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    We thank Reviewer #2 for the constructive comments and suggestions, which greatly help 
to improve the quality of our manuscript. We have made revisions and replied to all the 
comments. Please find the point-by-point responses to the comments below. Our responses are 
shown in "Blue" and the changes in the manuscript are shown in "Red". The line numbers 
correspond to those in the clean version of our revised manuscript. 
 
Response to the comments from Reviewer #2 
 
General Comment: 
Shi and co-authors evaluate an assimilation run produced with the 4DEnVar-based weakly 
coupled ocean assimilation method applied to the Earth system model E3SMv2. The 4DEnVar 
method follows the dimension-reduced projection 4DVar method of Wang et al (2010). The 
present study, together with a recently published work also by Shi et al (2024) 
[https://doi.org/10.5194/gmd-17-3025-2024] on a weakly coupled land data assimilation for 
E3SMv2 using the same methodology, appear to be part of the authors effort to produce realistic 
initial conditions for decadal climate predictions with E3SMv2. This is welcome news for the 
decadal climate prediction community and climate prediction users at large. 
 
The present work briefly describes the authors implementation of the 4DEnVar method, 
discussed at length by Shi et al (2024), and presents evaluations of an E3SMv2 assimilation 
run. These include evaluations of the model 3D ocean temperature and salinity, which are 
constrained directly with the EN4.2.1 observational dataset, and air temperature and 
precipitation over the contiguous United States, which are constrained indirectly from the 
effects of the constrained ocean on the atmosphere. Since the methodology has already been 
discussed and tested elsewhere, and the results discussed here appear to be robust, I do not have 
major critical concerns. I do however have several suggestions/comments that I exhort the 
authors to address to hopefully improve the presentation and enhance the relevance of their 
work. 
 
Response: 
We would like to express our sincere gratitude for your time and effort in reviewing our 
manuscript. We truly appreciate your constructive comments and suggestions, which have 
significantly contributed to enhancing the quality of our work. We have carefully addressed 
each comment, as outlined below, and have made the necessary revisions to our manuscript. 
 
Comment#1: 
The evaluation of the E3SMv2 assimilation run only uses a control simulation that does not 
ingest observational data (other than the external forcing, common to both runs). That is, there 
is no assimilation method to benchmark against (e.g., simple nudging, or just imposing the 
observed temperature and salinity fields) so as to assess the effectiveness of the 4DEnVar- 
based methodology. For example, while Fig. 3 shows that the assimilation run outperforms the 
pre-assimilation background, it is unclear whether the 4.20 % error reduction (L239-240, 
Section 3.1.) can be considered “good” enough to justify the complexity of 4DEnVar. I do not 
suggest to produce a benchmark simulation using a different assimilation method, but I wonder 
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whether the authors (or someone else) have tried a simpler approach on the E3SM model, or 
whether the authors can comment on previous work showing comparisons between different 
initialization methods that can shed light on this. 
 
Response: 
Thank you for your insightful comments. We agree that comparisons with simpler approaches 
could strengthen the effectiveness of the 4DEnVar method. Unfortunately, to the best of our 
knowledge, no previous studies have applied a simpler method (e.g., nudging) for ocean data 
assimilation in the E3SM model, and implementing such methods for comparison with 
4DEnVar would require substantial effort that goes beyond the current scope of this study. 
However, He et al. (2020) implemented a similar 4DEnVar-based ocean data assimilation 
system for the FGOALS-g2 model and demonstrated improvements over the previous 
assimilation system in that model. Specifically, the 4DEnVar method in their study showed an 
average monthly reduction rate of the cost function of 4.4%, better than 3.0% from the previous 
system. In our study, we observed a comparable 4.20% reduction, further supporting the 
effectiveness of the 4DEnVar approach. Furthermore, previous studies have shown that 4DVar-
based methods outperform simpler methods, such as nudging and 3DVar, by maintaining 
dynamical consistency with the model and minimizing initial shocks in the forecasts (Sugiura 
et al., 2008; Zhang et al., 2020). 
 
