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Abstract. The El Niño and Southern Oscillation (ENSO) constitutes the most prominent interannual climate variation mode 

in the climate system, originating from ocean-atmosphere interactions in the tropical Pacific. Accurately modeling ENSO 

variation has consistently posed a great challenge, exhibiting strong model-dependent representations and simulations of 

ENSO. This study presents a novel Hybrid Coupled Model (HCM), denoted as HCMROMS, built upon the Regional Ocean 

Modeling System (ROMS) that has been widely used for regional modeling studies. For basin-wide applications to the 15 

tropical Pacific, here, the ROMS is incorporated with a statistical atmospheric model, which is based on singular value 

decomposition (SVD), capturing interannual relationships of atmospheric perturbations such as wind stress and freshwater 

flux anomalies with sea surface temperature (SST) anomalies. The model is constructed in a flexible way so that various 

components representing atmospheric forcing and oceanic biogeochemistry can be easily included as a module in the 

HCMROMS. Results demonstrate that the HCMROMS can simulate a stable quasi-three-year ENSO cycle when the interannual 20 

wind stress coupling coefficient, 𝛼𝜏, is set at 1.5. The HCMROMS reproduces the three-dimensional (3D) evolution of ENSO-

related anomalies, revealing that the most pronounced temperature anomalies occur beneath the surface at 150 m. The 

interannual temperature anomaly budget highlights the dominance of the advection process in the simulated ENSO. Vertical 

mixing contributes negatively to ENSO anomalies, damping temperature anomalies from the surface due to the turbulent 

heat flux feedback. This newly developed HCMROMS is poised to serve as an efficient modeling tool for ENSO research in 25 

the future. 

1 Introduction 

The El Niño and Southern Oscillation (ENSO), characterized by a warm phase (El Niño) and a cold phase (La Niña) sea 

surface temperature, occurs approximately every 2-7 years, representing the most prominent interannual climate variation 

mode on the Earth. ENSO greatly influences human and natural systems, reshaping global atmospheric circulation and 30 

weather systems (Yeh et al., 2018). It leads to extreme weather and climate events such as floods, droughts, and heat waves 
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(McPhaden et al., 2006). Thus, the accurate prediction of ENSO holds vital importance across various application sectors, 

including agricultural production, food security, freshwater resources, and the economy worldwide. 

ENSO originates in the tropical Pacific through coupled ocean and atmosphere interactive processes (Bjerknes, 1969; Zebiak 

and Cane, 1987). The onset of ENSO is triggered by the reinforcing "Bjerknes feedback" among wind, sea surface 35 

temperature (SST), and the thermocline. During El Niño, an initial positive SST anomaly (SSTA) in the eastern Pacific 

reduces the east-west SST gradient, weakening the Walker circulation and thus the reduction of the easterly trade winds 

(Lindzen and Nigam, 1987). The weaker trade winds have two impacts on the ocean. On one hand, it reduces the equatorial 

upwelling in the eastern Pacific, causing the warm SST anomaly over the eastern basin. On the other hand, the weaker trade 

winds facilitate the eastward migration of surface warm water from the western Pacific warm pool. The eastward migration 40 

of surface warm water raises SST east of the dateline, triggering the eastward shift of deep convection. This, in turn, further 

relaxes the trade winds to the west of the convective center, causing positive feedback on the SST rise. During the cold phase 

of ENSO, La Niña's onset is the same as El Niño but with the opposite sign (Latif et al., 1994).  

The phase transition of ENSO (i.e., the transition between El Niño and La Niña) is more complex. ENSO cycle can be 

affected by the wind-driven Kelvin waves, and the reflected Kelvin and Rossby waves, respectively, at the western and 45 

eastern boundaries of the Pacific, discharge-recharge processes due to Sverdrup transport, and anomalous zonal advection. 

These processes are named, in turn, in previous studies as the Western Pacific oscillator (Wang et al., 1999; Weisberg and 

Wang, 1997), the delayed oscillator (Battisti and Hirst, 1989; Suarez and Schopf, 1988), the recharge oscillator (Jin, 1997a, 

b), and the advective-reflective oscillator (Picaut et al., 1997). All these oscillators can work together as a unified oscillator 

to affect the ENSO cycle (Wang, 2001). Extratropical processes also affect ENSO as the thermal and salinity anomalies in 50 

the northern Pacific can be conveyed to the tropical Pacific along the subtropical cell (Gu and Philander, 1997; Kleeman et 

al., 1999; McCreary and Lu, 1994; Zhang et al., 1998; Zhou and Zhang, 2022a). In addition, ENSO can be affected by 

various forcing and feedback processes such as stochastic atmospheric forcing (Jin et al., 2007; Moore and Kleeman, 1999; 

Zhang et al., 2008), freshwater flux (Gao et al., 2020; Kang et al., 2014; Zhang et al., 2012), ocean biology-induced feedback 

(Shi et al., 2023; Tian et al., 2020; Zhang et al., 2018b), and tropical instability waves (Tian et al., 2019; Zhang, 2016; Zhang 55 

et al., 2023). Given the intricate interplays among these effects, comprehending the individual and collective impacts of 

these processes on ENSO poses a great challenge. 

Numerical models are powerful tools for investigating and predicting ENSO. Over the past decades, a variety of coupled 

models, encompassing different levels of complexity in both ocean and atmosphere components, have been developed for 

the ENSO studies. These models can be categorized according to their approaches, such as the Statistical Model (SM), 60 

Harmonic Oscillator Model (HOM), Linear Inverse Model (LIM), Intermediate Coupled Model (ICM), Hybrid Coupled 

Model (HCM), Coupled General Circulation Model (CGCM), and Artificial Intelligence (AI); their characteristics are listed 

in Table 1. Each of these models boasts unique advantages in the realm of ENSO study. In particular, the HCM, which 

combines a comprehensive ocean general circulation model (OGCM) with a simplified atmospheric model, excels in 

incorporating complete ocean dynamic and thermodynamic processes without exhibiting notable climate drift issues (Zhang 65 
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et al., 2020). The advantage of HCM is attributed to the representation of atmospheric forcing in anomaly form, where 

interannual perturbations are considered in the model. This can isolate the interannual forcing and feedback effects in a clear 

way, better enhancing the understanding of the ENSO mechanism (McCreary and Anderson, 1991; Zhang et al., 2020). 

In a previous study, Zhang (2015) developed an HCM (Z15 hereafter) based on an OGCM and a statistical atmospheric 

model for interannual wind stress. The Z15 model successfully reproduces the quasi-four-year oscillation characteristics of 70 

ENSO (Gao et al., 2020; Zhang, 2015). However, despite various advantages of the Z15 model, such as a simple model 

architecture and high computational efficiency, the simulated El Niño (indicated by the positive SSTA) in the Z15 model is 

located near the dateline, suggesting a Central-Pacific instead of the typical Eastern-Pacific El Niño in the Z15 model (Gao 

et al., 2020; Zhang et al., 2018a). This is partly due to the use of the Gent-Cane OGCM (Gent and Cane, 1989) in the Z15 

model, which is a reduced gravity ocean model with a limited ability to simulate deep temperature variations. The uppermost 75 

layer of the Gent-Cane OGCM is treated as a uniform mixed layer, with its depth determined by a bulk mixing 

parameterization (Chen et al., 1994). The bulk layer constraint hinders the Z15 model's ability to simulate vertical structure 

within the mixed layer. In addition, the Gent-Cane OGCM exhibits a restricted ability to simulate multi-scale dynamic 

processes, such as ocean mesoscale eddies and tropical instability waves. All the aforementioned underscore the urgent need 

to replace the Gent-Cane OGCM in the Z15 model with an advanced ocean model to better simulate and investigate the 80 

ENSO mechanism. Therefore, in this study, we attempt to develop a new HCM based on a state-of-the-art Regional Ocean 

Modeling System (ROMS) model. Such an HCMROMS can provide more detailed 3D ocean structure changes during ENSO 

evolution and help to explore the ENSO mechanism. 

