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 2 

Abstract. The development, implementation, and evaluation of a new weakly coupled ocean data 13 

assimilation (WCODA) system for the fully coupled Energy Exascale Earth System Model version 2 14 

(E3SMv2) utilizing the four-dimensional ensemble variational (4DEnVar) method are presented in this 15 

study. The 4DEnVar method, based on the dimension-reduced projection four-dimensional variational 16 

(DRP-4DVar) approach, replaces the adjoint model with the ensemble technique, thereby reducing 17 

computational demands. Monthly mean ocean temperature and salinity data from the EN4.2.1 reanalysis 18 

are integrated into the ocean component of E3SMv2 from 1950 to 2021, with the goal of providing 19 

realistic initial conditions for decadal predictions and predictability studies. The performance of the 20 

WCODA system is assessed using various metrics, including cost function reduction, root mean square 21 

error (RMSE) differences, correlation differences, and model biases. Results indicate that the WCODA 22 

system effectively assimilates the reanalysis data into the climate model, achieving consistently negative 23 

cost function reductions and notable improvements in RMSE and correlation across various ocean layers 24 

and regions. Significant enhancements are observed in the majority of global ocean regions, particularly 25 

in the North Atlantic, North Pacific and Indian Ocean. Model biases in sea surface temperature and 26 

salinity are also substantially reduced. Furthermore, analysis of the connections between the ocean states 27 

and the regional climate over the US shows that the WCODA system improves the simulation of 28 

interannual precipitation and temperature variability over the southern US. The ultimate goal of the 29 

WCODA system is to advance the predictive capabilities of E3SM for subseasonal-to-decadal climate 30 

predictions, thereby supporting research on strategic energy-sector policies and planning.  31 
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 3 

1 Introduction 32 

Climate predictions are essential for understanding and mitigating the impacts of climate variability 33 

and change. The accuracy and reliability of climate predictions depends strongly on the initialization of 34 

the climate models, which requires realistic and high-quality initial conditions (ICs) for skillful 35 

predictions (Dirmeyer et al., 2018). Data assimilation (DA) techniques are important for providing 36 

realistic ICs by integrating observational data into the model, thereby enhancing the predictive 37 

capabilities of climate models (Tardif et al., 2014). The efficacy of DA techniques has been demonstrated 38 

through enhanced predictability on subseasonal to decadal timescales (Zhou et al., 2024). 39 

Numerous studies have focused on the initialization of climate models for decadal predictions 40 

(Branstator and Teng, 2012; Polkova et al., 2019). Climate models integrate multiple components, 41 

including the atmosphere, ocean, sea ice, and land. For the initialization of climate models in decadal 42 

predictions, DA methods can be categorized into uncoupled data assimilation and coupled data 43 

assimilation (CDA). In the uncoupled method, DA is performed independently within the uncoupled 44 

atmosphere, land and ocean models rather than in a coupled model. The optimal analyses from these 45 

uncoupled models are then integrated together to establish the ICs for the climate model's predictions 46 

(Yao et al., 2021). For example, some studies directly utilize existing reanalysis data to initialize climate 47 

models for decadal predictions (Yeager et al., 2012; Tian et al., 2021). Nevertheless, the uncoupled DA 48 

method may lead to imbalances between different model components, potentially inducing initial shocks 49 

and diminishing the reliability of climate predictions (Smith et al., 2015; Zhang et al., 2020). Therefore, 50 

there is a growing interest in exploring and developing CDA methods to enhance the coherence and 51 

accuracy of the ICs for climate predictions. 52 

Many research groups and institutions are actively engaged in the development and refinement of 53 

CDA methods. In CDA, the assimilation process is conducted directly within a coupled model. Compared 54 

to uncoupled DA, CDA provides balanced ICs that are more coordinated across multiple components of 55 

coupled models (Zhang et al., 2014). Previous studies have demonstrated that CDA enhances interannual 56 

climate predictions more effectively than uncoupled DA (Zhang et al., 2005; Shi et al., 2022). CDA 57 

techniques are divided into weakly coupled data assimilation (WCDA) and strongly coupled data 58 

assimilation (SCDA). In the WCDA system, reanalysis data is assimilated independently within each 59 
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component of the coupled model. However, through the coupled model integration, reanalysis 60 

information from one component is transmitted to other components through interactions across multiple 61 

systems (Browne et al., 2019; He et al., 2020). Sequential DA is distinctly partitioned into two primary 62 

stages: the analysis and forecast steps. During the WCDA analysis step, reanalysis information from one 63 

component can not directly influence other components due to the lack of cross-component background 64 

error covariances. Nonetheless, the coupled model is employed during the forecast step to transfer 65 

reanalysis information from single component to others through the integration of the coupled system 66 

