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Abstract. The atmospheric forcing and the heat exchanges between the ocean and the atmosphere represent one of the major 

sources of uncertainty for numerical ocean reconstructions and predictions., together with inaccuracies in vertical mixing and 

solar radiation penetration. Air-sea heat fluxes may suffer from inaccuracies in meteorological fields, sea surface variables, 10 

and bulk formulations, which have a strongly non-linear dependence on the ocean state. Here, state-dependent errors of the 

heat fluxes are learned by artificial neural networks (ANN) from a dataset of heat flux correction terms, derived in turn from 

previous sea surface temperature nudging experiments. The pre-trained model predictors include stationary fields, atmospheric 

forcing data, ocean state, and stratification indices. Variable importance scores emphasize the dependence of the air-sea heat 

flux errors on the wind forcing. The pre-trained model of heat flux correction is then used to adaptively correct the fluxes 15 

online, in a series of global ocean experiments performed with the NEMO version 4 (Nucleus for European Modelling of the 

Ocean) ocean general circulation model, augmented with ANN inference capabilities. in Fortran90. Results indicate the 

positive impact of the correction procedure, beyond the training period, e.g., in independent observation-poor and -rich periods, 

leading to the same dynamicaldynamic and subsurface signature as in nudging experiments. Prediction experiments also 

indicate the method's potential for operational forecast applications. The method may also be adopted in coupled long-term 20 

reanalyses, long-range predictions, and projections. 

Short summary. Inaccuracies in air-sea heat fluxes severely downgradedegrade the accuracy of ocean numerical simulations. 

Here, we use artificial neural networks to correct the air-sea heat fluxes as a function of oceanic and atmospheric state 

predictors. The correction successfully improves surface and subsurface ocean temperatures beyond the training period and in 

prediction experiments. 25 

1 Introduction 

The ocean and the atmosphere interact by exchanging momentum, heat, and freshwater. These interactions drive the ocean 

circulation and ventilation (e.g., Marzocchi et al., 2021), its energy and water budgets, which are crucial, in turn, to 

understanding the ocean's role in Earth's climate and its variability over a wide range of spatial and temporal scales (e.g., 
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Roberts et al., 2016; Small et al., 2019). Unfortunately, direct measurements of these fluxes are only available in limited buoy 30 

locations, making their global and precise estimate a challenging problem (Cronin et al., 2019). Typically, air-sea fluxes are 

estimated using bulk flux parameterizations, which rely on near-surface meteorological variables, obtained from numerical 

weather prediction systems or atmospheric reanalyses (e.g., Yu, 2019). Bulk formulations are strongly non-linear, and there 

are significant uncertainties in these parameterization-based flux estimates; (e.g., Huber and Zanna, 2017); when averaged 

over ocean basins, heat fluxes may result in considerable imbalances (see, e.g., Kato et al., 2013; Storto et al., 2016; Valdivieso 35 

et al., 2017). Inaccuracies in ocean model vertical mixing and solar radiation penetration schemes interplay with the 

inaccuracies in the air-sea fluxes, and may further amplify the sea surface errors (e.g., Deppenmeier et al., 2020, Jia et al., 

2021), inducing in turn additional errors in the fluxes (e.g.,, Richards et al., 2009). 

For both retrospective ocean simulations (e.g., OMIP, Ocean Model Intercomparison Project, Griffies et al., 2016), long-term 

reanalyses (Storto et al., 2021) and coupled model simulations (e.g., CMIP, Coupled Model Intercomparison Project, Small et 40 

al., 2019), inaccuracies insystematic errors at the air-sea heat flux calculationsurface affect ocean heat redistribution 

(convection, stratification, and large-scale circulation), potentially compromising climate change signals (Storto et al., 2016; 

Carton et al., 2018). Errors inat the air-sea heat fluxesinterface thus remain among the most critical sources of uncertainty for 

many numerical ocean applications, including climate monitoring (e.g., Hakuba et al., 2024) and operational forecasting (e.g., 

Lewis et al., 2019; Lin et al., 2023; Ohishi et al., 2024). 45 

Attempts to empirically correct errors in the fluxes have generally developed along two directions: i) bias-correction 

methodologies applied directly to ocean variables, i.e. correcting the effects of the air-sea heat flux systematic errors, see e.g. 

Balmaseda et al. (2007); ii) calibrating atmospheric reanalyses through comparison with observed climatology (Large and 

Yeager, 2009; Brodeau et al., 2010; Tsujino et al., 2018). Both strategies have their merits and weaknesses; bias-correcting 

ocean variables requires an adequate and dense ocean observing network, namely relying on the Argo float network limited to 50 

the last ~15 yearsperiod from ~2005 onwards, and cannot be used for attributing ocean model errors to specific processes; on 

the other hand, calibrating atmospheric reanalyses can mitigate errors in the atmospheric forcing, but not in the bulk formula 

approximations, and therefore is only partially able to improve air-sea heat fluxes. Stochastic approaches can also, to some 

limited extent, improve the estimation of air-sea heat fluxes through rectification of the mean ocean state (Agarwal et al., 2023; 