The objective of this study is to introduce the newly developed HCMROMS and assess its performance. The paper is structured 

as follows: Section 2 introduces the HCMROMS, including its statistical atmospheric model component, the ROMS setting, the 85 

HCM framework, and the numerical experimental design used in this study. Section 3 illustrates the HCMROMS performance. 

Summaries are provided in Section 4. 

 
Table 1: List of the coupled models for ENSO Investigation. 

Name Method Complexity* Example 

Statistical Models Statistic relation between 

oceanic and atmospheric 

variables 

0 Complex Empirical Orthogonal Function (CEOF) (Barnett, 

1983, 1991) 

Canonical Correlation Analysis (CCA) (Graham et al., 1987a, 

1987b) 

Principal Oscillation Patterns (POPs) (Hasselmann, 1988; von 

Storch et al., 1988) 

Harmonic Oscillator 

Models 

Ordinary differential 

equations 

1 Delayed oscillator (Battisti & Hirst, 1989; Suarez & Schopf, 

1988) 

Recharge oscillator (F.-F. Jin, 1997a, 1997b) 

Western Pacific oscillator (Wang et al., 1999; Weisberg & 

Wang, 1997) 

Advective-reflective oscillator (Picaut et al., 1997) 

Unified oscillator (Wang, 2001) 

Linear Inverse Models Stochastic differential 

equations 

1.5 Linear inverse model (Newman et al., 2011; Penland & 

Sardeshmukh, 1995) 
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Intermediate Coupled 

Models 

Simplified ocean model 

coupled with statistical 

atmospheric model 

2 ZC87 (Zebiak & Cane, 1987) 

BH89 (Battisti & Hirst, 1989) 

JN93 (F.-F. Jin & Neelin, 1993a, 1993b) 

IOCAS-ICM (Zhang & Gao, 2016) 

Hybrid Coupled Models Complex ocean model 

coupled with statistical 

atmospheric model 

3 N90 (J. D. Neelin et al., 1992; J. David Neelin, 1990) 

B93 (Barnett et al., 1993) 

S95 (Syu et al., 1995) 

Z15 (Zhang, 2015; Zhang et al., 2018a) 

Coupled General 

Circulation Models 

Complex ocean model 

coupled with complex 

atmospheric model 

6 CESM (National Center for Atmospheric Research, USA) 

HadCM (Met Office Hadley Centre, UK) 

MPI-ESM (Max Planck Institute for Meteorology, Germany) 

BCCR-BCM (Bjerknes Centre for Climate Research, Norway) 

FGOALS (LASG/IAP Chinese Academy of Sciences, China) 

Artificial Intelligence 

Models 

Artificial Intelligence Infinity Convolutional Neural Network (CNN) (Ham et al., 2019, 

2021) 

Residual CNN (Res-CNN) (J. Hu et al., 2021) 

Air-sea coupler (ASC) based on the graph (Mu et al., 2021) 

POP-Net (L. Zhou & Zhang, 2022) 

3D-Geoformer (L. Zhou & Zhang, 2023) 

*The complexity is defined by the degree of freedom of the model variable in phase space, the oceanic and atmospheric complexity 90 
can be added together. 

 

2 Numerical Model and Experimental Design 

2.1 Statistical Atmospheric Model 

Following the Z15 modeling framework, a statistical atmospheric model is developed to represent the interannual 95 

perturbation fields of the atmosphere using the singular value decomposition (SVD) analysis (Zhang, 2015). Fig. 1 illustrates 

the schematic diagram of the statistical atmospheric model. The coupling relationship between any two interannual variation 

signals, such as SSTA and wind stress anomaly (X and Y in Fig. 1a), can be established by decomposing their covariance 

matrix using SVD (Fig. 1a). In an SVD analysis, the left-singular vector (L in Fig. 1a) and right-singular vector (R in Fig. 1a) 

of the covariance matrix (S in Fig. 1a) serve as eigenvectors for the left field X and right field Y, respectively (Fig. 1a). 100 

Notably, the left-singular vector L and right-singular vector R share the same singular value ∑. Therefore, given a specific 

left field (Xm), the corresponding right field signal (Ym) can be determined by SVD relation through the inversion process 

shown in Fig. 1b. 
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Figure 1: Flow chart of (a) SVD analysis and (b) SVD-based statistical model. X and Y in (a) are original interannual variation 105 
signals before SVD, S is the covariance matrix between X and Y, L is the left-singular vector and R is the right-singular vector, U 

and V are, respectively, the time series of left-singular vector and right-singular vector, and ∑ is the singular value matrix. Xm in 

(b) is the input left field to the statistical model, Ym is the output right field, and Um and Vm are calculated time series of left field 

and left field in the statistical model, respectively. 

 110 

To include the ENSO-related atmospheric forcing-feedback processes in HCMROMS, we established statistical relations 

between the interannual SSTA (𝑆𝑆𝑇𝑖𝑛𝑡𝑒𝑟) and both interannual wind stress anomalies (𝝉𝑖𝑛𝑡𝑒𝑟) and interannual freshwater flux 

anomalies (𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟) using the SVD analysis (Fig. 1a). It should be noted that the freshwater flux (FWF) in this work is 

defined as the net freshwater flux into the ocean, which is represented by the total precipitation (P) minus evaporation (E), 

i.e., P-E. The monthly 𝑆𝑆𝑇𝑖𝑛𝑡𝑒𝑟  used to construct empirical statistical relations are derived from the National Oceanic and 115 

Atmospheric Administration (NOAA) Optimum Interpolation (OI) SST dataset with a spatial resolution of 1°×1° from 1981 

to 1999 (Reynolds et al., 2002). The monthly 𝝉𝑖𝑛𝑡𝑒𝑟  and 𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟  come from a 24-member ensemble of the European 

Centre Hamburg Model (ECHAM) version 4.5 simulations forced by observed SST from 1950 to 1999 (Roeckner et al., 
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1996). The use of the ensemble-averaged 𝝉𝑖𝑛𝑡𝑒𝑟  and 𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟  from the ECHAM simulations is to reduce the impacts of 

atmospheric noise (Zhang et al., 2003). 120 

The first SVD modes for 𝑆𝑆𝑇𝑖𝑛𝑡𝑒𝑟 , 𝝉𝑖𝑛𝑡𝑒𝑟 , and 𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟  are shown in Figs. 2a, 2b, and 2c, respectively. It shows that the 

SVD patterns include ENSO-related forcing and response processes. For example, the El Niño-type SSTA in the equatorial 

eastern Pacific (Fig. 2a) is associated with the tropical westerly wind stress anomalies (Fig. 2b) and FWF anomalies around 

the dateline (Fig. 2c). We calculated the squared covariance fractions of different SVD modes. The first five SVD modes can 

contribute 99.4% of the 𝝉𝑖𝑛𝑡𝑒𝑟  variations and 97.6% of the 𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟  variations. Therefore, we only include the first five 125 

SVD modes in the statistical atmospheric model to reproduce the interannual atmospheric forcing. The performance of the 

statistical atmospheric model in reproducing the 𝝉𝑖𝑛𝑡𝑒𝑟  and 𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟  are evaluated in section 3.1. 

 

Figure 2: First SVD modes for (a) interannual SSTA, (b) interannual wind stress anomaly, and (c) interannual freshwater flux 

anomaly. 130 
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2.2 The Regional Ocean Modeling System (ROMS) Model 

The comprehensive ocean model used in HCMROMS is based on the Regional Ocean Modeling System (ROMS) model 

(Shchepetkin and Mcwilliams, 2005). ROMS is a community regional ocean model suitable for various applications in ocean 

forecasting and research needs. ROMS incorporates accurate and efficient physical and numerical algorithms. For example, 

all 2D and 3D equations in ROMS undergo time discretization using a third-order predictor and corrector time-stepping 135 

algorithm (Shchepetkin and Mcwilliams, 2005). The enhanced stability of the scheme allows larger time steps, which is 

important for climate simulations that need to be integrated for long periods. In addition, ROMS employs an explicit time-

splitting scheme to solve the hydrostatic primitive equations for momentum. Within each baroclinic (3D; solving the 

primitive equations) time step, a finite number of barotropic (2D; solving the shallow water equations) time steps are 

executed to evolve the free-surface and vertically integrated momentum equations. The time-splitting method allows the 140 

ROMS model to simulate and ensure the stability of high-frequency waves, increasing the model's accuracy in simulating the 

sea level variations. 