(Laloyaux et al., 2016; Carrassi et al., 2018). The primary distinction between WCDA and uncoupled 67 

DA is the use of the coupled model during the forecast step (Zhang et al., 2020). Recent studies have 68 

developed WCDA systems that separately assimilate reanalysis data from the atmosphere (Li et al., 2021), 69 

land (Shi et al., 2024), and ocean (He et al., 2017) into coupled models. On the other hand, SCDA 70 

employs cross-component background error covariances during the analysis step to directly exert an 71 

instantaneous impact of reanalysis information from single component on the state variables of other 72 

components, treating all Earth system components as an integrated whole (Sluka et al., 2016). Moreover, 73 

SCDA also allows reanalysis information from single component to propagate to other components 74 

during the forecast step through the coupled model integration (Yoshida and Kalnay, 2018). Therefore, 75 

SCDA offers potential benefits, including reduced model drift and enhanced forecast accuracy (Smith et 76 

al., 2015). Nevertheless, the development of SCDA presents considerable obstacles, primarily due to the 77 

complexity of accurately establishing cross-component background error covariances (Penny and Hamill, 78 

2017). As a result, most existing CDA systems continue to employ the WCDA systems. 79 

This study presents the development and implementation of the weakly coupled ocean data 80 

assimilation (WCODA) system for the fully coupled Energy Exascale Earth System Model version 2 81 

(E3SMv2), utilizing the four-dimensional ensemble variational (4DEnVar) method. The 4DEnVar 82 

method is based on the dimension-reduced projection four-dimensional variational (DRP-4DVar) 83 

approach, notable for its innovative application of 4DVar by replacing the adjoint model with the 84 

ensemble approach (Wang et al., 2010). In the WCODA system, monthly mean ocean temperature and 85 

salinity data from the EN4.2.1 reanalysis are incorporated into the ocean component of E3SMv2 to 86 

provide realistic ICs for decadal predictions. Although the assimilation process during the analysis step 87 
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is conducted independently within the ocean component, the fully coupled E3SMv2 model is employed 88 

during the forecast step to transmit reanalysis information from the ocean to other components (e.g., 89 

atmosphere and land) through multi-component interactions. Consequently, the reanalysis information 90 

assimilated into the ocean ICs affects other model components through the integration of the fully 91 

coupled model, emphasizing the operation of this system as a WCDA system. The primary objective of 92 

this WCODA system is to advance our understanding of the ocean's role in climate predictability. Shi et 93 

al. (2024) implemented a weakly coupled land data assimilation in E3SMv2 for isolating the land’s role 94 

in climate predictability. By improving the accuracy of ICs for both land and ocean, we aim to advance 95 

the predictive capabilities of E3SM for decadal predictions, ultimately supporting research on energy-96 

sector policy and planning. 97 

This study presents and evaluates the 4DEnVar-based WCODA system for E3SMv2. Section 2 98 

provides a detailed description of the E3SMv2 model, the ocean reanalysis data, and the framework of 99 

implementing the 4DEnVar-based WCODA system. Section 3 evaluates the assimilation performance of 100 

the WCODA system. Finally, Section 4 provides the conclusions. 101 

 102 

2 Methodology 103 

2.1 E3SM Overview 104 

Developed by the U.S. Department of Energy, the Energy Exascale Earth System Model version 2 105 

(E3SMv2) is a state-of-the-art climate model to advance our understanding of climate variability and its 106 

future changes (Leung et al., 2020). E3SMv2 integrates multiple components to simulate the complex 107 

interactions within the climate system, encompassing the atmospheric, sea ice, ocean, land, and river 108 

transport components. The atmospheric component (EAMv2) employs sophisticated representations of 109 

turbulence, clouds, and aerosol processes (Zhang et al., 2023) and features a nonhydrostatic dynamical 110 

core (Taylor et al., 2020). It operates on a dynamic grid with a horizontal resolution of approximately 111 

110 km and includes 72 vertical layers that extend to the stratosphere (Golaz et al., 2022). The sea ice 112 

component (MPAS-SI) simulates the formation, evolution, and melting of sea ice, with detailed 113 

thermodynamics and dynamics processes (Turner et al., 2022). The ocean component (MPAS-O) is 114 

responsible for modeling the physical state and biogeochemical processes of the ocean, including detailed 115 
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simulations of ocean currents, temperature, and salinity (Reckinger et al., 2015). The land component 116 

(ELMv2) encompasses various land surface processes, including biophysical processes, soil processes, 117 

and surface hydrology (Golaz et al., 2019). These simulations are crucial for understanding land-118 

atmosphere interactions and their impact on climate variability. Additionally, the river transport 119 

component (MOSARTv2) simulates the hydrological dynamics of water flow through river basins, 120 

providing insights into freshwater resources, flood risks, and sediment transport (Li et al., 2013). The 121 

