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    We thank Reviewer #1 for the constructive comments and suggestions, which greatly help 
to improve the quality of our manuscript. We have made revisions and replied to all the 
comments. Please find the point-by-point responses to the comments below. Our responses are 
shown in "Blue" and the changes in the manuscript are shown in "Red". The line numbers 
correspond to those in the clean version of our revised manuscript. 
 
Response to the comments from Reviewer #1 
 
General Comment: 
The manuscript describes the implementation of a new weakly coupled ocean data assimilation 
in the E3SMv2. The authors show that using this assimilation method helps reduce temperature 
and salinity bias and RMSE in general in both surface and deeper ocean layers. The results of 
the manuscript are promising and will be valuable for the community. It is overall well-written 
and easy to follow. That being said I believe that more work must be done on this manuscript 
before being published. A lot of things need to be clarified or added to improve the clarity and 
robustness of the results. 
 
As a general comment here, before going into details, the authors need to be more quantitative, 
in the text and in the abstract, when describing results in addition to saying increase/decrease 
or cold/warm biases please indicate some values. Also, units of temperature and salinity are 
missing on every figure, please add units in both figures and captions as otherwise, it makes 
things hard to understand, i.e. figure 10 see comment below. 
 
One other main concern here is about section 3.6 on the influence of ocean data assimilation 
on the regional climate over land. Although this is an interesting topic, it is most likely a 
manuscript in itself. The results presented in this section are highly preliminary, no details on 
observations (definitely not enough to only briefly mention it in the Figure 11’s caption) or 
methodology used are given. Very little can be said with certainty on the influence of ocean 
data assimilation on regional climate over land with only the figure and analysis presented (fig 
11). This needs a much more rigorous analysis to be able to draw robust conclusions. In my 
opinion, this section should be removed and can’t be published as is in this manuscript. 
 
Response: 
Thank you very much for taking the time to review our manuscript and providing us with very 
useful comments. We have revised the abstract (L28-31), results (L373-376, L379-380, and 
L381-383), and conclusion (L404-408) sections to include numerical values that quantify 
improvements in temperature and salinity biases. We have also added units to all relevant 
figures and captions (Figs 3-5, 8-9) and explicitly updated Fig. 10 to include missing units for 
better clarity. 
 
After careful consideration, we have decided to remove section 3.6 and Figure 11 from the 
manuscript. We agree that the current results are preliminary and require further analysis in 
future work. The removal of this section 3.6 has been reflected in the revised manuscript, and 
all references to this section have been updated accordingly. 
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L28-31: For sea surface temperature, cold biases in the North Pacific and North Atlantic are 
diminished by about 1-2 °C, and warm biases in the Southern Ocean are corrected by 
approximately 1.5-2.5 °C. In terms of salinity, improvements are observed with bias reductions 
of about 0.5-1 psu in the North Atlantic and North Pacific and up to 1.5 psu in parts of the 
Southern Ocean. 
 
L373-376: In contrast, these SST biases found in CTRL are substantially reduced by ASSIM 
(Fig. 10b), with cold biases in the North Pacific and North Atlantic diminished by 
approximately 1-2 °C, and warm biases in the Southern Ocean corrected by about 1.5-2.5 °C. 
 
L379-380: Notably, in the Mediterranean Sea, CTRL exhibits a large positive salinity bias 
exceeding 2.5 psu. 
 
L381-383: Notable improvements are observed in the North Atlantic and North Pacific, where 
salinity biases are reduced by approximately 0.5-1 psu, and in parts of the Southern Ocean, 
where reductions reach up to 1.5 psu. 
 
L404-408: ASSIM substantially mitigates model biases for SST and SSS observed in CTRL, 
particularly reducing cold biases in the North Pacific and North Atlantic by approximately 1-
2 °C, correcting warm biases in the Southern Ocean by about 1.5-2.5 °C, and significantly 
increasing salinity estimates to reduce the model fresh biases by approximately 0.5-1 psu in 
the North Atlantic and North Pacific, and up to 1.5 psu in parts of the Southern Ocean. 
 
Comment#1: 
Line 114-116: As the manuscript focuses on ocean, more info is needed on the ocean model 
set-up here. Does the ocean model has the same horizontal resolution as the atmosphere? how 
many vertical layers, vertical resolution? What is the vertical mixing scheme used? 
 
Response: 
Thank you for your constructive comment to clarify the ocean model configuration in our 
manuscript. The ocean model in E3SMv2 employs the Model for Prediction Across Scales-
Ocean (MPAS-O), which has a horizontal resolution of ~60 km in the midlatitudes and ~30 km 
at the equator and poles, differing from the atmospheric model’s resolution of 110 km. MPAS-
O is configured with 60 vertical layers, with finer resolution (~10 m) near the surface and 
coarser resolution (~200 m) at depth. The vertical mixing scheme employed is the K-profile 
parameterization, as described by Van Roekel et al. (2018). 
 
Based on your suggestion, we have revised the manuscript to provide a more detailed 
description of the ocean model configuration (L120-124). 
 
L120-124: MPAS-O operates at a horizontal resolution of ~60 km in the midlatitudes and ~30 
km at the equator and poles, differing from the atmospheric model’s resolution of 110 km. It 
is configured with 60 vertical layers, with finer resolution (~10 m) near the surface and coarser 
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resolution (~200 m) at depth. The vertical mixing scheme employed is the K-profile 
parameterization, as described by Van Roekel et al. (2018). 
 
Comment#2: 
On section 2.2: Just by reading this, for an external reader, it is not very clear what is this 
product (EN4.2.1) and thus what is assimilated. Those are profiles with spatiotemporal 
variability (right?), what are the typical depths where observations are available? Typically, 
what are the regions where we have a lot or few observations, and thus can/should we expect 
improvement in these areas or not? In summary, a better description of this product here would 
help us understand better the results presented after. 
 
Response: 
Thank you for pointing out the need for more clarity regarding the EN4.2.1 dataset. The 
EN4.2.1 product is developed based on quality-controlled ocean temperature and salinity 
profiles from four input sources: Argo, ASBO (Arctic Synoptic Basin Wide Oceanography), 
GTSPP (Global Temperature and Salinity Profile Program), and WOD09 (World Ocean 
Database). The EN4.2.1 dataset includes observations from a wide range of profiling 
instruments, such as Argo floats, expendable bathythermographs (XBTs), and mechanical 
bathythermographs (MBTs) (Chen et al., 2020). 
 