Fig. 3 shows the domain setting of the ROMS model used in this study. The ROMS model with a horizontal resolution of 

0.5°×0.5° (~52.9 km × 52.9 km) covers the tropical Pacific ranging from 95 °E to 70 °W and 30 °S to 30 °N. The ROMS 

model has 50 layers in the vertical direction, with a higher resolution (~0.1 m on the model grid with a water depth of 5000 145 

m) near the sea surface using a terrain-following “S” coordinate with Shchepetkin’s double stretching function (Shchepetkin 

and Mcwilliams, 2009). The ROMS parametrizations include the nonlocal K-profile scheme for vertical mixing (Large et al., 

1994) and the Smagorinsky scheme for horizontal diffusion (Smagorinsky, 1963). The short-wave radiation penetration into 

the ocean is calculated by a double exponential irradiance absorption scheme (Paulson and Simpson, 1977), with Jerlov 

water type I parameters over the open ocean and Jerlov water type II parameters over the marginal seas (Kuo et al., 2023; Yu 150 

et al., 2017, 2020, 2022). 

 

Figure 3: ROMS model domain and topography. The contours with orange shading show the El Niño-like SSTA which drives the 

statistical atmospheric model during the "initial kick for eight months”. 
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2.3 Hybrid Coupled Model Framework 155 

Fig. 4 illustrates the schematic diagram of the HCMROMS. It consists of the statistical atmospheric model and the ROMS 

model. The ROMS model is driven by the wind stress (𝝉) and FWF at the air-sea interface. The 𝝉 and FWF in the HCMROMS 

can be written as 𝝉 = 𝝉𝑐𝑙𝑖𝑚 + 𝛼𝜏𝝉𝑖𝑛𝑡𝑒𝑟  and 𝐹𝑊𝐹 = 𝐹𝑊𝐹𝑐𝑙𝑖𝑚 + 𝛼𝐹𝑊𝐹𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟 , respectively, where 𝝉𝑐𝑙𝑖𝑚 and 𝐹𝑊𝐹𝑐𝑙𝑖𝑚  are 

prescribed climatological forcing, 𝝉𝑖𝑛𝑡𝑒𝑟  and 𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟  are interannual perturbations, and 𝛼𝜏  and 𝛼𝐹𝑊𝐹  are coupling 

coefficients of the interannual perturbations. The coupling coefficients 𝛼𝜏 and 𝛼𝐹𝑊𝐹  are designed to counteract the reduction 160 

in retrieved 𝝉𝑖𝑛𝑡𝑒𝑟  and 𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟  caused by the linear constraints within the statistical atmospheric model. The application of 

coupling coefficients also provides a method to investigate the sensitivity of the ENSO evolution to interannual perturbations 

by using different 𝛼𝜏 and 𝛼𝐹𝑊𝐹  values. The climatological forcing 𝝉𝑐𝑙𝑖𝑚 and 𝐹𝑊𝐹𝑐𝑙𝑖𝑚  are derived from the climatological 

atmospheric reanalysis data. While the interannual perturbations 𝝉𝑖𝑛𝑡𝑒𝑟  and 𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟  are calculated using the statistical 

atmospheric model forced by the ROMS-simulated 𝑆𝑆𝑇𝑖𝑛𝑡𝑒𝑟 . The 𝑆𝑆𝑇𝑖𝑛𝑡𝑒𝑟  in the ROMS model can be obtained by 165 

subtracting the climatological SST (𝑆𝑆𝑇𝑐𝑙𝑖𝑚) from the ROMS-simulated SST. It should be noted that the 𝑆𝑆𝑇𝑐𝑙𝑖𝑚 here is 

derived from the ROMS-simulated SST forced by the climatological forcing (e.g., 𝝉𝑐𝑙𝑖𝑚 and 𝐹𝑊𝐹𝑐𝑙𝑖𝑚), rather than being 

sourced from other origins. This ensures the model does not suffer from climate drift issues. 

 

 170 

Figure 4: Schematic diagram of the HCMROMS. Red arrows represent wind stress coupling, purple arrows represent the FWF 

coupling, and the blue arrow represents the heat flux feedback. 

 

It is also important to highlight the coupler in the HCMROMS for the coupling process between the statistical atmospheric 

model and the ROMS model. Incorporating the statistical atmospheric model requires 𝑆𝑆𝑇𝑖𝑛𝑡𝑒𝑟  from the entire ROMS 175 

domain. Therefore, data transmissions between different computing nodes are necessary for the coupling process. A coupler 

module based on the Message Passing Interface (MPI) has been developed to facilitate the data transmissions in the 
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HCMROMS (Fig. 5). With the coupler, the HCMROMS gathers the 𝑆𝑆𝑇𝑖𝑛𝑡𝑒𝑟  from different computing nodes to the main 

computing node before coupling (red curves in Fig. 5). The main computing node then computes 𝝉𝑖𝑛𝑡𝑒𝑟  and 𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟  for the 

entire ROMS domain and sends 𝝉𝑖𝑛𝑡𝑒𝑟  and 𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟  tiles to the corresponding computing nodes to drive the ROMS model 180 

(blue curves in Fig. 5). We have evaluated the performance of the coupler module to transfer data accurately and efficiently 

between the computing nodes (figs. not shown). The successful construction of this coupler module lays the groundwork for 

the HCMROMS development. 

 

 185 

Figure 5: Flow chart of the coupling process using MPI. 

 

Besides the statistical atmospheric model, we also introduce a module in the HCMROMS to address the damping effects 

induced by the ocean-atmosphere heat transfer processes. The module based on a bulk approximate utilizes surface wind 

speed derived from the wind stress inversion to compute the turbulent heat transfer between the ocean and atmosphere, 190 

including both latent and sensible heat fluxes (Fairall et al., 1996):  

𝐿𝐻 = 𝜌𝑎𝐿𝑒𝐶𝐸𝑉𝑤𝑔(𝑞𝑎 − 0.98 × 𝑞𝑠𝑎𝑡(𝑆𝑆𝑇))     − − − − (1) 

𝑆𝐻 = 𝜌𝑎𝑐𝑝𝐶𝐻𝑉𝑤𝑔(𝑇𝑎 − 𝑆𝑆𝑇)                               − − − − (2) 
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where 𝐿𝐻 and 𝑆𝐻 are latent and sensible heat fluxes, respectively; 𝜌𝑎 is dry air density; 𝐿𝑒 is the latent heat of vaporization; 

𝑐𝑝  is the specific heat of dry air at constant pressure; 𝐶𝐸  and 𝐶𝐻  are respectively the transfer coefficients for latent and 195 

sensible heats and set to 1.4×10-3 in this study; 𝑉𝑤𝑔 is the surface wind speed derived from the wind stress inversion (𝑉𝑤𝑔 =

√
|𝝉|

𝜌𝑎𝐶𝐷
), where |𝝉| is the magnitude of the wind stress vector and 𝐶𝐷  is the transfer coefficient for drag with a value of 

1.7×10-3; 𝑇𝑎 is air temperature; 𝑞𝑎 is the atmospheric specific humidity; and 𝑞𝑠𝑎𝑡(𝑆𝑆𝑇) is the saturated specific humidity at 

SST. 