CPL7 coupler dynamically integrates all five components through regulating the exchange of energy, 122 

water, and momentum fluxes between different components (Craig et al., 2012). The comprehensive 123 

evaluation of the E3SMv2 model is presented from Golaz et al. (2022). 124 

 125 

2.2 Ocean Reanalysis Dataset 126 

The ocean temperature and salinity data in this study are derived from the EN4.2.1 ocean reanalysis 127 

dataset. Produced by the Met Office Hadley Centre, the EN4.2.1 dataset integrates observations from 128 

diverse sources such as Argo floats, ship-based measurements, and satellite data (Good et al., 2013). 129 

These observations undergo rigorous quality control procedures to ensure the accuracy and reliability of 130 

the EN4.2.1 reanalysis (Chen et al., 2020). The comprehensive coverage and high resolution of the 131 

EN4.2.1 reanalysis are instrumental for representing the vertical and temporal dynamics of ocean 132 

temperature and salinity. The EN4.2.1 reanalysis datasets have been extensively validated and are 133 

commonly utilized in numerous climate research (Good et al., 2013; Armour et al., 2016). 134 

To initialize decadal climate predictions, monthly mean ocean temperature and salinity data from 135 

the EN4.2.1 reanalysis are assimilated into the fully coupled E3SMv2 model across sixty ocean layers 136 

from 1950 to 2021. The choice to utilize monthly mean reanalysis data is based on two primary reasons: 137 

Firstly, data with higher temporal resolution (less than one month) might produce unwanted noise, 138 

potentially compromising the accuracy of decadal predictions. Secondly, the initialization for decadal 139 

predictions requires assimilation cycles spanning several decades, and assimilating complex, real-time 140 

observations over such extended periods would be computationally prohibitive. Therefore, in line with 141 

most existing studies that use reanalysis data for initializing decadal predictions (Pohlmann et al., 2019; 142 

Tian et al., 2021), this study assimilates the monthly mean EN4.2.1 reanalysis through the WCODA 143 
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system for decadal predictions. 144 

 145 

2.3 Implementation of the 4DEnVar-based WCODA System 146 

The 4DEnVar method employed by the WCODA system is derived from the DRP-4DVar 147 

assimilation approach. The DRP-4DVar technique addresses the high computational demands of 148 

traditional 4DVar by employing an ensemble approach rather than utilizing the adjoint model, 149 

significantly reducing the computational resources required for implementation (Wang et al., 2010). This 150 

advanced method enhances computational efficiency by projecting the high-dimensional state space onto 151 

a lower-dimensional subspace defined by an ensemble of historical samples. DRP-4DVar achieves an 152 

optimal solution within this sample space by aligning observations with model-generated historical time 153 

series over a four-dimensional window (Wang et al., 2010). The DRP-4DVar approach has been 154 

effectively implemented across multiple numerical models, demonstrating its accuracy and effectiveness 155 

(Zhao et al., 2012; Shi et al., 2021; Zhu et al., 2022). The comprehensive explanation of the DRP-4DVar 156 

method is provided in Wang et al. (2010). The DRP-4DVar method has also been implemented in a 157 

weakly coupled land data assimilation system in E3SMv2 (Shi et al., 2024). 158 

Figure 1 illustrates the workflow of the 4DEnVar-based WCODA system utilizing the DRP-4DVar 159 

approach within the fully coupled E3SMv2 model. The DRP-4DVar algorithm requires three primary 160 

inputs: observational innovation (𝑦"!"#$ ), model background (𝑥"), and perturbation samples. Initially, fully 161 

coupled E3SMv2 simulation is conducted for one month to generate both the model background (𝑥") 162 

and observational background (𝑦"). Specifically, the model background (𝑥") refers to the monthly initial 163 

condition prior to data assimilation, while the observational background (𝑦") denotes the monthly mean 164 

model states. Subsequently, the observational innovation (𝑦"!"#$ ) is calculated as the difference in monthly 165 

mean ocean salinity and temperature between the EN4.2.1 reanalysis (𝑦!"#) and the monthly mean 166 

model states (𝑦"). From 100 years of balanced pre-industrial control (PI-control) simulations, 30 sets of 167 

monthly mean forecast samples ( 𝑦"$ ) are selected based on their highest correlations with the 168 

observational innovation. More specifically, the monthly mean forecast samples are computed by 169 

removing the long-term PI-control monthly climatology from the selected PI-control monthly mean 170 