According to Good et al. (2013), observations in EN4.2.1 are most abundant in the upper 100 
meters, with vertical resolution refined to ~1 m in the top 100 m. Spatially, data density is high 
in regions such as the North Atlantic and western Pacific but decreases significantly in high-
latitude and deep ocean regions. Areas with higher observational density, such as the upper 
North Atlantic, are expected to show greater improvement in the assimilation results, while 
regions with sparse observations may exhibit limited improvements. 
 
Following your advice, we have revised the manuscript to include a more detailed description 
of the EN4.2.1 dataset, emphasizing the spatiotemporal distribution of observations and their 
implications for data assimilation (L135-146). 
 
L135-146: Produced by the Met Office Hadley Centre, the EN4.2.1 product is developed based 
on quality-controlled ocean temperature and salinity profiles from four input sources: Argo, 
ASBO (Arctic Synoptic Basin Wide Oceanography), GTSPP (Global Temperature and Salinity 
Profile Program), and WOD09 (World Ocean Database) (Good et al., 2013). The EN4.2.1 
dataset includes observations from a wide range of profiling instruments, such as Argo floats, 
expendable bathythermographs (XBTs), and mechanical bathythermographs (MBTs) (Chen et 
al., 2020). According to Good et al. (2013), observations in EN4.2.1 are most abundant in the 
upper 100 meters, with vertical resolution refined to ~1 m in the top 100 m. Spatially, data 
density is high in regions such as the North Atlantic and western Pacific but decreases 
significantly in high-latitude and deep ocean regions. This distribution in data availability 
influences the assimilation results. Areas with denser observational coverage, such as the upper 
North Atlantic, are expected to show greater improvements through assimilation, while regions 
with sparse observations may exhibit limited improvements. 
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Comment#3: 
Line 150: “significantly reducing”: by how much the computational resources are reduced? 
 
Response: 
To clarify, the computational efficiency of the DRP-4DVar system used in this study has been 
demonstrated in previous studies. Based on Zhu et al. (2022), the DRP-4DVar system reduces 
computational time by approximately 50% compared to traditional 4DVar systems. For 
example, in a 6-hour assimilation window, the 4DVar system required 25 minutes, while the 
DRP-4DVar system only took 13 minutes due to its efficient computation. 
 
In response to this comment, we have revised this sentence (L162-163) for clarification in the 
revised manuscript. 
 
L162-163: Zhu et al. (2022) demonstrated that the DRP-4DVar method significantly reduces 
computational time by approximately 50% compared to traditional 4DVar systems. 
 
Comment#4: 
Line 207: what do you mean by “observed external forcing”? what is this? 
 
Response: 
The “observed external forcing” refers to external factors influencing the climate system, such 
as solar radiation and greenhouse gas and aerosol concentrations. These transient historical 
external forcings are prescribed following the CMIP6 protocol (Eyring et al., 2016). These 
observed external forcings directly influence the atmospheric component of the model and 
subsequently influence other components (e.g., land and ocean) through their coupling with 
the atmosphere. 
 
We have revised this sentence (L218-222) to include a more precise explanation of “observed 
external forcing” for better clarity. 
 
L218-222: driven exclusively by observed external forcings (e.g., solar radiation and 
greenhouse gas and aerosol concentrations). The observed external forcings, prescribed 
according to the CMIP6 protocol (Eyring et al., 2016), directly influence the atmospheric 
component and subsequently affect other components (e.g., land and ocean) through their 
coupling with the atmosphere. 
 
Comment#5: 
Line 211: “across sixty ocean layers”. Is this all the model ocean layers? if not what’s the depth 
of the 60 layer and why only 60. Please clarify this. 
 
Response: 
Yes, the referenced "sixty ocean layers" corresponds to all the vertical layers in the ocean 
component of the E3SMv2 model. We have revised this sentence (L226-227) for better clarity. 
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L226-227: across all sixty ocean layers spanning the entire ocean depth 
 
Comment#6: 
Line 237-238: what is the reason for the initial jump in the cost function reduction from -12% 
to -4% ? 
 
Response: 
The observed initial jump from -12% to -4% can be attributed to the rapid adjustments of the 
model during the first two years of assimilation. At the start of the assimilation cycle, the model 
state undergoes rapid adjustments to align with the reanalysis data, leading to a sharp reduction 
in the cost function. As the assimilation progresses, subsequent iterations refine these 
adjustments, resulting in a slower rate of reduction 
 
To clarify this point, we have provided a brief explanation of this phenomenon (L263-266). 
 
L263-266: The initial sharp reduction rate of the cost function reflects the rapid adjustments 
made by the model to align with the reanalysis data. As the assimilation progresses, subsequent 
iterations refine these adjustments, resulting in a slower rate of reduction. 
 
Comment#7: 
Line 246: “nine ocean layers”: why did you choose to show specifically these 9 layers? Is 85m 
the last layer where observations are assimilated ? if not why not showing anything below? 
This need to be clarified. 
Moreover, is it necessary to show these nine as they relatively show the same results, maybe 
you could only show 5m, 45 and 85m ..? Reading further, you’re showing profiles up to 1000m 
so why not showing maps of the deeper ocean here as well? 85m is not ‘deep ocean’, depending 
on region and/or season this is still in the ocean mixed layer. 
On that note, it could be interesting to show seasonal maps as well. Is there any seasonal 
variability on these results, i.e. if maybe there are fewer observations during winter months 
does the ASSIM still perform better? 
 
Response: 
Thank you for your insightful comments. The original nine layers were simply chosen as the 
first nine layers of the ocean model, ranging from 5 m to 85 m. However, we recognize that 
this approach limited the depth representation and did not fully capture the assimilation impacts 
across deeper layers. Based on your suggestion, we have revised the depth of the nine layers to 
span a broader depth range. The updated layers are at depths of 5 m, 45 m, 85 m, 135 m, 327 
m, 528 m, 708 m, 879 m, and 1106 m. We have revised Figure 4 to include the nine newly 
selected ocean layers from 5 m to 1106 m and updated the description of assimilation 
performance (L285-287) in the deeper ocean layers (879 m and 1106 m). 
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L285-287: In the deeper layers, the assimilation still shows notable improvements in regions 
such as the North Pacific and parts of the Southern Ocean, though with more pronounced 
degradation observed in the equatorial Atlantic and parts of the Indian Ocean. 
 
