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 2 

Abstract. The development, implementation, and evaluation of a new weakly coupled ocean data 13 

assimilation (WCODA) system for the fully coupled Energy Exascale Earth System Model version 2 14 

(E3SMv2) utilizing the four-dimensional ensemble variational (4DEnVar) method are presented in this 15 

study. The 4DEnVar method, based on the dimension-reduced projection four-dimensional variational 16 

(DRP-4DVar) approach, replaces the adjoint model with the ensemble technique, thereby reducing 17 

computational demands. Monthly mean ocean temperature and salinity data from the EN4.2.1 reanalysis 18 

are integrated into the ocean component of E3SMv2 from 1950 to 2021, with the goal of providing 19 

realistic initial conditions for decadal predictions and predictability studies. The performance of the 20 

WCODA system is assessed using various metrics, including reduction rate of the cost function, root 21 

mean square error (RMSE) differences, correlation differences, and model biases. Results indicate that 22 

the WCODA system effectively assimilates the reanalysis data into the climate model, consistently 23 

achieving negative reduction rates of the cost function and notable improvements in RMSE and 24 

correlation across various ocean layers and regions. Significant enhancements are observed in the upper 25 

ocean layers across the majority of global ocean regions, particularly in the North Atlantic, North Pacific 26 

and Indian Ocean. Model biases in sea surface temperature and salinity are also substantially reduced. 27 

For sea surface temperature, cold biases in the North Pacific and North Atlantic are diminished by about 28 

1-2 °C, and warm biases in the Southern Ocean are corrected by approximately 1.5-2.5 °C. In terms of 29 

salinity, improvements are observed with bias reductions of about 0.5-1 psu in the North Atlantic and 30 

North Pacific and up to 1.5 psu in parts of the Southern Ocean. The ultimate goal of the WCODA system 31 

is to advance the predictive capabilities of E3SM for subseasonal-to-decadal climate predictions, thereby 32 

supporting research on strategic energy-sector policies and planning.  33 
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1 Introduction 34 

Climate predictions are essential for understanding and mitigating the impacts of climate variability 35 

and change. The accuracy and reliability of climate predictions depends strongly on the initialization of 36 

the climate models, which requires realistic and high-quality initial conditions (ICs) for skillful 37 

predictions (Dirmeyer et al., 2018). Data assimilation (DA) techniques are important for providing 38 

realistic ICs by integrating observational data into the model, thereby enhancing the predictive 39 

capabilities of climate models (Tardif et al., 2014). The efficacy of DA techniques has been demonstrated 40 

through enhanced predictability on subseasonal to decadal timescales (Zhou et al., 2024). 41 

Numerous studies have focused on the initialization of climate models for decadal predictions 42 

(Branstator and Teng, 2012; Polkova et al., 2019). Climate models integrate multiple components, 43 

including the atmosphere, ocean, sea ice, and land. For the initialization of climate models in decadal 44 

predictions, DA methods can be categorized into uncoupled data assimilation and coupled data 45 

assimilation (CDA). In the uncoupled method, DA is performed independently within the uncoupled 46 

atmosphere, land and ocean models rather than in a coupled model. The optimal analyses from these 47 

uncoupled models are then integrated together to establish the ICs for the climate model's predictions 48 

(Yao et al., 2021). For example, some studies directly utilize existing reanalysis data to initialize climate 49 

models for decadal predictions (Yeager et al., 2012; Tian et al., 2021). Nevertheless, the uncoupled DA 50 

method may lead to imbalances between different model components, potentially inducing initial shocks 51 

and diminishing the reliability of climate predictions (Smith et al., 2015; Zhang et al., 2020). Therefore, 52 

there is a growing interest in exploring and developing CDA methods to enhance the coherence and 53 

accuracy of the ICs for climate predictions. 54 

Many research groups and institutions are actively engaged in the development and refinement of 55 

CDA methods. In CDA, the assimilation process is conducted directly within a coupled model. Compared 56 

to uncoupled DA, CDA provides balanced ICs that are more coordinated across multiple components of 57 

coupled models (Zhang et al., 2014). Previous studies have demonstrated that CDA enhances interannual 58 

climate predictions more effectively than uncoupled DA (Zhang et al., 2005; Shi et al., 2022). CDA 59 

techniques are divided into weakly coupled data assimilation (WCDA) and strongly coupled data 60 

assimilation (SCDA). In the WCDA system, reanalysis data is assimilated independently within each 61 
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component of the coupled model. However, through the coupled model integration, reanalysis 62 

information from one component is transmitted to other components through interactions across multiple 63 

systems (Browne et al., 2019; He et al., 2020a). Sequential DA is distinctly partitioned into two primary 64 

stages: the analysis and forecast steps. During the WCDA analysis step, reanalysis information from one 65 

component cannot directly influence other components due to the lack of cross-component background 66 

error covariances. Nonetheless, the coupled model is employed during the forecast step to transfer 67 

reanalysis information from a single component to others through the integration of the coupled system 68 

(Laloyaux et al., 2016; Carrassi et al., 2018). The primary distinction between WCDA and uncoupled 69 

DA is the use of the coupled model during the forecast step (Zhang et al., 2020). Recent studies have 70 

developed WCDA systems that separately assimilate reanalysis data from the atmosphere (Li et al., 2021), 71 

land (Shi et al., 2024), and ocean (He et al., 2017) into coupled models. On the other hand, SCDA 72 

employs cross-component background error covariances during the analysis step to directly exert an 73 

instantaneous impact of reanalysis information from a single component on the state variables of other 74 

components, treating all Earth system components as an integrated whole (Sluka et al., 2016). Moreover, 75 

SCDA also allows the reanalysis information from a single component to propagate to other components 76 

during the forecast step through the coupled model integration (Yoshida and Kalnay, 2018). Therefore, 77 

SCDA offers potential benefits, including reduced model drift and enhanced forecast accuracy (Smith et 78 

al., 2015). Nevertheless, the development of SCDA presents considerable obstacles, primarily due to the 79 

complexity of accurately establishing cross-component background error covariances (Penny and Hamill, 80 

2017). As a result, most existing CDA systems continue to employ the WCDA systems. 81 

This study presents the development and implementation of the weakly coupled ocean data 82 

assimilation (WCODA) system for the fully coupled Energy Exascale Earth System Model version 2 83 

(E3SMv2), utilizing the four-dimensional ensemble variational (4DEnVar) method. The 4DEnVar 84 

method is based on the dimension-reduced projection four-dimensional variational (DRP-4DVar) 85 

approach, notable for its innovative application of 4DVar by replacing the adjoint model with the 86 

ensemble approach (Wang et al., 2010). Previous studies have shown that 4DVar-based methods 87 

outperform simpler schemes (e.g., nudging or 3DVar) by maintaining dynamical consistency with the 88 

model and minimizing initial shocks in the forecasts (Sugiura et al., 2008; Zhang et al., 2020). In the 89 



 5 

WCODA system, monthly mean ocean temperature and salinity data from the EN4.2.1 reanalysis are 90 

incorporated into the ocean component of E3SMv2 to provide realistic ICs for decadal predictions. 91 

Although the assimilation process during the analysis step is conducted independently within the ocean 92 

component, the fully coupled E3SMv2 model is employed during the forecast step to transmit reanalysis 93 

information from the ocean to other components (e.g., atmosphere and land) through multi-component 94 

interactions. Consequently, the reanalysis information assimilated into the ocean ICs affects other model 95 

components through the integration of the fully coupled model, emphasizing the operation of this system 96 

as a WCDA system. The primary objective of this WCODA system is to advance our understanding of 97 

the ocean's role in climate predictability. Shi et al. (2024) implemented a weakly coupled land data 98 

assimilation in E3SMv2 for isolating the land’s role in climate predictability. By improving the accuracy 99 

of ICs for both land and ocean, we aim to advance the predictive capabilities of E3SM for decadal 100 

predictions, ultimately supporting research on energy-sector policy and planning. 101 