Storto and Yang, 2023). 55 

In this work, we use a state-of-the-science ocean general circulation model to showcase the idea of finding a predictor-

correction empirical relationship, formulated in terms of neural networks, to correct the non-solar component of the air-sea 

heat fluxes. and reduce the sea surface temperature biases. As neural networks have been proven to be universal approximators 

of any function (Hornik et al., 1989), they represent an obvious and flexible choice to model non-linear relationships between 

the atmospheric and oceanic states and the heat flux errors. Indeed, previous workswork (Bonavita and Laloyaux, 2020; Chen 60 

et al., 2022) have; Chapman and Berner, 2024) has shown their ability to infer systematic errors in atmospheric models. The 

use of data assimilation increments was also demonstrated to be a robust strategy to learn such errors, with both theoretical  

(e.g., Mitchell and Carrassi, 2015) and practical (Farchi et al., 2021; Chapman and Berner, 2024) arguments. The relationship 
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is learned offline from present-day ocean model simulations that exploit the availability of space-borne sea surface temperature 

to estimate a corrective heat flux term. The correction is then tested online in ocean model simulations, for periods beyond the 65 

learned (training) one. 

The article’s structure is as follows: after this Introduction, Section 2 describes the modeling system, the neural network setup, 

the relevant datasets, and the experimental setup. Section 3 summarizes the results of the reconstruction of the corrective heat 

flux terms and the online correction experiments, while Section 4 discusses and concludes. 

2 Materials and Methods 70 

2.1 The NEMO model and the nudging scheme 

In this work, we use the NEMO ocean model (version 4.0.7, Madec et al., 2017) including the sea-ice dynamic and 

thermodynamic model SI3. NEMO is implemented on the ORCA1 grid (at about 1/3°-1° of horizontal resolution, with 

refinement in the Tropics), with 75 vertical depth levels and partial steps (Barnier et al., 2006). We use the same model 

configuration as in the CIGAR reanalysis (Storto and Yang, 2024), briefly recalled here. The surface boundary conditions are 75 

calculated through the CORE bulk formulas (Large and Yeager, 2009) implemented in the AEROBULK package (Brodeau et 

al., 2016), using meteorological variables extracted from the ECMWF ERA5 atmospheric reanalysis (Hersbach et al., 2020). 

The river discharge from land is provided by the JMA JRA-55-do reanalysis (Tsujino et al., 2018). The model setup includes 

i) a 3-band RGB scheme for the net shortwave radiation, with extinction coefficients that depend on a monthly climatology of 

chlorophyll; ii) the TKE scheme for the vertical mixing; (Gaspar et al., 1990); iii) a Laplacian operator and a bi-Laplacian 80 

operator for tracers and momentum, respectively. We use the same ocean model setting and parameters as the CIGAR 

reanalysis (Storto and Yang, 2024). 

In the NEMO model, the air-sea heat flux can be optionally corrected with a nudging scheme (see e.g., Storto et al., 2016b). 

In practice, the net heat flux is decomposed into a penetrative (solar) component and a non-penetrative (non-solar) component. 

The non-solar component, which includes latent, sensible, and net longwave heat flux, can be corrected as: 85 

𝑄𝑛𝑠
′ = 𝑄𝑛𝑠 + 𝑄𝑟𝑝 = 𝑄𝑛𝑠 + 𝜅 (𝑆𝑆𝑇𝑜 − 𝑆𝑆𝑇)         (1) 

where the misfit between the observed (𝑆𝑆𝑇𝑜 ) and modeled (𝑆𝑆𝑇 ) sea surface temperature, multiplied by the nudging 

coefficient (or strength) 𝜅, represents the corrective flux 𝑄𝑟𝑝 added to the uncorrected non-solar flux. SST nudging is still a 

popular assimilation methodology for many climate-scale applications, where the use of gap-filled SST data ensures temporal 

consistency of the simulated ocean state compared to the direct assimilation of SST measurements (see, e.g., Yang et al., 2017). 90 

A 2000-2020 experiment (referred to as REF) with nudging to the SST data from the UKMO HadISST dataset (Rayner et al., 

2003) was conducted, with a nudging coefficient equal to 100 W m -2 K-1, which roughly corresponds to a 20-day relaxation 

time scale for a 50 m deep mixed layer. Note that nudging coefficients may be related to error characteristics and set up in a 

statistically optimal way (e.g., Zou et al., 1992; Vidard et al., 2003), although here, for the sake of simplicity, the nudging 
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coefficient 𝜅 is spatially and temporally constant. Additionally, preliminary experiments considered usingtested the use of 95 

alternative SST datasets, for instance, the NOAA DOISST v2.1 (Huang et al., 2021), but those using HadISST provided the 

best results, and are the only ones considered in the remainder of the article. 

Correcting air-sea heat fluxes effectively accounts for multiple sources of bias in the modelled sea surface temperature (SST), 

including potential errors in vertical mixing and other oceanic processes. Since the bias is assessed against observations without 

possible attribution to a specific error source, the method serves as a general SST bias correction strategy. Additionally, the 100 

correction is applied to the air-sea heat flux rather than directly modifying the SST tendency. Direct SST tendency corrections 

are generally unsatisfactory, as they require arbitrary assumptions about vertical propagation - such as confinement within the 

mixed layer - or risk being nullified by air-sea interactions (see, e.g., Waters et al., 2015; Storto and Oddo, 2019). Adjusting 

air-sea heat fluxes is therefore a customary and physically consistent practice in ocean general circulation models; similar 

approaches are indeed used also by state estimation systems, such as ECCO4 (Forget et al., 2015), which employs observations 105 

to correct heat flux components. 

