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Abstract. We present BIOPERIANT12, a regional 1/12◦ ocean–ice–biogeochemical model configuration of the Southern

Ocean based on the Nucleus for European Modelling of the Ocean platform. It is designed to investigate mean state, seasonal

cycle, and upper ocean (< 500 m) dynamics, with a particular focus on processes influencing carbon, heat exchange, biogeo-

chemical mechanisms, and the assumptions underlying physical–biogeochemical model parameterisations within the Southern

Ocean. Over the analysis period 2000–2009, the model demonstrates a stable and realistic upper ocean mean state compared5

to observation-based products. We use ocean biomes to delineate the major subregions and evaluate the biogeochemical prop-

erties of the model, including surface chlorophyll and partial pressure of carbon dioxide. BIOPERIANT12 captures key spatial

and temporal features of Southern Ocean biogeochemistry, though it tends to overestimate biological biomass and underrepre-

sents high-frequency variability. The model shows skill in reproducing large-scale patterns and seasonal cycles across biomes,

offering insights into regional dynamics that are often obscured in coarser models. Despite its limitations, BIOPERIANT1210

provides a valuable high-resolution framework for process studies, model–data intercomparisons, and future investigations into

mesoscale influences on carbon and heat dynamics. It offers a useful tool for addressing long-standing uncertainties in air–sea

exchange and ecosystem variability in the Southern Ocean.
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1 Introduction

The Southern Ocean (SO) is a key region in the global carbon cycle, serving as a major sink for both carbon dioxide (CO2)15

and heat. It accounts for nearly 40 % of the annual mean oceanic CO2 uptake and 75 % of the global excess heat (Frölicher

et al., 2015; Gruber et al., 2023). However, the SO remains a challenging region to both observe and simulate. The recognised

sparsity of observations in this dynamic, remote area has been addressed through expanded sampling efforts since the 2000s

(Williams et al., 2018; Meredith et al., 2013; Swart et al., 2012). Owing to improvements in sampling technology, data is now

being collected at unprecedented temporal and spatial resolutions. Despite this progress, the data remain weakly constrained20

and seasonally biased. Model–data comparisons have thus underscored the need to improve the representation of CO2 and heat

fluxes in ocean models and Earth system models (ESMs) used for future climate projections (Rintoul, 2018).

Model ocean dynamics are fundamental to accurately reproducing CO2 and heat fluxes in the SO, particularly due to the

prevalent mesoscale eddy field driven by the Antarctic Circumpolar Current (ACC) and its associated strong mesoscale kinetic

energy and baroclinic instabilities (Daniault and Ménard, 1985; Smith et al., 2023). Mesoscale dynamics account for a substan-25

tial portion of both annual and seasonal variance in mixed layer depth (MLD) (Whitt et al., 2019; Gaube et al., 2019), thereby

influencing global circulation through water mass transformation and SO overturning circulation via eddy compensation and

ocean–wind interactions (Abernathey et al., 2016; Munday et al., 2014). Subsequently, enhanced advection and mixing by

mesoscale (and submesoscale) processes impact local biogeochemistry (BGC) through the supply of limiting nutrients to the

euphotic layer (Frenger et al., 2015; Nicholson et al., 2019; Uchida et al., 2019) and by modifying light availability through30

stratification caused by "eddy slumping" during spring (Lévy et al., 1998, 1999; Marshall et al., 2002; Lévy et al., 2010;

Mahadevan et al., 2012).

Within the framework of the seasonal cycle, arguably the dominant mode of variability in physical–biogeochemical proper-

ties of the SO (Lenton et al., 2013; Thomalla et al., 2011; Mongwe et al., 2018; Gregor et al., 2019; Rodgers et al., 2023), ocean

models continue to show inadequate representation of SO dynamics (Chassignet et al., 2020; Treguier et al., 2023). This leads35

to large model biases in ESMs and a wide inter-model spread in previous generations of the Climate Model Intercomparison

Project (CMIP). For example, models show divergent seasonal cycles in air–sea CO2 flux (FCO2), (Anav et al., 2013; Lenton

et al., 2013; Kessler and Tjiputra, 2016; Mongwe et al., 2016, 2018), sea ice extent and trends (Meijers, 2014; Beadling et al.,

2020), MLD (Sallée et al., 2013; Treguier et al., 2023), water mass properties (Downes et al., 2015; Beadling et al., 2020),

dissolved iron concentrations (Tagliabue et al., 2016), and phytoplankton phenology (Thomalla et al., 2011, 2023; Hague and40

Vichi, 2018).

The representation of mesoscale dynamics in ocean models is therefore a critical step toward improving the simulation of

CO2 and heat fluxes. Coupled physics–biogeochemistry (BGC) simulations, in both global (Rohr et al., 2020) and regional

models (Song et al., 2018; Uchida et al., 2019, 2020), demonstrate that model resolution strongly influences biological re-

sponses in the SO. These effects arise through more refined representations of both physical and biogeochemical mechanisms,45

particularly in the structure and timing of seasonal cycles. However, the ability to resolve such processes is limited by computa-

tional costs, especially in models that include BGC components. BGC can add substantially to the overall cost which increases
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with the number of BGC tracers that must be advected and the complexity of numerical schemes employed (Lévy et al., 2012).

For long-running coupled models designed to address climate-scale questions, lower resolutions are thus often used. This

choice contributes to uncertainties in simulating carbon and heat exchange (Hewitt et al., 2020; Beadling et al., 2020). Despite50

gains in computational power, demonstrated by the shift from CMIP5 models with horizontal resolutions coarser than 1◦ to

CMIP6 models of up to 0.25◦, most ESMs still do not explicitly resolve mesoscale processes in the SO (Hewitt et al., 2020;

Haarsma et al., 2016).