This study presents and evaluates the 4DEnVar-based WCODA system for E3SMv2. Section 2 102 

provides a detailed description of the E3SMv2 model, the ocean reanalysis data, and the framework for 103 

implementing the 4DEnVar-based WCODA system. Section 3 evaluates the assimilation performance of 104 

the WCODA system. Finally, Section 4 provides the conclusions. 105 

 106 

2 Methodology 107 

2.1 E3SM Overview 108 

Developed by the U.S. Department of Energy, the Energy Exascale Earth System Model version 2 109 

(E3SMv2) is a state-of-the-art climate model to advance our understanding of climate variability and its 110 

future changes (Leung et al., 2020). E3SMv2 integrates multiple components to simulate the complex 111 

interactions within the climate system, encompassing the atmospheric, sea ice, ocean, land, and river 112 

transport components. The atmospheric component (EAMv2) represents turbulence, clouds, and aerosol 113 

processes (Zhang et al., 2023) and features a nonhydrostatic dynamical core (Taylor et al., 2020). It 114 

operates on a dynamic grid with a horizontal resolution of approximately 110 km and includes 72 vertical 115 

layers that extend to the stratosphere (Golaz et al., 2022). The sea ice component (MPAS-SI) simulates 116 

the formation, evolution, and melting of sea ice, with detailed thermodynamics and dynamics processes 117 
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(Turner et al., 2022). The ocean component (MPAS-O) is responsible for modeling the physical state and 118 

biogeochemical processes of the ocean, including detailed simulations of ocean currents, temperature, 119 

and salinity (Reckinger et al., 2015). MPAS-O operates at a horizontal resolution of ~60 km in the 120 

midlatitudes and ~30 km at the equator and poles, differing from the atmospheric model’s resolution of 121 

110 km. It is configured with 60 vertical layers, with finer resolution (~10 m) near the surface and coarser 122 

resolution (~200 m) at depth. The vertical mixing scheme employed is the K-profile parameterization, 123 

as described by Van Roekel et al. (2018). The land component (ELMv2) encompasses various land 124 

surface processes, including biophysical processes, soil processes, and surface hydrology (Golaz et al., 125 

2019). These simulations are crucial for understanding land-atmosphere interactions and their impact on 126 

climate variability. Additionally, the river transport component (MOSARTv2) simulates the hydrological 127 

dynamics of water flow through river basins, providing insights into freshwater resources, flood risks, 128 

and sediment transport (Li et al., 2013). The CPL7 coupler dynamically integrates all five components 129 

by regulating the exchange of energy, water, and momentum fluxes between different components (Craig 130 

et al., 2012). A comprehensive evaluation of the E3SMv2 model is presented by Golaz et al. (2022). 131 

 132 

2.2 Ocean Reanalysis Dataset 133 

The ocean temperature and salinity data in this study are derived from the EN4.2.1 ocean reanalysis 134 

dataset. Produced by the Met Office Hadley Centre, the EN4.2.1 product is developed based on quality-135 

controlled ocean temperature and salinity profiles from four input sources: Argo, ASBO (Arctic Synoptic 136 

Basin Wide Oceanography), GTSPP (Global Temperature and Salinity Profile Program), and WOD09 137 

(World Ocean Database) (Good et al., 2013). The EN4.2.1 dataset includes observations from a wide 138 

range of profiling instruments, such as Argo floats, expendable bathythermographs (XBTs), and 139 

mechanical bathythermographs (MBTs) (Chen et al., 2020). According to Good et al. (2013), 140 

observations in EN4.2.1 are most abundant in the upper 100 meters, with vertical resolution refined to 141 

~1 m in the top 100 m. Spatially, data density is high in regions such as the North Atlantic and western 142 

Pacific but decreases significantly in high-latitude and deep ocean regions. This distribution in data 143 

availability influences the assimilation results. Areas with denser observational coverage, such as the 144 

upper North Atlantic, are expected to show greater improvements through assimilation, while regions 145 
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with sparse observations may exhibit limited improvements. 146 

To initialize decadal climate predictions, monthly mean ocean temperature and salinity data from 147 

the EN4.2.1 reanalysis are assimilated into the fully coupled E3SMv2 model across all sixty ocean layers 148 

from 1950 to 2021. The choice to utilize monthly mean reanalysis data is based on two primary reasons: 149 

Firstly, data with higher temporal resolution (less than one month) might produce unwanted noise, 150 

potentially compromising the accuracy of decadal predictions. Secondly, the initialization for decadal 151 

predictions requires assimilation cycles spanning several decades, and assimilating complex, real-time 152 

observations over such extended periods would be computationally prohibitive. Therefore, in line with 153 

most existing studies that use reanalysis data for initializing decadal predictions (Pohlmann et al., 2019; 154 

Tian et al., 2021), this study assimilates the monthly mean EN4.2.1 reanalysis through the WCODA 155 

system for decadal predictions. 156 

 157 

2.3 Implementation of the 4DEnVar-based WCODA System 158 

The 4DEnVar method employed by the WCODA system is derived from the DRP-4DVar 159 

assimilation approach. The DRP-4DVar technique addresses the high computational demands of 160 

traditional 4DVar by employing an ensemble approach rather than utilizing the adjoint model (Wang et 161 

al., 2010). Zhu et al. (2022) demonstrated that the DRP-4DVar method significantly reduces 162 

computational time by approximately 50% compared to traditional 4DVar systems. This advanced 163 

method enhances computational efficiency by projecting the high-dimensional state space onto a lower-164 

dimensional subspace defined by an ensemble of historical samples. DRP-4DVar achieves an optimal 165 

solution within this sample space by aligning observations with model-generated historical time series 166 

over a four-dimensional window (Wang et al., 2010). The DRP-4DVar approach has been effectively 167 

implemented across multiple numerical models, demonstrating its accuracy and effectiveness (Zhao et 168 

al., 2012; Shi et al., 2021; Zhu et al., 2022). A comprehensive explanation of the DRP-4DVar method is 169 

provided by Wang et al. (2010). The DRP-4DVar method has also been implemented in a weakly coupled 170 

land data assimilation system in E3SMv2 (Shi et al., 2024). 171 

Figure 1 illustrates the workflow of the 4DEnVar-based WCODA system utilizing the DRP-4DVar 172 

approach within the fully coupled E3SMv2 model. The DRP-4DVar algorithm requires three primary 173 
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inputs: observational innovation (𝑦"!"#$ ), model background (𝑥"), and perturbation samples. Initially, a 174 

fully coupled E3SMv2 simulation is conducted for one month to generate both the model background 175 

