth run at all model levels 327 

within the simulation domain shown in Fig. 3. Overall, the RMSEs of wind analyses from all DA 328 

experiments during the analysis cycling decrease over the first six hours and then gradually increase 329 

afterward, exhibiting an evident staircase pattern (Fig. 5a and c), indicating that the wind field is 330 

modified by the NSSL3DVAR system towards the truth in each analysis cycle. A comparison among 331 

all DA experiments reveals that the FH_RD experiment yields the smallest wind errors, followed by 332 

RD, then FH, with CTL exhibiting the largest errors. This likely occurs because (a) FH_RD assimilates 333 

the largest amount of wind observations, while CTL assimilates the fewest, and (b) the uncertainties of 334 
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wind field in the background field are larger in mountainous regions than flatlands (this issue will be 335 

discussed in detail later in this section). The superiority of FH_RD, RD, and FH over the CTL 336 

experiment persists during the subsequent 6-h free forecasts, highlighting the impact of wind profile 337 

observations gathered from ridge and foothill networks. It is also noted that the difference in the 338 

meridional wind among FH, RD, and FH_RD is more pronounced than that of the zonal wind, which 339 

can be related to the varying degree of improvement in the southerly jet intensity. Generally, the PDF 340 

figures show that the distributions of wind analyses are skewed towards smaller error values compared 341 

to those of forecasts, with the wind forecasts exhibiting a heavy tail towards larger error values (Fig. 5b 342 

and d). For example, the analysis errors for the v variable tend to cluster around 1.6–2.6 m/s, while the 343 

PDFs of forecast errors show peaks near 2.0–3.4 m/s. The patterns in distributions from different 344 

assimilation experiments align with the results observed in the time series analysis. 345 

 346 

Figure 5. Time series of root-mean-square errors (RMSEs) for (a) u (m s-1), and (c) v (m s-1) analyses 347 

and forecasts from the CTL (green), FH (blue), RD (red), and FH_RD (magenta) experiments. The thin 348 

grey line separates analysis cycling and 6-h free forecasts. Probability density distribution (PDF) of 349 
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RMSEs for (b) u (m s-1), and (d) v (m s-1) analyses (solid) and forecasts (dashed) from four 350 

experiments. 351 

To assess the impact of the DA experiments at different altitudes, Fig. 6 presents the vertical 352 

profiles of domain-averaged RMSEs of wind analyses at the end of the assimilation cycles. Compared 353 

to the NoDA experiment, the assimilation of RWPs generally has a positive effect on the wind field 354 

throughout the troposphere. The CTL experiment slightly reduces the wind errors, specifically in the 355 

layer from 850 to 600 hPa for the u component and from 500 to 300 hPa for both components. It is seen 356 

that the DA experiments assimilating ridge and foothill RWPs generally outperform CTL. For the u 357 

wind component, the RD experiment has a comparable RMSE profile to FH below 550 hPa but results 358 

in a much smaller error above (Fig. 6a). In the analysis of the v wind, RD consistently performs better 359 

than FH, except for the layer from 260 to 160 hPa (Fig. 6b). Notably, FH_RD results in the smallest 360 

wind errors across most levels, aligning with the previously observed error trends over time. 361 

 362 

Figure 6. Vertical profiles of domain-averaged RMSEs for (a) u (m s-1), and (b) v (m s-1) analyses at 363 

2100 UTC 20 July 2023 (end of analysis cycling) from the NoDA (black), CTL (green), FH (blue), RD 364 

(red), and FH_RD (magenta) experiments. 365 

To examine how the RWP DA adjusts the mesoscale airflow, we present the 700-hPa wind 366 

vectors and wind speeds from all experiments as an illustration of the model's dynamic conditions (Fig. 367 

7). For clarity, Fig. 7b-f compare the differences in wind vectors and wind speeds between the DA 368 
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experiments and the corresponding field from the truth run. These differences, considered as wind 369 

errors, help evaluate how assimilating RWPs from different observation networks adjusts the wind field. 370 

The red (blue) color represents positive (negative) wind speed bias compared to the truth. In the NoDA 371 

experiment, there is a notable southeasterly wind bias in Beijing and the mountainous regions to its 372 

west, characterized by excessively high wind speeds. Conversely, the true simulation reveals a strong 373 

southwesterly flow (Fig. 7b). Meanwhile, the southwest wind is remarkably weaker in southwestern 374 

Hebei (at the foothills of the Taihang Mountains), and the westerly wind in the upstream Taihang 375 

Mountains region is also underestimated. The CTL experiment significantly reduces the easterly wind 376 

bias in Beijing and its surrounding areas while enhancing the southwesterly winds in Hebei (Fig. 7c). 377 