To balance computational constraints, model configurations, especially those incorporating BGC, must make trade-offs in

spatial and temporal resolution, run duration, and model complexity. For simulations focused on SO CO2 and heat fluxes,55

resolution is critical: it defines the spatial scales over which ocean dynamics operate to distribute BGC tracers, and signifi-

cantly contributes to model–observation discrepancies. For example, mesoscale modulation of the MLD affects light and iron

availability at the surface, which in turn influences phytoplankton growth and the strength of the biological carbon pump (Song

et al., 2018). In addition, low-resolution models are more prone to cumulative errors in BGC fields, such as nutrient and iron

pools, which can propagate and amplify over time (Séférian et al., 2013).60

In this paper, we present our regional SO model configuration of a laterally unconstrained Antarctic Circumpolar Current

(ACC) with resolved eddies and a prescribed atmosphere. BIOPERIANT12 is a regional, circumpolar, mesoscale-resolving

(1/12◦), contemporary ocean–ice–BGC model configuration using NEMO–PISCES. The PISCES biogeochemical model sim-

ulates 24 evolving prognostic tracers for carbon and nutrients cycles, as well as marine productivity, with two phytoplankton

groups (nanophytoplankton and diatoms) and two zooplankton groups (microzooplankton and mesozooplankton) (Aumont65

and Bopp, 2006; Aumont et al., 2015). This setup allows us to examine: the seasonal cycle of physical and biogeochemi-

cal processes in the surface ocean, the interface across which atmosphere–ocean exchange occurs; model–observation biases

through comparison with in situ data; and simulation development through applications such as downscaling, submesoscale

experiments, and sensitivity studies.

More specifically, BIOPERIANT12 allows the investigation of how sub-seasonal to synoptic-scale atmospheric forcing,70

such as storms, modulates seasonal buoyancy fluxes in an eddying ocean, and how these interactions shape BGC and carbon

fluxes. Observational campaigns, including those with gliders, show storm events are key drivers of biological variability by

influencing processes such as vertical mixing, nutrient supply, and light availability (Nicholson et al., 2022; Toolsee et al.,

2024; du Plessis et al., 2022; Swart et al., 2012), yet these processes are not resolved in most ESMs. BIOPERIANT12’s

mesoscale-resolving resolution makes it well-suited to investigate these biophysical processes.75

For comparison, the MOMSO configuration (Modular Ocean Model–Southern Ocean; Dietze et al. (2020)) is also eddy-

resolving in the SO (11 km resolution at 40 ◦S), used in climatologically forced, multi-decadal experiments, but uses a reduced

BGC model (BLING) with only four tracers and a simplified carbon module. Another example, the B-SOSE (Biogeochemical

Southern Ocean State Estimate), balances the model complexity of BGC data assimilation with coarser horizontal resolutions

(1/3◦, Verdy and Mazloff, 2017, and 1/6◦, http://sose.ucsd.edu/). The challenge of examining coupled SO dynamics and BGC80

is illustrated by the model design of Uchida et al. (2019). In order to examine mesoscale and submesoscale influences on

iron fluxes in the SO, they employed a full BGC model with multiple phytoplankton and zooplankton functional groups
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in experiments at increasing resolutions (20, 5, and 2 km), each requiring a spin-up. However, to extricate the influence of

resolved, evolving ocean dynamics, and thus controlling the underlying ocean, they used an idealised ocean setup represented

by a flat-bottomed, re-entrant channel.85

While these configurations offer valuable insights into SO dynamics and BGC, their design choices reflect specific research

objectives and therefore make them less suited for addressing processes and model representation of SO BGC coupled to

realistic mesoscale dynamics that drive the observed variability and air–sea exchange.

This paper is structured as follows: Section 2 provides a description of the model design. In Section 3, we evaluate the

configuration’s suitability as an experimental platform, starting with an assessment of model stability (i.e., whether a stable90

mean state is achieved) and followed by an evaluation of the BGC seasonal cycle, comparing it with observation-based gridded

climatologies. Finally, Section 4 presents the conclusions.

2 BIOPERIANT12 model configuration

BIOPERIANT12 (full configuration name: BIOPERIANT12-CNCLNG01) is a regional, mesoscale-resolving model config-

uration designed to simulate the ocean, sea ice, and biogeochemistry of the circumpolar SO under contemporary conditions.95

It is based on NEMO–PISCES version 3.4 (Gurvan et al., 2019), following specifications from the DRAKKAR consortium

(Barnier et al., 2014). The configuration couples the ocean component OPA (Océan Parallélisé), the Louvain–la–Neuve Sea

Ice Model (LIM2), and the biogeochemical model PISCES (Aumont and Bopp, 2006; updated version Aumont et al., 2015).

Although NEMO version 3.6 was available at the time of production, version 3.4 was retained for consistency with the

configuration development workflow, which involved a hierarchy of tests across increasing resolutions used to evaluate model100

parameters. BIOPERIANT12 was configured building on two prior model runs developed by the DRAKKAR group: ORCA12-

MAL101, a global, eddying physical configuration (Barnier et al., 2014; Lecointre et al., 2011), and BIOPERIANT05-GAA95b,

an eddy-permitting 1/2◦ SO biogeochemical configuration (Albert, A., pers. comm., MEOM–DRAKKAR Group), itself an up-

date of the model described in Dufour et al. (2013), from which the BIOPERIANT12 designation was derived.

2.1 Domain and grid105

The model grid and bathymetry for the SO south of 30◦ S (Fig. 1a) is a subset of the global tripolar ORCA12 grid with

46 vertical levels built from the ETOPO2 dataset combined with the GEBCO one minute grid. The horizontal grid, at 1/12◦

resolution (∼8 km at 30◦ S, 4.6 km at 60◦ S), can be considered eddy-resolving. The vertical grid of BIOPERIANT12 consists

of 46 z-coordinate levels with partial bottom steps. For the surface ocean mixed layer fluxes and biogeochemistry, there are

15/18 levels in the upper 200/400 m, with vertical resolution ranging from 6–40 m. Below this, grid thickness increases: ∼200110

m at 2000 m depth (z = 29) and finally 250 m at the bottom (Fig. 1b).
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Figure 1. BIOPERIANT12 grid configuration (a) domain showing model bathymetry and (b) vertical grid cell thickness as a function of

depth.