(𝑥") and observational background (𝑦"). Specifically, the model background (𝑥") refers to the monthly 176 

initial condition prior to the assimilation, while the observational background (𝑦") denotes the monthly 177 

mean model output. Subsequently, the observational innovation (𝑦"!"#$ ) is calculated as the difference in 178 

monthly mean ocean salinity and temperature between the EN4.2.1 reanalysis (𝑦!"#) and the monthly 179 

mean model output (𝑦"). From 100 years of balanced pre-industrial control (PI-control) simulations, 30 180 

sets of monthly mean forecast samples (𝑦" $) are selected based on their highest correlations with the 181 

observational innovation. More specifically, the monthly mean forecast samples are computed by 182 

removing the long-term PI-control monthly climatology from the selected PI-control monthly mean 183 

output, which is then divided by the observational error. Correspondingly, 30 sets of monthly initial 184 

condition samples (𝑥$) for the monthly mean forecast samples are derived. The analysis increment is 185 

calculated within the perturbation samples, which consist of 30 monthly initial condition samples and 186 

their corresponding monthly mean forecast samples. Due to the limited number of samples and to 187 

diminish the influence of spurious correlations between distant grid points, the localization procedure is 188 

incorporated into the assimilation process (Wang et al., 2018). Finally, the DRP-4DVar algorithm solves 189 

for the analysis increment within the sample space, which is then added to the model background (𝑥") to 190 

produce the optimal analysis (𝑥%). 191 

Figure 2 delineates the assimilation process using the DRP-4DVar method within the 4DEnVar-192 

based WCODA system for the fully coupled E3SMv2 model. This assimilation process includes both the 193 

analysis and forecast steps through each one-month assimilation window. In the initial stage, the fully 194 

coupled E3SMv2 model employs the model background (𝑥") as the monthly initial condition to run for 195 

one month, producing the monthly mean model outputs for ocean temperature and salinity (𝑦"!&'). During 196 

the analysis step, the observational innovation (𝑦!"#$ ) is computed by comparing the discrepancies 197 

between the EN4.2.1 reanalysis (𝑦!"#!&' ) and the model's monthly mean outputs (𝑦"!&' ) for ocean 198 

temperature and salinity. The DRP-4DVar algorithm then utilizes this observational innovation and the 199 

PI-control samples to compute the optimal analysis of the ocean component (𝑥%!&') at the start of the 200 

assimilation window. During the subsequent forecast step, the optimal analysis (𝑥%) includes both the 201 
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optimal ocean analysis (𝑥%!&') and the background states of other components prior to assimilation. This 202 

optimal analysis serves as the new initial condition for the fully coupled E3SMv2 model to run for one 203 

month to generate the next month's forecast. During this fully coupled model integration, reanalysis 204 

information from the ocean component is transmitted to the other model components through interactions 205 

across multiple systems. Although the assimilation is directly applied to the ocean component, the use of 206 

the initial conditions of all components from the optimal analysis and the fully coupled climate model 207 

during the forecast step ensures that the reanalysis information from the optimal ocean analysis 208 

influences other components through interactions across multiple systems. Therefore, according to the 209 

definition of the WCDA system from previous studies (Carrassi et al., 2018; Zhou et al., 2024), this 210 

assimilation system is designated as the WCODA system. Using the same DA approach, Shi et al. (2024) 211 

documented the implementation of DRP-4DVar as a weakly coupled land data assimilation system in 212 

E3SMv2. 213 

 214 

2.4 Experiment Design 215 

Two distinct numerical experiments are performed in this study to assess the effectiveness of ocean 216 

data assimilation within the 4DEnVar-based WCODA system. (1) The control simulation (CTRL) is a 217 

free-running fully coupled integration over a 72-year period from 1950 to 2021, driven exclusively by 218 

observed external forcings (e.g., solar radiation and greenhouse gas and aerosol concentrations). The 219 

observed external forcings, prescribed according to the CMIP6 protocol (Eyring et al., 2016), directly 220 

influence the atmospheric component and subsequently affect other components (e.g., land and ocean) 221 

through their coupling with the atmosphere. This free-running simulation allows unrestricted interactions 222 

among the various Earth system components, including the atmosphere, land, and ocean. The CTRL 223 

simulation serves as a baseline for evaluating the assimilation effectiveness of the WCODA system. (2) 224 

The assimilation experiment (ASSIM) incorporates monthly mean ocean temperature and salinity data 225 

from the EN4.2.1 reanalysis into the ocean component of the fully coupled E3SMv2 model across all 226 

sixty ocean layers spanning the entire ocean depth. This assimilation is conducted using a one-month 227 

assimilation window, covering the same 72-year period from 1950 to 2021. The assimilation run is 228 

initialized directly from the historical run in 1950, using the fully coupled state at the start of the 229 
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simulation. At the beginning of each monthly assimilation window, the EN4.2.1 reanalysis information 230 

is incorporated into the ocean state variables, after which the fully coupled model continues with free 231 

integration. During this free integration process, the reanalysis information assimilated into the ocean 232 

ICs influences other model components through interactions across multiple systems. The historical 233 

external forcings for both the ASSIM and CTRL experiments are derived from the CMIP6 protocol 234 

(Eyring et al., 2016). 235 

 236 

2.5 Assessment Criteria 237 

To comprehensively evaluate the effectiveness of the WCODA system, multiple quantitative metrics 238 

are employed, including the root mean square error (RMSE), correlation coefficient, and reduction rate 239 

of the cost function. The reduction rate of the cost function serves as a fundamental measure to assess 240 

the assimilation system's accuracy, calculated using the formula: 241 

																															
1
2 (𝑦!"# − 𝑦%)

(𝑹)*(𝑦!"# − 𝑦%) −
1
2 (𝑦!"# − 𝑦")

(𝑹)*(𝑦!"# − 𝑦")
1
2 (𝑦!"# − 𝑦")

(𝑹)*(𝑦!"# − 𝑦")
																																		(1) 242 

Here, 𝑦!"#  denotes the EN4.2.1 reanalysis, 𝑦"  represents the pre-assimilation observational 243 

background, 𝑦%  indicates the post-assimilation monthly mean model analyses, and 𝑹  denotes the 244 

observation error covariance matrix. In this study, 𝑹 is assumed to be diagonal and its diagonal elements 245 

are statistically computed based on the variance of the EN4.2.1 ocean temperature and salinity data. The 246 

characteristics of 𝑹 directly influence the assimilation process, where larger values reduce the relative 247 

weight of the EN4.2.1 reanalysis and smaller values increase it. Negative values of the reduction rate of 248 

the cost function signify the successful integration of reanalysis data into the model's state variables. To 249 

validate the correctness of this assimilation system, the EN4.2.1 reanalysis continues to be utilized as the 250 

reference data for evaluation. 251 

 252 

3 Results 253 

3.1 Reduction Rate of the Cost Function 254 

In Figure 3, the monthly variation in the reduction rate of the cost function for the 4DEnVar-based 255 

WCODA system is presented for the 72-year period from 1950 to 2021. As noted earlier, negative values 256 
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of the reduction rate of the cost function indicate the successful incorporation of reanalysis data into the 257 

coupled model. However, the reduction rate is presented here as positive percentages to represent 258 

improvements due to the assimilation. The reduction rate of the cost function reaches 12.03% in the first 259 

month. Over the entire 72-year period from 1950 to 2021, the average monthly reduction rate of the cost 260 

function is 4.20% for all months in ASSIM. This average reduction rate of 4.20% is comparable to the 261 

4.4% reduction rate reported by He et al. (2020a), who used a similar 4DEnVar-based assimilation system 262 

in a different climate model, further supporting the effectiveness of the 4DEnVar approach. The initial 263 

sharp reduction rate of the cost function reflects the rapid adjustments made by the model to align with 264 

the reanalysis data. As the assimilation progresses, subsequent iterations refine these adjustments, 265 

resulting in a slower rate of reduction. More importantly, the reduction rate of the cost function remains 266 

below the zero line in each month of assimilation, indicating consistent improvements due to the 267 

assimilation. These findings demonstrate the successful implementation of the WCODA system, 268 

confirming that the EN4.2.1 reanalysis data have been effectively integrated into the fully coupled model. 269 