We have also added supplementary figures (Figs. A1 & A2) and the corresponding sentences 
(L283-285) to show the seasonal performance of RMSE differences for summer (Fig. A1) and 
winter (Fig. A2) across the same nine depths. In the upper ocean layers, we observe better 
RMSE performance during winter compared to summer in some regions, such as the tropical 
Pacific. 
 
L283-285: In the upper ocean layers, RMSE performance is better during winter compared to 
summer in some regions, such as the tropical Pacific (Figs. A1 & A2). 
 

 
Figure 4. Spatial patterns of root mean square error (RMSE) differences in ocean temperature 
(unit: °C) between ASSIM and CTRL across nine ocean layers from 1950 to 2021. The RMSE 
differences are shown for nine different ocean depths: (a) 5 m, (b) 45 m, (c) 85 m, (d) 135 m, 
(e) 327 m, (f) 528 m, (g) 708 m, (h) 879 m, and (i) 1106 m. 
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Figure A1. Similar to Figure 4 but during summer. 
 

 
Figure A2. Similar to Figure 4 but during winter. 
 
Comment#8: 
On Figure 4 : Is there any ocean current-related impact? As it seems that the RMSE is somewhat 
increased near strong ocean currents (i.e. Gulf Stream separation, ACC from Agulhas to East 
Australian current with some sort of dipole increased/decreased RMSE)? and/or near upwelling 
regions California coast, Northwest Africa? any reasons on why the assimilation would not do 
better there? As in Figure 6 and 7 statistical significance should be added on both Figure 4 and 
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5, this will make the result more robust and these increased RMSE might not turn out to be 
significant (?). Also please indicate how the significance is calculated. 
 
Response: 
Thank you for highlighting the potential impact of ocean currents and upwelling regions on 
RMSE differences in Figure 4. We agree that the assimilation results show degradation near 
strong ocean currents and upwelling regions. These regions are characterized by strong 
horizontal gradients and mesoscale variability, which are not well captured by MPAS-O at 
relatively low resolution and hence pose challenges for the assimilation system and likely 
contribute to increased RMSE. 
 
We have revised the manuscript to include additional discussion (L279-283) to highlight the 
impact of strong ocean currents and upwelling regions on assimilation performance. 
 
L279-283: However, increased RMSE values are observed near strong ocean currents and 
upwelling regions, such as the Gulf Stream, Agulhas Current, and the California coast. These 
regions are characterized by strong horizontal gradients and mesoscale variability, which are 
not well captured by MPAS-O at relatively coarse resolution and hence present challenges for 
the assimilation system and likely contribute to diminished performance. 
 
In response to your suggestions, we have applied the paired t-test to assess the statistical 
significance of the RMSE differences in Figures 4 and 5. Specifically, the mean and standard 
deviation of the square error differences were calculated at each grid point. The t-statistic was 
computed as the ratio of the mean difference to the standard error to determine statistical 
significance. A confidence level of 95% (p < 0.05) was used to identify regions where the 
RMSE differences are statistically significant. Our results show that some regions of increased 
RMSE also pass the significance test. 
 
We have updated Figures 4 and 5 to use dotted regions to illustrate statistical significance. 
Regions where the RMSE differences are statistically significant at the 95% confidence level 
are now marked with dots in the revised figures. 
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Figure 4. Spatial patterns of root mean square error (RMSE) differences in ocean temperature 
(unit: °C) between ASSIM and CTRL across nine ocean layers from 1950 to 2021. The RMSE 
differences are shown for nine different ocean depths: (a) 5 m, (b) 45 m, (c) 85 m, (d) 135 m, 
(e) 327 m, (f) 528 m, (g) 708 m, (h) 879 m, and (i) 1106 m. Dotted areas represent statistical 
significance at the 95% confidence level. 
 

 
Figure 5. Similar to Figure 4 but for ocean salinity (unit: psu). 
 
Comment#9: 
Line 256: Again, 85m is not “deep-ocean dynamics” 
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Response: 
Yes, we have included deeper ocean layers at 879 m and 1106 m in the updated Figure 4, and 
replaced the term "deep-ocean dynamics" with "deeper ocean processes" (L289). 
 
L289: deeper ocean processes 
 
Comment#10: 
Line 274-276: It seems a good hypothesis with maybe hints of this in Figure4 as well showing 
reduced RMSE on temperature in this region. Since you have both the observations and 
simulations it would be interesting to confirm and show this, if assimilation actually helps 
representing El Nino/La Nina better. Otherwise one can wonder why the correlation is largely 
increase in the Pacific compare to, i.e, the Atlantic. 
 
Response: 
Thank you for your insightful comment. We have conducted an additional analysis of the Niño 
3.4 index and included a new supplementary figure (Figure A3). Figure A3 compares the time 
series of the winter Niño 3.4 index from the observation, ASSIM, and CTRL. Our analysis 
shows that the correlation coefficient between the time series of the winter Niño 3.4 index and 
observation is improved from 0.06 in CTRL to 0.79 in ASSIM, confirming that the assimilation 
enhances the representation of El Niño/La Niña variability. 
 
We have included this new Figure A3 and the associated results (L315-317) in the revised 
manuscript to support the better representation of El Niño/La Niña variability from ASSIM. 
 
L315-317: Further analysis of the winter Niño 3.4 index (Fig. A3) confirms that the 
assimilation improves the representation of ENSO variability, with the correlation coefficient 
increasing from 0.06 in CTRL to 0.79 in ASSIM. 
 

 
Figure A3. Time series of the winter Niño 3.4 index from 1950 to 2021 for the observation 
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(black line), ASSIM (red line), and CTRL (blue line). The correlations of the Niño 3.4 index 
with the observation in ASSIM and CTRL are also shown. 
 
Comment#11: 
Line 276: “considerable”: considering the values in the Indian Ocean this vocabulary might be 
too strong.. otherwise the Southern Ocean have similar magnitude, is that also “considerable 
improvements”..? 
 
Response: 
We agree that the term "considerable" might overstate the magnitude of the improvements in 
the Indian Ocean. We have revised this sentence to remove the mention of the Indian Ocean 
and replaced "considerable" with "noticeable" (L317). 
 
L317: Moreover, parts of the North Pacific also exhibit noticeable improvements. 
 