2.2 Initial conditions

To obtain a representative and stable surface ocean state, BIOPERIANT12 is initialised from rest, with temperature, salinity and

biogeochemical tracers derived from climatological data products. This model thus starts from a contemporary ocean state with

large-scale climatological gradients and minimises spin-up. For the ocean, the initial temperature and salinity fields are taken115

from the World Ocean Atlas (WOA) Levitus January climatology (Locarnini et al., 2010). Sea ice is initialised using January

ice climatology averaged over 1998–2007 from the ORCA12-MAL101 simulation, when sea ice extent is low. Thereafter, sea

ice evolves freely under the dynamics of the LIM2 model, responding to the simulated thermodynamic and dynamic forcing.

Biogeochemical tracers are initialised from coarse-resolution observational climatologies which provide realistic large-scale

distributions. Dissolved inorganic carbon (DIC), total alkalinity (TA) are obtained from the GLODAP annual mean climatology120

(Key et al., 2004); while nutrients including nitrate (NO3), phosphate (PO4), silicate (Si) and oxygen (O2) are taken from the

January monthly climatology of WOA09 (Garcia et al., 2013, 2010). Dissolved organic carbon and iron fields are inherited

from the BIOPERIANT05-GAA95b simulation due to lack of climatological dataset and particularly the importance of iron

to the region. BIOPERIANT05-GAA95b was initialised with the same biogeochemical tracers as above and with remaining

tracers from global model initial conditions (ORCA2, NEMO Consortium, 2020). Its output provides an internally consistent125

distribution of the aforementioned fields for the SO and is thus also used for boundary conditions. The remaining tracers in

PISCES are initialised with uniform values as per standard model defaults.
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2.3 Boundary Conditions

BIOPERIANT12 has one open lateral boundary to the north. Interannually varying boundary conditions for the dynamics

were obtained from the global 1/12◦ ORCA12-MAL101 simulation, using available 5 day averages for the period 1989–2009.130

While these physical boundary conditions are at a comparable resolution, suitable high-resolution biogeochemical bound-

ary conditions were not available at the time of setup. Therefore, biogeochemical fields were taken from the coarser 1/2◦

BIOPERIANT05-GAA95b simulation. Rather than using the full interannual series, which in coarse-resolution models can re-

sult in biases in the seasonal and vertical structure of DIC, and hence in the simulated seasonal cycle of carbon (Mongwe et al.,

2016), a climatological “normal year” boundary forcing was constructed. This consisted of 5 day averaged fields computed135

over the period 1995–2009.

At lateral solid boundaries, partial free-slip conditions are applied. Surface atmospheric forcing is provided by ERA-Interim

reanalysis data (Dee et al., 2011), applied through the CORE bulk formulae. Wind stress components are prescribed at 3-hourly

intervals using the absolute wind formulation, which does not account for the surface ocean current effect on wind speed. Sea

surface salinity is weakly restored to monthly Levitus climatology values. Additionally, a restoring term is applied to Antarctic140

Bottom Water to counteract a known drift in Antarctic Circumpolar Current (ACC) transport from deep water structure in the

DRAKKAR models (Dufour et al., 2012).

2.4 Model evolution

The model is integrated over the 21 year period from 1989 to 2009, the same period for which the ORCA12 boundary conditions

were available. A baroclinic time step of 360 seconds is used. During the first five years of integration (1989–1994), the surface145

ocean dynamics adjust to the imposed forcing and initial conditions, reaching a statistical equilibrium. Key indicators such as

transport through the Drake Passage also stabilise during this period (Fig. S1, S2), and thus these years are designated as the

spin-up phase. From 1995 onward, the simulation proceeds under quasi-equilibrated conditions, with 5 day averaged output

saved for analysis. The final decade of the simulation (2000–2009) is used for evaluation.

While the focus of the configuration is on upper ocean processes, particularly in the top 1000 m, it is noted that a gradual150

drift in deep ocean temperature (below 400 m) becomes apparent from around 2002 onward (Fig. S1e–g). This drift does not

impact the surface dynamics or the primary objectives of the study, but should be considered when using the model output for

investigations involving deep ocean processes.

2.5 Model Numerics

Advection of ocean tracers (temperature and salinity) is implemented with the TVD scheme, while passive biogeochemical155

tracers in PISCES tracers are advected using the MUSCL advection scheme. Lateral diffusion for both physical and biogeo-

chemical tracers is applied via a laplacian operator along isonetural surfaces. Lateral advection of momentum uses a leapfrog

scheme, and momentum diffusion implemented using a bilaplacian operator along geopotential surfaces.
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Vertical mixing is represented using the turbulent kinetic energy (TKE) closure scheme. For background subgrid-scale

mixing, vertical eddy viscosity and diffusivity coefficients are set to 1.2 x 10-4 m2 s-1 and 1.2 x 10-5 m2 s-1 from default160

configuration namelists, e.g. ORCA2 (NEMO Consortium, 2020). At the ocean floor, a diffusive bottom boundary layer scheme

is employed along with an advective scheme to account for downslope transport in cases of dense water overlying lighter water

masses (Gurvan et al., 2019). The bottom boundary is set with a nonlinear bottom friction formulation.

2.6 Computational Requirements

Development of BIOPERIANT12 began following the deployment of the Lengau high-performance computing (HPC) cluster165

at the National Integrated Cyberinfrastructure System’s Centre for High Performance Computing (NICIS–CHPC) in late 2016.

Lengau, a shared resource for the South African research community, comprises approximately 32 832 Intel Xeon CPU cores

when fully operational. The final reference simulation presented in this study was completed in 2020. Due to constraints related

to national electricity which reduced available compute capacity, system stability, and resource allocations, model runs required

operational adjustments. To mitigate risks of unexpected interruptions and ensure continuity of simulations, restart files were170

written more frequently at the expense of increased storage usage.