 270 

3.2 Performance of RMSE Differences 271 

Figure 4 illustrates the RMSE differences of monthly ocean temperature between ASSIM and CTRL 272 

from 1950 to 2021 across nine ocean layers. Negative values indicate a reduction in RMSE, signifying 273 

improvements due to assimilation, while positive values denote an increase in RMSE, indicating 274 

degradations. Overall, the assimilation from the WCODA system leads to marked improvements in ocean 275 

temperature simulations across most global regions. Both upper and deeper ocean layers exhibit 276 

widespread negative RMSE differences, indicating improvements after assimilation, particularly in the 277 

tropical and mid-latitude ocean regions. Notable regions of improvement include the North Atlantic, 278 

tropical and North Pacific, and parts of the Southern Ocean. However, increased RMSE values are 279 

observed near strong ocean currents and upwelling regions, such as the Gulf Stream, Agulhas Current, 280 

and the California coast. These regions are characterized by strong horizontal gradients and mesoscale 281 

variability, which are not well captured by MPAS-O at relatively coarse resolution and hence present 282 

challenges for the assimilation system and likely contribute to diminished performance. In the upper 283 

ocean layers, RMSE performance is better during winter compared to summer in some regions, such as 284 
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the tropical Pacific (Figs. A1 & A2). In the deeper layers, the assimilation still shows notable 285 

improvements in regions such as the North Pacific and parts of the Southern Ocean, though with more 286 

pronounced degradation observed in the equatorial Atlantic and parts of the Indian Ocean. This 287 

degradation in the deeper layers may be attributed to larger observational errors in these regions or the 288 

inherent complexity of deeper ocean processes that pose challenges for assimilation (Wunsch and 289 

Heimbach, 2007; Balmaseda et al., 2013). 290 

The RMSE differences for ocean salinity between ASSIM and CTRL across various ocean layers 291 

are presented in Figure 5. The majority of ocean regions display notable improvements for ocean salinity 292 

after assimilation. In the upper ocean layers, significant enhancements are particularly evident in the 293 

North Pacific, and parts of the North Atlantic. However, certain areas exhibit degradation in RMSE, 294 

particularly in parts of the South Pacific. In the deeper layers, the improvements are less extensive but 295 

remain evident in regions such as parts of the North Atlantic and North Pacific. However, RMSE 296 

degradation becomes notable in the equatorial Atlantic and parts of the Indian Ocean, highlighting the 297 

need for further improvements in these regions. The degradation in the deeper ocean layers can be 298 

attributed to two main factors: observational data limitations and challenges in representing deep-ocean 299 

processes in the model. For the EN4.2.1 reanalysis, the coverage and quality of observations tend to 300 

decrease with depth, potentially resulting in greater uncertainties in the deep ocean. This sparse 301 

observational coverage limits the constraints that assimilation can impose on the model state. 302 

Furthermore, in the E3SMv2 model, the complexity of simulating deep-ocean processes, such as vertical 303 

mixing and bottom water formation, may contribute to biases that are difficult to correct through 304 

assimilation. 305 

 306 

3.3 Performance of Correlation Differences 307 

Figure 6 illustrates the differences between ASSIM and CTRL in their correlations with observed 308 

monthly ocean temperature from 1950 to 2021 across nine ocean layers. The seasonal cycle and linear 309 

trend have been removed before computing the correlations. Positive values denote an increase in 310 

correlation following assimilation, indicating improvements, whereas negative values suggest a decrease 311 

in correlation. In the upper ocean layers, the assimilation has led to improved correlations for ocean 312 
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temperature across many ocean regions. Notably, the equatorial Pacific Ocean exhibits substantial 313 

improvements, indicating potential enhancements in modeling phenomena such as the El Niño-Southern 314 

Oscillation (ENSO). Further analysis of the winter Niño 3.4 index (Fig. A3) confirms that the assimilation 315 

improves the representation of ENSO variability, with the correlation coefficient increasing from 0.06 in 316 

CTRL to 0.79 in ASSIM. Moreover, parts of the North Pacific also exhibit noticeable improvements. In 317 

the deeper layers, improvements are observed in the western Pacific and parts of the Southern Ocean. 318 

However, certain areas exhibit diminished performance, possibly due to sparse observational coverage 319 

introducing higher uncertainty into the assimilation process or imbalances between ocean state variables 320 

during the assimilation (Edwards et al., 2015; He et al., 2020b). In summary, ASSIM has enhanced ocean 321 

temperature simulations by reducing RMSE (Fig. 4) and improving correlation (Fig. 6) across many 322 

ocean regions, with notable improvements in the upper ocean layers, including the equatorial Pacific and 323 

North Pacific. 324 

The correlation differences for ocean salinity between ASSIM and CTRL across various ocean 325 

layers are depicted in Figure 7. In the upper ocean layers, the majority of global ocean regions exhibit 326 

marked improvements for ocean salinity, with positive correlation differences dominating. Noteworthy 327 

improvements are evident in the tropical Pacific, North Pacific, and parts of the North Atlantic. In the 328 

deeper layers, the improvements in correlation become more localized, primarily concentrated in the 329 

western Pacific and parts of the Southern Ocean. Meanwhile, reductions in correlations are observed in 330 

parts of the equatorial Pacific and the South Atlantic, indicating the need for further improvements. 331 

Overall, ASSIM has improved simulations of ocean salinity by reducing RMSE (Fig. 5) and improving 332 

correlation (Fig. 7) in many ocean regions, with notable enhancements in the upper ocean layers, 333 

particularly in parts of the North Pacific and the western Pacific. 334 

 335 

3.4 Vertical and Temporal Analysis of RMSE and Bias for Ocean Temperature and Salinity 336 

Figure 8 presents the vertical profiles of the globally averaged RMSE of ocean temperature and 337 

salinity comparing ASSIM and CTRL. Negative values in the RMSE difference indicate a reduction in 338 

the global mean RMSE due to assimilation. For ocean temperature, the RMSE differences are relatively 339 

small but become more negative within the upper 85 meters of the ocean. As the depth increases beyond 340 
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135 meters, the RMSE differences become significantly negative, indicating a marked improvement in 341 

ocean temperature after assimilation. Unlike temperature, the salinity RMSE differences show 342 

substantial deviations in the upper 155 meters of the ocean, indicating notable improvements. The RMSE 343 

differences gradually decrease as depth increases from 155 meters to 305 meters, but a slight increase is 344 

observed between 305 meters and 1106 meters. This suggests that the assimilation of salinity data has a 345 

more pronounced effect in the upper ocean than in deeper layers, possibly due to larger observational 346 

errors in these layers (Jacobs et al., 2021; Wang et al., 2015). The extended profiles in Figure A4 indicate 347 

that below 1106 meters, the RMSE differences between ASSIM and CTRL gradually decrease for both 348 

ocean temperature and salinity, suggesting the limited impact of assimilation in the deeper layers. In 349 

summary, these results emphasize the capability of the WCODA system in enhancing the simulation 350 

accuracy for both ocean temperature and salinity. 351 

The temporal evolutions of the global mean bias and RMSE for vertically averaged ocean 352 

temperature and salinity in the top 1000 meters are illustrated in Figure 9. The temperature bias (Fig. 9a) 353 

in CTRL is persistently positive, indicating a systematic overestimation of ocean temperature. This 354 

overestimation in ocean temperature primarily originates from depths below 300 meters (Figs. A5 & A6). 355 

In contrast, ASSIM consistently reduces this bias, with values approaching the zero line. Similarly, the 356 

temperature RMSE (Fig. 9b) highlights a significant decrease in RMSE for ASSIM compared to CTRL, 357 

reflecting a more accurate alignment with observed temperature. For ocean salinity, the salinity bias (Fig. 358 

9c) reveals that CTRL maintains a consistent negative bias, suggesting an underestimation of ocean 359 

salinity. This salinity bias in CTRL is already prominent in the upper 300 meters (Figs. A5 & A6). 360 

However, ASSIM effectively mitigates this bias, bringing the bias values closer to the zero line. 361 

Furthermore, the salinity RMSE (Fig. 9d) is notably lower in ASSIM than CTRL, indicating enhanced 362 

model performance and a closer match to observed salinity. Notably, it takes approximately 10-15 years 363 

for the biases in both temperature and salinity to stabilize near the zero line, reflecting an adjustment 364 

period where the assimilation system equilibrates. Overall, ASSIM exhibits superior performance 365 

relative to CTRL in reducing bias and RMSE for both ocean temperature and salinity. 366 