2.2 Artificial Neural Networks 

The artificial neural network (ANN) employs a feed-forward architecture to infer the corrective flux 𝑄𝑟𝑝  using several 

predictors, whereas the. The gridded predictors (ocean model fields) are unrolled but contain to form independent columns 

(gridpoint-wise data) and the geographical information aboutis retained through the geographical location, the so-110 

calledaddition of longitude and latitude as predictors. This approach was referred to as column neural networks as in(e.g., 

Bonavita and Laloyaux (, 2020). ConsequentlyIn the ANN, 𝑄𝑟𝑝 will not depend any longer on SST observations but on several 

input predictors, representative of the atmospheric and oceanic states. , and detailed below. 

We grouped the predictors ininto several categories, listed in Table 1, to represent different sources of errors: i) stationary 

errors (location and day of the month); ii) surface temperature and its diurnal cycle; iii) heat flux components; iv) atmospheric 115 

wind forcing; v) surface salinity and the freshwater components; vi) ocean stratification and its diurnal cycle. Within the ANN 

training, the input variables are taken as daily means from the REF experiment (with SST nudging enabled), except the 

variables referring to diurnal amplitudes (defined as the maximum value minus the minimum value, at hourly frequency, within 

each day). The output fields used for training the ANNs are the 𝑄𝑟𝑝 fields from the REF experiment, taken as the average 

between the same day as the predictors and the following day, to be assuming it is nominally valid at 24:00 (the end of each 120 

daily window). No sea-ice predictors are used, as it is expected that over (midnight UTC).  

Over sea-ice-covered areas, the heat flux corrections vanish, due to the use of a sea-ice-based weighting function - that zeroes 

the correction for non-zero values of the sea-ice maskconcentration - in the construction of the 𝑄𝑟𝑝 fields in the REFnudging 

experiment; this. The nudging experiment is also used in the training of the ANN, thus resulting in negligible corrections 

therein. Additionally, no sea-ice predictors are used. This is because sea surface temperature data beneath sea ice are 125 

extrapolated from sea ice concentration data and are less reliable (Rayner et al., 2003). 
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After a preliminary comparison of different model architectures (not shown), the best-scoring neural network model includes 

3 hidden layers (5 total), 256 neurons (considering an input size of 24 features and an output size of 1), and uses the recti fied 

linear unit (ReLU) activation function in all layers but the last one. All input and output variables were normalized by their 

global mean and standard deviation. During the training, we used daily means, subsampled every 5 days during the period 130 

2003-2017; while, at the same temporal frequency, the years 2001, 2002, 2017, and 2018 were used for validation within the 

ANN training, and 2019-2020 as independent test datasets.  

We tested the impact of the correction frequency and training dataset’s timescale in preliminary experiments with the NEMO 

model and the online ANN’s correction of 𝑄𝑟𝑝 with the pre-trained ANN, where; we aimed to assess the impact of high 

temporal frequency in the inference step, ranging from monthly to daily sets of predictors-corrections, and investigate the 135 

impact of the frequency of the inference step in NEMO from daily to 3-hourly. The results are reportedsummarized in Figure 

1, in terms of global sea surface temperature RMSE, during the independent verification period 2019-2020. We 

increasinglyprogressively improve the performancesperformance of the ANN-based inference in NEMO, closely approaching 

the REF experiment with SST nudging, by increasing both the temporal frequency of the predictor-correction datasets and the 

temporal frequency of the inference step. The best results are obtained for daily sets of predictors-corrections and 3-hourly 140 

inference step frequency. Note that we cannot increase it further, because 3 hours is the frequency of the surface boundary 

condition calculation in our configuration of NEMO. 

Next, we show in Figure 2 the error maps of the inferred heat flux correction from test (i.e., independent) data. The Normalized 

RMSE (panel a) shows errors smaller than 10%, and on average equal to 4% (corresponding to 1.36 W m-2); while errors peak 

in areas of large mesoscale activity (western boundary currents and the Antarctic Circumpolar Current, ACC), there exist other 145 

non-obvious local peaks. The systematic error of the ANN reconstructions is very low (panel c), generally not exceeding 0.7 

W m-2, indicating that the RMSE is explained primarily by random errors (panel d shows the standard deviation of the 

differences). Note that the grid-point-wise correction implies that the smoothness of the ANN-based correction depends on 

that of the predictors, i.e. the model fields; we verified the high consistency between the original output and the NN-inferred 

one even in individual snapshots (not shown). 150 

After a preliminary comparison of different model architectures (not shown), the best-scoring neural network model includes 

3 hidden layers (5 total), 256 neurons (considering an input size of 24 features and an output size of 1), and uses the recti fied 

linear unit (ReLU) activation function in all layers but the last one. All input and output variables were normalized by their 

global mean and standard deviation. During the training, we used daily means, subsampled every 5 days during the period 

2003-2017; while, at the same temporal frequency, the years 2001, 2002, 2017, and 2018 were used for validation within the 155 

ANN training, and 2019-2020 as independent test datasets.  

