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Abstract. The development, implementation, and evaluation of a new weakly coupled ocean data 13 

assimilation (WCODA) system for the fully coupled Energy Exascale Earth System Model version 2 14 

(E3SMv2) utilizing the four-dimensional ensemble variational (4DEnVar) method are presented in this 15 

study. The 4DEnVar method, based on the dimension-reduced projection four-dimensional variational 16 

(DRP-4DVar) approach, replaces the adjoint model with the ensemble technique, thereby reducing 17 

computational demands. Monthly mean ocean temperature and salinity data from the EN4.2.1 reanalysis 18 

are integrated into the ocean component of E3SMv2 from 1950 to 2021, with the goal of providing 19 

realistic initial conditions for decadal predictions and predictability studies. The performance of the 20 

WCODA system is assessed using various metrics, including reduction rate of the cost function, root 21 

mean square error (RMSE) differences, correlation differences, and model biases. Results indicate that 22 

the WCODA system effectively assimilates the reanalysis data into the climate model, consistently 23 

achieving negative reduction rates of the cost function and notable improvements in RMSE and 24 

correlation across various ocean layers and regions. Significant enhancements are observed in the upper 25 

ocean layers across the majority of global ocean regions, particularly in the North Atlantic, North Pacific 26 

and Indian Ocean. Model biases in sea surface temperature and salinity are also substantially reduced. 27 

For sea surface temperature, cold biases in the North Pacific and North Atlantic are diminished by about 28 

1-2 °C, and warm biases in the Southern Ocean are corrected by approximately 1.5-2.5 °C. In terms of 29 

salinity, improvements are observed with bias reductions of about 0.5-1 psu in the North Atlantic and 30 

North Pacific and up to 1.5 psu in parts of the Southern Ocean. The ultimate goal of the WCODA system 31 

is to advance the predictive capabilities of E3SM for subseasonal-to-decadal climate predictions, thereby 32 

supporting research on strategic energy-sector policies and planning.  33 
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1 Introduction 43 

Climate predictions are essential for understanding and mitigating the impacts of climate variability 44 

and change. The accuracy and reliability of climate predictions depends strongly on the initialization of 45 

the climate models, which requires realistic and high-quality initial conditions (ICs) for skillful 46 

predictions (Dirmeyer et al., 2018). Data assimilation (DA) techniques are important for providing 47 

realistic ICs by integrating observational data into the model, thereby enhancing the predictive 48 

capabilities of climate models (Tardif et al., 2014). The efficacy of DA techniques has been demonstrated 49 

through enhanced predictability on subseasonal to decadal timescales (Zhou et al., 2024). 50 

Numerous studies have focused on the initialization of climate models for decadal predictions 51 

(Branstator and Teng, 2012; Polkova et al., 2019). Climate models integrate multiple components, 52 

including the atmosphere, ocean, sea ice, and land. For the initialization of climate models in decadal 53 

predictions, DA methods can be categorized into uncoupled data assimilation and coupled data 54 

assimilation (CDA). In the uncoupled method, DA is performed independently within the uncoupled 55 

atmosphere, land and ocean models rather than in a coupled model. The optimal analyses from these 56 

uncoupled models are then integrated together to establish the ICs for the climate model's predictions 57 

(Yao et al., 2021). For example, some studies directly utilize existing reanalysis data to initialize climate 58 

models for decadal predictions (Yeager et al., 2012; Tian et al., 2021). Nevertheless, the uncoupled DA 59 

method may lead to imbalances between different model components, potentially inducing initial shocks 60 

and diminishing the reliability of climate predictions (Smith et al., 2015; Zhang et al., 2020). Therefore, 61 

there is a growing interest in exploring and developing CDA methods to enhance the coherence and 62 

accuracy of the ICs for climate predictions. 63 

Many research groups and institutions are actively engaged in the development and refinement of 64 

CDA methods. In CDA, the assimilation process is conducted directly within a coupled model. Compared 65 

to uncoupled DA, CDA provides balanced ICs that are more coordinated across multiple components of 66 

coupled models (Zhang et al., 2014). Previous studies have demonstrated that CDA enhances interannual 67 

climate predictions more effectively than uncoupled DA (Zhang et al., 2005; Shi et al., 2022). CDA 68 

techniques are divided into weakly coupled data assimilation (WCDA) and strongly coupled data 69 

assimilation (SCDA). In the WCDA system, reanalysis data is assimilated independently within each 70 
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component of the coupled model. However, through the coupled model integration, reanalysis 71 

information from one component is transmitted to other components through interactions across multiple 72 

systems (Browne et al., 2019; He et al., 2020a). Sequential DA is distinctly partitioned into two primary 73 

stages: the analysis and forecast steps. During the WCDA analysis step, reanalysis information from one 74 

component cannot directly influence other components due to the lack of cross-component background 75 

error covariances. Nonetheless, the coupled model is employed during the forecast step to transfer 76 

reanalysis information from a single component to others through the integration of the coupled system 77 

(Laloyaux et al., 2016; Carrassi et al., 2018). The primary distinction between WCDA and uncoupled 78 