However, unignorable wind errors persist upstream of Beijing, particularly along the mountainous 378 

regions, due to the absence of operational wind profiler sites. The FH experiment produces wind 379 

adjustments similar to those in CTL but further reduces wind errors in the plains of Hebei by 380 

assimilating observations from foothill sites (Fig. 7d). Conversely, with the assimilation of RWP data 381 

from the ridge network, both RD and FH_RD significantly reduce positive wind speed errors upstream 382 

of Beijing along the mountains, which is crucial for convection initiation (CI) near the boundary 383 

between Hebei and southwestern Beijing (Fig. 7e and f). While the southwest winds in southwestern 384 

Hebei remain slightly weaker in RD, FH_RD addresses this by assimilating ridge RWPs alongside 385 

foothill data. However, all DA experiments still show negative wind speed errors and 386 

northwesterly/northeasterly wind direction errors near the border of Shanxi, Hebei, and Inner Mongolia, 387 

with errors even larger than those in NoDA. This is mainly due to the lack of RWP observations in this 388 

tri-provincial border area. As a result, the influence of ridge RWP data may propagate northward into 389 

this region by the RD and FH_RD experiments, significantly reducing positive errors upstream of 390 

Beijing along the mountains but increasing negative errors in this area. 391 
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 392 

Figure 7. (a) 700-hPa wind (vectors) with wind speed (m s-1, color shaded) from the truth run, and 393 

differences between the 700-hPa winds from (b) NoDA, (c) CTL, (d) RD, (e) FH, and (f) FH_RD 394 

experiments and the truth run at 2100 UTC 20 July 2023 (end of analysis cycling). The red (blue) color 395 

represents positive (negative) wind speed bias compared to the truth. 396 
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4.1.2 The impact on reflectivity and precipitation forecasts 397 

The analysis, along with the 3- and 6-h forecasts of composite reflectivity from all experiments, 398 

is compared to the truth run in Fig. 8 and 9. In the southwest of Beijing, a convective system initiates 399 

and develops. As it merges with scattered storms originating in western Hebei near the foothills of the 400 

Taihang Mountains, the system intensifies rapidly. Eventually the convection becomes a 401 

southwest-northeast oriented mesoscale system across the western and central parts of Beijing (Fig. 402 

8a-c). At the initial stage, the NoDA experiment underestimates convection in Beijing and Hebei (Fig. 403 

8d), but in the 6-h forecast, NoDA overpredicts the storm coverage and intensity in Beijing and 404 

produces excessive spurious convection in western and northern Hebei (Fig. 8d-f). At analysis time, all 405 

DA experiments show improvement in the location and shape of the convective system in southwestern 406 

Beijing, and FH_RD produces the strongest reflectivity analysis (Fig. 8g, 9a, 9d, and 9g). This implies 407 

that the assimilation of RWP data can improve CI timing and location by capturing the mesoscale flow 408 

features in the pre-storm environment (Fig. 7). The RWP DA also helps alleviate storm displacement 409 

and intensity errors and suppresses spurious cells in subsequent forecasts, owing to a better 410 

representation of the storm environment. Although CTL correctly analyzes the CI near the observed 411 

location, its analysis and 3-h lead-time reflectivity forecast show that the storm intensity in Beijing is 412 

still weaker than the truth simulation, especially over western and central Beijing (Fig. 8g-i). The FH 413 

experiment produces stronger storms with a larger coverage area in Beijing compared to the CTL 414 

experiment, although the storm intensity remains slightly underestimated; however, spurious echoes to 415 

the west of Beijing remain evident in the 6-h forecast (Fig. 9a-c). With the assimilation of ridge RWP 416 

data, the RD and FH_RD experiments further strengthen the CI process and improve the storm pattern 417 

and development. A comparison among all experiments reveals that FH_RD demonstrates 418 

overwhelming superiority over the other three DA experiments in terms of areal coverage, storm mode, 419 

and storm orientation (Fig. 9g-i). 420 
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 421 

Figure 8. The composite reflectivity (dBZ, shaded) for (left) analysis, (middle) 3-h forecast, and (right) 422 

6-h forecast from (a)–(c) truth simulation, (d)–(f) NoDA, and (g)–(i) CTL experiments initialized at 423 

2100 UTC 20 July 2023. 424 
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 425 

Figure 9. Same as in Fig. 8, but for the composite reflectivity (dBZ, shaded) from (a)–(c) FH, (d)–(f) 426 

RD, and (g)–(i) FH_RD experiments. 427 

Concerning precipitation, the 1-, 3-, and 6-h accumulated precipitation (APCP) forecasts exhibit 428 

similar behavior to the reflectivity results in terms of rainfall location, onset time, and amount (Fig. 10 429 

and 11). As discussed above, all assimilation experiments predict the initial precipitation area and 430 

intensity in the southwest of Beijing more accurately than NoDA, leading to improvements in 431 

subsequent APCP forecasts in this area. For example, assimilating ridge and foothill RWPs corrects the 432 

weaker biases associated with this storm in the 1- and 3-h forecasts (Fig. 11a-b, d-e, g-h). Meanwhile, 433 

the more west-east oriented heavy rainfall occurring over the south of Beijing in the 6-h forecast of 434 