Comment#12: 
Line 277-278: “complex ocean dynamics” This term was used before in the text, but this is a 
bit too generic to explain differences and especially to explain the diminished performance, 
you have to be more specific or don't use this. what is "complex ocean dynamics"? In that 
regard, then it means that the simulation without assimilation (CTRL) is doing better at these 
"complex ocean dynamics", then why? I believe here, from the stippling on the figure, it doesn't 
seem that these reduced correlations are statistically significant (whereas all the increased ones 
are) and thus, this might just be due to internal variability of the ocean model? 
 
Response: 
Thank you for your insightful suggestion. We agree that the term "complex ocean dynamics" 
is too generic and does not adequately explain the observed diminished performance. In 
response to your feedback, we have removed the term "complex ocean dynamics" and added 
more specific factors. Additionally, when deeper layers (e.g., 708 m, 879 m, and 1106 m) are 
included, we observe that some regions of reduced correlations also pass the significance test. 
For these areas, the diminished performance may result from sparse observational coverage 
introducing higher uncertainty into the assimilation process or imbalances between ocean state 
variables during the assimilation (Edwards et al., 2015; He et al., 2020). 
 
We have revised this sentence (L319-321) to include more specific factors contributing to the 
diminished performance. 
 
L319-321: However, certain areas exhibit diminished performance, possibly due to sparse 
observational coverage introducing higher uncertainty into the assimilation process or 
imbalances between ocean state variables during the assimilation (Edwards et al., 2015; He et 
al., 2020b). 
 
Comment#13: 
Line 286: Again, this doesn't seem to be statistically significant 
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Response: 
Yes, we have revised this sentence (L327-328) to remove the mention of the Indian Ocean and 
focus only on regions with significant results. 
 
L327-328: Noteworthy improvements are evident in the tropical Pacific, North Pacific, and 
parts of the North Atlantic. 
 
Comment#14: 
Figure 8: Related to previous comment on ocean model depth. Here, why stop the profiles at 
1106m, nothing below? 1106m which is rather a very specific depth..? and thus why showing 
only up to 85 m on the previous panels, Figure 4 to 7? As previously mentioned, it would be 
interesting to see maps at deeper ocean levels as well as it seems here that the assimilation is 
improving significantly deeper in the ocean? Instead of showing 9 layers in the first 90m which 
are showing very similar results. 
 
Response: 
Thank you for pointing this out. We appreciate your suggestion to extend the depth range and 
improve the layer selection in the figures. The ocean model consists of sixty ocean layers from 
5 m to 5375 m. The original profiles stopped at 1106 m because this depth corresponds to the 
41st layer of the 60-layer ocean model, which is the closest to the upper 1000 meters of the 
ocean. Based on your feedback, we have added Figure A4 to extend the vertical profiles to 
cover all layers from 1106 m to the deepest layer at 5375 m. The results in Figure A4 show that 
the RMSE differences between ASSIM and CTRL become notably smaller for both ocean 
temperature and salinity, with temperature differences generally within 0.10 °C and salinity 
differences within 0.02 psu below 2000 m. This suggests the limited impact of assimilation in 
the deeper ocean. 
 
We have included this new Figure A4 to extend the vertical profiles from 1106 m to 5375 m, 
and added the relevant results (L347-349) to the revised manuscript. 
 
L347-349: The extended profiles in Figure A4 indicate that below 1106 meters, the RMSE 
differences between ASSIM and CTRL gradually decrease for both ocean temperature and 
salinity, suggesting the limited impact of assimilation in the deeper layers. 
 



 13 

 
Figure A4. Vertical profiles of the globally averaged RMSE differences between ASSIM and 
CTRL for (a) ocean temperature (unit: °C) and (b) ocean salinity (unit: psu) with depths from 
1106 m to 5375 m. 
 
In response to this comment, we have revised Figures 4 to 7 to include nine different ocean 
layers: 5 m, 45 m, 85 m, 135 m, 327 m, 528 m, 708 m, 879 m, and 1106 m. Additionally, we 
have updated the corresponding descriptions of the assimilation results in the deeper layers 
(879 m and 1106 m) for Figure 4 (L285-287), Figure 5 (L295-298), Figure 6 (L317-318) and 
Figure 7 (L328-331). 
 
L285-287: In the deeper layers, the assimilation still shows notable improvements in regions 
such as the North Pacific and parts of the Southern Ocean, though with more pronounced 
degradation observed in the equatorial Atlantic and parts of the Indian Ocean. 
 
L295-298: In the deeper layers, the improvements are less extensive but remain evident in 
regions such as parts of the North Atlantic and North Pacific. However, RMSE degradation 
becomes notable in the equatorial Atlantic and parts of the Indian Ocean, highlighting the need 
for further improvements in these regions. 
 
L317-318: In the deeper layers, improvements are observed in the western Pacific and parts of 
the Southern Ocean. 
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L328-331: In the deeper layers, the improvements in correlation become more localized, 
primarily concentrated in the western Pacific and parts of the Southern Ocean. Meanwhile, 
reductions in correlations are observed in parts of the equatorial Pacific and the South Atlantic, 
indicating the need for further improvements. 
 
Comment#15: 
Line 299: “gradually decrease as depth increases” but it does increase again below 300m? Is it 
not significant ? 
 
Response: 
Thank you for your comment. We agree that the phrase “gradually decrease as depth increases” 
does not fully capture the observed trend. The RMSE differences for salinity gradually decrease 
from 155 meters to 305 meters, but a slight increase is observed between 305 meters and 1106 
meters. We have revised this sentence (L343-345) to clarify this result. 
 
L343-345: The RMSE differences gradually decrease as depth increases from 155 meters to 
305 meters, but a slight increase is observed between 305 meters and 1106 meters. 
 
Comment#16: 
Line 306-307 and Figure 9: it could be useful to show the average over different depths not 
only 0-1000m. i.e. 0-300m, 0-700m, 0-1000m. From fig 8, doesn't this “systematic 
overestimation of temperature” come from 300m and below? if looked at the surface or over 
different depths it may not systematically overestimate the temperature? This would give more 
insight into what is improved or not depending on the depth, as in Fig8. Similar thing could be 
done for salinity. 
Also, is there a spin-up period to take into account to analyze the result or when doing this kind 
of assimilation? it seems to take 10~15 years for the bias to approach the 0 line (Fig 9a,c). 
Maybe a comment on that would be useful. 
 