DA is the use of the coupled model during the forecast step (Zhang et al., 2020). Recent studies have 79 

developed WCDA systems that separately assimilate reanalysis data from the atmosphere (Li et al., 2021), 80 

land (Shi et al., 2024), and ocean (He et al., 2017) into coupled models. On the other hand, SCDA 81 

employs cross-component background error covariances during the analysis step to directly exert an 82 

instantaneous impact of reanalysis information from a single component on the state variables of other 83 

components, treating all Earth system components as an integrated whole (Sluka et al., 2016). Moreover, 84 

SCDA also allows the reanalysis information from a single component to propagate to other components 85 

during the forecast step through the coupled model integration (Yoshida and Kalnay, 2018). Therefore, 86 

SCDA offers potential benefits, including reduced model drift and enhanced forecast accuracy (Smith et 87 

al., 2015). Nevertheless, the development of SCDA presents considerable obstacles, primarily due to the 88 

complexity of accurately establishing cross-component background error covariances (Penny and Hamill, 89 

2017). As a result, most existing CDA systems continue to employ the WCDA systems. 90 

This study presents the development and implementation of the weakly coupled ocean data 91 

assimilation (WCODA) system for the fully coupled Energy Exascale Earth System Model version 2 92 

(E3SMv2), utilizing the four-dimensional ensemble variational (4DEnVar) method. The 4DEnVar 93 

method is based on the dimension-reduced projection four-dimensional variational (DRP-4DVar) 94 

approach, notable for its innovative application of 4DVar by replacing the adjoint model with the 95 

ensemble approach (Wang et al., 2010). Previous studies have shown that 4DVar-based methods 96 

outperform simpler schemes (e.g., nudging or 3DVar) by maintaining dynamical consistency with the 97 

model and minimizing initial shocks in the forecasts (Sugiura et al., 2008; Zhang et al., 2020). In the 98 
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WCODA system, monthly mean ocean temperature and salinity data from the EN4.2.1 reanalysis are 100 

incorporated into the ocean component of E3SMv2 to provide realistic ICs for decadal predictions. 101 

Although the assimilation process during the analysis step is conducted independently within the ocean 102 

component, the fully coupled E3SMv2 model is employed during the forecast step to transmit reanalysis 103 

information from the ocean to other components (e.g., atmosphere and land) through multi-component 104 

interactions. Consequently, the reanalysis information assimilated into the ocean ICs affects other model 105 

components through the integration of the fully coupled model, emphasizing the operation of this system 106 

as a WCDA system. The primary objective of this WCODA system is to advance our understanding of 107 

the ocean's role in climate predictability. Shi et al. (2024) implemented a weakly coupled land data 108 

assimilation in E3SMv2 for isolating the land’s role in climate predictability. By improving the accuracy 109 

of ICs for both land and ocean, we aim to advance the predictive capabilities of E3SM for decadal 110 

predictions, ultimately supporting research on energy-sector policy and planning. 111 

This study presents and evaluates the 4DEnVar-based WCODA system for E3SMv2. Section 2 112 

provides a detailed description of the E3SMv2 model, the ocean reanalysis data, and the framework for 113 

implementing the 4DEnVar-based WCODA system. Section 3 evaluates the assimilation performance of 114 

the WCODA system. Finally, Section 4 provides the conclusions. 115 

 116 

2 Methodology 117 

2.1 E3SM Overview 118 

Developed by the U.S. Department of Energy, the Energy Exascale Earth System Model version 2 119 

(E3SMv2) is a state-of-the-art climate model to advance our understanding of climate variability and its 120 

future changes (Leung et al., 2020). E3SMv2 integrates multiple components to simulate the complex 121 

interactions within the climate system, encompassing the atmospheric, sea ice, ocean, land, and river 122 

transport components. The atmospheric component (EAMv2) represents turbulence, clouds, and aerosol 123 

processes (Zhang et al., 2023) and features a nonhydrostatic dynamical core (Taylor et al., 2020). It 124 

operates on a dynamic grid with a horizontal resolution of approximately 110 km and includes 72 vertical 125 

layers that extend to the stratosphere (Golaz et al., 2022). The sea ice component (MPAS-SI) simulates 126 

the formation, evolution, and melting of sea ice, with detailed thermodynamics and dynamics processes 127 
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(Turner et al., 2022). The ocean component (MPAS-O) is responsible for modeling the physical state and 130 

biogeochemical processes of the ocean, including detailed simulations of ocean currents, temperature, 131 

and salinity (Reckinger et al., 2015). MPAS-O operates at a horizontal resolution of ~60 km in the 132 

midlatitudes and ~30 km at the equator and poles, differing from the atmospheric model’s resolution of 133 

110 km. It is configured with 60 vertical layers, with finer resolution (~10 m) near the surface and coarser 134 

resolution (~200 m) at depth. The vertical mixing scheme employed is the K-profile parameterization, 135 

as described by Van Roekel et al. (2018). The land component (ELMv2) encompasses various land 136 

surface processes, including biophysical processes, soil processes, and surface hydrology (Golaz et al., 137 