Table 1 reports the list of predictors, grouped into categories, together with their impact in terms of Variable Importance Scores 

(VIS). VIS for the predictors is calculated through the permutation-based method of Fisher et al. (2019), through the vip R 

package (Greenwell and Boehmke, 2020), applied on the entire pre-trained model, or pointwise for each model grid-point (see 

Table 1’s caption for details). The Total VIS refers to the VIS over the full columnar ANN model, while the local VIS is 160 



 

6 

 

calculated for each gridpoint by fixing the longitude-latitude pair to the corresponding gridpoint. The different VIS results 

respond to different questions, i.e. the Total VIS indicates the global impact of each predictor on the final ANN. Diagnosing 

local VIS allows investigating the regional patterns of variable impact, and Table 1 also reports its spatial average values.  

The explainability results for the entire pre-trained model suggest a large impact from static data, wind forcing, and 

temperature; a significant impact from the heat flux components, and a relatively smaller impact from salinity, freshwater 165 

fluxes, and ocean stratification.  

There may exist, however, non-exclusive attributions of the errors to the predictors, as important correlations between 

parameters exist. For instance, VIS for temperature may partly indicate errors in climatological flux (due to the climatological 

state of the sea surface) or air-sea heat flux (e.g., the upward longwave heat flux); the wind forcing may also explain systematic 

errors in, e.g., latent heat flux; and so on for other correlated fields. Due to the strong non-linearitymultivariate nonlinearities 170 

of air-sea interactions (e.g., wind stress depending on both near-surface winds and local temperatures via nonlinear bulk 

formulas), these correlations are not reducible, and we take the practical approach to diagnose their impact as it comes from 

the VIS metrics. In some cases predictors respond to very similar processes, although not identical either (e.g., wind stress and 

wind speed differ from the use of sea surface currents in the former, etc.). 

Figure 23 shows the most impactingimpactful predictors as a function of longitude and latitude (both individual predictors and 175 

categories). This indicates that in most of the global ocean, the most important predictor is associated with wind forcing (either 

wind speed or stress). Interestingly, mesoscale active areas (e.g., western boundary current regions and the Antarctic 

Circumpolar Current, ACC) exhibit turbulent heat fluxes (latent and sensible heat) as the dominant predictor, consistently with 

the large influence of ocean mesoscale dynamics in air-sea exchanges therein (see, e.g., Frolov et al., 2021). In many coastal 

regions, the most important predictor is associated with freshwater fluxes. Only a few grid points exhibit another dominant 180 

predictor.  

Figure 34 shows the individual impact of each predictor (in %), disclosing interesting spatial patterns, closely related to 

physical and dynamical processes. For instance, the mixed layer depth appears important near the Equator, likely related to 

ENSO variability; precipitation's impact is relevant in correspondence to the ITCZ (Inter-tropical convergence zone) likely 

due to its possible misplacement, and around the maritime continent. Eastern boundary upwelling systems are impacted by the 185 

solar heat flux, and the diurnal and seasonal variability (namely, the SST diurnal amplitude and the day of the year, 

respectively). The salinity flux is relevant over marginal ice zones, in both polar regions, associated with ice-ocean freshwater 

and heat exchanges; river runoff impacts the flux errors in the proximity of the shorelines. Sensible heat flux dominates in 

areas of strong mesoscale activity. 

2.3 Experimental setup 190 

Several experiments were run with the NEMO ocean model equipped with new functionalities, to store in a rolling array the 

predictors at the desired temporal frequency (see also section 2.2 and Figure 1). We use an in-house Fortran90 library (see the 

Code availability section) for online inference from the pre-trained model. The, given that the NEMO model is coded in 

ha formattato: Tipo di carattere: 10 pt, Non Grassetto
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Fortran, and this eases the online inference step. In detail, the prediction step is natively implemented in Fortran90 as an 

additional NEMO module to avoid the need for external software interfaces. The pre-trained model is read in at the beginning 195 

of the NEMO model integration; then, every 3 hours, the inference routine is called with the predictors average over the latest 

24 hours as input. The inferred corrective flux is then added to the uncorrected (bulk formula-derived) non-solar heat flux 

component, every 3 hours.  

The experiments with the ANN-based heat flux correction, presented hereafter, are named NNC (Neural Network-based 

Correction) and cover four different scenarios: i) validation in the training phase (self-consistency), i.e. during the period 2002-200 

2018; ii) validation in the test phase (independent verification), i.e. during the period 2019-2020, after the training period; iii) 

validation in earlier periods, where no dense SST data were available (1961-1979), aiming to test the impact of the new method 

for retrospective simulations and reanalyses, without any memory in the ocean state initialization; iv) validation in predict ion 

experiments, namely 7-day forecasts initialized every 10 days in 2021 and 2022 from the data assimilation-enabled CIGAR 

reanalysis (Storto and Yang, 2024) and forced at the sea surface by the ECMWF operational forecasts replacing the ERA5 205 

reanalyses used in the scenarios i), ii) and iii). These setups allow us to provide a full assessment of the methodology for 

different applications (long- or short-term simulations, historical reanalysis, and operational oceanography). 