NoDA is revised by the assimilation experiments, shifting to a southwest-northeast orientation that is 435 

closer to the truth simulation. Although the areal coverage of rainfall in the 1-h forecast is better 436 

captured by CTL compared to NoDA, CTL still tends to underpredict the precipitation amount in 437 
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southwestern Beijing, while overestimation is commonly observed in parts of the mountainous areas to 438 

the southwest of Beijing (Fig. 10g-i). One potential factor contributing to the overpredicted rainfall in 439 

the mountainous areas to the southwest of Beijing is the CTL experiment’s reduction of positive wind 440 

errors in Beijing, while higher wind speeds (compared to the truth) persist along the upstream 441 

mountains. ThisIt is due to the absence of operational wind profiler sites. The stronger southwesterly 442 

winds of the CTL experiment enhance moisture transport and convergence in the upstream mountains, 443 

leading to overestimated rainfall in those areas and underpredicted precipitation over Beijing. Both RD 444 

and FH_RD experiments yield a smaller areal coverage of precipitation at the same region, and they 445 

also better capture the southwest-northeast orientation of the rainband in southwestern Beijing (Fig. 446 

11d-i), as the large wind errors in the upstream mountains are remarkably reduce by assimilating RWP 447 

data from the ridge network (Fig. 7e and f). As expected, the APCP forecasts from FH_RD align well 448 

with the true rainfall forecasts in terms of placement, orientation, and amount (Fig. 11g-i vs. 10a-c).  449 



24 
 

 450 

Figure 10. The accumulated precipitation (APCP) forecasts (mm, shaded) for (a)-(c) Truth, (d)-(f) 451 

NoDA, and (g)-(i) CTL experiments initialized at 2100 UTC 20 July 2023. The (left) 1-, (middle) 3-, 452 

and (right) 6-h forecasts are shown. 453 
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 454 

Figure 11. Same as in Fig. 10, but for the APCP forecasts (mm, shaded) from (a)–(c) FH, (d)–(f) RD, 455 

and (g)–(i) FH_RD experiments. 456 

To quantify the performance of the reflectivity and precipitation forecasts by assimilating RWP 457 

data from different observation networks, categorical performance diagrams and neighborhood-based 458 

ETS are calculated and aggregated over four 6-h free forecasts. These forecasts are launched hourly 459 

from the sixth hour to the end of the analysis cycle. All score metrics are computed for a neighborhood 460 

radius of 12 km. The ETS for composite reflectivity is calculated every 15 minutes, while for APCP, it 461 

is calculated hourly. In the performance diagrams, values of POD, SR (1－FAR), and CSI closer to 462 

unity indicate higher forecast skill, with the perfect forecast located at the upper-right corner of the 463 

diagram. A BIAS value greater (less) than unity indicates overprediction (underprediction). Because of 464 

decreased PODs along with increased FARs, most experiments show a slight decline in forecast scores 465 

when the composite reflectivity threshold increases from 20 to 40 dBZ (Fig. 12). Overall, all DA 466 
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experiments consistently outperform NoDA at all thresholds, exhibiting higher POD, SR, CSI, and ETS 467 

values, except for the CTL (FH and FH_RD) experiment during the 0-4 h (4-5 h) forecast period at the 468 

threshold of 40 dBZ. For most thresholds and forecast lead times, the assimilation experiments generate 469 

higher POD, SR and CSI scores compared to the NoDA experiments (with the exception of a few 470 

instances, primarily at the 40-dBZ threshold). Among them, the FH_RD, RD, and FH experiments 471 

show overwhelming superiority over CTL for the 0-4 h reflectivity forecasts in terms of ETS, POD, SR 472 

and CSI values at all thresholds. For the 20- and 30-dBZ thresholds, it is evident that FH_RD produces 473 

the highest ETS, POD, SR, and CSI scores during the 0-3 h forecast period. However, the BIAS values 474 

of the FH_RD experiment is comparable to that of other DA experiments and are sometimes slightly 475 

worsethe improvement in BIAS values was minimal (Fig. 12a-d). However, for 40 dBZ, the RD 476 

experiment achives slightly higher ETS, POD, SR, and CSI scores than FH_RD does at most forecast 477 

lead times (Fig. 12e and f). It is also worth noting that, for 20- and 30-dBZ thresholds, FH produces 478 

higher ETS , POD, and CSI scores than RD does before the 2-h forecast lead time, while RD exhibits 479 

better forecast skill thereafter (Fig. 12a-d). This suggests that assimilating RWP data from the foothill 480 

network is more effective in the first two hours, while ridge site observations have a more pronounced 481 

positive impact between 2 and 6 hours. Additionally, the period during which FH outperforms RD 482 

shortens when the threshold increases from 20 to 40 dBZ. 483 
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 484 
Figure 12. Aggregate score metrics of 0-6 h composite reflectivity (CREF) forecasts aggregated from 485 

each initialization hour from the sixth hour to the end of the DA cycles for case 1 for the NoDA (black), 486 