2019). These simulations are crucial for understanding land-atmosphere interactions and their impact on 138 

climate variability. Additionally, the river transport component (MOSARTv2) simulates the hydrological 139 

dynamics of water flow through river basins, providing insights into freshwater resources, flood risks, 140 

and sediment transport (Li et al., 2013). The CPL7 coupler dynamically integrates all five components 141 

by regulating the exchange of energy, water, and momentum fluxes between different components (Craig 142 

et al., 2012). A comprehensive evaluation of the E3SMv2 model is presented by Golaz et al. (2022). 143 

 144 

2.2 Ocean Reanalysis Dataset 145 

The ocean temperature and salinity data in this study are derived from the EN4.2.1 ocean reanalysis 146 

dataset. Produced by the Met Office Hadley Centre, the EN4.2.1 product is developed based on quality-147 

controlled ocean temperature and salinity profiles from four input sources: Argo, ASBO (Arctic Synoptic 148 

Basin Wide Oceanography), GTSPP (Global Temperature and Salinity Profile Program), and WOD09 149 

(World Ocean Database) (Good et al., 2013). The EN4.2.1 dataset includes observations from a wide 150 

range of profiling instruments, such as Argo floats, expendable bathythermographs (XBTs), and 151 

mechanical bathythermographs (MBTs) (Chen et al., 2020). According to Good et al. (2013), 152 

observations in EN4.2.1 are most abundant in the upper 100 meters, with vertical resolution refined to 153 

~1 m in the top 100 m. Spatially, data density is high in regions such as the North Atlantic and western 154 

Pacific but decreases significantly in high-latitude and deep ocean regions. This distribution in data 155 

availability influences the assimilation results. Areas with denser observational coverage, such as the 156 

upper North Atlantic, are expected to show greater improvements through assimilation, while regions 157 
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with sparse observations may exhibit limited improvements. 168 

To initialize decadal climate predictions, monthly mean ocean temperature and salinity data from 169 

the EN4.2.1 reanalysis are assimilated into the fully coupled E3SMv2 model across all sixty ocean layers 170 

from 1950 to 2021. The choice to utilize monthly mean reanalysis data is based on two primary reasons: 171 

Firstly, data with higher temporal resolution (less than one month) might produce unwanted noise, 172 

potentially compromising the accuracy of decadal predictions. Secondly, the initialization for decadal 173 

predictions requires assimilation cycles spanning several decades, and assimilating complex, real-time 174 

observations over such extended periods would be computationally prohibitive. Therefore, in line with 175 

most existing studies that use reanalysis data for initializing decadal predictions (Pohlmann et al., 2019; 176 

Tian et al., 2021), this study assimilates the monthly mean EN4.2.1 reanalysis through the WCODA 177 

system for decadal predictions. 178 

 179 

2.3 Implementation of the 4DEnVar-based WCODA System 180 

The 4DEnVar method employed by the WCODA system is derived from the DRP-4DVar 181 

assimilation approach. The DRP-4DVar technique addresses the high computational demands of 182 

traditional 4DVar by employing an ensemble approach rather than utilizing the adjoint model (Wang et 183 

al., 2010). Zhu et al. (2022) demonstrated that the DRP-4DVar method significantly reduces 184 

computational time by approximately 50% compared to traditional 4DVar systems. This advanced 185 

method enhances computational efficiency by projecting the high-dimensional state space onto a lower-186 

dimensional subspace defined by an ensemble of historical samples. DRP-4DVar achieves an optimal 187 

solution within this sample space by aligning observations with model-generated historical time series 188 

over a four-dimensional window (Wang et al., 2010). The DRP-4DVar approach has been effectively 189 

implemented across multiple numerical models, demonstrating its accuracy and effectiveness (Zhao et 190 

al., 2012; Shi et al., 2021; Zhu et al., 2022). A comprehensive explanation of the DRP-4DVar method is 191 

provided by Wang et al. (2010). The DRP-4DVar method has also been implemented in a weakly coupled 192 

land data assimilation system in E3SMv2 (Shi et al., 2024). 193 

Figure 1 illustrates the workflow of the 4DEnVar-based WCODA system utilizing the DRP-4DVar 194 

approach within the fully coupled E3SMv2 model. The DRP-4DVar algorithm requires three primary 195 
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inputs: observational innovation (!"!"#$ ), model background (#"), and perturbation samples. Initially, a 207 

fully coupled E3SMv2 simulation is conducted for one month to generate both the model background 208 

(#") and observational background (!"). Specifically, the model background (#") refers to the monthly 209 

initial condition prior to the assimilation, while the observational background (!") denotes the monthly 210 

mean model output. Subsequently, the observational innovation (!"!"#$ ) is calculated as the difference in 211 

monthly mean ocean salinity and temperature between the EN4.2.1 reanalysis (!!"#) and the monthly 212 

mean model output (!"). From 100 years of balanced pre-industrial control (PI-control) simulations, 30 213 

sets of monthly mean forecast samples (!" $) are selected based on their highest correlations with the 214 

observational innovation. More specifically, the monthly mean forecast samples are computed by 215 

removing the long-term PI-control monthly climatology from the selected PI-control monthly mean 216 

output, which is then divided by the observational error. Correspondingly, 30 sets of monthly initial 217 

condition samples (#$) for the monthly mean forecast samples are derived. The analysis increment is 218 