Further to NNC, we show results from REF (standard SST nudging enabled), CTRL (no corrections), and CLIMC 

(climatological corrections). The latter corrects the air-sea heat fluxes with a monthly climatology of corrections derived from 

the REF experiment, representing a linear benchmark for the methodology used in the NNC experiment. 210 

3 Results 

3.1 Contemporary simulations 

The reconstruction of corrective fluxes with the pre-trained model is shown in Figure 45, which indicates the close 

correspondence between the SST nudging-derived and the neural network inferred fields, during the full period 2001-2020. 

Large corrections occur in mesoscale active areas (with large but not exclusive role of turbulent heat fluxes, see Figures 23 215 

and 34), the North Atlantic subpolar gyre (with significant role of freshwater-related predictors, see Figure 34), in the Tropical 

and Southern Oceans. Signs are in general reversed in the Northern and Southern Hemispheres during the winter and summer 

seasons (namely, the non-solar heat fluxes are underestimated in wintertime and over-estimated in summertime, because of 

generally cold and warm biases of sea surface temperature, respectively). The seasonality of the corrections in deep convection 

areas suggests also systematic misrepresentation of convective processes therein, with much too deep mixed layer in the North 220 

Atlantic oceans, and more complex patterns in the Southern Ocean and ACC region. 

The application of the correction leads to satisfying bias correction during the independent verification period 2019-2020, as 

shown in Figure 56. Large negative biases in the Gulf Stream, Kuroshio Extension, and central Tropical Pacific, plus locally 

in the Southern Ocean, present in CTRL are equally mitigated in REF and NNC, and likewise for warm biases in the eastern 

regions of Tropical basins, in the Indian Ocean, and locally elsewhere. Over the mid-latitudes, SST biases approach zero, while 225 
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elsewhere the remaining biases that the SST data ingestion was not able to mitigate in the REF experiment are reproduced also 

in the NNC experiment. The global mean absolute error (MAE) over 2019-2020 decreases from 0.37°C in CTRL to 0.20°C 

and 0.19°C in NNC and REF, respectively, while CLIMC exhibits a MAE of 0.23°C. Differences between NNC and REF 

experiments are very small and limited only to polar areas (north of 60°N and south of 60°S), where the NNC corrections are 

small by construction. 230 

The effects of the correction are also well reproduced in the ocean stratification, shown in Figure 67 in terms of mixed layer 

depth differences in March and September 2020 compared to the CTRL experiment. Either the SST assimilation or the neural 

network-based heat flux corrections induce an identical shift in the deep convection areas; in the Southern Ocean, during 

September 2020, a westward shift is visible in the Pacific sector; other local adjustments are visible in both the Atlantic and 

Indian sectors of the ACC region. Adjustments are also visible in the Atlantic subpolar gyre, where enhanced convection 235 

appears in the Iceland basin and Irminger Sea, equally present in both REF and NNC experiments, along with attenuated 

mixing south of the Labrador Sea.  

The global ocean heat content (OHC) anomaly interannual variations are visible in Figure 78 and show that NNC and REF 

lead to the same linear trends, and seasonal and interannual variations. Neglecting air-sea heat flux corrections in CTRL 

produces underestimated global ocean warming (0.15 W m-2), which is identically corrected in NNC and REF (0.41 and 0.43 240 

W m-2, respectively). Using climatological corrections only partly mitigates the warming under-estimation (0.33 W m-2), 

resulting in an intermediate solution. The correlation of OHC anomalies with respect to independent datasets such as the 

CIGAR reanalysis is also equally improved (from 0.48 in CTRL to 0.92 in NNC and REF). This suggests that the subsurface 

signature of the correction method is identical to the original nudging experiment. 

Similarly, the global overturning circulation (Figure 89) shows again the same behavior for the REF and NNC experiments, 245 

indicating that also the dynamical signature of our approach provides the same results as in the assimilation experiment REF. 

The assimilation of the SST observations in REF reduces the North-South Hemisphere contrast of the overturning circulation 

(panel b in Figure 89), which is equally found in NNC. 

Finally, the impact is evaluated against fully independent data, namely in-situ profiles extracted from the UKMO EN4 dataset 

(Good et al., 2013), during the period 2019-2020. This is shown in Figure 910 (left panels) where the RMSE of CTRL is 250 

shown, together with the differences of RMSE between REF or NNC minus CTRL. Negative (positive) values indicate an 

improvement (deterioration) borne by the correction method. The figure indicates the comparable impact of the SST nudging 

and the neural network correction on reducing the errors in the subtropical and mid-latitude regions, with the sub-surface 

Tropics less impacted by the corrections. 