2.4 Experimental Design 200 

The HCMROMS model was first integrated for 60 years using the climatological atmospheric forcing (i.e., 𝛼𝜏=0 and 𝛼𝐹𝑊𝐹=0) 

as the model's spin-up. The spin-up run was initialized with the January climatology of the Simple Ocean Data Assimilation 

Version 3 (SODA3) reanalysis with a horizontal resolution of 0.5°×0.5° (Carton et al., 2018). The climatological monthly 

SODA3 data also served as the lateral boundary conditions of sea surface height (SSH), currents, temperature, and salinity 

throughout the model integration. In terms of atmospheric forcing, the climatological monthly data for 𝝉𝑐𝑙𝑖𝑚, 𝐹𝑊𝐹𝑐𝑙𝑖𝑚, short 205 

wave and long wave radiations were obtained from the Common Ocean Reference Experiment version 2 (COREv2) global 

air-sea flux dataset with a horizontal resolution of 1°×1° (Large and Yeager, 2009). The climatological monthly data for sea 

level pressure (SLP), surface air temperature, and surface air relative humidity, utilized in calculating surface latent and 

sensible heat fluxes, were sourced from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) with a 

horizontal resolution of 1°×1° (Freeman et al., 2017). It should be noted that the model's climatology in the following 210 

sensitivity experiments is calculated over the last 10 years of the spin-up run. 

After the spin-up, we executed five sensitivity experiments, adjusting the 𝛼𝜏  values (𝛼𝜏=1.0, 1.3, 1.5, 1.7, and 2.0), to 

determine the optimal 𝛼𝜏  for reproducing sustainable interannual variabilities in the HCMROMS. These sensitivity 

experiments were integrated for 30 years and initiated through a so-called "initial kick", where the HCMROMS underwent 

forced integration with an imposed westerly wind anomaly lasting eight months. The westerly wind anomaly during the 215 

"initial kick" was created using the statistical atmospheric model driven by an El Niño-like SSTA (Fig. 3), which was 

detected by the statistical atmospheric model but did not manifest in the simulated SST. Subsequent anomalous conditions 

evolved solely through coupled ocean-atmosphere interactions within the HCMROMS. The FWF effects are not taken into 

account in this study by setting 𝛼𝐹𝑊𝐹=0. This is because of the primary impact of the SSTA-𝝉𝑖𝑛𝑡𝑒𝑟  coupling on shaping the 

interannual variability associated with ENSO, while the SSTA-𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟  coupling, although capable of affecting the ENSO 220 

intensity, plays a secondary role (Gao et al., 2020). Further analysis of the FWF effects on the ENSO intensity in HCMROMS 

will be presented in Part II of this study. 
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3. Results and Discussion 

3.1 Statistical Atmospheric Model Performance 

We first examine the performance of the statistical atmospheric model in reproducing the ENSO-related interannual 225 

atmospheric forcing. Fig. 6a shows the 40-year observed SSTA over the tropical zone of 5 °S to 5 °N from 1980 to 2020. 

The observed SSTA are derived from the monthly NOAA Extended Reconstructed SST (ERSST) version 5 dataset (Huang 

et al., 2017). We adopt ERSST in this subsection instead of using the NOAA OI SST, which is used to construct the 

statistical atmospheric model in section 2.1, to maintain the independence of the assessment. The observed SSTA shows a 

clear interannual characteristic related to ENSO, especially during the three major El Niño events of 1982/1983, 1997/1998, 230 

and 2015/2016, where the positive SSTA over the eastern Pacific can be above 2 ℃ (Fig. 6a). The 40-year zonal wind stress 

anomaly and FWF anomaly over the tropical zone of 5 °S to 5 °N from 1980 to 2020 are shown in Figs. 6b and 6c, 

respectively. The monthly zonal wind stress anomaly and FWF anomaly are derived from the National Centers for 

Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) Reanalysis (Kalnay et al., 

1996). During El Niño, the positive SSTA in the eastern Pacific corresponds to the eastward expansion of the anomalous 235 

westerly winds originating from the dateline. While in La Niña, abnormal easterly winds near the dateline emerge, leading to 

a cold SSTA east of the dateline (Figs. 6a and 6b). As for the FWF, the positive SSTA in the eastern Pacific during El Niño 

shifts the precipitation eastward to increase FWF in the eastern equatorial Pacific and reduces FWF in the western Pacific. 

Conversely, during La Niña, the FWF in the western equatorial Pacific increases, while FWF in the eastern Pacific decreases 

(Figs. 6a and 6c). 240 

The retrieved zonal wind stress anomaly and FWF anomaly using the statistical atmospheric model forced by the observed 

SSTA from 1980 to 2020 are shown in Figs. 6d and 6e, respectively. During the three major El Niño events of 1982/1983, 

1997/1998, and 2015/2016, the model replicates the observed anomalous westerly winds originating from the dateline (Figs. 

6b and 6d). Additionally, in the five major La Niña events of 1988/1989, 1998/1999, 1999/2000, 2007/2008, and 2010/2011, 

the statistical atmospheric model also reproduces the abnormal easterly winds near the dateline, consistent with 245 

NCEP/NCAR reanalysis (Figs. 6b and 6d). As for the FWF, the statistical atmospheric model reproduces the ENSO-related 

FWF anomaly dipole. The statistical atmospheric model produces a higher (lower) FWF in the eastern (western) equatorial 

Pacific during El Niño but in the opposite during La Niña (Figs. 6c and 6e). Although the statistical atmospheric model tends 

to underestimate the strength of interannual perturbations, especially for the wind stress, which may be due to the linear 

constraints in the SVD when dealing with nonlinear signals (Fig. 6b versus 6d). The statistical atmospheric model 250 

reproduces the observed interannual wind stress and FWF anomalies in phase (Figs. 6b-e). The correlation coefficient 

between the observed and simulated zonal wind stress anomalies is 0.62 (p<0.01). While the correlation coefficient for the 

observed and simulated FWF anomalies is 0.68 (p<0.01). 
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 255 

Figure 6: Hovmöller diagram of observed (a) SSTA, (b) zonal wind stress anomaly, and (c) FWF anomaly over the tropical zone of 

5 °S to 5 °N from 1980 to 2020. (d) and (e) are respectively the retrieved zonal wind stress anomaly and FWF anomaly using the 

statistical atmospheric model forced by the observed SSTA. The vertical dashed line indicates the dateline. 
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3.2 Simulated Climatology in the Ocean 260 

The ROMS model performance in simulating the long-term mean and seasonal variability of ocean temperatures in the 

tropical Pacific were also assessed by comparing the simulated ocean climatology with observational data. Here we note 

again that the simulated ocean climatology in the study is defined as the long-term monthly mean averaged over the last 10 

years of the spin-up. This prolonged duration is necessary as the ROMS model takes 30 to 40 years for the simulated heat 

content in the upper 2000 m to reach equilibrium (figs. not shown). To mitigate potential climate drift concerns arising from 265 

the model not reaching equilibrium, we employed a dataset covering the 51 to 60 years of the spin-up run to calculate the 

model's climatology. The observed climatological monthly ocean temperature comprises averaged values from the World 

Ocean Atlas (WOA) 2023 dataset over the observation period of 1955 to 2022, with a horizontal resolution of 1°×1° 

(Locarnini et al., 2023).  

 270 

 

Figure 7: Horizontal distribution of (a) observed and (b) simulated long-term mean SST over the tropical Pacific. The (c) observed 

and (d) simulated vertical cross-section of the temperature along the equator. 