calculated within the perturbation samples, which consist of 30 monthly initial condition samples and 219 

their corresponding monthly mean forecast samples. Due to the limited number of samples and to 220 

diminish the influence of spurious correlations between distant grid points, the localization procedure is 221 

incorporated into the assimilation process (Wang et al., 2018). Finally, the DRP-4DVar algorithm solves 222 

for the analysis increment within the sample space, which is then added to the model background (#") to 223 

produce the optimal analysis (#%). 224 

Figure 2 delineates the assimilation process using the DRP-4DVar method within the 4DEnVar-225 

based WCODA system for the fully coupled E3SMv2 model. This assimilation process includes both the 226 

analysis and forecast steps through each one-month assimilation window. In the initial stage, the fully 227 

coupled E3SMv2 model employs the model background (#") as the monthly initial condition to run for 228 

one month, producing the monthly mean model outputs for ocean temperature and salinity (!"!&'). During 229 

the analysis step, the observational innovation (!!"#$ ) is computed by comparing the discrepancies 230 

between the EN4.2.1 reanalysis (!!"#!&' ) and the model's monthly mean outputs (!"!&' ) for ocean 231 

temperature and salinity. The DRP-4DVar algorithm then utilizes this observational innovation and the 232 

PI-control samples to compute the optimal analysis of the ocean component (#%!&') at the start of the 233 

assimilation window. During the subsequent forecast step, the optimal analysis (#%) includes both the 234 
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optimal ocean analysis (#%!&') and the background states of other components prior to assimilation. This 236 

optimal analysis serves as the new initial condition for the fully coupled E3SMv2 model to run for one 237 

month to generate the next month's forecast. During this fully coupled model integration, reanalysis 238 

information from the ocean component is transmitted to the other model components through interactions 239 

across multiple systems. Although the assimilation is directly applied to the ocean component, the use of 240 

the initial conditions of all components from the optimal analysis and the fully coupled climate model 241 

during the forecast step ensures that the reanalysis information from the optimal ocean analysis 242 

influences other components through interactions across multiple systems. Therefore, according to the 243 

definition of the WCDA system from previous studies (Carrassi et al., 2018; Zhou et al., 2024), this 244 

assimilation system is designated as the WCODA system. Using the same DA approach, Shi et al. (2024) 245 

documented the implementation of DRP-4DVar as a weakly coupled land data assimilation system in 246 

E3SMv2. 247 

 248 

2.4 Experiment Design 249 

Two distinct numerical experiments are performed in this study to assess the effectiveness of ocean 250 

data assimilation within the 4DEnVar-based WCODA system. (1) The control simulation (CTRL) is a 251 

free-running fully coupled integration over a 72-year period from 1950 to 2021, driven exclusively by 252 

observed external forcings (e.g., solar radiation and greenhouse gas and aerosol concentrations). The 253 

observed external forcings, prescribed according to the CMIP6 protocol (Eyring et al., 2016), directly 254 

influence the atmospheric component and subsequently affect other components (e.g., land and ocean) 255 

through their coupling with the atmosphere. This free-running simulation allows unrestricted interactions 256 

among the various Earth system components, including the atmosphere, land, and ocean. The CTRL 257 

simulation serves as a baseline for evaluating the assimilation effectiveness of the WCODA system. (2) 258 

The assimilation experiment (ASSIM) incorporates monthly mean ocean temperature and salinity data 259 

from the EN4.2.1 reanalysis into the ocean component of the fully coupled E3SMv2 model across all 260 

sixty ocean layers spanning the entire ocean depth. This assimilation is conducted using a one-month 261 

assimilation window, covering the same 72-year period from 1950 to 2021. The assimilation run is 262 

initialized directly from the historical run in 1950, using the fully coupled state at the start of the 263 
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simulation. At the beginning of each monthly assimilation window, the EN4.2.1 reanalysis information 268 

is incorporated into the ocean state variables, after which the fully coupled model continues with free 269 

integration. During this free integration process, the reanalysis information assimilated into the ocean 270 

ICs influences other model components through interactions across multiple systems. The historical 271 

external forcings for both the ASSIM and CTRL experiments are derived from the CMIP6 protocol 272 

(Eyring et al., 2016). 273 

 274 

2.5 Assessment Criteria 275 

To comprehensively evaluate the effectiveness of the WCODA system, multiple quantitative metrics 276 

are employed, including the root mean square error (RMSE), correlation coefficient, and reduction rate 277 

of the cost function. The reduction rate of the cost function serves as a fundamental measure to assess 278 

the assimilation system's accuracy, calculated using the formula: 279 

																															
1
2 (!!"# − !%)

(*)*(!!"# − !%) − 12 (!!"# − !")
(*)*(!!"# − !")

1
2 (!!"# − !")(*)*(!!"# − !")