3.2 Retrospective simulations 255 

Retrospective simulations were conducted to evaluate the potential of the method for long-term historical simulations, e.g., for 

OMIP- and CMIP-like exercises, and in multi-decadal reanalyses where the paucity of observation data in early periods limits 

the impact of conventional data assimilation and cannot take advantage of space-borne satellite measurements of SST. To this 
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end, the same set of experiments presented earlier is performed for the period 1961-1979, initialized by the same initial 

conditions in 1961 taken from previous simulations.  260 

We show the impact of NNC in terms of RMSE decrease versus the CTRL experiment in Figure 910, compared also, as an 

independent reference, to the CIGAR reanalysis (Storto and Yang, 2024) that assimilates all in-situ surface and sub-surface 

observations, and includes a deep-ocean large-scale bias-correction scheme. Improvements are present everywhere in NNC, 

except in the high-latitude 100-300 m depth layer, although smaller than CIGAR, especially in the Northern Hemisphere. The 

total average improvement (RMSE decrease) in the top 300 m of depth, compared to CTRL, is 22% for CIGAR and 7% for 265 

NNC, meaning that about one-third of the improvement borne by assimilating the full oceanic observing network and applying 

conventional bias-correction is achieved with the neural network-based correction. The improvement is remarkable at all 

latitudes, also in the sub-surface Tropical region where the correction over the more recent years 2019-2020 failed to provide 

significant improvement (middle-left panel in Figure 9).10). Finally, Figure 10 also shows a 1961-1979 experiment with 

nudging to COBE SST (Ishii et al., 2005; experiment NDG); the results show a positive impact of the nudging scheme, although 270 

it is generally smaller than the use of ANN to correct the sea surface biases. 

3.3 Forecast experiments 

Forecast experiments are set up with the same model configuration but different initialization and forcing as detailed in Section 

2.3. The correction is then applied online within the forecasts, as a proof-of-concept for operational purposes. Unlike the 

nudging scheme that depends on observational data and cannot be used in forecasts, the ANN-based correction depends only 275 

on the oceanic and atmospheric states, thus it can be adopted in operational forecasting systems. 

Sea surface temperature errors (verified against mapped satellite data from DOISST v2.1, Huang et al., 2021) as a function of 

forecast lead time (Figure 1011) indicate that NNC provides improvements comparable to nudging – shown as a benchmark –

,– except in the NorthNorthern Hemisphere Extra-TropicsExtratropics, likely because of the intense mesoscale variability. The 

climatological corrections (CLIMC) fail to improve the CTRL experiment, as they cannot adapt to the variations of the 280 

atmospheric forcing in the forecast experiments. Compared to CTRL and considering the errors given by the climatology 

(dashed lines in the panels of Figure 1011), the NNC scheme extends the horizon of useful forecasts by about 1 day in all 

regions. The impact of the method increases with the forecast lead time, suggesting that the approach might be fruitfully 

applied in long-range forecasting systems (sub-seasonal and beyond), although it should be demonstrated that coupled 

feedbacks in the case of Earth System models do not compromise the algorithm. 285 

Similar results are found in the verification against in-situ profiles for the upper ocean (sea surface to 50 m of depth), shown 

in Figure 1112. The top 50 m exhibit significant improvement in the Southern extra-TropicsExtratropics and the Tropics, with 

an improvement borne by NNC increasing with forecast lead time. In the Northern extra-tropicsExtratropics, the ANN 

correction leads to negligible improvements. 
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4 Summary and Discussion 290 

In this work, we propose an algorithm to correct air-sea heat fluxes by letting a neural network pre-trained model learn the 

relationships between ocean and atmospheric state predictors and heat flux corrective terms, estimated from a previous 

experiment that adopted sea surface temperature nudging to estimate and apply such terms. The predictors include several 

oceanic and atmospheric variables representative of the heat, freshwater, momentum fluxes, ocean temperature and salinity, 

and stratification. A feed-forward column neural network architecture is adopted, and the NEMO ocean general circulation 295 

model is augmented with online inference capability to allow collecting predictors and inferring corrections of the air-sea heat 

fluxes, based on the pre-trained model. Variable Importance Scores indicate the large impact that wind forcing has on the 

errors in most parts of the global ocean, with other variables dominating locally, e.g. turbulent fluxes in mesoscale active areas 

and freshwater fluxes near the coasts. 

The online use of the correction in the experiments indicates that the approach successfully reproduces the surface, sub-surface, 300 

and dynamical signature of the SST correction, even beyond the training data period. The corrections are by construction 

representative of all SST errors that are corrected in the nudging experiments, namely not only the heat flux inaccuracies bu t 

also other errors related for instance to vertical mixing, solar radiation penetration, etc. 

Next, the approach is demonstrated in early periods (1960s and 1970s) where surface temperature data are sparse, to mimic a 

long-term simulation or reanalysis application. In this context, the methodology provides a significant improvement in 305 

subsurface temperature errors, roughly equal to one-third of the improvement in a corresponding reanalysis system where all 

available observations are directly assimilated.  

We also showcase the method in short-range prediction experiments, where observations cannot be used to correct the forecast 

step; the methodology is proven to significantly reduce surface and subsurface temperature errors, at a negligible extra 

computational cost and without the use of any observational information, increasing the SST predictability of about 1 day at 310 

all latitudes. Subsurface errors are also mitigated everywhere except in the Northern Extra-tropicsExtratropics. 

We have demonstrated as well the significant impact of online inference, which allows high-frequency (3-hourly) updates of 

the correcting fields. For this reason, testing different model architectures, e.g., those relying on convolutional layers, which 

require MPI communication across NEMO domains inside the convolutional filters, was technically complex and demanding. 