Response: 
Thank you for these insightful suggestions. We have included additional analyses showing the 
temporal variations of bias and RMSE averaged over different depth ranges: 0-300 m (Figure 
A5) and 0-700 m (Figure A6). The results in Figures A5 and A6 show that the systematic 
overestimation of temperature in CTRL primarily originates from depths below 300 meters, 
consistent with the vertical profiles shown in Figure 8. In contrast, the salinity bias in CTRL is 
already prominent in the upper 300 meters. 
 
We have added Figures A5 and A6 to include these depth-specific averages and revised the 
corresponding text (L354-355 and L360) to reflect these findings. 
 
L354-355: This overestimation in ocean temperature primarily originates from depths below 
300 meters (Figs. A5 & A6). 
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L360: This salinity bias in CTRL is already prominent in the upper 300 meters (Figs. A5 & 
A6). 
 

 
Figure A5. Temporal variations of the global mean bias (a, c) and RMSE (b, d) for ocean 
temperature (unit: °C) and salinity (unit: psu) averaged over the upper 300 meters. The red 
lines represent ASSIM, while the blue lines represent CTRL. 
 

 
Figure A6. Similar to Figure A5 but averaged over the upper 700 meters. 
 
Regarding the "spin-up" period for the assimilation system, we also acknowledge that it takes 
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approximately 10-15 years for the biases in temperature and salinity to stabilize near the zero 
line. This behavior reflects the system's equilibration during the assimilation process, where 
the model takes time to adjust to the assimilated reanalysis. 
 
We have included the following sentence (L363-365) to note that the first 10-15 years were 
considered as part of the adjustment period. 
 
L363-365: Notably, it takes approximately 10-15 years for the biases in both temperature and 
salinity to stabilize near the zero line, reflecting an adjustment period where the assimilation 
system equilibrates. 
 
Comment#17: 
Figure 10: What are the units here? The colorbar is the same for both temperature and salinity? 
is it up to 3 Deg C difference and 3 psu difference or is it in %? This need to be clarified. if in % 
please quantify in the text how much in degC/psu. 
 
Response: 
The color bar in Figure 10 represents differences, not percentages. The units are °C for 
temperature, and psu for salinity, and the same color bar is used for both panels. To address 
this, we have added the units (°C for temperature and psu for salinity) to both the figure and its 
caption (L665-666) to ensure clarity. 
 
L665-666: Figure 10. Climatological mean differences in sea surface temperature (left, 
unit: °C) and salinity (right, unit: psu) from 1950 to 2021. 
 
Comment#18: 
Figure 10b,d Should be “ASSIM minus Obs”, it would then be much easier to appreciate the 
improvements in ASSIM in comparison to panels (a,c). Right now it is not clear or difficult to 
see actually how much the biases are reduced (or not) in ASSIM. 
 
Response: 
Thank you for your valuable suggestion. We have modified panels (b, d) in Figure 10 to show 
"ASSIM minus OBS" instead of "ASSIM minus CTRL". The figure caption has also been 
updated to reflect this change. 
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Figure 10. Climatological mean differences in sea surface temperature (left, unit: °C) and 
salinity (right, unit: psu) from 1950 to 2021. The top panels show the differences between 
CTRL and observation, while the bottom panels show the differences between ASSIM and 
observation. Dotted areas indicate regions where the differences are statistically significant at 
the 95% confidence level. 
 
Comment#19: 
Line 323-324: Again, quantify better how much. 
 
Response: 
We have revised the text (L373-376) to include specific numerical values to quantify the 
improvements. Specifically, in the North Pacific and North Atlantic, the cold biases in CTRL 
are reduced by approximately 1-2 °C. Similarly, in the Southern Ocean, the warm biases are 
corrected by about 1.5-2.5 °C. 
 
L373-376: In contrast, these SST biases found in CTRL are substantially reduced by ASSIM 
(Fig. 10b), with cold biases in the North Pacific and North Atlantic diminished by 
approximately 1-2 °C, and warm biases in the Southern Ocean corrected by about 1.5-2.5 °C. 
 
Comment#20: 
Line 325-326: could be worthwhile to note the large high bias in salinity in the Mediterranean 
Sea as the bias trend seems to be opposite to the global ocean, and it seems to be improved in 
the ASSIM as well. 
 
Response: 
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Thank you for pointing this out. In response, we have revised the text (L379-380) to highlight 
the large positive salinity bias in the Mediterranean Sea from CTRL. 
 
L379-380: Notably, in the Mediterranean Sea, CTRL exhibits a large positive salinity bias 
exceeding 2.5 psu. 
 
Comment#21: 
Line 378-380: In light of my previous comment, I believe this statement should be also 
removed. 
 
Response: 
We agree with your suggestion and have removed this statement from the manuscript. 
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    We thank Reviewer #2 for the constructive comments and suggestions, which greatly help 
to improve the quality of our manuscript. We have made revisions and replied to all the 
comments. Please find the point-by-point responses to the comments below. Our responses are 
shown in "Blue" and the changes in the manuscript are shown in "Red". The line numbers 
correspond to those in the clean version of our revised manuscript. 
 
Response to the comments from Reviewer #2 
 
General Comment: 
Shi and co-authors evaluate an assimilation run produced with the 4DEnVar-based weakly 
coupled ocean assimilation method applied to the Earth system model E3SMv2. The 4DEnVar 
method follows the dimension-reduced projection 4DVar method of Wang et al (2010). The 
present study, together with a recently published work also by Shi et al (2024) 
[https://doi.org/10.5194/gmd-17-3025-2024] on a weakly coupled land data assimilation for 
E3SMv2 using the same methodology, appear to be part of the authors effort to produce realistic 
initial conditions for decadal climate predictions with E3SMv2. This is welcome news for the 
decadal climate prediction community and climate prediction users at large. 
 
The present work briefly describes the authors implementation of the 4DEnVar method, 
discussed at length by Shi et al (2024), and presents evaluations of an E3SMv2 assimilation 
run. These include evaluations of the model 3D ocean temperature and salinity, which are 
constrained directly with the EN4.2.1 observational dataset, and air temperature and 
precipitation over the contiguous United States, which are constrained indirectly from the 
effects of the constrained ocean on the atmosphere. Since the methodology has already been 
discussed and tested elsewhere, and the results discussed here appear to be robust, I do not have 
major critical concerns. I do however have several suggestions/comments that I exhort the 
authors to address to hopefully improve the presentation and enhance the relevance of their 
work. 
 