																																		(1) 280 

Here, !!"#  denotes the EN4.2.1 reanalysis, !"  represents the pre-assimilation observational 281 

background, !%  indicates the post-assimilation monthly mean model analyses, and *  denotes the 282 

observation error covariance matrix. In this study, * is assumed to be diagonal and its diagonal elements 283 

are statistically computed based on the variance of the EN4.2.1 ocean temperature and salinity data. The 284 

characteristics of * directly influence the assimilation process, where larger values reduce the relative 285 

weight of the EN4.2.1 reanalysis and smaller values increase it. Negative values of the reduction rate of 286 

the cost function signify the successful integration of reanalysis data into the model's state variables. To 287 

validate the correctness of this assimilation system, the EN4.2.1 reanalysis continues to be utilized as the 288 

reference data for evaluation. 289 

 290 

3 Results 291 

3.1 Reduction Rate of the Cost Function 292 

In Figure 3, the monthly variation in the reduction rate of the cost function for the 4DEnVar-based 293 

WCODA system is presented for the 72-year period from 1950 to 2021. As noted earlier, negative values 294 
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of the reduction rate of the cost function indicate the successful incorporation of reanalysis data into the 299 

coupled model. However, the reduction rate is presented here as positive percentages to represent 300 

improvements due to the assimilation. The reduction rate of the cost function reaches 12.03% in the first 301 

month. Over the entire 72-year period from 1950 to 2021, the average monthly reduction rate of the cost 302 

function is 4.20% for all months in ASSIM. This average reduction rate of 4.20% is comparable to the 303 

4.4% reduction rate reported by He et al. (2020a), who used a similar 4DEnVar-based assimilation system 304 

in a different climate model, further supporting the effectiveness of the 4DEnVar approach. The initial 305 

sharp reduction rate of the cost function reflects the rapid adjustments made by the model to align with 306 

the reanalysis data. As the assimilation progresses, subsequent iterations refine these adjustments, 307 

resulting in a slower rate of reduction. More importantly, the reduction rate of the cost function remains 308 

below the zero line in each month of assimilation, indicating consistent improvements due to the 309 

assimilation. These findings demonstrate the successful implementation of the WCODA system, 310 

confirming that the EN4.2.1 reanalysis data have been effectively integrated into the fully coupled model. 311 

 312 

3.2 Performance of RMSE Differences 313 

Figure 4 illustrates the RMSE differences of monthly ocean temperature between ASSIM and CTRL 314 

from 1950 to 2021 across nine ocean layers. Negative values indicate a reduction in RMSE, signifying 315 

improvements due to assimilation, while positive values denote an increase in RMSE, indicating 316 

degradations. Overall, the assimilation from the WCODA system leads to marked improvements in ocean 317 

temperature simulations across most global regions. Both upper and deeper ocean layers exhibit 318 

widespread negative RMSE differences, indicating improvements after assimilation, particularly in the 319 

tropical and mid-latitude ocean regions. Notable regions of improvement include the North Atlantic, 320 

tropical and North Pacific, and parts of the Southern Ocean. However, increased RMSE values are 321 

observed near strong ocean currents and upwelling regions, such as the Gulf Stream, Agulhas Current, 322 

and the California coast. These regions are characterized by strong horizontal gradients and mesoscale 323 

variability, which are not well captured by MPAS-O at relatively coarse resolution and hence present 324 

challenges for the assimilation system and likely contribute to diminished performance. In the upper 325 

ocean layers, RMSE performance is better during winter compared to summer in some regions, such as 326 
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the tropical Pacific (Figs. A1 & A2). In the deeper layers, the assimilation still shows notable 340 

improvements in regions such as the North Pacific and parts of the Southern Ocean, though with more 341 

pronounced degradation observed in the equatorial Atlantic and parts of the Indian Ocean. This 342 

degradation in the deeper layers may be attributed to larger observational errors in these regions or the 343 

inherent complexity of deeper ocean processes that pose challenges for assimilation (Wunsch and 344 

Heimbach, 2007; Balmaseda et al., 2013). 345 

The RMSE differences for ocean salinity between ASSIM and CTRL across various ocean layers 346 

are presented in Figure 5. The majority of ocean regions display notable improvements for ocean salinity 347 

after assimilation. In the upper ocean layers, significant enhancements are particularly evident in the 348 

North Pacific, and parts of the North Atlantic. However, certain areas exhibit degradation in RMSE, 349 

particularly in parts of the South Pacific. In the deeper layers, the improvements are less extensive but 350 

remain evident in regions such as parts of the North Atlantic and North Pacific. However, RMSE 351 

degradation becomes notable in the equatorial Atlantic and parts of the Indian Ocean, highlighting the 352 

need for further improvements in these regions. The degradation in the deeper ocean layers can be 353 

attributed to two main factors: observational data limitations and challenges in representing deep-ocean 354 

processes in the model. For the EN4.2.1 reanalysis, the coverage and quality of observations tend to 355 

decrease with depth, potentially resulting in greater uncertainties in the deep ocean. This sparse 356 

observational coverage limits the constraints that assimilation can impose on the model state. 357 

Furthermore, in the E3SMv2 model, the complexity of simulating deep-ocean processes, such as vertical 358 

mixing and bottom water formation, may contribute to biases that are difficult to correct through 359 

assimilation. 360 

 361 

3.3 Performance of Correlation Differences 362 

Figure 6 illustrates the differences between ASSIM and CTRL in their correlations with observed 363 

monthly ocean temperature from 1950 to 2021 across nine ocean layers. The seasonal cycle and linear 364 

trend have been removed before computing the correlations. Positive values denote an increase in 365 

correlation following assimilation, indicating improvements, whereas negative values suggest a decrease 366 

in correlation. In the upper ocean layers, the assimilation has led to improved correlations for ocean 367 
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temperature across many ocean regions. Notably, the equatorial Pacific Ocean exhibits substantial 393 

improvements, indicating potential enhancements in modeling phenomena such as the El Niño-Southern 394 