CTL (green), FH (blue), RD (red), and FH_RD (magenta) experiments. (left) The performance 487 

diagrams, and (right) the equitable threat score (ETS) for (a)–(b) 20 dBZ, (c)–(d) 30 dBZ, and (e)–(f) 488 

40 dBZ thresholds, respectively. Results are shown for a neighborhood radius of 12-km. The numbers 489 

within the colored dots in the performance diagrams denote the forecast hour (i.e. 0-, 3- and 6-h 490 

forecasts). 491 
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A similar trend and behavior are observed in the performance diagrams and ETS figures for the 492 

HPRCP forecast, highlighting the superior performance of the RD and FH_RD experiments (Fig. 13). 493 

In general, lower score metrics are obtained when a higher threshold for precipitation forecasts is 494 

evaluated, likely resulting from a lower frequency of occurrence for heavy precipitation. As seen in the 495 

CREF forecast, the FH_RD, RD, and FH experiments show more skillful precipitation forecasts than 496 

CTL does. In terms of the 2.5-mm precipitation forecast, FH_RD generally achieves the highest POD, 497 

SR, CSI, and ETS, along with the smallest BIAS, with RD exhibiting slightly inferior performance (Fig. 498 

13a and b). For the 5-mm threshold, FH generates the highest POD and ETS in the first 3 hours, 499 

whereas RD delivers the lowest FAR and largest ETS in the subsequent 3-h forecasts (Fig. 13c and d). 500 

The RD experiment outperforms all the other experiments in the 1-, 3-, and 4-h forecasts at the 501 

threshold of 10 mm (Fig. 13e and f). One possible reason for the inferior superior performance of RD 502 

compared to FH_RD and FH compared to RD at higher thresholds is that, the heavy rainfall coverage 503 

forecasted by the RD experiment is the closest to the truth, while FH_RD exhibits a slight southward 504 

displacement error, and FH shows a northward displacement errorFH_RD exhibits a slight southward 505 

displacement error for the 1-3 h heavier precipitation (>10 mm) forecasts in southwestern Beijing 506 

compared to the truth simulation, while the precipitation in the FH experiment is located further north 507 

(Fig. 11a-b, 11g-h vs. Fig. 10a-bc). This may lead to larger penalties in the calculation of POD and 508 

ETS, resulting in lower scores. 509 
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 510 
Figure 13. Same as in Fig. 12, but for 1-6 h hourly precipitation amount (HPRCP) forecasts for case 1 511 

at thresholds of 2.5 mm (1st row), 5 mm (2nd row), and 10 mm (3rd row), respectively. 512 

4.1.3 Sensitivity to vertical resolution and detection height 513 

Given the encouraging preliminary results from the FH_RD experiment, ETS figures of CREF 514 

and HPRCP forecasts from three additional sensitivity experiment—FH_RD_V120, FH_RD_H3, and 515 

FH_RD_H12—are compared to examine the relative impact of different vertical resolutions and 516 
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maximum detection heights on the analyses and forecasts (Fig. 14). For reflectivity forecasts at 517 

thresholds of 20-40 dBZ, the 0-3 h ETSs of FH_RD and FH_RD_H12 are comparable. However, the 518 

FH_RD_H12 experiment achieves higher forecast scores after 3 hours, highlighting the benefit of a 519 

higher detection height (Fig. 14a-c). Conversely, the FH_RD_H3 experiment (with the lowest detection 520 

height of 3 km) shows the smallest ETS values at 20 and 30 dBZ, while FH_RD_V120 (with a lower 521 

vertical resolution of 120 m) demonstrates the poorest forecast skill at 40 dBZ. Consistent with the 522 

CREF forecast, both FH_RD and FH_RD_H12 show more skillful HPRCP forecasts than 523 

FH_RD_V120 and FH_RD_H3. However, the ETSs of FH_RD are higher than those of FH_RD_H12 524 

at most forecast lead times, which differs from the reflectivity results. Additionally, FH_RD_H3 525 

produces the lowest ETS values throughout the 0–6 h forecasts at thresholds of 2.5–10 mm. Generally, 526 

the higher the maximum detection height of RWPs and the denser the vertical distribution of 527 

observations, the more significant the positive impact of RWP DA in terms of ETS. Moreover, a 528 

maximum detection height of 8 km seems to be a reasonable and effective choice, while the reduction 529 

of vertical resolution from 60 m to 120 m has less impact compared to the effect of decreasing the 530 

detection altitude to 3 km. 531 

 532 



31 
 

Figure 14. Equitable threat score (ETS) for 0-6 h CREF forecasts from the FH_RD (solid), 533 