Response: 
We would like to express our sincere gratitude for your time and effort in reviewing our 
manuscript. We truly appreciate your constructive comments and suggestions, which have 
significantly contributed to enhancing the quality of our work. We have carefully addressed 
each comment, as outlined below, and have made the necessary revisions to our manuscript. 
 
Comment#1: 
The evaluation of the E3SMv2 assimilation run only uses a control simulation that does not 
ingest observational data (other than the external forcing, common to both runs). That is, there 
is no assimilation method to benchmark against (e.g., simple nudging, or just imposing the 
observed temperature and salinity fields) so as to assess the effectiveness of the 4DEnVar- 
based methodology. For example, while Fig. 3 shows that the assimilation run outperforms the 
pre-assimilation background, it is unclear whether the 4.20 % error reduction (L239-240, 
Section 3.1.) can be considered “good” enough to justify the complexity of 4DEnVar. I do not 
suggest to produce a benchmark simulation using a different assimilation method, but I wonder 
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whether the authors (or someone else) have tried a simpler approach on the E3SM model, or 
whether the authors can comment on previous work showing comparisons between different 
initialization methods that can shed light on this. 
 
Response: 
Thank you for your insightful comments. We agree that comparisons with simpler approaches 
could strengthen the effectiveness of the 4DEnVar method. Unfortunately, to the best of our 
knowledge, no previous studies have applied a simpler method (e.g., nudging) for ocean data 
assimilation in the E3SM model, and implementing such methods for comparison with 
4DEnVar would require substantial effort that goes beyond the current scope of this study. 
However, He et al. (2020) implemented a similar 4DEnVar-based ocean data assimilation 
system for the FGOALS-g2 model and demonstrated improvements over the previous 
assimilation system in that model. Specifically, the 4DEnVar method in their study showed an 
average monthly reduction rate of the cost function of 4.4%, better than 3.0% from the previous 
system. In our study, we observed a comparable 4.20% reduction, further supporting the 
effectiveness of the 4DEnVar approach. Furthermore, previous studies have shown that 4DVar-
based methods outperform simpler methods, such as nudging and 3DVar, by maintaining 
dynamical consistency with the model and minimizing initial shocks in the forecasts (Sugiura 
et al., 2008; Zhang et al., 2020). 
 
Based on your suggestions, we have revised the manuscript to include the advantages of using 
4DVar-based methods over simpler assimilation techniques (L87-89) and note that the 4.20% 
reduction rate in our study is comparable to the 4.4% reported by He et al. (2020a) using a 
similar 4DEnVar-based assimilation system (L261-263), further supporting the effectiveness 
of this methodology. 
 
L87-89: Previous studies have shown that 4DVar-based methods outperform simpler schemes 
(e.g., nudging or 3DVar) by maintaining dynamical consistency with the model and minimizing 
initial shocks in the forecasts (Sugiura et al., 2008; Zhang et al., 2020). 
 
L261-263: This average reduction rate of 4.20% is comparable to the 4.4% reduction rate 
reported by He et al. (2020a), who used a similar 4DEnVar-based assimilation system in a 
different climate model, further supporting the effectiveness of the 4DEnVar approach. 
 
Comment#2: 
Section 2.4. In the experiment design, did the authors used a spinup run for equilibration before 
performing the assimilation, or is the assimilation applied directly from a piControl (L167) or 
historical (L205-207) run? Can the authors clarify and expand on this? 
 
Response: 
To clarify, the assimilation experiment (ASSIM) is initialized directly from the historical run 
in 1950, with no additional spin-up performed. We have added the following sentence (L228-
230) to make this clear. 
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L228-230: The assimilation run is initialized directly from the historical run in 1950, using the 
fully coupled state at the start of the simulation. 
 
Comment#3: 
L222-224 Do “cost function”, “cost function reduction” and “reduction rate of the cost function” 
refer to the same quantity? Please clearly name the quantity in Eq. 1 and use the same 
terminology subsequently. 
 
Response: 
Thank you for pointing out this inconsistency. To clarify, "cost function reduction" and 
"reduction rate of the cost function" refer to the same concept. The reduction rate of the cost 
function represents the percentage decrease in the cost function. The formula presented in Eq. 
1 represents the reduction rate of the cost function. 
 
To ensure consistency, we have revised the manuscript to consistently use the term "reduction 
rate of the cost function" throughout the manuscript, including the description of Eq. 1 (L240-
241) and all subsequent mentions. 
 
L240-241: The reduction rate of the cost function serves as a fundamental measure to assess 
the assimilation system's accuracy, calculated using the formula: 
 
Comment#4: 
L227 How is the observation error covariance matrix R computed? How is this matrix for 
EN4.2.1 ocean temperature and salinity? e.g., Is R diagonal or quasi-diagonal? If not, any 
insight on its spectral properties? How are the characteristics of R expected to impact the 
assimilation process? 
 
Response: 
The observation error covariance matrix R is determined statistically by estimating the variance 
of the EN4.2.1 ocean temperature and salinity data. In this study, R is assumed to be diagonal. 
The characteristics of R directly influence the weighting of observations in the assimilation 
process: larger values of R result in smaller weights for observations, whereas smaller values 
increase the weight of observations. 
 
We have added this clarification (L245-248) to explain the computation of R, its diagonal 
assumption, and its implications for the assimilation process. 
 
L245-248: In this study, 𝑹 is assumed to be diagonal and its diagonal elements are statistically 
computed based on the variance of the EN4.2.1 ocean temperature and salinity data. The 
characteristics of 𝑹 directly influence the assimilation process, where larger values reduce the 
relative weight of the EN4.2.1 reanalysis and smaller values increase it. 
 
Comment#5: 
L234-242, Section 3.1. While the authors’ message is clear, the use of negative percents is odd. 
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Consider showing positive percents specifying that they correspond to improvements due to 
the assimilation method. 
 
Response: 
Thank you for your suggestion. We have revised the manuscript to specify that positive 
percentages represent improvements due to the assimilation and to present the reduction rate 
of the cost function as positive percentages (L256-261). 
 