After applying NEMO’s land elimination algorithm, which excluded 19 % of subdomains with no active ocean points, the

simulation was run using 3,240 CPUs. This configuration optimised the trade-off between model scalability and wall-clock

time, while efficiently managing the regular output of ocean, ice, and biogeochemical fields at 5 day intervals, as well as the

frequent writing of restart files.175

3 Model Evaluation

We evaluate the physical and biogeochemical fields of BIOPERIANT12 by comparing key upper-ocean metrics from the final

10 years of the experiment (2000–2009) against observational data (OBS), for which temporal and spatial coverage improves

during the 2000s. Observational datasets are cited inline and summarised in Table 1. Many of these datasets are low -resolution,

gridded products, which are primarily applicable for evaluating the large-scale mean state.180

As an initial comparison, we verify that the model reproduces the annual and seasonal mean states, followed by an assessment

of the characteristics of temporal variability. In Section 3.1, we evaluate the model’s physical ocean and sea ice properties as

indicators of model stability and general circulation, which in turn influence the BGC tracers. This evaluation is guided by the

metrics proposed by Russell et al. (2018) for assessing the SO in coupled climate models and ESMs.

As a summary and precursor to further BGC evaluation, we present biome classifications and summarise model output in185

comparison to observations in Section 3.2. In Section 3.3, we focus on modelled carbon, while Section 3.4 provides further

analysis of biogeochemical and biological properties.
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Table 1. Summary of observational datasets used for model evaluation

Variable
Temporal resolution

and coverage

Horizontal

resolution
Dataset and reference URL

Currents u, v 2000–2009 0.25◦ AVISO altimetry (The Ssalto/Duacs al-

timeter products were produced and dis-

tributed by the Copernicus Marine and En-

vironment Monitoring Service, CMEMS,

http://www.marine.copernicus.eu )

Temperature, Salinity Monthly climatology 0.25◦ WOA2013 (Locarnini et al., 2010)

Polar Front position Weekly 2002–2009 0.25◦ Satellite AMSR-E, AMSR-2, WindSat

(Freeman and Lovenduski, 2016)

MLD gridded Monthly climatology 1◦ Argo profiles (Holte et al., 2017)

T/S profiles 2002–2009 Argo profiles (Holte et al., 2017)

Sea ice concentration 2000–2009 0.25◦ NOAA/NSIDC (Meier et al., 2017; Peng

et al., 2013)

Mean biomes Mean over 1998–2010 1◦ Biome dataset (Fay and McKinley, 2014)

FCO2, pCO2 Monthly means 1◦ CSIR-ML6 multi-platform machine-

learning product (Gregor et al., 2019)

DIC, TA Annual mean centred 2002 1◦ GLODAPv2 (Olsen et al., 2016; Lauvset

et al., 2016)

Dissolved iron Binned into months 1◦ bins Dissolved iron in situ profiles (Tagliabue

et al., 2014)

NO3, PO4, Si Monthly climatology 1◦ WOA13 (Garcia et al., 2010)

Dissolved oxygen Monthly climatology 1◦ WOA13 (Garcia et al., 2013)

Chloropyll-a Weekly 2000–2009 9 km OC-CCI-v6 mixed satellite in situ

chlorophyll-a (Sathyendranath et al.,

2019)

3.1 Key physical ocean metrics in the Southern Ocean

3.1.1 Transport through Drake Passage

Transport of the ACC through the Drake Passage was calculated by integrating the model’s zonal velocity from surface to190

bottom across 69◦ W. The time evolution of transport (Fig. S1b), shows that BIOPERIANT12 is stable after spin-up, with

an annual mean transport through the Drake Passage from 2000–2009 at 145.25 ± 5.66 Sv. This value is comparable to ob-

servational estimates, as summarised in Table 2, such as the widely accepted estimate of 134 ± 11.2 Sv by Whitworth and

8
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Table 2. Drake Passage volume transport in BIOPERIANT12 compared with selected estimates from the literature

Transport [Sv] Source Reference

145.25 ±5.66 BIOPERIANT12

134 ±11.2 Observations Whitworth and Peterson (1985)

173.3 ±10.7 Observations after 2007 Donohue et al. (2016)

149.2 Model 0.5◦ resolution (PERIANT05) Dufour et al. (2012)

143.2 Model 0.25◦ resolution (PERIANT025) Dufour et al. (2012)

155 ±51 CMIP5 multi-model mean (1◦ resolution) Meijers (2014)

134–173 OMIP-2 models eddy-resolving Chassignet et al. (2020)

Peterson (1985). However, post-2007 estimates of transport are higher, such as 173.3 ± 10.7 Sv (Donohue et al., 2016) which

is attributed to the increase of resolution in observations. This higher value is used as the observational benchmark in model195

intercomparisons from CMIP3 to CMIP6 (Beadling et al., 2020). The mean transport of BIOPERIANT12 also compares well

to its similar SO regional model predecessors, PERIANT05 and PERIANT025 (0.5◦ and 0.25◦ resolution, respectively), with

respective mean transports of 149.2 Sv and 143.2 Sv (Dufour et al., 2012). Additionally, it aligns with estimates from global

models such as the multi-model mean of 155 ± 51 Sv for CMIP5 models of mostly 1◦ resolution (Meijers, 2014) and the eddy-

resolving Ocean Model Intercomparison Project phase 2 (OMIP-2) models which fall within the chosen observation range of200

134–173 Sv (Chassignet et al., 2020).

3.1.2 Eddy Kinetic Energy (EKE)

The climatological annual mean surface EKE for 2000–2009 in BIOPERIANT12, compared to that derived from the AVISO

1/4◦ gridded altimetry dataset, is shown in Fig. 2. The spatial distribution of EKE in the model is in general agreement with

observations, capturing elevated EKE in regions associated with western boundary currents (WBC) and downstream of major205

topographic features. Zonally averaged EKE bands are comparable to SO models by Munday et al. (2021, Fig. 7a), although

BIOPERIANT12 shows slightly higher EKE than their models, except for the WBC regions. For example, in the Agulhas

Current region (Fig. S3), EKE is underestimated compared to observations, reflected as the lower zonal mean EKE between 36

and 43◦ S (Fig. 2a), possibly from missing dynamics around the Agulhas Retroflection region (15–45◦ E; Fig. S2b). Models at

similar resolutions are able to represent the distribution patterns of EKE (e.g. ORCA12, Rieck et al., 2015; Patara et al., 2016),210

although magnitudes may differ.