FH_RD_V120 (dashed), FH_RD_H3 (dotted), and FH_RD_H12 (dashdot) experiments for case 1 at 534 

thresholds of (a) 20, (b) 30, and (c) 40 dBZ, respectively. (d–f) Same as in (a–c), but for 1-6 h HPRCP 535 

forecasts from each experiment at thresholds of (d) 2.5, (e) 5, and (f) 10 mm, respectively. 536 

4.2 Aggregate forecast performance 537 

Considering the variations in weather scenarios and storm environments across cases, we also 538 

examined two additional SW-type heavy rainfall events that occurred over the Beijing-Tianjin-Hebei 539 

region on 28 June and 12 July 2023 to evaluate the impact of RWPs observed fromin different spatial 540 

layouts on short-term forecasts. Despite the presence of a southwesterly jet stream in all three cases, 541 

they produced distinct storm modes under different weather conditions. To delve deeper into the 542 

verification metrics from the other twothree cases, we present performance diagrams of CREF and 543 

HPRCP forecasts from the FH_RD experiment as the best assimilation experiment (Fig. 15 and 16). 544 

The results from the NoDA experiment are also shown to provide a clear picture of how RWP 545 

observations improve the short-term forecasts across different cases. For both the NoDA and FH_RD 546 

experiments, the forecast skills generally exhibit lower score metrics and more variability at higher 547 

thresholds. Overall, for different these two cases, the FH_RD experiment shows higher POD, CSI, and 548 

SAR values compared to the NoDA experiment, with more significant improvements observed in the 549 

first 3 hours. Most of the BIAS values for FH_RD are smaller than those for the NoDA experiment. 550 

Except for the 1-3h precipitation forecasts from the case 28 June 2023, the BIAS values of FH_RD fall 551 

within a reasonable range of 0.8–1.7 for reflectivity and precipitation, indicating overall good forecast 552 

performance. It is noted that some of the forecast scores do not decrease monotonically with increasing 553 

forecast lead time. For example, in the case 12 July 2023, smaller BIAS and FAR values are obtained 554 

for the 3- and 6-h reflectivity and precipitation forecasts, along with higher CSI. This occurs due to 555 

several factors: (a) initial scattered convection develops into a larger-scale west-east oriented system 556 

covering all of Beijing and central-northern Hebei at later times in this case, which models usually 557 

capture better; (b) errors in the timing and location of CI become less significant as convection evolves 558 

and forms clearer structures; and (c) for the free forecasts initialized from the first few hours, 559 

convection may not have started until the final forecast hour. CREF forecasts from FH_RD for the case 560 

28 June 2023 show the best performance in terms of high POD, SR, and CSI. Meanwhile, persistent 561 
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underprediction throughout the 1–6 h precipitation forecasts at all thresholds from this case can mostly 562 

be traced back to the difficulty in forecasting small-scale, short-lived, and relatively weak precipitation 563 

events. This phenomenon is more pronounced in the NoDA experiment, manifested by extremely low 564 

POD and CSI values. 565 

 566 

Figure 15. Performance diagram for 0-6 h CREF forecasts from the NoDA (cyan, dark cyan, and 567 

blueblack) and FH_RD (orange, red, and brownmagenta) experiments in each casefor the case 28 June 568 

2023 at thresholds of (a) 20, (b) 30, and (c) 40 dBZ, respectively. (d–f) Same as in (a–c), but for 1-6 h 569 

HPRCP forecasts from each case at thresholds of (d) 2.5, (e) 5, and (f) 10 mm, respectively. The 570 

numbers within the colored dots in the performance diagrams denote the forecast hour (i.e. 0-, 3- and 571 

6-h forecasts). Cyan and orange represent the analysis (1-h forecast for precipitation), dark cyan and 572 

red for 3-h forecasts, and blue and brown for 6-h forecasts. Results are shown for a neighborhood 573 

radius of 12-km. 574 
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 575 

Figure 16. Same as in Fig. 15, but for the case 12 July 2023. 576 

To gain a comprehensive view of assimilating RWPs from multiple networks, quantitative 577 

verification parameters (POD, BIAS, FAR, and CSI) from each case are aggregated across all available 578 

forecast times. Figures 16 17 and 17 18 display time series of aggregated metrics for CREF forecasts 579 

from NoDA, CTL, FH, RD, FH_RD, FH_RD_V120, FH_RD_H3, and FH_RD_H12 experiments at 580 