 367 

3.5 Climatological Mean Differences for Sea Surface Temperature and Salinity 368 
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Figure 10 presents the climatological mean differences between CTRL and observation, as well as 369 

between ASSIM and observation, for both sea surface temperature (SST) and salinity (SSS). Pronounced 370 

cold biases are evident in the SST difference between CTRL and observation (Fig. 10a), particularly in 371 

the tropical and North Pacific, North Atlantic, and parts of the Indian Ocean. Significant warm biases are 372 

observed in the Southern Ocean and parts of the South Atlantic. In contrast, these SST biases found in 373 

CTRL are substantially reduced by ASSIM (Fig. 10b), with cold biases in the North Pacific and North 374 

Atlantic diminished by approximately 1-2 °C, and warm biases in the Southern Ocean corrected by about 375 

1.5-2.5 °C. The SSS difference between CTRL and observation highlights a global pattern of salinity 376 

biases (Fig. 10c). The CTRL simulation generally underestimates salinity across most global oceans, 377 

indicating a widespread lower salinity. This fresh bias is particularly pronounced in the North Atlantic 378 

and North Pacific. Notably, in the Mediterranean Sea, CTRL exhibits a large positive salinity bias 379 

exceeding 2.5 psu. Compared with CTRL, ASSIM significantly reduces the overall fresh biases in CTRL 380 

(Fig. 10d). Notable improvements are observed in the North Atlantic and North Pacific, where salinity 381 

biases are reduced by approximately 0.5-1 psu, and in parts of the Southern Ocean, where reductions 382 

reach up to 1.5 psu. In summary, ASSIM demonstrates marked improvements in both SST and SSS biases 383 

compared to CTRL, emphasizing the importance and effectiveness of the WCODA system in enhancing 384 

model accuracy and reliability. 385 

 386 

4 Conclusions 387 

This study documents the development and assessment of the new 4DEnVar-based WCODA system 388 

in the fully coupled E3SMv2 model, employing the DRP-4DVar method. The DRP-4DVar approach 389 

significantly reduces computational demands by replacing the traditional adjoint model with the 390 

ensemble technique. As a weakly coupled assimilation system, the WCODA system independently 391 

assimilates ocean reanalysis data within the ocean component during the analysis step. However, during 392 

the subsequent forecast step, the reanalysis information from the optimal ocean analyses is propagated 393 

to other components of the Earth system through interactions across multiple systems, thereby enhancing 394 

the coherence of ICs across different components of the climate model. 395 

Monthly mean ocean temperature and salinity data from the EN4.2.1 reanalysis are integrated into 396 
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the ocean component of E3SMv2 from 1950 to 2021, which can be used to provide realistic ICs for 397 

decadal climate predictions. The effectiveness of the WCODA system has been assessed using several 398 

metrics, including reduction rate of the cost function, RMSE differences, correlation differences, and 399 

model biases. The reduction rate of the cost function consistently shows negative values in each month 400 

over the 72-year period, indicating successful assimilation of the EN4.2.1 reanalysis data into the climate 401 

model. Compared to CTRL, ASSIM achieves significant reductions in RMSE and enhancements in 402 

correlation in the upper ocean layers, with notable improvements observed in parts of the North Atlantic, 403 

North Pacific and Indian Ocean. ASSIM substantially mitigates model biases for SST and SSS observed 404 

in CTRL, particularly reducing cold biases in the North Pacific and North Atlantic by approximately 1-405 

2 °C, correcting warm biases in the Southern Ocean by about 1.5-2.5 °C, and significantly increasing 406 

salinity estimates to reduce the model fresh biases by approximately 0.5-1 psu in the North Atlantic and 407 

North Pacific, and up to 1.5 psu in parts of the Southern Ocean. 408 

Despite these advancements, the WCODA system exhibits limitations in certain regions, 409 

particularly in the deeper layers of the southern Pacific Ocean and South Atlantic. The reliance on the 410 

EN4.2.1 product could pose limitations to the assimilation process due to the sparse salinity observations 411 

and potential for static instabilities in data-sparse regions. Reanalysis products such as ORAS5 and 412 

GLORYS provide promising alternatives for mitigating these limitations. Future efforts should explore 413 

incorporating these reanalysis products into the WCODA system to improve the assimilation 414 

performance in challenging areas. Furthermore, expanding the application of the WCODA system to 415 

other components of the climate model, such as the atmosphere and sea ice, could enhance overall 416 

predictive skill. These developments are essential for providing more accurate and reliable long-term 417 

climate predictions, ultimately aiding in the formulation of energy-sector policies and management 418 

strategies. 419 
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 17 

be accessed on Zenodo at https://zenodo.org/records/13283117. 425 

 426 

Author contributions. PS and LRL designed the experiments. PS developed the ocean assimilation code 427 

and conducted the experiments. BW proposed technical advice. PS and LRL analyzed the data. PS and 428 

LRL drafted the paper. All authors contributed to the revisions. 429 

 430 

Competing interests. The authors declare no competing interests. 431 

 432 

Acknowledgements. This research was supported by the Office of Science, U.S. Department of Energy 433 

Biological and Environmental Research through the Water Cycle and Climate Extremes Modeling 434 

(WACCEM) scientific focus area funded by the Regional and Global Model Analysis program area. This 435 

research used computing resources of the National Energy Research Scientific Computing Center, which 436 

is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-437 

05CH1123, and BER Earth and Environmental System Modeling program’s Compy computing cluster 438 

located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by 439 

Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830.  440 



 18 

References 441 

Balmaseda, M. A., Trenberth, K. E., & Källén, E.: Distinctive climate signals in reanalysis of global ocean 442 

heat content, Geophysical Research Letters, 40, 1754–1759, https://doi.org/10.1002/grl.50382, 2013. 443 

Branstator, G., and Teng, H.: Potential impact of initialization on decadal predictions as assessed for 444 

CMIP5 models, Geophysical Research Letters, 39, L12703, https://doi.org/10.1029/2012GL051974, 445 

2012. 446 

Browne, P. A., De Rosnay, P., Zuo, H., Bennett, A., and Dawson, A.: Weakly coupled ocean–atmosphere 447 

data assimilation in the ECMWF NWP system, Remote Sensing, 11, 234, 448 

https://doi.org/10.3390/rs11030234, 2019. 449 

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in the geosciences: An 450 

overview of methods, issues, and perspectives, Wiley Interdisciplinary Reviews: Climate Change, 9, 451 

e535, https://doi.org/10.1002/wcc.535, 2018. 452 

Chen, J., Liu, H., Bai, C., Yan, H., Lu, K., Bao, S., and Liu, K.: Identifying climate modes contributing to 453 

sea surface salinity decadal variation in the North Pacific Ocean, Journal of Geophysical Research: 454 

Oceans, 125(10), e2019JC016011, https://doi.org/10.1029/2019JC016011, 2020. 455 

Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for Earth system modeling developed 456 

for CCSM4 and CESM1, International Journal of High Performance Computing Applications, 26(1), 457 

31–42, https://doi.org/10.1177/1094342011428141, 2012. 458 

Dirmeyer, P. A., Halder, S., and Bombardi, R.: On the harvest of predictability from land states in a global 459 

forecast model, Journal of Geophysical Research: Atmospheres, 123, 111–127, 460 

https://doi.org/10.1029/2018JD029103, 2018. 461 

Edwards, C. A., Moore, A. M., Hoteit, I., and Cornuelle, B. D.: Regional ocean data assimilation, Annual 462 

Review of Marine Science, 7(1), 21–42, https://doi.org/10.1146/annurev-marine-010814-015821, 463 

2015. 464 

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview 465 

of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and 466 

organization, Geoscientific Model Development, 9, 1937–1958, https://doi.org/10.5194/gmd-9-467 