output, which are then divided by the observational error. The observational error is computed based on 171 
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the statistical variance and covariance of the EN4.2.1 reanalysis. Correspondingly, 30 sets of monthly 172 

initial condition samples (𝑥$) for the monthly mean forecast samples are derived. The analysis increment 173 

is calculated within the perturbation samples, which consist of 30 monthly initial condition samples and 174 

their corresponding monthly mean forecast samples. Due to the limited number of samples and to 175 

diminish the influence of spurious correlations between distant grid points, a localization procedure is 176 

incorporated into the assimilation process (Wang et al., 2018). Finally, the DRP-4DVar algorithm solves 177 

for the analysis increment within the sample space, which is then added to the model background to 178 

produce the optimal analysis (𝑥%). 179 

Figure 2 delineates the assimilation process using the DRP-4DVar method within the 4DEnVar-180 

based WCODA system for the fully coupled E3SMv2 model. This assimilation process includes both the 181 

analysis and forecast steps through each one-month assimilation window. In the initial stage, the fully 182 

coupled E3SMv2 model employs the model background (𝑥") as the monthly initial condition to run for 183 

one month, producing the monthly mean model outputs for ocean temperature and salinity (𝑦"!&'). During 184 

the analysis step, the observational innovation (𝑦!"#$ ) is computed by comparing the discrepancies 185 

between the EN4.2.1 reanalysis (𝑦!"#!&' ) and the model's monthly mean outputs (𝑦"!&' ) for ocean 186 

temperature and salinity. The DRP-4DVar algorithm then utilizes this observational innovation and the 187 

PI-control samples to compute the optimal analysis of the ocean component (𝑥%!&') at the start of the 188 

assimilation window. During the subsequent forecast step, the optimal analysis (𝑥%) includes both the 189 

optimal ocean analysis (𝑥%!&') and the background states of other components prior to assimilation. This 190 

optimal analysis serves as the new initial condition for the fully coupled E3SMv2 model to run for one 191 

month to generate the next month's forecast. During this fully coupled model integration, reanalysis 192 

information from the ocean component is transmitted to the other model components through interactions 193 

across multiple systems. Although the assimilation is directly applied to the ocean component, the use of 194 

the initial conditions of all components from the optimal analysis and the fully coupled climate model 195 

during the forecast step ensures that the reanalysis information from the optimal ocean analysis 196 

influences other components through interactions across multiple systems. Therefore, according to the 197 

definition of the WCDA system from previous studies (Carrassi et al., 2018; Zhou et al., 2024), this 198 

assimilation system is designated as the WCODA system. Using the same DA approach, Shi et al. (2024) 199 
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documented the implementation of DRP-4DVar as a weakly coupled land data assimilation system in 200 

E3SMv2. 201 

 202 

2.4 Experiment Design 203 

Two distinct numerical experiments are performed in this study to assess the effectiveness of ocean 204 

data assimilation within the 4DEnVar-based WCODA system. (1) The control simulation (CTRL) is a 205 

free-running fully coupled integration over a 72-year period from 1950 to 2021, driven exclusively by 206 

observed external forcings. This free-running simulation allows unrestricted interactions among the 207 

various Earth system components, including the atmosphere, land, and ocean. The CTRL simulation 208 

serves as a baseline for evaluating the assimilation effectiveness of the WCODA system. (2) The 209 

assimilation experiment (ASSIM) incorporates monthly mean ocean temperature and salinity data from 210 

the EN4.2.1 reanalysis into the ocean component of the fully coupled E3SMv2 model across sixty ocean 211 

layers. This assimilation is conducted using a one-month assimilation window, covering the same 72-212 

year period from 1950 to 2021. At the beginning of each monthly assimilation window, the EN4.2.1 213 

reanalysis information is incorporated into the ocean state variables, after which the fully coupled model 214 

continues with free integration. During this free integration process, the reanalysis information 215 

assimilated into the ocean ICs influences other model components through interactions across multiple 216 

systems. The historical external forcings for both the ASSIM and CTRL experiments are derived from 217 

the CMIP6 protocol (Guo et al., 2020). 218 

 219 

2.5 Assessment Criteria 220 

To comprehensively evaluate the effectiveness of the WCODA system, multiple quantitative metrics 221 

are employed, including the root mean square error (RMSE), correlation coefficient, and cost function 222 

reduction. The reduction rate of the cost function serves as a fundamental measure to assess the 223 

assimilation system's accuracy, calculated using the formula: 224 

																															
1
2 (𝑦!"# − 𝑦%)

(𝑹)*(𝑦!"# − 𝑦%) −
1
2 (𝑦!"# − 𝑦")

(𝑹)*(𝑦!"# − 𝑦")
1
2 (𝑦!"# − 𝑦")