OMIP-2 ocean models (at ∼1/10◦) generally underestimate surface EKE, partially due to factors such as temporal averaging

(Chassignet et al., 2020); regional effects: high EKE regions are eddy-rich but exhibit reduced spatial extent in OMIP-2 mod-

els compared to observations, while eddy-poor regions tend have greater coverage. In contrast, the regional model MOMSO

(Dietze et al., 2020) overestimates EKE, which is attributed to the lower resolution of the observational dataset used for com-215

parison. However, when the model’s spatial resolution was degraded to match that of the dataset, comparable magnitudes were
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Figure 2. Annual mean surface EKE for years 2000–2009 from (a) BIOPERIANT12 and (b) the AVISO 1/4◦ dataset.

obtained. Considering factors such as regional differences, the effect of winds (Patara et al., 2016), and the use of the absolute

wind formula which neglects the effect of current-wind interactions which reduces eddy energy (Renault et al., 2016; Munday

et al., 2021), BIOPERIANT12 provides a reasonable representation of mesoscale surface variability in the SO, supporting its

use in exploring physical–biogeochemical interactions and addressing key BGC research questions.220

3.1.3 Frontal structure

The SO fronts help describe the larger ACC structure, characterised by steep horizontal gradients and associated strong vertical

motions, these fronts delineate regions with consistent water mass and nutrient properties, as well as regions of air–sea CO2

in- and out-gassing, specifically CO2 in-gassing north of the Polar Front (PF) and out-gassing between the PF and the marginal

ice zone (Mongwe et al., 2018). Latitudinal shifts in the positions of these fronts can lead to local changes which affect heat225

and carbon fluxes and are thus used as a SO model evaluation metric by Russell et al. (2018).

The positions of the SubAntarctic Front (SAF) and PF are chosen to represent the northern boundary and the central ACC,

respectively. Following Russell et al. (2018), we apply a simplified subsurface temperature criterion, consistent with (Orsi

et al., 1995), to identify these fronts: the SAF is defined by the 4 ◦C isotherm at 400 m and the PF by the 2 ◦C isotherm in the

upper 200 m. This approach allows easy inter-model and model–observation comparisons.230

In Fig. 3, we present the annual mean position and standard deviation of the SAF and PF in BIOPERIANT12 calculated

from monthly means for the 2000–2009 period. These are compared to fronts derived from WOA13 monthly temperature

climatology, the satellite-derived PF of Freeman and Lovenduski (2016), and the Orsi et al. (1995) dataset, as used by Russell

et al. (2018). Overall, model fronts show spatial meridional variability consistent with the observation-derived fronts, but with

a southward bias by up to 3◦ in latitude. This is accompanied by "pinching" of the fronts in regions of strong topographic235
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influence, such as the Drake Passage, Campbell Plateau (170◦ E) and the Southwest (30◦ E) and Southeast (80◦ E) Indian

Ridge, followed by diverging of the SAF and PF downstream.

A notable discrepancy is observed in the modelled PF within the Indian Ocean sector, which may reflect the effects of

temporal averaging or limited sampling of the observational datasets. At the Kerguelen Plateau (∼75◦ E), the PF follows either

a northern or southern path but the temporal mean simulated PF is highly variable in latitude (standard deviation) aligning with240

the southern branch (Fig. S4). This contrasts with the observational data that show the mean path favours the northern branch

over the northern plateau (Dong et al., 2006; Wang et al., 2016). Similar to examples provided by Russell et al. (2018), the

models evaluated (CMIP5 models at ∼100 km) do not completely or consistently capture similar patterns to the observations,

reflecting model-specific biases as well as limitations of coarse resolution.

As shown in model EKE in Fig. 2, BIOPERIANT12 captures key aspects of SO mesoscale dynamics, including complex245

frontal behaviours such as branching, jet structures, and front–eddy interactions observed in satellite and in situ data (Freeman

and Lovenduski, 2016; Chapman, 2017). Since frontal positions used a temperature-based criterion, they are sensitive to the

representation of such mesoscale features. The high variability in frontal positioning driven by eddies in BIOPERIANT12 can

lead to inconsistencies with observations, particularly in regions, such as the Kerguelen Plateau, where frontal locations are

more strongly influenced by eddy activity than by the more stable meandering of coherent jets (Shao et al., 2015). Nonetheless,250

the model’s improved representation of mesoscale processes is expected to support more realistic exchange of water masses

and biogeochemical properties (Rosso et al., 2020). While this complexity complicates direct model–observation comparison

of frontal positions. The use of fronts remains valuable for delineating regions for analysis.

3.1.4 Mixed Layer Depth

To evaluate the MLD in BIOPERIANT12, we use in situ measurements given by the Argo floats database as our observational255

reference (Table 1). MLD for both the model and observations was calculated from temperature and salinity profiles following

the de Boyer Montégut et al. (2004) density threshold of 0.03 kg m-3 relative to a reference depth of 10 m, a method that has

been shown to be robust for SO profiles (Dong et al., 2008; Treguier et al., 2023). Although Argo float coverage has spatial

and temporal gaps (Fig. S5), the temperature and salinity profiles collected by the floats provide direct measurements that

capture real-world variability and mixing features, unlike reanalysis products which may introduce additional uncertainties260

due to model-dependent biases.

To ensure a consistent comparison, model MLDs were sampled according to the Argo observational coverage. Observed

MLDs were binned onto a 1◦ x 1◦ regular grid and averaged into monthly intervals over the period 2001–2009. The same

gridding and temporal averaging was applied to the model output, which was then subsampled to the same locations and

months as Argo observations. The resulting seasonal–spatial patterns and amplitude in MLD are shown in Fig. 4.265

Overall, the spatial distribution of BIOPERIANT12 MLDs compares well with observations during both the minimum

(January) and maximum (September) MLD months (Fig. 4a–b, d–e). However, in terms of magnitude, simulated summer

MLDs within the ACC are too deep by ∼50 m, while MLDs north of the SAF are too shallow by a similar amount (Fig. 4c). In

winter, BIOPERIANT12 generates deeper MLDs relative to observations, with a bias of ∼100 m in the Pacific sector of the SO
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Figure 3. Annual mean latitudinal position of the SubAntarctic Front (dashed line) and Polar Front (solid line) derived from temperature

in BIOPERIANT12 (2000–2009), WOA13, the dataset of Orsi et al. (1995), and satellite SST Polar Front (2002–2009) from Freeman and

Lovenduski (2016). Colour shaded regions are the standard deviation of the front using monthly mean temperatures. Grey shaded regions

show bathymetry shallower than 3000 m.