Oscillation (ENSO). Further analysis of the winter Niño 3.4 index (Fig. A3) confirms that the assimilation 395 

improves the representation of ENSO variability, with the correlation coefficient increasing from 0.06 in 396 

CTRL to 0.79 in ASSIM. Moreover, parts of the North Pacific also exhibit noticeable improvements. In 397 

the deeper layers, improvements are observed in the western Pacific and parts of the Southern Ocean. 398 

However, certain areas exhibit diminished performance, possibly due to sparse observational coverage 399 

introducing higher uncertainty into the assimilation process or imbalances between ocean state variables 400 

during the assimilation (Edwards et al., 2015; He et al., 2020b). In summary, ASSIM has enhanced ocean 401 

temperature simulations by reducing RMSE (Fig. 4) and improving correlation (Fig. 6) across many 402 

ocean regions, with notable improvements in the upper ocean layers, including the equatorial Pacific and 403 

North Pacific. 404 

The correlation differences for ocean salinity between ASSIM and CTRL across various ocean 405 

layers are depicted in Figure 7. In the upper ocean layers, the majority of global ocean regions exhibit 406 

marked improvements for ocean salinity, with positive correlation differences dominating. Noteworthy 407 

improvements are evident in the tropical Pacific, North Pacific, and parts of the North Atlantic. In the 408 

deeper layers, the improvements in correlation become more localized, primarily concentrated in the 409 

western Pacific and parts of the Southern Ocean. Meanwhile, reductions in correlations are observed in 410 

parts of the equatorial Pacific and the South Atlantic, indicating the need for further improvements. 411 

Overall, ASSIM has improved simulations of ocean salinity by reducing RMSE (Fig. 5) and improving 412 

correlation (Fig. 7) in many ocean regions, with notable enhancements in the upper ocean layers, 413 

particularly in parts of the North Pacific and the western Pacific. 414 

 415 

3.4 Vertical and Temporal Analysis of RMSE and Bias for Ocean Temperature and Salinity 416 

Figure 8 presents the vertical profiles of the globally averaged RMSE of ocean temperature and 417 

salinity comparing ASSIM and CTRL. Negative values in the RMSE difference indicate a reduction in 418 

the global mean RMSE due to assimilation. For ocean temperature, the RMSE differences are relatively 419 

small but become more negative within the upper 85 meters of the ocean. As the depth increases beyond 420 
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135 meters, the RMSE differences become significantly negative, indicating a marked improvement in 454 

ocean temperature after assimilation. Unlike temperature, the salinity RMSE differences show 455 

substantial deviations in the upper 155 meters of the ocean, indicating notable improvements. The RMSE 456 

differences gradually decrease as depth increases from 155 meters to 305 meters, but a slight increase is 457 

observed between 305 meters and 1106 meters. This suggests that the assimilation of salinity data has a 458 

more pronounced effect in the upper ocean than in deeper layers, possibly due to larger observational 459 

errors in these layers (Jacobs et al., 2021; Wang et al., 2015). The extended profiles in Figure A4 indicate 460 

that below 1106 meters, the RMSE differences between ASSIM and CTRL gradually decrease for both 461 

ocean temperature and salinity, suggesting the limited impact of assimilation in the deeper layers. In 462 

summary, these results emphasize the capability of the WCODA system in enhancing the simulation 463 

accuracy for both ocean temperature and salinity. 464 

The temporal evolutions of the global mean bias and RMSE for vertically averaged ocean 465 

temperature and salinity in the top 1000 meters are illustrated in Figure 9. The temperature bias (Fig. 9a) 466 

in CTRL is persistently positive, indicating a systematic overestimation of ocean temperature. This 467 

overestimation in ocean temperature primarily originates from depths below 300 meters (Figs. A5 & A6). 468 

In contrast, ASSIM consistently reduces this bias, with values approaching the zero line. Similarly, the 469 

temperature RMSE (Fig. 9b) highlights a significant decrease in RMSE for ASSIM compared to CTRL, 470 

reflecting a more accurate alignment with observed temperature. For ocean salinity, the salinity bias (Fig. 471 

9c) reveals that CTRL maintains a consistent negative bias, suggesting an underestimation of ocean 472 

salinity. This salinity bias in CTRL is already prominent in the upper 300 meters (Figs. A5 & A6). 473 

However, ASSIM effectively mitigates this bias, bringing the bias values closer to the zero line. 474 

Furthermore, the salinity RMSE (Fig. 9d) is notably lower in ASSIM than CTRL, indicating enhanced 475 

model performance and a closer match to observed salinity. Notably, it takes approximately 10-15 years 476 

for the biases in both temperature and salinity to stabilize near the zero line, reflecting an adjustment 477 

period where the assimilation system equilibrates. Overall, ASSIM exhibits superior performance 478 

relative to CTRL in reducing bias and RMSE for both ocean temperature and salinity. 479 