It is not obvious whether convolutional layers are beneficial compared to grid-point-wise corrections (see, e.g., different 315 

conclusions in Chen et al., 2022; Chapman and Berner, 2024), as the potential advantage of retaining horizontal patterns is 

balanced by the computational needs of coarsening the spatial resolution. In the future, more sophisticated inference libraries 

and tools for online prediction are expected to be available, paving the way for testing different neural network architectures. 

While ANNs cannot provide improvements compared to the data assimilative experiments that are learning from, their use is 

appealing for several different applications that cannot rely on the observational input: simulations and projections, and multi-320 

decadal reanalyses spanning early periods with scarce observations, as demonstrated in this article. Coupled model experiments 

may benefit from the method as well, although possible drawbacks from non-linear coupled feedback may arise, which need 
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to be assessed in detail. Additionally, in the futureHowever, applying this method within a coupled ocean-atmosphere model 

may benefit climate drift correction (e.g., Gupta et al., 2013) but introduces additional complexities due to nonlinear coupled 

feedback. In a coupled model, the atmosphere could respond to modified fluxes in a nonlinear and potentially unpredictable 325 

manner. Heat flux corrections that work well in an uncoupled system may introduce unintended biases when the atmosphere 

reacts dynamically, potentially leading to unrealistic SST adjustments. Atmospheric variability (e.g., cloud cover, wind stress, 

and humidity) will alter in response to changes in SST, which could impact the efficacy of the ANN-based correction. 

Corrections applied at short timescales may also have long-term impacts on coupled modes of variability (e.g., ENSO, MJO).  

To make the ANN approach more suitable for coupled applications, it could be retrained using data from coupled model 330 

reanalyses (e.g., CMIP simulations or CERA reanalysis datasets, Laloyaux et. al., 2016), or observations (e.g., Zhou et al., 

2024). This would allow the ANN to learn heat flux corrections in a system where atmospheric responses are accounted for, 

in analogy with flux correction or flux adjustment techniques (e.g., Sausen et al., 1988). The ANN-based correction could be 

implemented to maintain the overall coupled energy balance while addressing systematic errors. 

Additionally, the algorithm could include corrections also to freshwater and momentum fluxes, subject to long and reliable 335 

datasets of e.g. sea surface salinity and currents to first estimate their corrections, whose availability is limited now. 

The method represents the first attempt to leverage data assimilation correction increments, in this case from SST nudging, to 

learn systematic errors in ocean models attributable to inaccuracies in air-sea flux computations.. It is also expected that higher-

resolution implementations than that presented here may further benefit from the ANN compared to climatological corrections, 

due to their higher spatial and temporal variability. While providing good results in hindcast mode compared to the control 340 

experiment, climatological corrections fail in predictive experiments without proper retuning and re-computation through 

computationally expensive re-forecast experiments. This in turn suggests the possibility of extending the approach for 

calibrating forecasts without the need for long re-forecasts. 

Further extension of the approach will consider full column increments for three-dimensional corrections, not only associated 

with heat fluxes but also vertical physics and model parametrizations; while this has been proven successful in atmospheric 345 

(e.g., Chen et al., 2022) and sea-ice (Gregory et al., 2023) applications, ocean implementations are more challenging due to 

scarce observing networks in the ocean interior, potentially hampering the use of analysis increments at depth, which is an 

active area of investigationsinvestigation at the moment. 
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Code availability 350 

The NEMO model is available through the official website https://www.nemo-ocean.eu; version 4.0.7, used in this study, can 

be downloaded at  

http://forge.ipsl.jussieu.fr/nemo/changeset/15814/NEMO/releases/r4.0/r4.0-HEAD?old_path=%2F&format=zip.  

In-house modifications to the NEMO model code as used in the experiments presented here – including the module for ANN-

based corrections, plus other modifications – are available as a git repository at 355 

https://baltig.cnr.it/nemo_ismar-rm/nemo_4.0.7/-/tree/3.0?ref_type=tags  

There are several additional modifications than just the ANN-correction routine, which can be found in the dnnqcorr module.  

The ANN correction routine can be however isolated taking only the modules dnnqcorr.F90, and adding the call to dnn_qcorr 

in sbcmod. 

The library for online inference in Fortran90 used in our NEMO experiments is available as a git repository at 360 

https://baltig.cnr.it/andrea.storto/nnt4nemo/-/tree/main/F90_Inference  

It includes the ANNIF module for reading pre-trained ANN in NetCDF format, plus inference routines and their tangent-linear 

and adjoint versions. 

The frozen version of both source codes, together with the scripts and the data to analyze and plot the results presented in the 

figures, are available as a dataset at Zenodo as https://doi.org/10.5281/zenodo.13380698. 365 

Data availability 

Atmospheric fields from ECMWF to force the ocean have been taken from the Climate Data Store (CDS, 

https://cds.climate.copernicus.eu) archive (ERA5) and the operational archive (operational forecasts, see www.ecmwf.int). 