20- and 40-dBZ thresholds, respectively. The error bars for NoDA, CTL, FH, RD, and FH_RD in the 581 

graphs represent a 95% confidence interval. Compared to NoDA, all DA experiments exhibit more 582 

skillful 0–6h reflectivity forecasts, with higher POD and CSI, and smaller FAR. The BIAS values of 583 

the assimilation experiments are higher than that of the NoDA experiment (close to unity) at the 584 

analysis time, and then decreases slightly in the 1-6 h forecasts. However, the BIAS of NoDA increase 585 

consistently during 1–6 hours, making it farther from unity. Among CTL, FH, RD, and FH_RD, 586 

FH_RD consistently outperforms others, showing the highest POD values across all forecast hours (Fig. 587 

167a). A slight overprediction bias (1.1–1.2) is observed for all DA experiments at all forecast times 588 

(Fig. 167b). CTL exhibits the largest BIAS in the first 3 hours, while FH's BIAS increases to 1.2 over 589 

time. FH_RD shows the steepest decrease in FAR, indicating the most effective reduction in false 590 
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alarms (Fig. 16c17c). CTL remains relatively flat and maintains the highest FAR among the four DA 591 

experiments throughout the 0–6h forecasts. The FARs for FH and RD forecasts fall between those of 592 

FH_RD and CTL. Specifically, FH has a lower FAR in the first 3 hours, whereas in the next 3 hours, 593 

RD performs better. Similar trend is also evident in CSI values over time (Fig. 16d17d). In conclusion, 594 

FH_RD consistently performs best overall across all metrics, followed by RD and FH. CTL 595 

underperforms, with less improvement in score metrics. Sensitivity tests show FH_RD_H12 performs 596 

slightly better than FH_RD, while FH_RD_H3 shows the least improvement. FH_RD_V120 falls 597 

between FH_RD_H12 and FH_RD_H3, consistent with the single-case study in Sect. 4.1.3. 598 

 599 

Figure 1617. Time series of (a) Probability of detection (POD), (b) Bias, (c) false alarm ratio (FAR), 600 

and (d) critical success index (CSI) for CREF forecasts aggregated from each initialization hour from 601 

the sixth hour to the end of the DA cycles across three cases (June 28, July 12, July 21 of 2023) at the 602 

threshold of 20 dBZ for the NoDA (black solid), CTL (green solid), FH (blue solid), RD (red solid), 603 

FH_RD (magenta solid), FH_RD_V120 (black dashed), FH_RD_H3 (black dotted), and FH_RD_H12 604 

(black dashdot) experiments. Results are shown for a neighborhood radius of 12-km. Error bars for 605 
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NoDA, CTL, FH, RD, and FH_RD experiments represent a 95% confidence interval. 606 

Similar to the 20-dBZ reflectivity forecast, RWP DA experiments outperform NoDA at 40-dBZ, 607 

although only the POD result in the first 3 hours is statistically significant at the 95% confidence level. 608 

All DA experiments exhibit an overprediction bias (1.1–1.5) throughout the 0–6 h forecasts (Fig. 609 

17b18b). Notably, FH shows the highest bias. However, FH also exhibits the highest POD in the first 2 610 

hours and highest CSI and lowest FAR in the first hour. Subsequently, FH_RD and RD perform better, 611 

with FH_RD slightly outperforming RD in 1–3 h forecasts and RD performing better in 4–6 hours. 612 

Some possible reasons why FH outperforms RD for shorter forecast lengths but RD outperforms FH 613 

for longer forecast lengths areThe different impacts of ridge and foothill networks may be attributed to: 614 

a) For southwest-type rainfall events, the southwesterly wind propagates from upstream ridge stations 615 

to downstream foothill sites (Li et al., 2024). b) Dynamic forcing of terrain, which has a delayed effect 616 

on triggering and intensifying storms, leading to improved forecasts for later-occurring storms. c) 617 

Assimilating wind observations at foothills, capturing local southwesterly flow characteristics, 618 

enhances forecasts of initial moisture lifting and convection triggering. During the first 45 minutes, 619 

strong overprediction leads to high FARs, which quickly decline as the forecast progresses (Fig. 17a 620 

18a and c). This contributes to an increase in CSI (Fig. 17d18d). A possible reason is that the model 621 

requires time (several minutes to an hour) to digest and adjust to assimilated wind information. The 622 

impact of vertical resolution and detection height on 40-dBZ reflectivity forecasts is consistent with the 623 

results observed at the 20-dBZ threshold. 624 
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 625 

Figure 1718. Same as in Figure 1617, but for CREF forecasts at the threshold of 40 dBZ. 626 

Consistent with the 20-dBZ reflectivity forecast, FH_RD and FH_RD_H12 consistently achieve 627 

the best performance across all score metrics in HPRCP forecasts, followed by RD and FH (Fig. 18 19 628 

and 1920). Although the improvements are not statistically significant at the 95% confidence level, 629 