 480 
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Figure 10 presents the climatological mean differences between CTRL and observation, as well as 491 

between ASSIM and observation, for both sea surface temperature (SST) and salinity (SSS). Pronounced 492 

cold biases are evident in the SST difference between CTRL and observation (Fig. 10a), particularly in 493 

the tropical and North Pacific, North Atlantic, and parts of the Indian Ocean. Significant warm biases are 494 

observed in the Southern Ocean and parts of the South Atlantic. In contrast, these SST biases found in 495 

CTRL are substantially reduced by ASSIM (Fig. 10b), with cold biases in the North Pacific and North 496 

Atlantic diminished by approximately 1-2 °C, and warm biases in the Southern Ocean corrected by about 497 

1.5-2.5 °C. The SSS difference between CTRL and observation highlights a global pattern of salinity 498 

biases (Fig. 10c). The CTRL simulation generally underestimates salinity across most global oceans, 499 

indicating a widespread lower salinity. This fresh bias is particularly pronounced in the North Atlantic 500 

and North Pacific. Notably, in the Mediterranean Sea, CTRL exhibits a large positive salinity bias 501 

exceeding 2.5 psu. Compared with CTRL, ASSIM significantly reduces the overall fresh biases in CTRL 502 

(Fig. 10d). Notable improvements are observed in the North Atlantic and North Pacific, where salinity 503 

biases are reduced by approximately 0.5-1 psu, and in parts of the Southern Ocean, where reductions 504 

reach up to 1.5 psu. In summary, ASSIM demonstrates marked improvements in both SST and SSS biases 505 

compared to CTRL, emphasizing the importance and effectiveness of the WCODA system in enhancing 506 

model accuracy and reliability. 507 

 508 

4 Conclusions 509 

This study documents the development and assessment of the new 4DEnVar-based WCODA system 510 

in the fully coupled E3SMv2 model, employing the DRP-4DVar method. The DRP-4DVar approach 511 

significantly reduces computational demands by replacing the traditional adjoint model with the 512 

ensemble technique. As a weakly coupled assimilation system, the WCODA system independently 513 

assimilates ocean reanalysis data within the ocean component during the analysis step. However, during 514 

the subsequent forecast step, the reanalysis information from the optimal ocean analyses is propagated 515 

to other components of the Earth system through interactions across multiple systems, thereby enhancing 516 

the coherence of ICs across different components of the climate model. 517 

Monthly mean ocean temperature and salinity data from the EN4.2.1 reanalysis are integrated into 518 
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the ocean component of E3SMv2 from 1950 to 2021, which can be used to provide realistic ICs for 601 

decadal climate predictions. The effectiveness of the WCODA system has been assessed using several 602 

metrics, including reduction rate of the cost function, RMSE differences, correlation differences, and 603 

model biases. The reduction rate of the cost function consistently shows negative values in each month 604 

over the 72-year period, indicating successful assimilation of the EN4.2.1 reanalysis data into the climate 605 

model. Compared to CTRL, ASSIM achieves significant reductions in RMSE and enhancements in 606 

correlation in the upper ocean layers, with notable improvements observed in parts of the North Atlantic, 607 

North Pacific and Indian Ocean. ASSIM substantially mitigates model biases for SST and SSS observed 608 

in CTRL, particularly reducing cold biases in the North Pacific and North Atlantic by approximately 1-609 

2 °C, correcting warm biases in the Southern Ocean by about 1.5-2.5 °C, and significantly increasing 610 

salinity estimates to reduce the model fresh biases by approximately 0.5-1 psu in the North Atlantic and 611 

North Pacific, and up to 1.5 psu in parts of the Southern Ocean. 612 

Despite these advancements, the WCODA system exhibits limitations in certain regions, 613 

particularly in the deeper layers of the southern Pacific Ocean and South Atlantic. The reliance on the 614 

EN4.2.1 product could pose limitations to the assimilation process due to the sparse salinity observations 615 

and potential for static instabilities in data-sparse regions. Reanalysis products such as ORAS5 and 616 

GLORYS provide promising alternatives for mitigating these limitations. Future efforts should explore 617 

incorporating these reanalysis products into the WCODA system to improve the assimilation 618 

performance in challenging areas. Furthermore, expanding the application of the WCODA system to 619 

other components of the climate model, such as the atmosphere and sea ice, could enhance overall 620 

predictive skill. These developments are essential for providing more accurate and reliable long-term 621 

climate predictions, ultimately aiding in the formulation of energy-sector policies and management 622 

strategies. 623 
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 862 

Figure 1. Workflow of the 4DEnVar-based WCODA system utilizing the DRP-4DVar method for the 863 

E3SM model (modified from Fig. 1 in Shi et al. (2024)).  864 
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 865 

Figure 2. Schematic diagram of the DRP-4DVar assimilation process within the 4DEnVar-based 866 

WCODA system for E3SM. The model background (#") includes atmospheric (#"%+,), land (#"-'.), ice 867 