SST data are available from the U.K. Met Office Hadley Centre (https://www.metoffice.gov.uk/hadobs/hadisst). For 

verification purposes, we used SST analyses from the NOAA DOISSTv2 dataset 370 

(https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html) and in-situ profiles from the U.K. Met Office EN4 dataset 

(https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-2.html). 
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Category Predictors Total VIS (%) 

Gridpoint-

averaged Local 

VIS (%) 

Stationary Lon, Lat, Time 30 7 

Temperature SST, OHC, SST_da 22 12 

Salinity SSS, OSC 4 1 

Heat flux Qlat, Qsen, Qlw, Qsw, Qemp 11 18 

Freshwater 

flux 
Precip, Runoff, Salt flux, 6 16 

Wind forcing Stress modulo, Wind speed, SSH 26 44 

MLD MLD, MLD_da 1 2 

 

Table 1. List of predictors, grouped by categories, with their aggregated Variable Importance Score (VIS), given as percent impact, 520 

both as the impact on the pre-trained model (Total VIS), and averaged over the global domain from the pointwise application 

(Gridpoint-averaged Local VIS). MLD: mixed layer depth; OHC: ocean heat content; SSS: sea surface salinity; OSC: ocean salt 

content; SSH: sea surface height; the suffix _da refers to diurnal amplitude. The Total VIS refers to the VIS over the full columnar 

ANN model, while the local VIS is calculated for each gridpoint by fixing the longitude-latitude pair to the corresponding gridpoint 

separately. The different VIS results respond to different questions, i.e. either the global impact of each predictor on 525 

the final ANN, or the spatial average of local variable importance. Diagnosing local VIS allows investigating maps of variable impact 

(see Figures 2 and 3). 
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Figure 1. Sea surface temperature globally averaged RMSE for preliminary experiments, over the independent verification period 

2019-2020. M-* experiments and D-* experiments refer to the use of monthly versus daily averaged nudging increments in the ANN 

training; the second string in the experiment name (30d, 20d, …, 3h) refers to the length of the predictor rolling archive; the last 535 

letter refers to the frequency of the update in the online experiments (“D” as daily, “S” as sub-daily, namely every 3 hours). 
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Figure 2. Error maps of the reconstructed heat flux correction with test data, namely independent data from the training during 

2019-2020. a) normalized RMSE (dimensionless); b) RMSE in units of heat flux (W m-2); c) bias (W m-2); d) standard deviation of 

the differences between original heat flux correction and those reconstructed with the ANN (W m-2). 

  545 

ha formattato: Tipo di carattere: Grassetto

Formattato: Rientro: Prima riga:  0 cm, SpazioPrima:  0 pt,
Motivo: Trasparente



 

21 

 

 

 

 

Figure 23. Dominant predictors identified by Variable Importance Scores (by individual predictor, panel a, and by predictor 

categories, panel b), from the optimal pre-trained model described in the text. The predictors’ list is as in Table 1, but for the sake 550 

of clarity only those predictors with at least one dominant gridpoint are considered in panel a). 
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 555 

Figure 34. Variable Importance Score (VIS, in % values) for each predictor used in the neural network pre-trained model, as a 

function of grid point (namely, fixing the values of longitude and latitude). VIS maps are used to locally attribute different sources 

of air-sea heat flux errors to the predictors. 
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Figure 45. Reconstructed heat flux correction fields versus the original ones from the REF (a, b) and NNC (c, d) experiments, for 

JFM (a, c) and JJA (b, d),) seasonal climatologies, during the 2002-2020 period. 
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Figure 56. SST Bias over the independent period 2019-2020 against the SST observations (from UKMO HadISST), for the three 

experiments CTRL (panel a), REF (panel b), and NNC (panel c). 570 
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Figure 67. Mixed layer depth differences with respect to the CTRL experiment during March 2020 (panels a, c) and September 2020 575 

(panels b, d), for experiments REF (panels a, b) and NNC (panels c, d). 
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Figure 78. Global ocean heat content anomaly vertically integrated over the period 2001-2020 for the four experiments presented in 

the text, as monthly (thin lines) and yearly (thick lines) means. 
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Figure 89. Reconstructed global overturning circulation (in Sverdrups, with 1 Sv = 1E+6 m3 s-1) for the CTRL (a), and as a 

difference between CTRL and REF (b), or NNC (c) experiments. 
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Figure 910. Temperature RMSE as a function of latitude and depth for the CTRL experiments (top panels) and for the period 2019-595 

2020 (left) and 1961-1979 (right), and differences between CTRL and REF or NNC (left) and NNC or REA or NDG (right) for their 

respective periods. REA is the CIGAR reanalysis., while NDG only ingests mapped in-situ SST data from the COBE dataset (Ishii 

et al., 2005). 
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Figure 1011. Forecast skill score metrics (RMSE), for sea surface temperature at different latitudinal bands, as a function of forecast 

lead time, for the experiments presented in the text. The dashed line corresponds to the RMSE of climatology, i.e. for values of 

RMSE greater than the climatology the forecasts are not useful. Note that the REF experiment is shown as a benchmark, but its 605 

setup cannot be used in operational experiments, as it relies on future observations.  
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Figure 1112. As Figure 1011 but for the verification against in-situ profiles in the top 50 m of depth. 