(Fig. 4f). Despite this bias, the model correctly captures the pattern of deep winter mixed layers (> 400 m) in the Pacific and270

Indian sectors, indicating that it responds appropriately to atmospheric forcing and forms deep water masses in the expected

regions.

The seasonal evolution of the MLD is a key diagnostic in the SO (Fig. 4g). The model reproduces the observed cycle of

winter deepening and summer shoaling, with a Pearson correlation coefficient of R = 0.97 for monthly climatologies. The

shallow seasonal limit of simulated MLD aligns closely with observations during DJFM. However, the model departs from275

observed values around April, with standard deviations of the monthly mean MLDs showing the BIOPERIANT12 mixed

layer extending over 100 m deeper than observations in September (MLD maximum). Treguier et al. (2023) showed that in

OMIP models, even with horizontal resolutions ranging from 1◦ down to 1/16◦, MLD remains difficult to constrain, and higher

resolution does not always result in improved representation of MLD in the SO. Nevertheless, despite its winter deep bias, the

seasonal cycle and variability of BIOPERIANT12 MLD compares favourably with observations.280

3.1.5 Ocean Heat Content (OHC) and Temperature

Large-scale climatological temperature and 0–400m OHC in BIOPERIANT12 compare well with observations in terms of spa-

tial distribution (Fig. S6). A spatial map of model–observation differences reveals variability that appears linked to mesoscale
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Figure 4. Seasonal comparisons of MLD from (a, d) BIOPERIANT12, averaged monthly and co-located to monthly averaged Argo MLDs

on a 1◦ × 1◦ regular grid, (b, e) Argo float observations, and (c, f) model–observation difference, for January and September climatologies,

respectively. Maps are overlaid with the northern mean biome borders corresponding to model/data SO biomes. (g) Climatological seasonal

cycle of monthly MLD, domain-averaged over the entire SO.

activity (Fig. S7a–d), particularly given the coarser resolution of the WOA13 dataset (1/4◦). In terms of magnitude, the model

shows a higher domain mean 0–400 m OHC (∼13 x 109 J m-2, Fig. S7e) compared to observations, despite exhibiting a cool285

bias in sea surface temperature (SST) as shown in Fig. S7(b, d, f). This discrepancy can be attributed to a warm bias in subsur-

face temperatures at 200 m and 400 m (Fig. S7g). This result contrasts with the commonly observed warm SST bias in many

SO models (Beadling et al., 2020).

Following initialisation with climatological fields and spin-up, upper ocean temperatures in the model (upper 200 m) exhibit

no significant drift over the simulation period (Fig. S1c–d), even without the use of surface temperature restoring. Combined290

with the stable surface EKE discussed earlier, this suggests that surface ocean dynamics in BIOPERIANT12 remain stable

throughout the analysis period. Given the consistency of model–observation biases, we do not attribute discrepancies in the

physical or biogeochemical fields to spurious or transient model behaviour. Rather, remaining biases likely reflect systematic

differences tied to consistent model behaviour or specific model design choices.
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3.1.6 Sea ice295

Sea ice plays a key role in setting the seasonal freshwater flux in the SO. Seasonal melting in the spring/summer and growth in

autumn/winter strongly influence surface salinity and thereby affect both vertical and horizontal stratification dynamics (Giddy

et al., 2021, 2023) as well as large-scale water mass transformation (Abernathey et al., 2016). For comparison with the model,

observational mean monthly sea ice concentration data from the National Snow and Ice Data Center (NSIDC) for the period

2000–2009 were used (Table 1). Data show sea ice grows northward from the Antarctic continent during the winter months,300

reaching maximum extent in September and then melts, retreating southwards, towards the Antarctic continent reaching a

minimum ice extent in February (Fig. 5).

The spatial comparison of minimum/maximum sea ice extent (Fig. 5a, b) shows that the model reproduces the spatial pattern

of winter maximum reasonably well but overestimates the total extent by about 1–2 million km2, around 10 % of the observed

winter maximum (Fig. 5c, d). Observations indicate a minimum in February, whereas the model shows similar minimum values305

spanning February and March. The timing of sea ice advance and retreat in BIOPERIANT12 suggests a realistic response to

seasonal heat fluxes, with good agreement during winter maximum. However, the model does not melt enough ice in December

(∼2 million km2 compared to∼5 million km2 in observations) and compensates by continuing to melt through February (∼5

million km2 in the model vs. ∼2 million km2 in the observations), before both model and observations begin to show ice growth

from March onwards (Fig. 5d; S8b).310

Overall, BIOPERIANT12 captures a stable seasonal cycle in sea ice, with the largest interannual variability occurring during

the summer months (Fig. S8b).

3.2 Biomes

3.2.1 Biome definition

To evaluate the biogeochemical and carbon fields, we apply the biome classification method of (Fay and McKinley, 2014),315

in preference to static geographic boundaries or physical definitions based on ocean dynamics (e.g. fronts). This approach

combines large-scale physical and biogeochemical characteristics to delineate regions of biogeochemical similarity (biomes).

Biomes are derived from climatological fields of sea surface temperature (SST), sea ice fraction, spring/summer chlorophyll-a,

and maximum mixed layer depth (MLD), using criteria defined in Fay and McKinley (2014, Table 1). SST and sea ice fraction

criteria are used to distinguish between ice-covered, subpolar, and subtropical zones, while chlorophyll-a and MLD criteria320

reflect environmental controls on biological production, such as vertical mixing, stratification, and seasonality (i.e. permanent

vs. seasonal stratification).