L256-261: As noted earlier, negative values of the reduction rate of the cost function indicate 
the successful incorporation of reanalysis data into the coupled model. However, the reduction 
rate is presented here as positive percentages to represent improvements due to the assimilation. 
The reduction rate of the cost function reaches 12.03% in the first month. Over the entire 72-
year period from 1950 to 2021, the average monthly reduction rate of the cost function is 4.20% 
for all months in ASSIM. 
 
Comment#6: 
L255 Can the authors expand on the two suggested reasons for the performance degradation in 
the deep ocean? If possible, can the authors provide some comments specific to the E3SMv2 
model and the EN4.2.1 observational data? 
 
Response: 
We have expanded on the two suggested reasons for the performance degradation in the deep 
ocean, providing additional context specific to the EN4.2.1 observational data and the E3SMv2 
model. For the EN4.2.1 reanalysis, the coverage and quality of observations tend to decrease 
with depth, which may lead to higher uncertainties in the deep ocean. This sparse observational 
coverage limits the constraints that data assimilation can impose on the model state in the deep 
ocean. Furthermore, in the E3SMv2 model, the complexity of simulating deep-ocean processes, 
such as vertical mixing and bottom water formation, may contribute to biases that are difficult 
to correct through data assimilation. 
 
In response to this comment, we have incorporated this discussion into the revised manuscript 
(L298-305) to clarify the potential reasons for the performance degradation in the deep ocean. 
 
L298-305: The degradation in the deeper ocean layers can be attributed to two main factors: 
observational data limitations and challenges in representing deep-ocean processes in the 
model. For the EN4.2.1 reanalysis, the coverage and quality of observations tend to decrease 
with depth, potentially resulting in greater uncertainties in the deep ocean. This sparse 
observational coverage limits the constraints that assimilation can impose on the model state. 
Furthermore, in the E3SMv2 model, the complexity of simulating deep-ocean processes, such 
as vertical mixing and bottom water formation, may contribute to biases that are difficult to 
correct through assimilation. 
 
Comment#7: 
L268-269 Is the seasonal cycle removed from the time series before computing the correlations? 
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Please specify. And is the linear trend removed? 
 
Response: 
Yes, we have removed the seasonal cycle and linear trend before computing the correlations. 
This clarification has been added to the revised manuscript in Lines 309-310. 
 
L309-310: The seasonal cycle and linear trend have been removed before computing the 
correlations. 
 
Comment#8: 
L277-278 The authors suggest that the degradation in performance is “possibly due to sparse 
observational data or complex ocean dynamics”. Can the authors expand on this? In particular, 
if the control run does not use observations (except for the external forcing, as it is the case for 
the assimilation run), how/why the sparse temperature and salinity observations would degrade 
the performance of the assimilation run relative to that of the control run? 
 
Response: 
Thank you for your insightful comment. Sparse temperature and salinity observations may 
introduce higher uncertainty into the assimilation process. In regions with sparse observations, 
the assimilation process may introduce biases or errors when attempting to fit the model to 
incomplete or uncertain data, leading to localized performance degradation relative to the 
control run. Additionally, possible imbalances between ocean state variables during the 
assimilation process may also degrade the assimilation performance in certain areas. 
 
In response to this comment, we have revised this sentence (L319-321) to include more specific 
factors contributing to the diminished performance. 
 
L319-321: However, certain areas exhibit diminished performance, possibly due to sparse 
observational coverage introducing higher uncertainty into the assimilation process or 
imbalances between ocean state variables during the assimilation (Edwards et al., 2015; He et 
al., 2020b). 
 
Comment#9: 
L305. According to the text, Fig. 9 shows global mean RMSE of vertically averaged 
temperature and salinity. From the caption to Fig. 9, it shows RMSE of the vertically averaged 
global mean ocean temperature and salinity. As these are two different quantities, please correct 
and clarify which one is shown. 
 
Response: 
Thank you for pointing out this inconsistency. We have corrected the caption of Figure 9 (L661-
662) to accurately describe the global mean RMSE of vertically averaged ocean temperature 
and salinity. 
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L661-662: Figure 9. Temporal variations of the global mean bias (a, c) and RMSE (b, d) for 
ocean temperature (unit: °C) and salinity (unit: psu) averaged over the upper 1000 meters from 
1950 to 2021. 
 
Comment#10: 
Figure 10. Panels (a) and (c) show CTRL minus OBS. However, from the caption and panels 
titles, (b) and (d) show ASSIM minus CTRL. Why? I would expect to see ASSIM minus OBS 
to assess the biases of the assimilating runs relative to those of the control. Please clarify, 
otherwise I would suggest to show and discuss the results for ASSIM minus OBS. This would 
imply changes to the discussion in L318-332. 
 
Response: 
Based on your suggestion, we have updated panels (b) and (d) in Figure 10 to display "ASSIM 
minus OBS" instead of "ASSIM minus CTRL". In addition, we have revised the discussion 
accordingly (L373-376, and L380-383) to reflect the updated figure and results. 
 
L373-376: In contrast, these SST biases found in CTRL are substantially reduced by ASSIM 
(Fig. 10b), with cold biases in the North Pacific and North Atlantic diminished by 
approximately 1-2 °C, and warm biases in the Southern Ocean corrected by about 1.5-2.5 °C. 
 
L380-383: Compared with CTRL, ASSIM significantly reduces the overall fresh biases in 
CTRL (Fig. 10d). Notable improvements are observed in the North Atlantic and North Pacific, 
where salinity biases are reduced by approximately 0.5-1 psu, and in parts of the Southern 
Ocean, where reductions reach up to 1.5 psu. 
 

 
Figure 10. Climatological mean differences in sea surface temperature (left, unit: °C) and 
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salinity (right, unit: psu) from 1950 to 2021. The top panels show the differences between 
CTRL and observation, while the bottom panels show the differences between ASSIM and 
observation. Dotted areas indicate regions where the differences are statistically significant at 
the 95% confidence level. 
 
Comment#11: 
L318. What “mean differences”? Please specify in the text. See previous comment. 
 
Response: 
We have revised this sentence (L369-370) to show the climatological mean differences between 
CTRL and observation, as well as between ASSIM and observation. 
 
L369-370: Figure 10 presents the climatological mean differences between CTRL and 
observation, as well as between ASSIM and observation, for both sea surface temperature (SST) 
and salinity (SSS). 
 