 

Fig. 7a shows the horizontal distribution of observed long-term mean SST over the tropical Pacific. It shows that the 275 

observed SST in the western Pacific warm pool with an average value of 30 ℃ is notably higher than in the surrounding 

area. Conversely, the cold tongue region of the eastern equatorial Pacific shows distinct upwelling characteristics, leading to 

a lower average SST of only 24 ℃ (Fig. 7a). The observed SST distribution matches the subsurface temperature structure 

changes along the equator. The vertical cross-section of the observed temperature over the tropical zone of 5 °S to 5 °N 
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along the equator is shown in Fig. 7c. The higher SST observed in the western Pacific warm pool is attributed to the 280 

westward water transport in the equatorial Pacific, influenced by trade winds. The accumulated surface warm water in the 

western Pacific warm pool descends, leading to a deepening of the 20 ℃ isotherm, reaching its maximum depth of 180 m 

west of the dateline. In the tropical eastern Pacific, the upwelling compensates for the trade-wind-induced westward surface 

transport, resulting in the ascent of deep cold water to the surface. The depth of the 20 °C isotherm progressively decreases 

away from the dateline, reaching its minimum depth of only 50 m along the coast of Peru at 90 °W (Fig. 7c).  285 

The simulated long-term mean SST distribution and vertical temperature structure along the equator are shown in Figs. 7b 

and 7d, respectively. The ROMS model replicates the observed long-term mean temperature in the tropical Pacific as 

indicated by the WOA data. The simulated western Pacific warm pool and the eastern Pacific cold tongue closely resemble 

those observed patterns (Figs. 7a and 7b). However, there is a notable overestimation of approximately 1 °C in the SST of 

the western Pacific warm pool by the ROMS model (Fig. 7b). This discrepancy may be attributed to the climatological 290 

atmospheric forcing adopted in the model, which excludes the influence of high-frequency stochastic atmospheric forcing 

signals such as tropical cyclones, westerly wind bursts, and Madden-Julian oscillations. The weaker climatological forcing, 

particularly from surface winds, leads to less vigorous vertical mixing in the ocean, potentially resulting in a warm bias in 

simulated SST. It is important to note that the modeled climatology, driven by climatological forcing, still exhibits some 

differences from the observed climatology, which refers to climatological results. The ROMS model reproduces the 295 

observed mean vertical temperature structure along the equator (Figs. 7c and 7d). Same as the WOA observation, the 

simulated 20 °C isotherm deepens in the western equatorial Pacific, with a maximum depth of 180 m west of the dateline. As 

moving away eastward from the dateline to the eastern equatorial Pacific, the simulated 20 °C isotherm depth decreases, 

reaching a minimum depth of 50 m along the coast of Peru at 90 °W (Figs. 7c and 7d). 

Fig. 8 illustrates the seasonal climatology of observed and simulated SST in the tropical zone of 5 °S to 5 °N. West of the 300 

dateline, the observed SST exhibits a semi-annual pattern. The highest temperature, reaching 30.5 °C in both May and 

November, while the lowest temperature 29.5 °C, appears in February and August (Fig. 8a). This semi-annual SST variation 

in the western equatorial Pacific is attributed to the sun's biannual crossing of the equator, leading to corresponding semi-

annual changes in solar radiation. However, the observed SST shows a distinct annual cycle in the eastern Pacific, with the 

highest temperature of 28 °C in March and the lowest temperature of 23 °C in September (Fig. 8a). The annual SST variation 305 

in the eastern equatorial Pacific is driven by the effects of trade-wind-induced upwelling. The annual strengthening and 

weakening of the trade winds contribute to the annual SST changes in the eastern equatorial Pacific. The simulated seasonal 

SST climatology is shown in Fig. 8c. Despite the ROMS model overestimating the average SST in the western Pacific warm 

pool by 1 °C (Figs. 7b and 8c), it captures the observed semi-annual SST variation in the western equatorial Pacific and the 

annual SST variation in the eastern equatorial Pacific. The annual variations in both observed and simulated SST are shown 310 

in Figs. 8b and 8d, respectively. The ROMS model replicates the observed seasonal SST changes, demonstrating an annual 

SST variation amplitude of ±3 °C in the eastern equatorial Pacific and a semi-annual SST variation amplitude of ±0.5 °C in 

the western equatorial Pacific. 
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 315 

Figure 8: Hovmöller diagram of (a) observed and (c) simulated seasonal SST along the equator. (b) and (d) are their annual 

variations. 

 

3.3 Simulated Interannual Variability associated with ENSO 

Fig. 9 shows the simulated Niño 3.4 index (SSTA averaged over the box region of 5 °S to 5 °N, 170 °W to 120 °W) in the 320 

sensitivity experiments with different interannual wind stress coupling coefficients (𝛼𝜏=1.0, 1.3, 1.5, 1.7, and 2.0). Changes 

in the coupling coefficient 𝛼𝜏 lead to alterations in the simulated interannual SST variability. The statistical atmospheric 

model tends to underestimate the strength of interannual disturbances due to the linear constraints within SVD (Fig. 6). 

Therefore, if the linear constraint effects are not counteracted, i.e., 𝛼𝜏 =1.0, the initial interannual oscillation signals 

generated during the "initial kick" will rapidly dissipate over 36 months (purple line in Fig. 9). This dissipation effect 325 
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diminishes gradually as the coupling coefficient 𝛼𝜏  increases. When 𝛼𝜏 =1.3, the initial interannual oscillation signals 

gradually weaken and dissipate over 120 months (blue line in Fig. 9), whereas 𝛼𝜏=1.5, the initial interannual oscillation 

signals can be consistently sustained, exhibiting a steady quasi-three-year cycle (black thick line in Fig. 9). However, when 

𝛼𝜏 exceeds 1.5, with increases in the coupling coefficient 𝛼𝜏, the simulated interannual oscillations become unstable. At 

𝛼𝜏=1.7, the amplitude of the simulated Niño 3.4 index increases to 2.8 °C, exceeding the initial amplitude of 1.8 °C (red line 330 

in Fig. 9). Meanwhile, at 𝛼𝜏=2.0, the period of the simulated interannual SST variability changes, the stable quasi-three-year 

oscillations give way to irregular quasi-biennial oscillations, which are characterized by alternating strong and weak biennial 

oscillations over a four-year period (orange line in Fig. 9). The above evidence suggests a substantial relation between the 

modeled interannual SST and the coupling coefficient 𝛼𝜏. Given that the optimal 𝛼𝜏=1.5 produces sustainable interannual 

variabilities in the HCMROMS, subsequent analysis is based on the experiment with the interannual wind stress coupling 335 

coefficient 𝛼𝜏 set at 1.5. 

 

 

Figure 9: Simulated Niño 3.4 index in the sensitivity experiments with different interannual wind stress coupling coefficients. The 

purple line is for 𝜶𝝉=1.0, the blue line for 𝜶𝝉=1.3, the black line for 𝜶𝝉=1.5, the red line for 𝜶𝝉=1.7, and the orange line for 𝜶𝝉=2.0, 340 
respectively. 

 

The Hovmöller diagrams of simulated SSTA, zonal wind stress anomaly, surface height anomaly, and surface heat flux 

anomaly for the sensitivity experiment with 𝛼𝜏=1.5 are shown in Figs. 10a, 10b, 10c, and 10d, respectively. These anomalies 

are averaged over the tropical zone of 5 °S to 5 °N along the equator. During the first-eight-month "initial kick", the 345 

prescribed idealized El Niño-like SSTA (Fig. 3) drives the statistical atmospheric model to generate abnormal westerly 

winds east of the dateline (Fig. 10b). The anomalous westerly winds persist for eight months, transporting surface warm 

water eastward and increasing the sea surface height in the eastern equatorial Pacific (Fig. 10c). The eastward water transport 
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induced by anomalous westerly winds during the "initial kick" drives the ROMS model to produce an initial positive SSTA 

of 2 °C east of the dateline (Fig. 10a). The initial positive SSTA in the eastern Pacific subsequently triggers the ENSO cycle 350 

in the HCMROMS. Specifically, the simulated ENSO in the HCMROMS shows alternating occurrence of El Niño with a positive 

SSTA of 2 °C and La Niña with a negative SSTA of -1 °C, maintaining a stable quasi-three-year cycle (Fig. 10a). During the 

simulated El Niño and La Niña, anomalous westerly wind stress anomaly of 0.3 dyn cm-2 and easterly wind stress anomaly 

of -0.3 dyn cm-2 emerge around the dateline, the same as the observations (Figs. 6b and 10b). The abnormal westerly and 

easterly winds that occur near the dateline during El Niño and La Niña strengthen the eastward and westward equatorial 355 

water transport, contributing to the SSTA evolution associated with El Niño and La Niña, respectively (Fig. 10c). In 

addition, the surface heat flux anomaly with an amplitude of ±60 W/m2 is seen to dampen the positive and negative SSTAs 

associated with the simulated El Niño and La Niña, respectively (Fig. 10d). 