Based on your suggestions, we have revised the manuscript to include the advantages of using 
4DVar-based methods over simpler assimilation techniques (L87-89) and note that the 4.20% 
reduction rate in our study is comparable to the 4.4% reported by He et al. (2020a) using a 
similar 4DEnVar-based assimilation system (L261-263), further supporting the effectiveness 
of this methodology. 
 
L87-89: Previous studies have shown that 4DVar-based methods outperform simpler schemes 
(e.g., nudging or 3DVar) by maintaining dynamical consistency with the model and minimizing 
initial shocks in the forecasts (Sugiura et al., 2008; Zhang et al., 2020). 
 
L261-263: This average reduction rate of 4.20% is comparable to the 4.4% reduction rate 
reported by He et al. (2020a), who used a similar 4DEnVar-based assimilation system in a 
different climate model, further supporting the effectiveness of the 4DEnVar approach. 
 
Comment#2: 
Section 2.4. In the experiment design, did the authors used a spinup run for equilibration before 
performing the assimilation, or is the assimilation applied directly from a piControl (L167) or 
historical (L205-207) run? Can the authors clarify and expand on this? 
 
Response: 
To clarify, the assimilation experiment (ASSIM) is initialized directly from the historical run 
in 1950, with no additional spin-up performed. We have added the following sentence (L228-
230) to make this clear. 
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L228-230: The assimilation run is initialized directly from the historical run in 1950, using the 
fully coupled state at the start of the simulation. 
 
Comment#3: 
L222-224 Do “cost function”, “cost function reduction” and “reduction rate of the cost function” 
refer to the same quantity? Please clearly name the quantity in Eq. 1 and use the same 
terminology subsequently. 
 
Response: 
Thank you for pointing out this inconsistency. To clarify, "cost function reduction" and 
"reduction rate of the cost function" refer to the same concept. The reduction rate of the cost 
function represents the percentage decrease in the cost function. The formula presented in Eq. 
1 represents the reduction rate of the cost function. 
 
To ensure consistency, we have revised the manuscript to consistently use the term "reduction 
rate of the cost function" throughout the manuscript, including the description of Eq. 1 (L240-
241) and all subsequent mentions. 
 
L240-241: The reduction rate of the cost function serves as a fundamental measure to assess 
the assimilation system's accuracy, calculated using the formula: 
 
Comment#4: 
L227 How is the observation error covariance matrix R computed? How is this matrix for 
EN4.2.1 ocean temperature and salinity? e.g., Is R diagonal or quasi-diagonal? If not, any 
insight on its spectral properties? How are the characteristics of R expected to impact the 
assimilation process? 
 
Response: 
The observation error covariance matrix R is determined statistically by estimating the variance 
of the EN4.2.1 ocean temperature and salinity data. In this study, R is assumed to be diagonal. 
The characteristics of R directly influence the weighting of observations in the assimilation 
process: larger values of R result in smaller weights for observations, whereas smaller values 
increase the weight of observations. 
 
We have added this clarification (L245-248) to explain the computation of R, its diagonal 
assumption, and its implications for the assimilation process. 
 
L245-248: In this study, 𝑹 is assumed to be diagonal and its diagonal elements are statistically 
computed based on the variance of the EN4.2.1 ocean temperature and salinity data. The 
characteristics of 𝑹 directly influence the assimilation process, where larger values reduce the 
relative weight of the EN4.2.1 reanalysis and smaller values increase it. 
 
Comment#5: 
L234-242, Section 3.1. While the authors’ message is clear, the use of negative percents is odd. 
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Consider showing positive percents specifying that they correspond to improvements due to 
the assimilation method. 
 
Response: 
Thank you for your suggestion. We have revised the manuscript to specify that positive 
percentages represent improvements due to the assimilation and to present the reduction rate 
of the cost function as positive percentages (L256-261). 
 
L256-261: As noted earlier, negative values of the reduction rate of the cost function indicate 
the successful incorporation of reanalysis data into the coupled model. However, the reduction 
rate is presented here as positive percentages to represent improvements due to the assimilation. 
The reduction rate of the cost function reaches 12.03% in the first month. Over the entire 72-
year period from 1950 to 2021, the average monthly reduction rate of the cost function is 4.20% 
for all months in ASSIM. 
 