(#"/&0), river (#"1/201), and oceanic (#"!&') components of the fully coupled E3SMv2. The observational 868 

background (!"!&') is defined by the model outputs of monthly mean ocean temperature (+,",) and salinity 869 

(-̅",) using #" as the initial state. The ocean observation (!!"#!&') represents the observed monthly mean 870 

ocean temperature (+,!"#, ) and salinity (-̅!"#, ) from the EN4.2.1 reanalysis. The observational innovation 871 

(!!"#$ ) is calculated as the difference between the observed ocean temperature and salinity (!!"#!&') and the 872 

model's observational background (!"!&'). #%$  denotes the analysis increment. The optimal analysis (#%) 873 

encompasses both the optimal analysis of the ocean component (#%!&') and the background states of other 874 

components. This optimal analysis (#%) is used as the initial condition to produce the next month's 875 

forecast, transferring ocean reanalysis information to other components.  876 
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 877 

Figure 3. Temporal variation of the reduction rate of the cost function (unit: %) in the WCODA system 878 

based on the 4DEnVar method from 1950 to 2021.  879 
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 881 

Figure 4. Spatial patterns of root mean square error (RMSE) differences in ocean temperature (unit: °C) 882 

between ASSIM and CTRL across nine ocean layers from 1950 to 2021. The RMSE differences are 883 

shown for nine different ocean depths: (a) 5 m, (b) 45 m, (c) 85 m, (d) 135 m, (e) 327 m, (f) 528 m, (g) 884 

708 m, (h) 879 m, and (i) 1106 m. Dotted areas represent statistical significance at the 95% confidence 885 

level.  886 
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 896 

Figure 5. Similar to Figure 4 but for ocean salinity (unit: psu).  897 
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 898 

Figure 6. Spatial patterns of the differences between ASSIM and CTRL for their correlations of ocean 899 

temperature with observations across nine ocean layers. Dotted regions indicate statistical significance 900 

at the 95% confidence level. Panels (a) to (i) represent different ocean depths: (a) 5 m, (b) 45 m, (c) 85 901 

m, (d) 135 m, (e) 327 m, (f) 528 m, (g) 708 m, (h) 879 m, and (i) 1106 m.  902 
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 912 

Figure 7. Similar to Figure 6 but for ocean salinity.  913 
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 914 
Figure 8. Vertical profiles of the globally averaged RMSE differences between ASSIM and CTRL for 915 

(a) ocean temperature (unit: °C) and (b) ocean salinity (unit: psu) over the period from 1950 to 2021.  916 
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 917 

Figure 9. Temporal variations of the global mean bias (a, c) and RMSE (b, d) for ocean temperature 918 

(unit: °C) and salinity (unit: psu) averaged over the upper 1000 meters from 1950 to 2021. The red lines 919 

represent ASSIM, while the blue lines represent CTRL.  920 
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 922 

Figure 10. Climatological mean differences in sea surface temperature (left, unit: °C) and salinity (right, 923 

unit: psu) from 1950 to 2021. The top panels show the differences between CTRL and observation, while 924 

the bottom panels show the differences between ASSIM and observation. Dotted areas indicate regions 925 

where the differences are statistically significant at the 95% confidence level.  926 
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Figure 11. Time series of interannual (a) precipitation and 931 
(b) surface air temperature anomalies in the southern US 932 
(24°-36°N, 105°-75°W). Gray bar: observation; blue line: 933 
CTRL; red line: ASSIM. Correlation coefficients of CTRL 934 
and ASSIM with observations are also shown. Both 935 
precipitation and temperature anomalies are computed after 936 
removing the climatology and its long-term trend from 1980 937 
to 2016. The observed precipitation and temperature are 938 
sourced from the GPCP precipitation data and ERA5 939 
reanalysis, respectively.940 
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Appendix A: Supporting Information 941 

 942 

Figure A1. Spatial patterns of RMSE differences between ASSIM and CTRL for ocean temperature 943 

(unit: °C) during summer. Results are presented for nine different ocean layers: (a) 5 m, (b) 45 m, (c) 85 944 

m, (d) 135 m, (e) 327 m, (f) 528 m, (g) 708 m, (h) 879 m, and (i) 1106 m. Dotted areas represent statistical 945 

significance at the 95% confidence level.  946 
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 947 

Figure A2. Similar to Figure A1 but during winter.  948 
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 949 

Figure A3. Time series of the winter Niño 3.4 index from 1950 to 2021 for the observation (black line), 950 

ASSIM (red line), and CTRL (blue line). The correlation of the Niño 3.4 index with the observation in 951 

ASSIM and CTRL are also shown.  952 
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 953 

Figure A4. Vertical profiles of the globally averaged RMSE differences between ASSIM and CTRL for 954 

(a) ocean temperature (unit: °C) and (b) ocean salinity (unit: psu) with depths from 1106 m to 5375 m.  955 
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 956 

Figure A5. Temporal variations of the global mean bias (a, c) and RMSE (b, d) for ocean temperature 957 

(unit: °C) and salinity (unit: psu) averaged over the upper 300 meters. The red lines represent ASSIM, 958 

while the blue lines represent CTRL.  959 
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 960 

Figure A6. Similar to Figure A5 but averaged over the upper 700 meters. 961 Formatted: Font: Bold
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