1937-2016, 2016. 468 

https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016


 19 

Golaz, J. C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., Abeshu, G., 469 

Anantharaj, V., Asay-Davis, X. S., Bader, D. C., Baldwin, S. A., Bisht, G., Bogenschutz, P. A., 470 

Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. S., 471 

Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar, J. G., Fyke, J. G., Griffin, B. 472 

M., Hannay, C., Harrop, B. E., Hoffman, M. J., Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, 473 

N., Jones, P. W., Keen, N. D., Klein, S. A., Larson, V. E., Leung, L. R., Li, H. Y., Lin, W., Lipscomb, 474 

W. H., Ma, P. L., Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy, R. B., Neale, 475 

R. B., Price, S. F., Qian, Y., Rasch, P. J., Reeves Eyre, J. E. J., Riley, W. J., Ringler, T. D., Roberts, 476 

A. F., Roesler, E. L., Salinger, A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A., Thornton, 477 

P. E., Turner, A. K., Veneziani, M., Wan, H., Wang, H., Wang, S., Williams, D. N., Wolfram, P. J., 478 

Worley, P. H., Xie, S., Yang, Y., Yoon, J.-H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., 479 

Zhang, K., Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM Coupled Model Version 1: 480 

Overview and Evaluation at Standard Resolution, Journal of Advances in Modeling Earth Systems, 481 

11, 2089–2129, https://doi.org/https://doi.org/10.1029/2018MS001603, 2019. 482 

Golaz, J. C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W. Y., Bradley, A. M., Tang, 483 

Q., Maltrud, M. E., Forsyth, R. M., Zhang, C. Z., Zhou, T., Zhang, K., Zender, C. S., Wu, M. X., 484 

Wang, H. L., Turner, A. K., Singh, B., Richter, J. H., Qin, Y., Petersen, M. R., Mametjanov, A., Ma, 485 

P., Larson, V. E., Krishna, J., Keen, N. D., Jeffery, N., Hunke, E. C., Hannah, W. M., Guba, O., 486 

Griffin, B. M., Feng, Y., Engwirda, D., Vittorio, A. V., Cheng, D., Conlon, L. M., Chen, C., Brunke, 487 

M. A., Bisht, G., Benedict, J. J., Asay-Davis, X. S., Zhang, Y. Y., Zhang, M., Zeng, X. B., Xie, S. C., 488 

Wolfram, P. J., Vo, T., Veneziani, M., Tesfa, T. K., Sreepathi, S., Salinger, A. G., Jack Reeves Eyre, 489 

J. E., Prather, M. J., Mahajan, S., Li, Q., Jones, P. W., Jacob, R. L., Huebler, G. W., Huang, X. L., 490 

Hillman, B. R., Harrop, B. E., Foucar, J. G., Fang, Y. L., Comeau, D. S., Caldwell, P. M., Bartoletti, 491 

T., Balaguru, K., Taylor, M. A., McCoy, R. B., Leung, L. R., and Bader, D. C.: The DOE E3SM 492 

Model version 2: Overview of the physical model and initial model evaluation, Journal of Advances 493 

in Modeling Earth Systems, 14, e2022MS003156, https://doi. org/10.1029/2022MS003156, 2022. 494 

Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean temperature and salinity 495 

profiles and monthly objective analyses with uncertainty estimates, Journal of Geophysical Research: 496 



 20 

Oceans, 118(12), 6704–6716, https://doi.org/10.1002/2013JC009067, 2013. 497 

He, Y., Wang, B., Liu, M., Liu, L., Yu, Y., Liu, J., Li, R., Zhang, C., Xu, S., Huang, W., Liu, Q., Wang, 498 

Y., and Li, F.: Reduction of initial shock in decadal predictions using a new initialization strategy, 499 

Geophysical Research Letters, 44(16), 8538–8547, https://doi.org/10.1002/2017GL074028, 2017. 500 

He, Y., Wang, B., Huang, W., Xu, S., Wang, Y., Liu, L., Li, L., Liu, J., Yu, Y., Lin, Y., Huang, X., and 501 

Peng, Y.: A new DRP-4DVar-based coupled data assimilation system for decadal predictions using 502 

a fast online localization technique, Climate Dynamics, 54, 3541–3559, 503 

https://doi.org/10.1007/s00382-020-05190-w, 2020a. 504 

He, Y., Wang, B., Liu, L., Huang, W., Xu, S., Liu, J., Wang, Y., Li, L., Huang, X., Peng, Y., Lin, Y., and 505 

Yu, Y.: A DRP-4DVar-based coupled data assimilation system with a simplified off-line localization 506 

technique for decadal predictions, Journal of Advances in Modeling Earth Systems, 12(4), 507 

e2019MS001768, https://doi.org/10.1029/2019MS001768, 2020b. 508 

Higgins, R. W., Leetmaa, A., Xue, Y., and Barnston, A.: Dominant factors influencing the seasonal 509 

predictability of US precipitation and surface air temperature, Journal of Climate, 13(22), 3994–510 

4017, https://doi.org/10.1175/1520-0442(2000)013<3994:DFITSP>2.0.CO;2, 2000. 511 

Jacobs, G., D’Addezio, J. M., Ngodock, H., and Souopgui, I.: Observation and model resolution 512 

implications to ocean prediction, Ocean Modelling, 159, 101760, 513 

https://doi.org/10.1016/j.ocemod.2021.101760, 2021. 514 

Laloyaux, P., Balmaseda, M., Dee, D., Mogensen, K., and Janssen, P.: A coupled data assimilation system 515 

for climate reanalysis, Quarterly Journal of the Royal Meteorological Society, 142, 65–78, 516 

https://doi.org/10.1002/qj.2629, 2016. 517 

Leung, L. R., Bader, D. C., Taylor, M. A., and McCoy, R. B.: An introduction to the E3SM special 518 

collection: Goals, science drivers, development, and analysis, Journal of Advances in Modeling 519 

Earth Systems, 12(11), e2019MS001821, https://doi.org/10.1029/2019MS001821, 2020. 520 

Li, F., Wang, B., He, Y., Huang, W., Xu, S., Liu, L., Liu, J. and Li, L.: Important role of North Atlantic 521 

air–sea coupling in the interannual predictability of summer precipitation over the eastern Tibetan 522 

Plateau, Climate Dynamics, 56, 1433–1448, https://doi.org/10.1007/s00382-020-05542-6, 2021. 523 

Li, H. Y., Wigmosta, M. S., Wu, H., Huang, M., Ke, Y., Coleman, A. M., and Leung, L. R.: A physically 524 

https://doi.org/10.1002/2017GL074028
https://doi.org/10.1007/s00382-020-05190-w
https://doi.org/10.1029/2019MS001768
https://doi.org/10.1029/2019MS001821
https://doi.org/10.1007/s00382-020-05542-6


 21 

based runoff routing model for land surface and Earth system models, Journal of Hydrometeorology, 525 

14, 808–828, https://doi.org/10.1175/JHM-D-12-015.1, 2013. 526 

McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an integrating concept in earth science, 527 

Science, 314, 1740–1745, https://doi.org/10.1126/science.1132588, 2006. 528 

Penny, S. G., and Hamill, T. M.: Coupled data assimilation for integrated earth system analysis and 529 

prediction, Bulletin of the American Meteorological Society, 98, 169–172, 530 

https://doi.org/10.1175/BAMS-D-17-0036.1, 2017. 531 

Pohlmann, H., Müller, W. A., Bittner, M., Hettrich, S., Modali, K., Pankatz, K., and Marotzke, J.: 532 

Realistic quasi‐biennial oscillation variability in historical and decadal hindcast simulations using 533 

CMIP6 forcing, Geophysical Research Letters, 46(23), 14118–14125, 534 

https://doi.org/10.1029/2019GL084878, 2019. 535 

Polkova, I., Köhl, A., and Stammer, D.: Climate-mode initialization for decadal climate predictions, 536 