Comment#6: 
L255 Can the authors expand on the two suggested reasons for the performance degradation in 
the deep ocean? If possible, can the authors provide some comments specific to the E3SMv2 
model and the EN4.2.1 observational data? 
 
Response: 
We have expanded on the two suggested reasons for the performance degradation in the deep 
ocean, providing additional context specific to the EN4.2.1 observational data and the E3SMv2 
model. For the EN4.2.1 reanalysis, the coverage and quality of observations tend to decrease 
with depth, which may lead to higher uncertainties in the deep ocean. This sparse observational 
coverage limits the constraints that data assimilation can impose on the model state in the deep 
ocean. Furthermore, in the E3SMv2 model, the complexity of simulating deep-ocean processes, 
such as vertical mixing and bottom water formation, may contribute to biases that are difficult 
to correct through data assimilation. 
 
In response to this comment, we have incorporated this discussion into the revised manuscript 
(L298-305) to clarify the potential reasons for the performance degradation in the deep ocean. 
 
L298-305: The degradation in the deeper ocean layers can be attributed to two main factors: 
observational data limitations and challenges in representing deep-ocean processes in the 
model. For the EN4.2.1 reanalysis, the coverage and quality of observations tend to decrease 
with depth, potentially resulting in greater uncertainties in the deep ocean. This sparse 
observational coverage limits the constraints that assimilation can impose on the model state. 
Furthermore, in the E3SMv2 model, the complexity of simulating deep-ocean processes, such 
as vertical mixing and bottom water formation, may contribute to biases that are difficult to 
correct through assimilation. 
 
Comment#7: 
L268-269 Is the seasonal cycle removed from the time series before computing the correlations? 
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Please specify. And is the linear trend removed? 
 
Response: 
Yes, we have removed the seasonal cycle and linear trend before computing the correlations. 
This clarification has been added to the revised manuscript in Lines 309-310. 
 
L309-310: The seasonal cycle and linear trend have been removed before computing the 
correlations. 
 
Comment#8: 
L277-278 The authors suggest that the degradation in performance is “possibly due to sparse 
observational data or complex ocean dynamics”. Can the authors expand on this? In particular, 
if the control run does not use observations (except for the external forcing, as it is the case for 
the assimilation run), how/why the sparse temperature and salinity observations would degrade 
the performance of the assimilation run relative to that of the control run? 
 
Response: 
Thank you for your insightful comment. Sparse temperature and salinity observations may 
introduce higher uncertainty into the assimilation process. In regions with sparse observations, 
the assimilation process may introduce biases or errors when attempting to fit the model to 
incomplete or uncertain data, leading to localized performance degradation relative to the 
control run. Additionally, possible imbalances between ocean state variables during the 
assimilation process may also degrade the assimilation performance in certain areas. 
 
In response to this comment, we have revised this sentence (L319-321) to include more specific 
factors contributing to the diminished performance. 
 
L319-321: However, certain areas exhibit diminished performance, possibly due to sparse 
observational coverage introducing higher uncertainty into the assimilation process or 
imbalances between ocean state variables during the assimilation (Edwards et al., 2015; He et 
al., 2020b). 
 
Comment#9: 
L305. According to the text, Fig. 9 shows global mean RMSE of vertically averaged 
temperature and salinity. From the caption to Fig. 9, it shows RMSE of the vertically averaged 
global mean ocean temperature and salinity. As these are two different quantities, please correct 
and clarify which one is shown. 
 
Response: 
Thank you for pointing out this inconsistency. We have corrected the caption of Figure 9 (L661-
662) to accurately describe the global mean RMSE of vertically averaged ocean temperature 
and salinity. 
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L661-662: Figure 9. Temporal variations of the global mean bias (a, c) and RMSE (b, d) for 
ocean temperature (unit: °C) and salinity (unit: psu) averaged over the upper 1000 meters from 
1950 to 2021. 
 
Comment#10: 
Figure 10. Panels (a) and (c) show CTRL minus OBS. However, from the caption and panels 
titles, (b) and (d) show ASSIM minus CTRL. Why? I would expect to see ASSIM minus OBS 
to assess the biases of the assimilating runs relative to those of the control. Please clarify, 
otherwise I would suggest to show and discuss the results for ASSIM minus OBS. This would 
imply changes to the discussion in L318-332. 
 