Within the BIOPERIANT12 domain, the following biomes are identified (Fig. 6): in the SO, the ice biome (SO-ICE), the

subpolar seasonally stratified biome (SO-SPSS), and the subtropical seasonally stratified biome (SO-STSS); further north, the

subtropical permanently stratified biomes of the South Pacific (SP-STPS), South Atlantic (SA-STPS), and Indian Ocean (IND-325

STPS). A comparison between the BIOPERIANT12 biome distribution (Fig. 6a) and the observational product from Fay and

McKinley (2014, Fig. 6b) shows that the model underrepresents the subtropical permanently stratified biomes (SP-STPS, SA-
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Figure 5. Climatological mean sea ice extent for the maximum (blue) and minimum (green) months for (a) BIOPERIANT12 and (b) NSIDC

observations. (c) Climatological monthly mean sea ice extent difference indicating growth and melt for the BIOPERIANT12 simulation vs.

NSIDC observations. (d) Time series of monthly mean sea ice extent from the BIOPERIANT12 model (red) and NSIDC observations (blue).

STPS, IND-STPS), resulting in approximately 60 % less area coverage than observed. Conversely, the SO-STSS and SO-SPSS

biomes are slightly overestimated (Fig. 6c). As a result, only the SO biomes are used for subsequent aggregation and analysis.

The observed differences may suggest some model–observation gaps (Fig. S9, S10) as well as the influence of mesoscale330

variability resolved by the model but absent from the coarser gridded datasets used to derive the observational biome product.

This is further discussed in the Supplementary.

3.2.2 Biome characteristics

To characterise the seasonal cycle in the model, we present Fig. 7 the surface mean seasonal cycle of selected variables for each

SO biome. To further contextualise the upper water column, vertical profiles per biome are shown in Fig. S11. In Table 3, we335

summarise the seasonal cycle at the surface using the mean and amplitude (difference between minimum and maximum), along

with statistical metrics used to evaluate model–data agreement: the correlation coefficient (R), the ratio of standard deviations

(RSD), the model reliability index (RI), and the seasonal cycle reproducibility (SCR). The same metrics are provided for 200

m depth in Table S1.
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Figure 6. SO mean biome boundaries for (a) BIOPERIANT12 using the biome criteria definitions from Fay and McKinley (2014), (b) the

observation-based mean biome dataset of Fay and McKinley (2014) south of 30◦ S (see Supplementary), and (c) total area per biome for

BIOPERIANT12 (hatched bars, titled BP12) and for the dataset (plain bars, titled OBS). In the SO (below 30◦ S), six biomes are identified:

SO-ICE, SO-SPSS, SO-STSS, IND-STPS, SA-STPS and SP-STPS. Annual mean frontal positions of SAF and PF are overlaid.

The correlation coefficient quantifies how well the timing and shape of the model seasonal cycle matches the observations.340

The RSD indicates how well the magnitude of seasonal variability in the model compares to that of the observations, with

a value of 1.00 representing comparable variability between the two. The RI, or geometric root mean square error (Leggett

and Williams, 1981; Doney et al., 2009), measures the normalised model–data bias for log-normal distributed variables, with

a value of 1.00 indicating perfect agreement and 2.00 implying model error is comparable in magnitude to the data. SCR,

defined by Thomalla et al. (2011), measures how well the climatological seasonal cycle captures the year-to-year evolution of345

a variable. It is calculated as the correlation between the full-resolution time series and its climatological seasonal cycle (see

Fig. S12 for further explanation). SCR values above 0.85 indicate high seasonality, between 0.65–0.85 medium seasonality,

and below 0.65 low seasonality. SCR was only calculated for observational datasets with adequate temporal resolution (i.e.

higher than monthly).

Model–data differences can result from a combination of factors, including the characteristics and limitations of the obser-350

vational datasets (Table 1), which often suffer from sparse sampling, low temporal and spatial resolution, and interpolation.

Additional differences may arise from applying biome definitions to regions of high variability/EKE. Although EKE is not

explicitly included in the biome classification, it has been shown to reduce partial pressure of carbon dioxide (pCO2) biases

and root mean square errors (Gregor et al., 2019). Further uncertainty is introduced through area-weighted domain averaging

across large biomes. In contrast to regions dominated by intraseasonal variability, where observations are more difficult to355

constrain (Monteiro et al., 2015), the seasonal cycle metrics are expected to show stronger model data agreement in regions

with seasonally driven dynamics (high SCR).

In general, the metrics (Table 3, Fig. 7) show the model’s seasonal cycle agrees well with that the observed data, for example,

the temperature seasonal cycle per biome is well represented. However, given that temperature is a criterion used in the biome
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definition, a reasonable agreement is expected. Therefore, we focus on the model–observation discrepancies, which highlight360

regions of interest. For the dynamics, there is a poor correlation of salinity in the SO-STSS region (R = 0.62), which could

be associated with the high mesoscale spatial and temporal variability in the model (low seasonality SCR = 0.12). In the

SO-ICE biome, high variability in salinity (RSD = 1.55), MLD (RSD = 1.56) as well as dissolved O2 (RSD = 1.66) to the

significant influence of sea ice and freshwater dynamics in the model. This suggests that improvements or further investigation

may be needed. For the BGC, poor model reliability for carbon, silicate, and chlorophyll, along with deviations in nutrient365

concentration, will be addressed in the proceeding sections.
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Table 3. Seasonal cycle surface climatology per biome: BIOPERIANT12 (BP12) vs. observations (OBS). Area-weighted Mean and Ampli-

tude (difference between maximum and minimum) are shown for each data source; SCR is the seasonal cycle reproducibility (correlation of

the interannual varying time series with its climatological seasonal cycle) where temporal resolution allows; and for comparison Correlation

(correlation coefficient), RSD (ratio of BP12:OBS standard deviation), and Model Reliability Index (log-transform error) are included

Variable Variable

Biome SO-ICE SO-SPSS SO-STSS Biome SO-ICE SO-SPSS SO-STSS

BP12 OBS BP12 OBS BP12 OBS BP12 OBS BP12 OBS BP12 OBS

Temperature Mean -1.49 -1.00 3.03 3.76 13.45 12.75 Salinity Mean 34.03 33.96 34.01 33.93 34.83 34.71

[°C] Amplitude 1.16 1.82 2.36 2.74 3.90 4.25 Amplitude 0.70 0.43 0.08 0.08 0.01 0.06