Comment#12: 
L322. From Fig. 10b it is unclear whether the “SST biases found in CTRL are substantially 
reduced by ASSIM”. See comment above on Figure 10. 
 
Response: 
We have revised Figure 10 to replace "ASSIM minus CTRL" with "ASSIM minus OBS" in 
panels (b) and (d). Additionally, we have incorporated quantitative descriptions (L373-376) to 
better illustrate the magnitude of bias reduction. 
 
L373-376: In contrast, these SST biases found in CTRL are substantially reduced by ASSIM 
(Fig. 10b), with cold biases in the North Pacific and North Atlantic diminished by 
approximately 1-2 °C, and warm biases in the Southern Ocean corrected by about 1.5-2.5 °C. 
 
Comment#13: 
In addition to Fig. 11, can the authors show the correlation and RMSE maps for both 
temperature and precipitation over the contiguous US (including statistical significance)? This 
will be useful to assess the regional impacts of the assimilated ocean. Perhaps the authors could 
show results for seasonal averages instead of annual means, choosing the seasons of strongest 
ENSO influence on US temperature and precipitation. 
 
Response: 
Thank you for your valuable suggestion. We have extended our analysis to include the 
correlation and RMSE maps for temperature (Fig. R1) and precipitation (Fig. R2) during boreal 
winter, when ENSO exerts its strongest influence on US climate variability. For winter 
temperature (Fig. R1), correlation improvements are observed across the northern and central 
US, while reductions in RMSE are primarily concentrated in the central and northeastern US. 
For winter precipitation (Fig. R2), correlation improvements are evident over the central and 
southern US, with RMSE reductions prominently observed in the southern US. 
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However, based on Reviewer #1's comment that the current results in Figure 11 are highly 
preliminary and require more rigorous analysis to draw robust conclusions, we have followed 
Reviewer#1's suggestion to remove Figure 11 from the revised manuscript. We sincerely 
appreciate your constructive feedback, which has been invaluable in refining our analysis. In 
future research, we plan to integrate Figure 11 and this analysis of correlation and RMSE maps 
into a separate study, with more comprehensive analyses to enhance the robustness and clarify 
our findings. 
 

 
Figure R1. Spatial patterns of correlation and RMSE differences in surface air temperature 
during boreal winter between ASSIM and CTRL over the contiguous US from 1950 to 2021. 
Dotted areas represent statistical significance at the 90% confidence level. 
 

 
Figure R2. Similar to Figure R1 but for winter precipitation. 
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Comment#14: 
While Fig. 6 shows improved ocean temperature for the assimilation run, this result uses 
difference of correlations relative to control. As part of the analysis in section 3.6, it would be 
useful to directly assess the SST variability of the assimilation run in the tropical Pacific, which 
is expected to influence the simulated climate over land. For example, consider showing time 
series of the seasonal averaged (e.g., DJF) Niño 3.4 index for the CTRL, ASSIM and OBS, and 
their correlation with OBS. 
 
Response: 
We have added a new Figure A3 to show the time series of the winter Niño 3.4 index for CTRL, 
ASSIM, and OBS. The correlation coefficient of the winter Niño 3.4 index with observation 
increases from 0.06 in CTRL to 0.79 in ASSIM, highlighting the enhanced representation of 
ENSO variability in the assimilation run. 
 
In response to this comment, we have included this analysis as Figure A3 and added the 
corresponding results (L315-317) in the revised manuscript to underscore the enhanced SST 
variability in the tropical Pacific. 
 
L315-317: Further analysis of the winter Niño 3.4 index (Fig. A3) confirms that the 
assimilation improves the representation of ENSO variability, with the correlation coefficient 
increasing from 0.06 in CTRL to 0.79 in ASSIM. 
 

 
Figure A3. Time series of the winter Niño 3.4 index from 1950 to 2021 for the observation 
(black line), ASSIM (red line), and CTRL (blue line). The correlation of the Niño 3.4 index 
with the observation in ASSIM and CTRL are also shown. 
 
Comment#15: 
EN products have data-sparse periods and regions. Salinity in particular is sparsely observed 
and could lead to spurious static instability in the absence of dynamical constrains. Can the 
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authors expand on the potential limitations/advantages of using EN.4.2.1 for the assimilation 
process instead of reanalysis products such as ORAS5 [https://cds.climate. 
copernicus.eu/datasets/reanalysis-oras5?tab=overview] or GLORYS [https://data. 
marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_030/description]? This 
would be useful information in particular for producing centers of decadal predictions. Such 
discussion could be added to the concluding remarks, aligned with the authors “aim to advance 
the predictive capabilities of E3SM for decadal predictions”. 
 
Response: 
Thank you for your insightful comment. We agree that the sparse observational coverage in 
EN4.2.1, particularly for salinity, could pose limitations to the assimilation process, potentially 
introducing static instabilities in the absence of dynamical constraints. Reanalysis products 
such as ORAS5 and GLORYS offer promising alternatives for mitigating these limitations. 
Future efforts should explore incorporating these reanalysis products into the WCODA system 
to improve the assimilation performance in challenging areas. 
 
In response to this comment, we have expanded the discussion (L410-415) in the concluding 
remarks to include the limitations of using the EN4.2.1 dataset and the potential benefits of 
employing alternative reanalysis products like ORAS5 and GLORYS. 
 
L410-415: The reliance on the EN4.2.1 product could pose limitations to the assimilation 
process due to the sparse salinity observations and potential for static instabilities in data-sparse 
regions. Reanalysis products such as ORAS5 and GLORYS provide promising alternatives for 
mitigating these limitations. Future efforts should explore incorporating these reanalysis 
products into the WCODA system to improve the assimilation performance in challenging 
areas. 
 
Comment#16: 
L109 Change “employs sophisticated representations of” with “represents” 
 
Response: 
Done. 
 
Comment#17: 
L292 Change “variations in” to “of” 
 
Response: 
Done. 
 
Comment#18: 
L306 Add “over the top 1000 meters” 
 
Response: 
Done. 
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Comment#19: 
L341 What “multiple US regions”? The contiguous US? 
 
Response: 
To clarify, "multiple US regions" refers to areas within the contiguous US. We have removed 
this term in the revised manuscript. 
 
Comment#20: 
L633 Change “in the” to “averaged over”. 
 
Response: 
Done. 
 
Comment#21: 
L382 Consider changing “challenges” with “limitations” 
 
Response: 
Done. 
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