Climate Dynamics, 53(11), 7097–7111, https://doi.org/10.1007/s00382-019-04975-y, 2019. 537 

Reckinger, S. M., Petersen, M. R., and Reckinger, S. J.: A study of overflow simulations using MPAS-538 

Ocean: Vertical grids, resolution, and viscosity, Ocean Modeling, 96, 291–313, 539 

https://doi.org/10.1016/j.ocemod.2015.09.006, 2015. 540 

Ropelewski, C. F., and Halpert, M. S.: North American precipitation and temperature patterns associated 541 

with the El Niño/Southern Oscillation (ENSO), Monthly Weather Review, 114, 2352–2362, 542 

https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2, 1986. 543 

Shi, P., Wang, B., He, Y., Lu, H., Yang, K., Xu, S. M., Huang, W. Y., Liu, L., Liu, J. J., Li, L. J., and Wang, 544 

Y.: Contributions of weakly coupled data assimilation–based land initialization to interannual 545 

predictability of summer climate over Europe, Journal of Climate, 35, 517–535, 546 

https://doi.org/10.1175/JCLI-D-20-0506.1, 2022. 547 

Shi, P., Lu, H., Leung, L.R., He, Y., Wang, B., Yang, K., Yu, L., Liu, L., Huang, W., Xu, S., Liu, J., Huang, 548 

X., Li, L., and Lin, Y.: Significant land contributions to interannual predictability of East Asian 549 

summer monsoon rainfall, Earth's Future, 9(2), e2020EF001762, 550 

https://doi.org/10.1029/2020EF001762, 2021. 551 

Shi, P., Leung, L. R., Wang, B., Zhang, K., Hagos, S. M., and Zhang, S.: The 4DEnVar-based weakly 552 

https://doi.org/10.1175/JHM-D-12-015.1
https://doi.org/10.1016/j.ocemod.2015.09.006
https://doi.org/10.1175/JCLI-D-20-0506.1


 22 

coupled land data assimilation system for E3SM version 2, Geoscientific Model Development, 17, 553 

3025–3040, https://doi.org/10.5194/gmd-17-3025-2024, 2024. 554 

Sluka, T. C., Penny, S. G., Kalnay, E., and Miyoshi, T.: Assimilating atmospheric observations into the 555 

ocean using strongly coupled ensemble data assimilation, Geophysical Research Letters, 43, 752–556 

759, https://doi.org/10.1002/2015GL067238, 2016. 557 

Smith, P. J., Fowler, A. M., and Lawless, A. S.: Exploring strategies for coupled 4D-Var data assimilation 558 

using an idealised atmosphere–ocean model, Tellus A: Dynamic Meteorology and Oceanography, 559 

67, 27025, https://doi.org/10.3402/tellusa.v67.27025, 2015. 560 

Sugiura, N., Awaji, T., Masuda, S., Mochizuki, T., Toyoda, T., Miyama, T., Igarashi, H. and Ishikawa, Y.: 561 

Development of a four-dimensional variational coupled data assimilation system for enhanced 562 

analysis and prediction of seasonal to interannual climate variations, Journal of Geophysical 563 

Research: Oceans, 113, C10017, https://doi.org/10.1029/2008JC004741, 2008. 564 

Tardif, R., Hakim, G. J., and Snyder, C.: Coupled atmosphere–ocean data assimilation experiments with 565 

a low-order climate model, Climate Dynamics, 43, 1631–1643, https://doi.org/10.1007/s00382-013-566 

1989-0, 2014. 567 

Taylor, M. A., Guba, O., Steyer, A., Ullrich, P. A., Hall, D. M., and Eldred, C.: An energy consistent 568 

discretization of the nonhydrostatic equations in primitive variables, Journal of Advances in 569 

Modeling Earth Systems, 12, e2019MS001783, https://doi.org/10.1029/2019MS001783, 2020. 570 

Tian, T., Yang, S., Karami, M. P., Massonnet, F., Kruschke, T., and Koenigk, T.: Benefits of sea ice 571 

initialization for the interannual-to-decadal climate prediction skill in the Arctic in EC-Earth3, 572 

Geoscientific Model Development, 14, 4283–4305, https://doi.org/10.5194/gmd-14-4283-2021, 573 

2021. 574 

Turner, A. K., Lipscomb, W. H., Hunke, E. C., Jeffery, N., Engwirda, D., Ringler, T. D., and Wolfe, J. D.: 575 

MPAS-Seaice (v1.0.0): Sea-ice dynamics on unstructured Voronoi meshes, Geoscientific Model 576 

Development, 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022, 2022. 577 

Van Roekel, L., Adcroft, A., Danabasoglu, G., Griffies, S. M., Kauffman, B., Large, W., Levy, M., Reichl, 578 

B., Ringler, T., and Schmidt, M.: The KPP boundary layer scheme for the ocean: Revisiting its 579 

formulation and benchmarking one‐dimensional simulations relative to LES, Journal of Advances in 580 

https://doi.org/10.1029/2008JC004741


 23 

Modeling Earth Systems, 10, 2647–2685, https://doi.org/10.1029/2018MS001336, 2018. 581 

Wang, B., Liu, J., Wang, S., Cheng, W., Liu, J., Liu, C., Xiao, Q., and Kuo, Y. H.: An economical approach 582 

to four-dimensional variational data assimilation, Advances in Atmospheric Sciences, 27, 715–727, 583 

https://doi.org/10.1007/s00376-009-9122-3, 2010. 584 

Wang, B., Liu, J., Liu, L., Xu, S., and Huang, W.: An approach to localization for ensemble-based data 585 

assimilation, PloS one, 13(1), e0191088, https://doi.org/10.1371/journal.pone.0191088, 2018. 586 

Wang, T., Geyer, W. R., Engel, P., Jiang, W., and Feng, S.: Mechanisms of tidal oscillatory salt transport 587 

in a partially stratified estuary, Journal of Physical Oceanography, 45(11), 2773–2789, 588 

https://doi.org/10.1175/JPO-D-15-0031.1, 2015. 589 

Wunsch, C., & Heimbach, P.: Practical global oceanic state estimation, Physica D: Nonlinear Phenomena, 590 

230, 197–208, https://doi.org/10.1016/j.physd.2006.09.040, 2007. 591 

Yao, J., Vitart, F., Balmaseda, M. A., Wu, T., and Liu, X.: The impact of coupled data assimilation on 592 

Madden–Julian Oscillation predictability initialized from coupled satellite-era reanalysis, Monthly 593 

Weather Review, 149, 2897–2912, https://doi.org/10.1175/MWR-D-20-0360.1, 2021. 594 

Yeager, S., Karspeck, A., Danabasoglu, G., Tribbia, J., and Teng, H.: A decadal prediction case study: 595 

Late twentieth-century North Atlantic Ocean heat content, Journal of Climate, 25, 5173–5189, 596 

https://doi.org/10.1175/JCLI-D-11-00595.1, 2012. 597 

Yoshida, T., and Kalnay, E.: Correlation-cutoff method for covariance localization in strongly coupled 598 

data assimilation, Monthly Weather Review, 146, 2881–2889, https://doi.org/10.1175/MWR-D-17-599 

0365.1, 2018. 600 

Zhang, M., Xie, S., Liu, X., Zhang, D., Lin, W., Zhang, K., Golaz, J. C., Zheng, X., and Zhang, Y.: 601 

Evaluating EAMv2 Simulated High Latitude Clouds Using ARM Measurements in the Northern and 602 

Southern Hemispheres, Journal of Geophysical Research: Atmospheres, 128(15), e2022JD038364, 603 

https://doi.org/10.1029/2022JD038364, 2023. 604 

Zhang, S., Harrison, M. J., Wittenberg, A. T., Rosati, A., Anderson, J. L., and Balaji, V.: Initialization of 605 

an ENSO forecast system using a parallelized ensemble filter, Monthly Weather Review, 133, 3176–606 