(𝑹)*(𝑦!"# − 𝑦")
																																		(1) 225 

Here, 𝑦!"#  denotes the EN4.2.1 reanalysis, 𝑦"  represents the pre-assimilation observational 226 
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background, 𝑦%  indicates the post-assimilation monthly mean model analyses, and 𝑹  denotes the 227 

observation error covariance matrix. Negative values of the cost function reduction signify the successful 228 

integration of reanalysis data into the model's state variables. To validate the correctness of this 229 

assimilation system, the EN4.2.1 reanalysis continues to be utilized as the reference data for evaluation. 230 

 231 

3 Results 232 

3.1 Cost Function Reduction 233 

In Figure 3, the monthly variation in the reduction rate of the cost function for the 4DEnVar-based 234 

WCODA system is presented for the 72-year period from 1950 to 2021. A negative value of the cost 235 

function reduction signifies the successful assimilation of reanalysis data into the coupled model. The 236 

cost function reduction rate reaches -12.03% in the first month. Over the entire 72-year period from 1950 237 

to 2021, the average monthly cost function reduction rate is -4.20% for all months in ASSIM. More 238 

importantly, the reduction rate of the cost function remains negative in each month of assimilation, 239 

underscoring the effectiveness and stability of the WCODA system. These findings demonstrate the 240 

successful implementation of the WCODA system, confirming that the EN4.2.1 reanalysis data have 241 

been effectively integrated into the fully coupled model. 242 

 243 

3.2 Performance of RMSE Differences 244 

Figure 4 illustrates the RMSE differences of monthly ocean temperature between ASSIM and CTRL 245 

from 1950 to 2021 across nine ocean layers. Negative values indicate a reduction in RMSE, signifying 246 

improvements due to assimilation, while positive values denote an increase in RMSE, indicating 247 

degradations. Overall, the assimilation from the WCODA system leads to marked improvements in ocean 248 

temperature simulations across most global regions. Both upper and deeper ocean layers exhibit 249 

widespread negative RMSE differences, indicating improvements after assimilation, particularly in the 250 

tropical and mid-latitude ocean regions. Notable regions of improvement include the North Atlantic, 251 

tropical and North Pacific, Indian Ocean, and parts of the Southern Ocean. In the deeper layers, this 252 

pattern of improvements persists, though with more pronounced degradation observed in the South 253 

Atlantic and specific areas of the southern Pacific Ocean. This degradation in the deeper layers may be 254 

https://doi.org/10.5194/gmd-2024-183
Preprint. Discussion started: 18 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 11 

attributed to larger observational errors in these regions or limitations in the model's ability to accurately 255 

represent deep-ocean dynamics (Wunsch and Heimbach, 2007; Balmaseda et al., 2013). 256 

The RMSE differences for ocean salinity between ASSIM and CTRL across various ocean layers 257 

are presented in Figure 5. The majority of ocean regions display notable improvements for ocean salinity 258 

after assimilation, as evidenced by the prevalence of negative RMSE differences. Both upper and deeper 259 

ocean layers show relatively consistent areas of improvements. Significant enhancements are particularly 260 

evident in the North Atlantic, North Pacific, and parts of the Indian Ocean. However, certain areas exhibit 261 

degradation in RMSE. These regions are primarily located in parts of the southern Pacific Ocean. The 262 

degradation in these areas could be attributed to the inherent challenges of accurately assimilating data 263 

in regions with complex ocean dynamics or limited observational data availability (Edwards et al., 2015; 264 

Stammer et al., 2016). 265 

 266 

3.3 Performance of Correlation Differences 267 

Figure 6 illustrates the differences between ASSIM and CTRL in their correlations with observed 268 

monthly ocean temperature from 1950 to 2021 across nine ocean layers. Positive values denote an 269 

increase in correlation following assimilation, indicating improvements, whereas negative values suggest 270 

a decrease in correlation. Across the majority of global ocean regions, assimilation has generally led to 271 

significant improvements in correlation for ocean temperature simulations, with positive values in 272 

correlation differences widely distributed. The overall behavior of the upper and deeper ocean layers is 273 

largely consistent. Notably, the equatorial Pacific Ocean exhibits substantial improvements across 274 

multiple depths, indicating potential enhancements in modeling phenomena such as the El Niño-Southern 275 

Oscillation (ENSO). The North Pacific and parts of the Indian Ocean also demonstrate considerable 276 

improvements. However, certain areas exhibit diminished performance, possibly due to sparse 277 

observational data or complex ocean dynamics. In summary, ASSIM has demonstrably enhanced ocean 278 

temperature simulations by reducing RMSE (Fig. 4) and improving correlation (Fig. 6) across many 279 

ocean regions, particularly in the tropical and North Pacific, Indian Ocean, and parts of the North Atlantic. 280 