Response: 
Based on your suggestion, we have updated panels (b) and (d) in Figure 10 to display "ASSIM 
minus OBS" instead of "ASSIM minus CTRL". In addition, we have revised the discussion 
accordingly (L373-376, and L380-383) to reflect the updated figure and results. 
 
L373-376: In contrast, these SST biases found in CTRL are substantially reduced by ASSIM 
(Fig. 10b), with cold biases in the North Pacific and North Atlantic diminished by 
approximately 1-2 °C, and warm biases in the Southern Ocean corrected by about 1.5-2.5 °C. 
 
L380-383: Compared with CTRL, ASSIM significantly reduces the overall fresh biases in 
CTRL (Fig. 10d). Notable improvements are observed in the North Atlantic and North Pacific, 
where salinity biases are reduced by approximately 0.5-1 psu, and in parts of the Southern 
Ocean, where reductions reach up to 1.5 psu. 
 

 
Figure 10. Climatological mean differences in sea surface temperature (left, unit: °C) and 
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salinity (right, unit: psu) from 1950 to 2021. The top panels show the differences between 
CTRL and observation, while the bottom panels show the differences between ASSIM and 
observation. Dotted areas indicate regions where the differences are statistically significant at 
the 95% confidence level. 
 
Comment#11: 
L318. What “mean differences”? Please specify in the text. See previous comment. 
 
Response: 
We have revised this sentence (L369-370) to show the climatological mean differences between 
CTRL and observation, as well as between ASSIM and observation. 
 
L369-370: Figure 10 presents the climatological mean differences between CTRL and 
observation, as well as between ASSIM and observation, for both sea surface temperature (SST) 
and salinity (SSS). 
 
Comment#12: 
L322. From Fig. 10b it is unclear whether the “SST biases found in CTRL are substantially 
reduced by ASSIM”. See comment above on Figure 10. 
 
Response: 
We have revised Figure 10 to replace "ASSIM minus CTRL" with "ASSIM minus OBS" in 
panels (b) and (d). Additionally, we have incorporated quantitative descriptions (L373-376) to 
better illustrate the magnitude of bias reduction. 
 
L373-376: In contrast, these SST biases found in CTRL are substantially reduced by ASSIM 
(Fig. 10b), with cold biases in the North Pacific and North Atlantic diminished by 
approximately 1-2 °C, and warm biases in the Southern Ocean corrected by about 1.5-2.5 °C. 
 
Comment#13: 
In addition to Fig. 11, can the authors show the correlation and RMSE maps for both 
temperature and precipitation over the contiguous US (including statistical significance)? This 
will be useful to assess the regional impacts of the assimilated ocean. Perhaps the authors could 
show results for seasonal averages instead of annual means, choosing the seasons of strongest 
ENSO influence on US temperature and precipitation. 
 
Response: 
Thank you for your valuable suggestion. We have extended our analysis to include the 
correlation and RMSE maps for temperature (Fig. R1) and precipitation (Fig. R2) during boreal 
winter, when ENSO exerts its strongest influence on US climate variability. For winter 
temperature (Fig. R1), correlation improvements are observed across the northern and central 
US, while reductions in RMSE are primarily concentrated in the central and northeastern US. 
For winter precipitation (Fig. R2), correlation improvements are evident over the central and 
southern US, with RMSE reductions prominently observed in the southern US. 



 8 

 
However, based on Reviewer #1's comment that the current results in Figure 11 are highly 
preliminary and require more rigorous analysis to draw robust conclusions, we have followed 
Reviewer#1's suggestion to remove Figure 11 from the revised manuscript. We sincerely 
appreciate your constructive feedback, which has been invaluable in refining our analysis. In 
future research, we plan to integrate Figure 11 and this analysis of correlation and RMSE maps 
into a separate study, with more comprehensive analyses to enhance the robustness and clarify 
our findings. 
 

 
Figure R1. Spatial patterns of correlation and RMSE differences in surface air temperature 
during boreal winter between ASSIM and CTRL over the contiguous US from 1950 to 2021. 
Dotted areas represent statistical significance at the 90% confidence level. 
 