We note that incorporating the SSTA-𝝉𝑖𝑛𝑡𝑒𝑟  coupling in the HCMROMS can reduce the average SST in the western Pacific 

warm pool by 0.6~0.8 °C (Fig. 10a). This helps alleviate the overestimation of SST during the model spin-up due to the 360 

weaker climatological atmospheric forcing adopted in the model (Figs. 7 and 8), implying that ENSO may play a certain role 

in regulating the average state of the western Pacific warm pool and Pacific western boundary currents (Hu et al., 2015). 

Although it is not the focus of this study, the newly developed HCMROMS may serve as a potential tool to investigate the 

ENSO impacts on the western Pacific warm pool and Pacific western boundary currents in the future. 

 365 

 

Figure 10: Hovmöller diagram of simulated (a) SSTA, (b) zonal wind stress anomaly, (c) surface height anomaly and (d) surface 

heat flux anomaly averaged over the tropical zone of 5 °S to 5 °N along the equator for the sensitivity experiment with 𝜶𝝉=1.5. 
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To assess the simulated ENSO in the HCMROMS, following the method documented by Timmermann et al. (2018), we 370 

conducted an Empirical Orthogonal Function (EOF) analysis on the simulated SSTA from 9 to 30 years (three cycles after 

the "initial kick") of the sensitivity experiment with 𝛼𝜏=1.5. It shows that the leading EOF (Mode 1), contributing 49.97% to 

the variance, has a classic El Niño pattern (Fig. 11a) and exhibits variability on a quasi-three-year timescale (blue line in Fig. 

11c). The second EOF (Mode 2), contributing 14.31% to the variance, presents a tropical east-west zonal dipole (Fig. 11b) 

with enhanced variability on a 1.5-year timescale (orange line in Fig. 11c). The interplay between the first and second EOFs 375 

captures the spatial and temporal evolution of the simulated ENSO (Figs. 11d-g). The second EOF serves as an amplifier for 

the simulated warming anomaly in the equatorial eastern Pacific during El Niño, emphasizing the impacts of the Bjerknes 

feedback. Specifically, when the simulated El Niño onset (time coefficient of Mode 1 surpassing 1), the time coefficient of 

Mode 2 undergoes a transition from positive to negative, reaching its minimum of -2 one month after the time coefficient of 

Mode 1 achieving its maximum of 1.5 (Fig. 11c). The opposite-sign pattern of Mode 2 corresponds to the process wherein 380 

the Bjerknes feedback induces warming in the eastern equatorial Pacific and cooling in the western equatorial Pacific during 

El Niño, implying the second EOF may represent the effects of the Bjerknes feedback (Fig. 11b). However, this amplifying 

effect of the second EOF was absent during the simulated La Niña. Both Mode 1 and Mode 2 shared the same negative sign 

during the onset of simulated La Niña (time coefficient of Mode 1 falling below -1; Fig. 11c), with Mode 2 acting as a 

damper rather than amplifying the cooling in the eastern equatorial Pacific (Fig. 11f). This explains the asymmetry between 385 

simulated El Niño and La Niña in the HCMROMS, where the amplitude of the simulated Niño 3.4 index during El Niño 

surpasses that during La Niña (Figs. 9 and 10a).  

As a comparison, the first and second EOFs of the observed SSTA from 1980 to 2020 are shown in Figs. 12a and 12b, 

respectively. Notably, the simulated second EOF in HCMROMS fails to capture the influence of the Victoria mode compared 

to the observation (Figs. 11b and 12b). This discrepancy may arise from the limited model domain of the tropical Pacific (30 390 

°S to 30 °N; Fig. 3) used in this study, which results in the absence of extratropical processes in the HCMROMS (Ding et al., 

2017, 2019). Nevertheless, the EOFs of observed and simulated SSTA still share certain similarities. The first EOF of 

observed SSTA shows an El Niño pattern with a variance contribution of 43.90% (Fig. 12a) and the second EOF presents a 

tropical east-west zonal dipole with a variance contribution of 11.11% (Fig. 12b). In addition, the observed first and second 

EOFs have similar configurations (phase configuration of Mode 1 and Mode 2; the phase vectors shown in Figs. 12c-f) 395 

during El Niño and La Niña compared to the simulated EOFs (Figs. 11d and 11f). During the 1997/1998 and 2015/2016 El 

Niño events, the observed SSTAs feature positive Mode 1 and negative Mode 2 (phase vectors are in the third quadrant; 

Figs. 12c and 12e), while during the 1999/2000 and 2010/2011 La Niña events, they exhibit both negative Mode 1 and Mode 

2 (phase vectors are in the fourth quadrant; Figs. 12d and 12f), highlighting the asymmetrical role of Mode 2 during El Niño 

and La Niña. While the HCMROMS depicts the distinct functions of the second EOF during the simulated El Niño and La 400 

Niña (Figs. 11c, 11d, and 11f), complex factors may contribute to the mechanisms involved, which surpass the scope of this 

study. We currently abstain from further investigation into details, merely speculating that the asymmetry in the Bjerknes 

feedback during El Niño and La Niña, possibly coupled with extratropical processes, could affect these patterns. 
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Figure 11: Distribution of (a) first and (b) second EOF patterns of simulated SSTA in the sensitivity experiment with 𝜶𝝉=1.5, and 405 
(c) their time coefficients. (d-g) are spatial patterns of SSTA over the ENSO cycle. Vectors at the bottom right of (a-b, d-e) show 

the associated principal components (PCs). The abscissa is PC1, the ordinate is PC2, and the arrow length is the magnitude in 

PC1–PC2 space (an arrow magnitude of 1 is indicated by the circles).  

https://doi.org/10.5194/gmd-2024-187
Preprint. Discussion started: 10 December 2024
c© Author(s) 2024. CC BY 4.0 License.



20 

 

 

Figure 12: Distribution of (a) first and (b) second EOF patterns of observed SSTA, and spatial patterns of SSTA in (c) 1997/1998 410 
El Niño, (d) 1999/2000 La Niña, (e) 2015/2016 El Niño, and (f) 2010/2011 La Niña. 

 

In addition to the simulated interannual SSTA, the HCMROMS has the advantage of simulating the subsurface temperature 

changes associated with ENSO. Fig. 13 shows the evolution of 3D temperature anomalies over a complete ENSO cycle, 

spanning from month 141 to 174, in the sensitivity experiment with 𝛼𝜏=1.5. It shows that a subsurface warm anomaly forms 415 

along the 20 °C isotherm (black contour in Fig. 13) east of the dateline when the simulated El Niño onset (Figs. 13a-b). This 

subsurface warming intensifies with the simulated El Niño growth (Figs. 13b-c) and reaches its maximum of 3~4 °C, 

exceeding the surface warming of 2 °C, during the mature stage of the simulated El Niño (Figs. 13d-e). At the same time, a 

subsurface cooling of -3~-4 °C forms along the 20 °C isotherm west of the dateline (Figs. 13c-e). When the simulated El 

Niño decays, the subsurface cooling west of the dateline propagates eastward along the 20 °C isotherm, gradually 420 

counteracting the subsurface warming in the eastern equatorial Pacific (Figs. 13f-h). While in the simulated onset of La 

Niña, the subsurface cooling east of the dateline intensifies (Fig. 13i), reaching its peak cold anomaly of -2 °C during the 

mature stage of the simulated La Niña (Figs. 13j-k). Subsurface warming of 3~4 °C along the 20 °C isotherm west of the 

dateline emerges during the simulated La Niña (Figs. 13i-k). The subsurface warming west of the dateline offsets the La 
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Niña-related subsurface cooling in the equatorial eastern Pacific when the simulated La Niña decays (Fig. 13l). The 425 

aforementioned subsurface temperature changes associated with the simulated ENSO in HCMROMS closely align with the 

empirical observations (see Fig. 1 in Timmermann et al. (2018)), validating the HCMROMS model's ability to depict the 

intricate 3D temperature structure changes during the ENSO evolution. 