The correlation differences for ocean salinity between ASSIM and CTRL across various ocean 281 

layers are depicted in Figure 7. The majority of global ocean regions exhibit marked improvements for 282 

https://doi.org/10.5194/gmd-2024-183
Preprint. Discussion started: 18 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 12 

ocean salinity, with positive correlation differences dominating. These enhancements are consistently 283 

observed from the upper layers to deeper layers. Noteworthy improvements are particularly evident in 284 

the tropical and North Pacific, North Atlantic, equatorial Atlantic, and parts of the Indian Ocean. 285 

Nevertheless, some regions display a decrease in correlation, such as parts of the Southern Ocean. Overall, 286 

ASSIM has significantly improved simulations of ocean salinity in many ocean regions, as evidenced by 287 

reduced RMSE (Fig. 5) and improved correlation (Fig. 7), particularly in the North Atlantic, North 288 

Pacific, and parts of the Indian Ocean. 289 

 290 

3.4 Vertical and Temporal Analysis of RMSE and Bias for Ocean Temperature and Salinity 291 

Figure 8 presents the vertical profiles of the globally averaged RMSE variations in ocean 292 

temperature and salinity comparing ASSIM and CTRL. Negative values in the RMSE difference indicate 293 

a reduction in the global mean RMSE due to assimilation. For ocean temperature, the RMSE differences 294 

are relatively small but become more negative within the upper 85 meters of the ocean. As the depth 295 

increases beyond 135 meters, the RMSE differences become significantly negative, indicating a marked 296 

improvement in ocean temperature after assimilation. Unlike temperature, the salinity RMSE differences 297 

show substantial deviations in the upper layers, specifically within the first 155 meters of the ocean, 298 

reflecting significant improvements. However, the RMSE differences gradually decrease as depth 299 

increases, possibly due to the complexity of salt transport mechanisms in deep waters or larger 300 

observational errors in these layers (Jacobs et al., 2021; Wang et al., 2015). This suggests that the 301 

assimilation of salinity data has a more pronounced effect in the upper ocean layers compared with the 302 

deeper regions. In summary, these results emphasize the capability of the WCODA system in enhancing 303 

the simulation accuracy for both ocean temperature and salinity. 304 

The temporal evolutions of the global mean bias and RMSE for vertically averaged ocean 305 

temperature and salinity are illustrated in Figure 9. The temperature bias (Fig. 9a) in CTRL is persistently 306 

positive, indicating a systematic overestimation of ocean temperature. In contrast, ASSIM consistently 307 

reduces this bias, with values approaching the zero line. Similarly, the temperature RMSE (Fig. 9b) 308 

highlights a significant decrease in RMSE for ASSIM compared to CTRL, reflecting a more accurate 309 

alignment with observed temperature. For ocean salinity, the salinity bias (Fig. 9c) reveals that CTRL 310 
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maintains a consistent negative bias, suggesting an underestimation of ocean salinity. However, ASSIM 311 

effectively mitigates this bias, bringing the bias values closer to the zero line. Furthermore, the salinity 312 

RMSE (Fig. 9d) is notably lower in ASSIM than CTRL, indicating enhanced model performance and a 313 

closer match to observed salinity. Overall, ASSIM exhibits superior performance relative to CTRL in 314 

reducing bias and RMSE for both ocean temperature and salinity. 315 

 316 

3.5 Climatological Mean Differences for Sea Surface Temperature and Salinity 317 

Figure 10 presents the climatological mean differences for both sea surface temperature (SST) and 318 

salinity (SSS) from 1950 to 2021. Pronounced cold biases are evident in the SST difference between 319 

CTRL and observation (Fig. 10a), particularly in the tropical and North Pacific, North Atlantic, and parts 320 

of the Indian Ocean. Significant warm biases are observed in the Southern Ocean and parts of the South 321 

Atlantic. In contrast, these SST biases found in CTRL are substantially reduced by ASSIM (Fig. 10b), 322 

especially in the North Pacific and North Atlantic, where the cold biases are diminished, and in the 323 

Southern Ocean, where the warm biases are corrected. The SSS difference between CTRL and 324 

observation highlights a global pattern of salinity biases (Fig. 10c). The CTRL simulation generally 325 

underestimates salinity across most global oceans, indicating a widespread lower salinity. This fresh bias 326 

is particularly pronounced in the North Atlantic and North Pacific. Compared with CTRL, ASSIM 327 

significantly increases the salinity estimates, thereby reducing the overall fresh biases in CTRL (Fig. 328 

10d). Notable improvements are observed in the North Atlantic, North Pacific, and parts of the Southern 329 