FH_RD and FH_RD_H12 exhibit added forecast skill over the NoDA experiment. In contrast, CTL and 630 

FH_RD_H3 show minimal smaller improvement across all metrics. At 10-mm threshold, FH produces 631 

higher forecast scores than the others in the first hour, while FH_RD and RD show superiority in 2–4 h 632 

and 4–6 h, respectively (Fig. 1920). 633 
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 634 

Figure 1819. Same as in Figure 1617, but for 1-6 h HPRCP forecasts aggregated from three cases at 635 

the thresholds of 2.5 mm. 636 
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 637 

Figure 1920. Same as in Figure 1819, but for precipitation forecasts at the threshold of 10 mm. 638 

5. Summary and conclusions 639 

In this research, observing system simulation experiments are performed to study the benefits of 640 

assimilating RWP observations for convective scale short-term heavy rainfall forecasts. Synthetic RWP 641 

observations are assimilated into the WRF model using the NSSL3DVAR DA system for three 642 

SW-type heavy rainfall events that occurred over the Beijing-Tianjin-Hebei region. To investigate the 643 

impact of RWP data observed from multiple networks on convective scale short-term forecasts, the 644 

background run (NoDA), which does not assimilate any observations, and four types of DA 645 

experiments are carried out. A baseline experiment (CTL), which assimilates RWPs from the 646 

operational network alone, is first performed and serves as a benchmark for comparison with 647 

subsequent DA experiments. The FH and RD experiments assimilate simulated RWP observations from 648 

the foothill and ridge networks of the Taihang Mountains in addition to the operational network. The 649 
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FH_RD experiment is conducted by assimilating combined RWP data from the operational, foothill, 650 

and ridge sites. Comparison of analyses and forecasts from these four types of experiments reveals 651 

improvements in model initial conditions and short-term severe weather forecasts by assimilating 652 

simulated RWP observations, as well as the added value of RWPs from the foothill and ridge networks 653 

over operational network data. Furthermore, three sensitivity DA experiments (FH_RD_V120, 654 

FH_RD_H3, and FH_RD_H12) are carried out to test the impact of vertical resolution and maximum 655 

detection heights. The purpose of these experiments is to investigate a potential optimal configuration 656 

for the vertical data availability of real-time RWPs to be assimilated in future convective scale NWP. 657 

For each DA experiment, the analysis is cycled for 9 hours at 15-min intervals, with a 6-h free forecast 658 

initiated every hour starting from the sixth hour of the analysis cycles. First of all, both subjective and 659 

objective verifications of the analysis and forecast were performed in detail for the 21 July 2023 case. 660 

Then statistical metrics, including neighborhood-based POD, FAR, BIAS, and CSI of reflectivity and 661 

precipitation forecasts, were aggregated from each initialization hour across the three cases. The main 662 

results are summarized as follows: 663 

1) Comparison of wind analyses and forecasts among the CTL, FH, RD, and FH_RD 664 

experiments reveals that the FH_RD experiment yields the smallest wind errors, both in terms of 665 

the overall domain average and the vertical profile of RMSEs for wind components. Then, it is 666 

followed by RD, then FH, with CTL exhibiting the largest wind errors. A qualitative evaluation of 667 

the model’s initial mesoscale dynamics indicates that the assimilation of RWP data successfully 668 

corrects the wind direction and speed biases in Beijing and its surrounding areas, enhancing the 669 

southwesterly jet. Moreover, both RD and FH_RD (with the assimilation of RWP data from the 670 

ridge network) remarkably reduce large wind errors in the upstream of Beijing along the 671 

mountains, which is crucial for CI in the vicinity of the boundary between Hebei and southwestern 672 

Beijing. 673 

2) For the 21 July 2023 event, qualitative verification focused on the convective system 674 

initiated southwest of Beijing, which intensified after merging with storms from western Hebei, 675 

forming a prominent southwest-northeast oriented system across Beijing. The NoDA experiment 676 

initially underestimates convection in Beijing and Hebei but overpredicts storm coverage and 677 

intensity in later forecasts, generating excessive spurious convection. All RWP DA experiments 678 

enhance CI timing and location by capturing mesoscale flow features, subsequently reducing storm 679 
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displacement and intensity errors. Nevertheless, the CTL experiment underestimates storm 680 

intensity, while FH still retains some spurious echoes in forecasts. Overall, the FH_RD experiment 681 

demonstrates significant superiority in areal coverage, storm mode, and orientation compared to 682 

the other DA experiments. The accumulated precipitation forecasts show similar trends to the 683 

reflectivity results regarding rainfall location, onset time, and amount. The forecast statistics 684 

indicate that FH_RD achieves the best performance in reflectivity and precipitation forecasts at 685 

lower thresholds (i.e., 20- and 30-dBZ for CREF, and 2.5-mm for HPRCP), whereas the RD 686 

experiment slightly surpasses FH_RD at the 50-dBZ and 10-mm thresholds. The lower 687 

performance of FH_RD and FH at higher thresholds may be linked to slight displacement errors in 688 

heavy precipitation forecasts, impacting their POD and ETS scores. 689 

3) Quantitative verification results aggregated across the three SW-type heavy rainfall 690 

cases in the Beijing-Tianjin-Hebei region confirm that FH_RD exhibits the best performance in 691 

reflectivity and precipitation forecasts, followed by RD and FH, while CTL shows minimal 692 

improvement. An exception is that at higher thresholds, FH achieves the best scores in the first 1 or 693 