 
Figure R2. Similar to Figure R1 but for winter precipitation. 
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Comment#14: 
While Fig. 6 shows improved ocean temperature for the assimilation run, this result uses 
difference of correlations relative to control. As part of the analysis in section 3.6, it would be 
useful to directly assess the SST variability of the assimilation run in the tropical Pacific, which 
is expected to influence the simulated climate over land. For example, consider showing time 
series of the seasonal averaged (e.g., DJF) Niño 3.4 index for the CTRL, ASSIM and OBS, and 
their correlation with OBS. 
 
Response: 
We have added a new Figure A3 to show the time series of the winter Niño 3.4 index for CTRL, 
ASSIM, and OBS. The correlation coefficient of the winter Niño 3.4 index with observation 
increases from 0.06 in CTRL to 0.79 in ASSIM, highlighting the enhanced representation of 
ENSO variability in the assimilation run. 
 
In response to this comment, we have included this analysis as Figure A3 and added the 
corresponding results (L315-317) in the revised manuscript to underscore the enhanced SST 
variability in the tropical Pacific. 
 
L315-317: Further analysis of the winter Niño 3.4 index (Fig. A3) confirms that the 
assimilation improves the representation of ENSO variability, with the correlation coefficient 
increasing from 0.06 in CTRL to 0.79 in ASSIM. 
 

 
Figure A3. Time series of the winter Niño 3.4 index from 1950 to 2021 for the observation 
(black line), ASSIM (red line), and CTRL (blue line). The correlation of the Niño 3.4 index 
with the observation in ASSIM and CTRL are also shown. 
 
Comment#15: 
EN products have data-sparse periods and regions. Salinity in particular is sparsely observed 
and could lead to spurious static instability in the absence of dynamical constrains. Can the 
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authors expand on the potential limitations/advantages of using EN.4.2.1 for the assimilation 
process instead of reanalysis products such as ORAS5 [https://cds.climate. 
copernicus.eu/datasets/reanalysis-oras5?tab=overview] or GLORYS [https://data. 
marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_030/description]? This 
would be useful information in particular for producing centers of decadal predictions. Such 
discussion could be added to the concluding remarks, aligned with the authors “aim to advance 
the predictive capabilities of E3SM for decadal predictions”. 
 
Response: 
Thank you for your insightful comment. We agree that the sparse observational coverage in 
EN4.2.1, particularly for salinity, could pose limitations to the assimilation process, potentially 
introducing static instabilities in the absence of dynamical constraints. Reanalysis products 
such as ORAS5 and GLORYS offer promising alternatives for mitigating these limitations. 
Future efforts should explore incorporating these reanalysis products into the WCODA system 
to improve the assimilation performance in challenging areas. 
 
In response to this comment, we have expanded the discussion (L410-415) in the concluding 
remarks to include the limitations of using the EN4.2.1 dataset and the potential benefits of 
employing alternative reanalysis products like ORAS5 and GLORYS. 
 
L410-415: The reliance on the EN4.2.1 product could pose limitations to the assimilation 
process due to the sparse salinity observations and potential for static instabilities in data-sparse 
regions. Reanalysis products such as ORAS5 and GLORYS provide promising alternatives for 
mitigating these limitations. Future efforts should explore incorporating these reanalysis 
products into the WCODA system to improve the assimilation performance in challenging 
areas. 
 
Comment#16: 
L109 Change “employs sophisticated representations of” with “represents” 
 
Response: 
Done. 
 
Comment#17: 
L292 Change “variations in” to “of” 
 
Response: 
Done. 
 
Comment#18: 
L306 Add “over the top 1000 meters” 
 
Response: 
Done. 
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Comment#19: 
L341 What “multiple US regions”? The contiguous US? 
 
Response: 
To clarify, "multiple US regions" refers to areas within the contiguous US. We have removed 
this term in the revised manuscript. 
 
Comment#20: 
L633 Change “in the” to “averaged over”. 
 
Response: 
Done. 
 
Comment#21: 
L382 Consider changing “challenges” with “limitations” 
 
Response: 
Done. 
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