Ocean. In summary, ASSIM demonstrates marked improvements in both SST and SSS biases compared 330 

to CTRL, emphasizing the importance and effectiveness of the WCODA system in enhancing model 331 

accuracy and reliability. 332 

 333 

3.6 Influence of ocean data assimilation on the regional climate over land 334 

To further assess the effectiveness of the WCODA system, a preliminary analysis is conducted to 335 

examine the impact of ocean data assimilation on the regional climate over land through the weakly 336 

coupled data assimilation system. Motivated by the influence of the El Niño-Southern Oscillation and 337 

the North Atlantic Oscillation on the US regional climate (e.g., Higgins et al., 2000), we focus our 338 
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analysis on the simulation of interannual precipitation and temperature variability over the contiguous 339 

US. Correlations between the observed and simulated time series of detrended annual precipitation and 340 

temperature anomalies for multiple US regions show higher correlations for ASSIM compared to CTRL, 341 

although the correlations are generally low (not shown). For the southern US where statistically 342 

significant differences are found for the correlations between ASSIM and observations relative to the 343 

correlations between CTRL and observations, Fig. 11 demonstrates notable improvements in ASSIM to 344 

capture the observed interannual variability in both annual precipitation and temperature anomalies. For 345 

precipitation, the wet-dry transitions from 1982 to 1989 and from 2008 to 2016 are more accurately 346 

represented in ASSIM compared to CTRL. ASSIM also effectively reproduces the temporal evolution of 347 

temperature anomalies during the periods 1982-1993 and 2006-2013. The correlation between ASSIM 348 

and observed precipitation is 0.51, much higher than 0.02 in CTRL. Similarly, the correlation for 349 

temperature increases from -0.05 in CTRL to 0.42 in ASSIM. Both correlations for precipitation and 350 

temperature in ASSIM are statistically significant at the 95% confidence level. The enhanced simulation 351 

of interannual climate variability in ASSIM may be attributed to its improved representation of oceanic 352 

variability, particularly ENSO-related variability, which is critical for driving regional climate anomalies 353 

through air-sea interactions (Ropelewski and Halpert, 1986; McPhaden et al., 2006). Further research is 354 

needed to understand the influence of the WCODA system on improving predictability of regional 355 

climate over land. 356 

 357 

4 Conclusions 358 

This study documents the development and assessment of the new 4DEnVar-based WCODA system 359 

in the fully coupled E3SMv2 model, employing the DRP-4DVar method. The DRP-4DVar approach 360 

significantly reduces computational demands by replacing the traditional adjoint model with the 361 

ensemble technique. As a weakly coupled assimilation system, the WCODA system independently 362 

assimilates ocean reanalysis data within the ocean component during the analysis step. However, during 363 

the subsequent forecast step, the reanalysis information from the optimal ocean analyses is propagated 364 

to other components of the Earth system through interactions across multiple systems, thereby enhancing 365 

the coherence of ICs across the climate model. 366 
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Monthly mean ocean temperature and salinity data from the EN4.2.1 reanalysis are integrated into 367 

the ocean component of E3SMv2 from 1950 to 2021, which can be used to provide realistic ICs for 368 

decadal climate predictions. The effectiveness of the WCODA system has been assessed using several 369 

metrics, including cost function reduction, correlation differences, RMSE differences, and model biases. 370 

The cost function reduction consistently shows negative values in each month over the 72-year period, 371 

indicating successful assimilation of the EN4.2.1 reanalysis data into the climate model. Compared to 372 

CTRL, ASSIM achieves significant reductions in RMSE and enhancements in correlation across various 373 

ocean layers and regions, with notable improvements observed in the North Atlantic, North Pacific and 374 

Indian Ocean. ASSIM substantially mitigates model biases for SST and SSS observed in CTRL, 375 

particularly reducing cold biases in the North Pacific and North Atlantic, correcting warm biases in the 376 

Southern Ocean, and significantly increasing salinity estimates to reduce the model fresh biases. 377 

Moreover, the temporal evolutions of interannual precipitation and temperature variability over the 378 

southern US are more effectively captured by ASSIM compared to CTRL through the influence of the 379 

ocean data assimilation in the coupled climate system. 380 

Despite these advancements, the WCODA system exhibits limitations in certain regions, 381 

particularly in the deeper layers of the southern Pacific Ocean and South Atlantic. These challenges are 382 

likely due to sparse observational data and the complexities of representing deep-ocean dynamics. Future 383 

efforts should focus on enhancing observational data coverage and refining assimilation techniques for 384 

these challenging areas. To further improve the system's capabilities, plans are underway to assimilate 385 

more satellite-based ocean observations into the WCODA system. Furthermore, expanding the 386 

application of the WCODA system to other components of the climate model, such as the atmosphere 387 

and sea ice, could enhance overall predictive skill. These developments are essential for providing more 388 

accurate and reliable long-term climate predictions, ultimately aiding in the formulation of energy-sector 389 

policies and management strategies. 390 

 391 

Code and data availability. The E3SMv2 code is publicly available under an open-source license through 392 

the Zenodo repository at https://zenodo.org/records/13259801. The EN4.2.1 monthly ocean temperature 393 

and salinity data are provided by the Met Office Hadley Centre via 394 
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 588 