 

 430 

Figure 13: Three-dimensional temperature anomalies over the simulated ENSO cycle from month 141 to 174 in the sensitivity 

experiment with 𝜶𝝉=1.5. 

 

3.4 Budget Analysis on 3D Evolution of the Simulated ENSO 

To better understand the 3D temperature changes related to the simulated ENSO in the HCMROMS, a post-processing heat 435 

budget analysis for the interannual temperature anomaly has been developed in this study. The temperature evolution within 

the ROMS model is governed by the advective-diffusive equation:  

https://doi.org/10.5194/gmd-2024-187
Preprint. Discussion started: 10 December 2024
c© Author(s) 2024. CC BY 4.0 License.



22 

 

𝜕𝑇

𝜕𝑡⏟
𝑇_𝑟𝑎𝑡𝑒

= −�⃑� ∙ ∇𝑇⏟    
𝑇_𝑎𝑑𝑣

+ ∇ℎ ∙ (𝐾ℎ∇ℎ𝑇)⏟        
𝑇_ℎ𝑑𝑖𝑓

+
𝜕

𝜕𝑧
(𝐾𝑣

𝜕𝑇

𝜕𝑧
)

⏟      
𝑇_𝑣𝑑𝑖𝑓

+
𝑄𝑅
𝜌𝑤𝐶𝑝⏟  
𝑇_𝑠𝑜𝑙𝑎𝑟

     − − − − (3) 

where 𝑇  is the potential temperature; �⃑�  is the current vector; ∇  is the gradient operator; ∇ℎ  is the horizontal gradient 

operator; 𝐾ℎ and 𝐾𝑣 are respectively the horizontal and vertical diffusivities; 𝜌𝑤 is the seawater density; 𝐶𝑝 is the specific 440 

heat of seawater at constant pressure; and 𝑄𝑅 =
𝜕𝐹𝑆

𝜕𝑧
 is the radiative heating rate, where 𝐹𝑆 is the solar radiative heat flux in 

the ocean due to solar radiation penetration. The diagnostic terms of 𝑇_𝑟𝑎𝑡𝑒, 𝑇_𝑎𝑑𝑣, 𝑇_ℎ𝑑𝑖𝑓, 𝑇_𝑣𝑑𝑖𝑓, and 𝑇_𝑠𝑜𝑙𝑎𝑟 in Eq.3 

represent the temperature tendency, total (horizontal + vertical) advection, horizontal diffusion, vertical diffusion, and solar 

radiative heating, respectively. We do not separate the total advection effect into the horizontal and vertical components due 

to the interconnected nature of these two terms on the monthly time scale, such a separation does not yield additional 445 

interpretability (figs. not shown). The above diagnostic terms are direct outputs of the HCMROMS, which can greatly reduce 

the budget error. 

We note that the impacts of long-wave radiation and latent and sensible heat fluxes on the temperature changes in the ROMS 

model are also included in Eq.3 because these surface heat fluxes serve as the upper boundary condition of the vertical 

diffusion term 𝑇_𝑣𝑑𝑖𝑓 as:  450 

𝐾𝑣
𝜕𝑇

𝜕𝑧
|
𝑧=𝜁

=
𝐿𝑊 + 𝐿𝐻 + 𝑆𝐻

𝜌𝑤𝐶𝑝
     − − − − (4) 

where 𝜁 is the sea surface height, 𝐿𝑊 is the long-wave radiation flux, 𝐿𝐻 and 𝑆𝐻 are the latent and sensible heat fluxes 

calculated by the bulk heat flux formulas Eq.1 and Eq.2, respectively.  

The ENSO-related interannual temperature changes in the HCMROMS can be diagnosed using the following interannual form 

of the budget equation:  455 

[𝑇_𝑟𝑎𝑡𝑒] = [𝑇_𝑎𝑑𝑣] + [𝑇_ℎ𝑑𝑖𝑓] + [𝑇_𝑣𝑑𝑖𝑓] + [𝑇_𝑠𝑜𝑙𝑎𝑟]      − − − − (5) 

where [∗] denotes the interannual operator, which means the simulated values subtract their climatological mean. The 

climatological mean of the budget terms utilized in Eq.5 are long-term monthly mean averaged over the last 10 years of the 

spin-up. We do not show [𝑇𝑠𝑜𝑙𝑎𝑟] in this study as the solar radiative heat flux in the ocean is calculated by an empirical 

irradiance absorption scheme with fixed attenuation depth (see Table. 2 in Paulson and Simpson (1977)) and the solar 460 

radiation forcing at the sea surface is derived from the climatology monthly COREv2 data and thus has no interannual 

variability.  

During the simulated onset of El Niño (months 141-153; Figs. 13a-e), the [𝑇_𝑟𝑎𝑡𝑒] shows a positive temperature tendency of 

2×10-7 ℃ s-1 to the east of the dateline, with a maximum warming rate of 3×10-7 ℃ s-1 at the depth of 150 m between 150-

120 °W (Fig. 14a), reflecting the 3D temperature changes. The positive [𝑇_𝑟𝑎𝑡𝑒] east of the dateline leads to an increase in 465 

the upper ocean temperature, deepening the mean depth of the 20 °C isotherm (red solid line) by 20 m in the eastern Pacific 

compared to the simulated climatology (grey solid line; averaged over the same month of the year during the last ten years of 

the spin-up). Meanwhile, a negative temperature tendency of -2×10-7 ℃ s-1 is obtained west of the dateline, resulting in 
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additional cooling and reducing the mean depth of the 20 °C isotherm by 20 m west of the dateline (Fig. 14a). The budget 

analysis indicates that the [𝑇_𝑟𝑎𝑡𝑒] pattern in Fig. 14a is primarily influenced by the advection effect [𝑇_𝑎𝑑𝑣], wherein the 470 

abnormal westerly winds around the dateline (Fig. 10b) during the onset of El Niño induce eastward advection anomalous, 

leading to the warming (cooling) to the east (west) of the dateline (Fig. 14e). The simulated warming in the subsurface layer 

exceeding that of the surface during El Niño (Figs. 13a-e) is due to the vertical diffusion effect [𝑇_𝑣𝑑𝑖𝑓]. Since the surface 

heat flux damping during El Niño works to reduce the SST (Fig. 10d), vertical mixing transports the damping effects from 

the surface to the deeper layers, partly counteracting the warming in the upper ocean (Fig. 14i). 475 

 

 

Figure 14: Vertical cross-section plots of the (a-d) tendency, (e-h) advection, (i-l) vertical diffusion, and (m-p) horizontal diffusion 

of the interannual temperature budget equation (Eq. 5). 

 480 

In the decay phase of the simulated El Niño (months 153-162; Figs. 13e-h), both advection and vertical diffusion effects play 

constructive roles in shaping the dipole-type temperature changes (Figs. 14b). With the reduction of abnormal westerly 
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winds during El Niño decay (Fig. 10b), prevailing easterly winds east to the dateline (i.e., trade winds) facilitate westward 

water transport in the equatorial Pacific. The advection effect [𝑇_𝑎𝑑𝑣] counteracts the accumulated subsurface warming in 

the eastern Pacific by transporting warm water to the western Pacific. The descent of warm water around the dateline raises 485 

the subsurface temperature in the western Pacific (Fig. 14f). As for the vertical diffusion effect, due to the SST still being 

warmer than normal during the El Niño decay, the surface heat flux and thus the vertical diffusion effect [𝑇_𝑣𝑑𝑖𝑓] continues 

to cool the upper ocean (Fig. 10d and 14j).  