2 hours despite stronger overprediction, while FH_RD and RD are superior in subsequent hours. 694 

This is potentially attributed to the delayed effect of dynamic forcing from the terrain, as well as 695 

improvements in capturing the initial southwesterly flow and local convection by assimilating 696 

wind observations at the foothills. In addition, the results from sensitivity experiments on vertical 697 

resolution and maximum detection height indicate that FH_RD_H12 exhibits comparable or 698 

slightly better performance compared to FH_RD, benefiting from its higher detection height. 699 

Conversely, the FH_RD_H3 experiment, with the lowest detection height, has the poorest forecast 700 

skills among all DA experiments, while FH_RD_V120 generally falls between FH_RD_H12 and 701 

FH_RD_H3. 702 

The results consistently demonstrate that the FH_RD experiment, combining data from ridge, 703 

foothill, and operational wind profiler networks, delivers the most accurate short-term forecasts. 704 

Specifically, the assimilation of RWP data from ridge network significantly reduces wind errors in 705 

complex terrain, such as the Taihang Mountains upstream of Beijing. These regions are critical for 706 

convective initiation in Beijing and its surroundings. The findings highlight the essential role of 707 

integrating both ridge and foothill data in improving overall reflectivity and precipitation forecasts over 708 

the Beijing-Tianjin-Hebei region. Sensitivity experiments on vertical resolution and detection height 709 
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further emphasize the importance of high vertical resolution and maximizing detection height in 710 

optimizing the RWP network for enhanced forecast accuracy. 711 

The insights gained from this OSSE study on the impacts of RWP observations on heavy rainfall 712 

forecasting will inform the design of optimal RWP networks over the Beijing-Tianjin-Hebei region. 713 

This preliminary study lays the groundwork for further research to fully understand the complexities of 714 

precipitation forecasting related to data assimilation. The current investigation focused on three 715 

SW-type heavy rainfall cases occurring in summer over the Beijing-Tianjin-Hebei region, utilizing 716 

model-simulated states and observational networks. As the same modeling system is used for the truth 717 

run and forecast systemthe fraternal twin scheme is used in this study, it does not account for 718 

model-related errors that occur in real-world applications. Consequently, the results might overestimate 719 

the actual benefits of RWP assimilation in operational systems. Furthermore, this study focuses 720 

exclusively on assimilating RWP data, without incorporating conventional observations or satellite data. 721 

While this approach simplifies the analysis by isolating the impact of RWPs, it may inflate their 722 

relative importance. Future research directions include: (1) Expanding the study to other precipitation 723 

types and high-impact convective events under diverse weather scenarios. (2) Evaluating the impact of 724 

RWP networks by assimilating RWPs together with more diverse observation types and incorporating 725 

non-identical twin setups to enhance realism and provide broader operational insights. (3) Investigating 726 

the benefits of assimilating real observational data on convective scale NWP once proposed RWP 727 

networks become available. Moreover, future studies can address the limitations of static background 728 

errors in 3DVAR by incorporating flow-dependent background error covariances estimated from 729 

ensemble forecasts. As ensemble-based background error covariances can dynamically adapt to the 730 

evolving state of the atmosphere, the DA system will better represent the spatial and temporal 731 

variability of background errors, particularly in regions with complex topography or mesoscale features 732 

like convective systems. By leveraging flow-dependent background errors, the analysis can more 733 

accurately capture the initial atmospheric state, ultimately leading to more accurate precipitation 734 

predictions. 735 

 736 
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Code and data availability  737 

The WRF model may be downloaded from https://github.com/wrf-model (WRF, 2023). The ERA5 738 

reanalysis and GFS forecast data are accessible from ECMWF 739 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5/) and National Centers for 740 

Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce 741 

(https://rda.ucar.edu/datasets/d084003/dataaccess/), respectively. The source code for WRF model 742 

version 3.7.1,  and the input ERA5 and GFS data used in this study have been archived on Zenodo at 743 

https://doi.org/10.5281/zenodo.14321805. The namelist files for WRF and the assimilation system used 744 

in this study are accessible online (https://doi.org/10.5281/zenodo.14241597). 745 
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