Figure 1. Workflow of the 4DEnVar-based WCODA system utilizing the DRP-4DVar method for the 589 

E3SM model (modified from Fig. 1 in Shi et al. (2024)).  590 
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 591 

Figure 2. Schematic diagram of the DRP-4DVar assimilation process within the 4DEnVar-based 592 

WCODA system for E3SM. The model background (𝑥") includes atmospheric (𝑥"%+,), land (𝑥"-'.), ice 593 

(𝑥"/&0), river (𝑥"1/201), and oceanic (𝑥"!&') components of the fully coupled E3SMv2. The observational 594 

background (𝑦"!&') is defined by the model outputs of monthly mean ocean temperature (𝑇,",) and salinity 595 

(�̅�",) using 𝑥" as the initial state. The ocean observation (𝑦!"#!&') represents the observed monthly mean 596 

ocean temperature (𝑇,!"#, ) and salinity (�̅�!"#, ) from the EN4.2.1 reanalysis. The observational innovation 597 

(𝑦!"#$ ) is calculated as the difference between the observed ocean temperature and salinity (𝑦!"#!&') and the 598 

model's observational background (𝑦"!&'). 𝑥%$  denotes the analysis increment. The optimal analysis (𝑥%) 599 

encompasses both the optimal analysis of the ocean component (𝑥%!&') and the background states of other 600 

components. This optimal analysis (𝑥%) is used as the initial condition to produce the next month's 601 

forecast, transferring ocean reanalysis information to other components.  602 
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 603 

Figure 3. Temporal variation of the cost function reduction in the WCODA system based on the 4DEnVar 604 

method from 1950 to 2021.  605 
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 606 

Figure 4. Spatial patterns of the root mean square error (RMSE) differences in ocean temperature 607 

between ASSIM and CTRL across nine ocean layers from 1950 to 2021. The RMSE differences are 608 

shown for nine different ocean depths: (a) 5 m, (b) 15 m, (c) 25 m, (d) 35 m, (e) 45 m, (f) 55 m, (g) 65 609 

m, (h) 75 m, and (i) 85 m.  610 
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 611 

Figure 5. Similar to Figure 4 but for ocean salinity.  612 
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 613 

Figure 6. Spatial patterns of the differences between ASSIM and CTRL for their correlations of ocean 614 

temperature with observations across nine ocean layers for the period 1950-2021. Regions with stippling 615 

indicate statistical significance at the 95% confidence level. Panels (a) to (i) represent different ocean 616 

depths: (a) 5 m, (b) 15 m, (c) 25 m, (d) 35 m, (e) 45 m, (f) 55 m, (g) 65 m, (h) 75 m, and (i) 85 m.  617 
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 618 

Figure 7. Similar to Figure 6 but for ocean salinity.  619 
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 620 

Figure 8. Vertical profiles of the globally averaged RMSE differences between ASSIM and CTRL for 621 

(a) ocean temperature and (b) ocean salinity over the period from 1950 to 2021.  622 
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 623 

Figure 9. Temporal variations of bias (a, c) and RMSE (b, d) for the global mean ocean temperature and 624 

salinity averaged over the top 1000 meters from 1950 to 2021. The red lines represent ASSIM, while the 625 

blue lines represent CTRL.  626 
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 627 

Figure 10. Climatological mean differences in sea surface temperature (left) and salinity (right) from 628 

1950 to 2021. The top panels show the differences between CTRL and observation, while the bottom 629 

panels show the differences between ASSIM and CTRL. Dotted areas indicate regions where the 630 

differences are statistically significant at the 95% confidence level.  631 
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 632 
Figure 11. Time series of interannual (a) precipitation and (b) surface air temperature anomalies in the 633 

southern US (24°-36°N, 105°-75°W). Gray bar: observation; blue line: CTRL; red line: ASSIM. 634 

Correlation coefficients of CTRL and ASSIM with observations are also shown. Both precipitation and 635 

temperature anomalies are computed after removing the climatology and its long-term trend from 1980 636 

to 2016. The observed precipitation and temperature are sourced from the GPCP precipitation data and 637 

ERA5 reanalysis, respectively. 638 
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