As for the La Niña period, the budget analysis suggests the advection and vertical diffusion effects play similar roles during 

La Niña onset (Figs. 14c, g, and k) and decay (Figs. 14d, h, and l), but with opposite signs, compared to those in the El Niño 490 

period. The horizontal diffusion effect [𝑇_ℎ𝑑𝑖𝑓] is not discussed as it only appears in the subsurface west of 150 °E and has 

a limited impact on ENSO evolution (Figs. 14m-p). 

4. Conclusions 

In this study, we developed a new HCM using the advanced ocean model ROMS (HCMROMS) to simulate ENSO. Within the 

HCMROMS framework, the ROMS model was coupled with an SVD-based statistical atmospheric model, capturing 495 

interannual atmospheric perturbations, including wind stress and FWF anomalies (i.e., 𝝉𝑖𝑛𝑡𝑒𝑟  and 𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟). A turbulent 

heat flux module, employing bulk approximation and wind-stress-inversed wind speed, was incorporated in the HCMROMS to 

address the damping effects of surface heat flux on ENSO dynamics. We executed five sensitivity experiments, adjusting the 

interannual wind stress coupling coefficient 𝛼𝜏  ranging from 1.0 to 2.0, to determine the optimal 𝛼𝜏  for reproducing 

sustainable interannual variabilities in the HCMROMS. A post-processing budget scheme for the interannual temperature 500 

anomaly was also developed to analyse processes responsible for ENSO-related 3D temperature changes. 

We first examined the performance of the statistical atmospheric model in reproducing the ENSO-related interannual 

forcing. The retrieved zonal wind stress and FWF anomalies using the statistical atmospheric model forced by the observed 

SSTA from 1980 to 2020 were compared with observed values from the NCEP/NCAR reanalysis. The SVD-based statistical 

atmospheric model replicates the observed anomalous westerly winds originating from the dateline during the major El Niño 505 

events of 1982/1983, 1997/1998, and 2015/2016, and the abnormal easterly winds near the dateline in the major La Niña 

events of 1988/1989, 1998/1999, 1999/2000, 2007/2008, and 2010/2011. The statistical atmospheric model also reproduces 

the ENSO-related FWF anomaly dipole during El Niño and La Niña. The correlation coefficient between the observed and 

simulated zonal wind stress anomalies is 0.62 (p<0.01) and the correlation coefficient for the observed and simulated FWF 

anomalies is 0.68 (p<0.01). 510 

The ROMS model performance in simulating the mean and seasonal temperatures in the tropical Pacific was also assessed 

by comparing the simulated climatology with the WOA observations. Although there is a notable overestimation of 1 °C in 

the mean SST of the western Pacific warm pool during the model spin-up, possibly due to the weaker climatological forcing 

adopted in the model, the ROMS model replicates the observed SST distribution and the vertical temperature structures 
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along the equator. The simulated 20 °C isotherm deepens in the western equatorial Pacific, with a maximum depth of 180 m 515 

west of the dateline. The simulated 20 °C isotherm depth decreases away from the dateline, reaching a minimum depth of 50 

m along the coast of Peru at 90 °W. The ROMS model captures the observed semi-annual SST variation of ±0.5 °C in the 

western equatorial Pacific and the annual SST variation of ±3 °C in the eastern equatorial Pacific. The semi-annual SST 

variation in the western equatorial Pacific is attributed to the sun's biannual crossing of the equator while the annual SST 

variation in the eastern equatorial Pacific is driven by the effects of trade-wind-induced upwelling. 520 

Sensitivity experiments with different 𝛼𝜏  values indicate that the optimal 𝛼𝜏 =1.5 can produce sustainable interannual 

variabilities in the HCMROMS. With the 𝛼𝜏 set at 1.5, a stable quasi-three-year ENSO cycle, characterized by alternating 

occurrence of El Niño with a positive SSTA of 2 °C and La Niña with a negative SSTA of -1 °C, exists in the HCMROMS 

after the first-eight-month model "initial kick". During the simulated El Niño and La Niña, anomalous westerly wind stress 

anomaly of 0.3 dyn cm-2 and easterly wind stress anomaly of -0.3 dyn cm-2 emerge around the dateline. Surface turbulent 525 

heat flux anomaly of ±60 W/m2 appears in the eastern Pacific to dampen the positive and negative SSTAs associated with 

the simulated El Niño and La Niña, respectively. 

EOF analysis was utilized to evaluate the HCMROMS performance in replicating ENSO-related interannual variability. It 

revealed that Mode 1 of the simulated SSTA, accounting for 49.97% of the variance, displays a classic El Niño pattern and 

demonstrates variability on a quasi-three-year timescale. Mode 2 explaining 14.31% of the variance, depicts a tropical east-530 

west zonal dipole with heightened variability on a 1.5-year timescale. Although the simulated Mode 2 in HCMROMS fails to 

capture the influence of the Victoria mode, possibly due to the absence of extratropical processes from the limited model 

domain of the tropical Pacific. The EOFs of observed and simulated SSTA share certain similarities, including close 

variance contributions and similar phase configurations. Mode 2 represents the Bjerknes feedback serves as an amplifier 

during El Niño but acts as a damper during La Niña. The distinct functions of Mode2 explain the asymmetry between 535 

simulated El Niño and La Niña in the HCMROMS. 

The HCMROMS reproduces the 3D temperature changes during ENSO evolution, revealing that the most significant 

temperature anomalies occur beneath the surface at 150 m. The budget analysis indicates that the interannual temperature 

tendency [𝑇_𝑟𝑎𝑡𝑒] is primarily influenced by the advection effect [𝑇_𝑎𝑑𝑣] driven by interannual wind stress. The vertical 

diffusion effect [𝑇_𝑣𝑑𝑖𝑓] also contributes to the formation of subsurface anomaly maxima. However, the primary role of 540 

[𝑇_𝑣𝑑𝑖𝑓] is not to amplify cold or warm anomalies within the subsurface layer. Instead, it works to diminish these anomalies 

within the upper ocean due to the damping effects of turbulent heat flux. Anomalies induced by advection effects in the 

upper ocean are counteracted by the vertical diffusion effect, resulting in the appearance of subsurface maxima. 

The newly developed HCMROMS provides an effective tool for representing and simulating ENSO in the tropical Pacific 

climate system. In this study, we focus on the SSTA-𝝉𝑖𝑛𝑡𝑒𝑟  coupling, while excluding the FWF effects by setting 𝛼𝐹𝑊𝐹=0. 545 

The SSTA-𝐹𝑊𝐹𝑖𝑛𝑡𝑒𝑟  coupling also impacts ENSO and can be flexibly included in the HCMROMS. Further exploration of the 

FWF effects using the HCMROMS as a tool will be presented in a future study. In addition, the ROMS model has advantages 

in modeling multi-scale ocean physical as well biogeochemistry processes, such as mesoscale eddies, tropical instability 
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waves and ocean biology-induced heating effects. The interactions between multi-scale processes and ENSO will also be a 

focal point of future research utilizing the HCMROMS as a flexible modeling tool. 550 

Code and data availability 

The Optimum Interpolation Sea Surface Temperature (OISST) data can be downloaded from the National Centers for 

Environmental Information interface at https://www.ncei.noaa.gov/products/optimum-interpolation-sst. The SODA3 data 

was provided by the UMD Ocean Climate Lab at https://www2.atmos.umd.edu/~ocean/. COREv2 data was provided by 

NCAR and is available at https://climatedataguide.ucar.edu/climate-data/corev2-air-sea-surface-fluxes. The ICOADS data is 555 

from the National Oceanic and Atmospheric Administration (NOAA) at https://icoads.noaa.gov/.download.  

The HCMROMS code is available via Zenodo at https://doi.org/10.5281/zenodo.14184175 (Yu, 2024) or GitHub at 

https://github.com/clarkyuchina/ROMS-HCM. Interested users can contact the corresponding author for further assistance.  
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