3201, https://doi.org/10.1175/MWR3024.1, 2005. 607 

Zhang, S., Chang, Y. S., Yang, X., and Rosati, A.: Balanced and coherent climate estimation by combining 608 

https://doi.org/10.1007/s00376-009-9122-3
https://doi.org/10.1371/journal.pone.0191088


 24 

data with a biased coupled model, Journal of Climate, 27, 1302–1314, https://doi.org/10.1175/JCLI-609 

D-13-00260.1, 2014. 610 

Zhang, S., Liu, Z., Zhang, X., Wu, X., Han, G., Zhao, Y., Yu, X., Liu, C., Liu, Y., Wu, S., Lu, F., Li, M., 611 

Deng, X.: Coupled data assimilation and parameter estimation in coupled ocean–atmosphere models: 612 

a review, Climate Dynamics, 54, 5127–5144, https://doi.org/10.1007/s00382-020-05275-6, 2020. 613 

Zhao, Y., Wang, B., and Liu, J.: A DRP–4DVar data assimilation scheme for typhoon initialization using 614 

sea level pressure data, Monthly weather review, 140(4), 1191–1203, https://doi.org/10.1175/MWR-615 

D-10-05030.1, 2012. 616 

Zhou, W., Li, J., Yan, Z., Shen, Z., Wu, B., Wang, B., Zhang, R., and Li, Z.: Progress and future prospects 617 

of decadal prediction and data assimilation: a review, Atmospheric and Oceanic Science Letters, 17, 618 

100441, https://doi.org/10.1016/j.aosl.2023.100441, 2024. 619 

Zhu, S., Wang, B., Zhang, L., Liu, J., Liu, Y., Gong, J., Xu, S., Wang, Y., Huang, W., Liu, L., He, Y., and 620 

Wu, X.: A Four‐Dimensional Ensemble‐Variational (4DEnVar) Data Assimilation System Based on 621 

GRAPES‐GFS: System Description and Primary Tests, Journal of Advances in Modeling Earth 622 

Systems, 14(7), e2021MS002737, https://doi.org/10.1029/2021MS002737, 2022.  623 



 25 

 624 

Figure 1. Workflow of the 4DEnVar-based WCODA system utilizing the DRP-4DVar method for the 625 

E3SM model (modified from Fig. 1 in Shi et al. (2024)).  626 

DRP-4DVar

model background	"!observational
background y!

ocean temperature 
and salinity from 

EN4.2.1 y"!#

quality control

non-dimensional
observational innovation y$′$%&

optimal
analysis	"'

localization

PI-control run

model samples "(

non-dimensional 
observational samples &$′

perturbation samples



 26 

 627 

Figure 2. Schematic diagram of the DRP-4DVar assimilation process within the 4DEnVar-based 628 

WCODA system for E3SM. The model background (𝑥") includes atmospheric (𝑥"%+,), land (𝑥"-'.), ice 629 

(𝑥"/&0), river (𝑥"1/201), and oceanic (𝑥"!&') components of the fully coupled E3SMv2. The observational 630 

background (𝑦"!&') is defined by the model outputs of monthly mean ocean temperature (𝑇,",) and salinity 631 

(�̅�",) using 𝑥" as the initial state. The ocean observation (𝑦!"#!&') represents the observed monthly mean 632 

ocean temperature (𝑇,!"#, ) and salinity (�̅�!"#, ) from the EN4.2.1 reanalysis. The observational innovation 633 

(𝑦!"#$ ) is calculated as the difference between the observed ocean temperature and salinity (𝑦!"#!&') and the 634 

model's observational background (𝑦"!&'). 𝑥%$  denotes the analysis increment. The optimal analysis (𝑥%) 635 

encompasses both the optimal analysis of the ocean component (𝑥%!&') and the background states of other 636 

components. This optimal analysis (𝑥%) is used as the initial condition to produce the next month's 637 

forecast, transferring ocean reanalysis information to other components.  638 
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 639 

Figure 3. Temporal variation of the reduction rate of the cost function (unit: %) in the WCODA system 640 

based on the 4DEnVar method from 1950 to 2021.  641 
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 642 

Figure 4. Spatial patterns of root mean square error (RMSE) differences in ocean temperature (unit: °C) 643 

between ASSIM and CTRL across nine ocean layers from 1950 to 2021. The RMSE differences are 644 

shown for nine different ocean depths: (a) 5 m, (b) 45 m, (c) 85 m, (d) 135 m, (e) 327 m, (f) 528 m, (g) 645 

708 m, (h) 879 m, and (i) 1106 m. Dotted areas represent statistical significance at the 95% confidence 646 

level.  647 
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 648 

Figure 5. Similar to Figure 4 but for ocean salinity (unit: psu).  649 
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 650 

Figure 6. Spatial patterns of the differences between ASSIM and CTRL for their correlations of ocean 651 

temperature with observations across nine ocean layers. Dotted regions indicate statistical significance 652 

at the 95% confidence level. Panels (a) to (i) represent different ocean depths: (a) 5 m, (b) 45 m, (c) 85 653 

m, (d) 135 m, (e) 327 m, (f) 528 m, (g) 708 m, (h) 879 m, and (i) 1106 m.  654 
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 655 

Figure 7. Similar to Figure 6 but for ocean salinity.  656 
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 657 
Figure 8. Vertical profiles of the globally averaged RMSE differences between ASSIM and CTRL for 658 

(a) ocean temperature (unit: °C) and (b) ocean salinity (unit: psu) over the period from 1950 to 2021.  659 
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 660 

Figure 9. Temporal variations of the global mean bias (a, c) and RMSE (b, d) for ocean temperature 661 

(unit: °C) and salinity (unit: psu) averaged over the upper 1000 meters from 1950 to 2021. The red lines 662 

represent ASSIM, while the blue lines represent CTRL.  663 
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 664 

Figure 10. Climatological mean differences in sea surface temperature (left, unit: °C) and salinity (right, 665 

unit: psu) from 1950 to 2021. The top panels show the differences between CTRL and observation, while 666 

the bottom panels show the differences between ASSIM and observation. Dotted areas indicate regions 667 

where the differences are statistically significant at the 95% confidence level.  668 
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Appendix A: Supporting Information 669 

 670 

Figure A1. Spatial patterns of RMSE differences between ASSIM and CTRL for ocean temperature 671 

(unit: °C) during summer. Results are presented for nine different ocean layers: (a) 5 m, (b) 45 m, (c) 85 672 

m, (d) 135 m, (e) 327 m, (f) 528 m, (g) 708 m, (h) 879 m, and (i) 1106 m. Dotted areas represent statistical 673 

significance at the 95% confidence level.  674 
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 675 

Figure A2. Similar to Figure A1 but during winter.  676 
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 677 

Figure A3. Time series of the winter Niño 3.4 index from 1950 to 2021 for the observation (black line), 678 

ASSIM (red line), and CTRL (blue line). The correlation of the Niño 3.4 index with the observation in 679 

ASSIM and CTRL are also shown.  680 
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 681 

Figure A4. Vertical profiles of the globally averaged RMSE differences between ASSIM and CTRL for 682 

(a) ocean temperature (unit: °C) and (b) ocean salinity (unit: psu) with depths from 1106 m to 5375 m.  683 
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 684 

Figure A5. Temporal variations of the global mean bias (a, c) and RMSE (b, d) for ocean temperature 685 

(unit: °C) and salinity (unit: psu) averaged over the upper 300 meters. The red lines represent ASSIM, 686 

while the blue lines represent CTRL.  687 
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 688 

Figure A6. Similar to Figure A5 but averaged over the upper 700 meters. 689 