SCR 0.63 0.71 0.54 SCR 0.35 0.20 0.12

Correlation 0.94 0.98 0.99 Correlation 0.99 0.84 0.62

RSD 0.66 0.90 0.93 RSD 1.55 1.07 0.14

Model RI 2.32 1.26 1.06 Model RI 1.00 1.00 1.00

MLD Mean 66.72 57.02 109.79 109.08 86.20 100.53 Tot. chl-a Mean 0.58 0.28 0.51 0.24 0.61 0.35

[m] Amplitude 86.87 54.57 143.26 118.04 153.40 158.03 [mgm−3] Amplitude 1.69 0.70 0.88 0.23 0.75 0.21

SCR 0.76 0.74 0.75 SCR 0.88 0.36 0.85 0.36 0.68 0.21

Correlation 0.86 1.00 1.00 Correlation 0.93 0.86 0.91

RSD 1.56 1.19 0.95 RSD 2.37 4.22 3.64

Model RI 1.41 1.11 1.31 Model RI 1.86 2.10 1.69

pCO2 Mean 345.25 367.37 363.98 365.15 362.96 345.27 FCO2 Mean -0.82 0.15 -1.12 -0.07 -0.77 -1.81

[µatm] Amplitude 49.30 47.90 10.22 17.10 13.08 11.85 [molm−2yr−1] Amplitude 2.17 1.80 1.17 1.48 1.54 0.45

SCR 0.79 0.79 0.59 0.80 0.51 0.83 SCR 0.39 0.77 0.31 0.80 0.28 0.76

Correlation 0.89 -0.45 -0.59 Correlation 0.89 -0.78 -0.23

RSD 0.91 0.65 1.06 RSD 1.30 0.80 3.53

Model RI 1.07 1.02 1.06 Model RI 3.87 2.59 6.37

DIC Mean 2181.93 2148.95 2151.61 2123.52 2087.99 2056.03 Tot. Alkalinity Mean 2303.80 2295.51 2295.77 2281.70 2317.60 2300.31

[µmolkg−1] Amplitude 62.96 0.00 15.50 0.00 23.00 0.00 [µmolkg−1] Amplitude 43.62 0.00 3.67 0.00 4.02 0.00

SCR 0.53 0.44 0.47 SCR 0.50 0.29 0.21

Correlation 0.00 0.00 Correlation -0.00

RSD RSD

Model RI 1.02 1.01 1.02 Model RI 1.01 1.01 1.01

Nitrate Mean 26.02 25.73 23.04 21.75 10.52 6.83 Phosphate Mean 1.85 1.81 1.63 1.56 0.80 0.68

[mmoll−1] Amplitude 3.92 3.69 1.91 2.73 3.77 3.52 [mmoll−1] Amplitude 0.22 0.26 0.10 0.32 0.21 0.33

SCR 0.58 0.46 0.61 SCR 0.56 0.42 0.55

Correlation 0.95 0.95 0.97 Correlation 0.99 0.90 0.92

RSD 1.28 0.73 1.24 RSD 0.86 0.36 0.67

Model RI 1.02 1.06 1.55 Model RI 1.03 1.07 1.22

Silicate Mean 48.47 53.42 26.46 15.85 5.81 3.37 Diss. O2 Mean 357.13 347.78 332.14 326.98 264.86 274.04

[mmoll−1] Amplitude 13.96 12.44 5.47 11.30 2.70 2.70 [µmoll−1] Amplitude 29.65 21.34 13.77 14.52 17.08 16.90

SCR 0.64 0.49 0.62 SCR 0.53 0.45 0.47

Correlation 0.85 0.96 0.95 Correlation 0.86 0.94 0.99

RSD 1.18 0.49 1.05 RSD 1.66 0.91 0.95

Model RI 1.12 1.79 1.79 Model RI 1.03 1.02 1.03

a GLODAPv2 observations are an annual mean product.

RSD:SD of BP12 greater (less) than that of OBS by factor 1.5 (0.5). Correlation: BP12-OBS correlation coefficient less than 0.5.

SCR: BP12 greater than 0.65 (medium to high). Model RI: greater 1.5 (medium to high).
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Figure 7. BIOPERIANT12 model (solid line) vs. observations (dashed line) surface seasonal cycle (2000–2009 climatology) spatially aver-

aged per biome for selected variables. Biomes include SO-ICE (blue), SO-SPSS (pink) and SO-STSS (orange), corresponding to the map in

Fig. 6.
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3.3 Carbon

Recent studies have highlighted the importance of resolving intra-seasonal to seasonal variability for both anthropogenic and

natural carbon fluxes in order to reduce uncertainties in mean annual fluxes and improve model projections (DeVries et al.,

2023; Rustogi et al., 2023). We compare BIOPERIANT12 pCO2 to the monthly observation-based product CSIR-ML6 (Table370

1). CSIR-ML6 is a gridded 1◦ x 1◦ machine learning-based reconstruction of surface ocean pCO2, derived from Surface Ocean

CO2 Atlas (SOCAT, Bakker et al., 2016) observations and satellite-based environmental predictors (Gregor et al., 2019).

Using SCR, as a metric of variability, a comparison between BIOPERIANT12 and CSIR-ML6 (Fig. 8) shows that model

pCO2 for the SO-STSS and SO-SPSS biomes is dominated by large regions of interannual variability (SCR = 0.59, 0.51,

respectively), aligned with regions of high EKE (Fig. 2) which are not captured by the monthly CSIR-ML6 product (Fig. 8c).375

CSIR-ML6, instead, displays high seasonality in all three SO biomes with SCR values of 0.80, 0.80, 0.79 in the SO-STSS,

SO-SPSS, SO-ICE biomes, respectively (Table 3). These patterns are largely driven by seasonal surface fluxes and sea ice,

although the monthly resolution of CSIR-ML6 may also contribute to the stronger seasonality.

This results in dissimilar pCO2 seasonal cycles (Fig. 7g), as shown by weak correlations in the SO-STSS and SO-SPSS

biomes (R = –0.59 and –0.45, respectively), in contrast to good model–data agreement in the SO-ICE biome. The SO-ICE380

biome is also strongly seasonally driven in the model (SCR = 0.79 for both model and data) and shows coherent model–data

phasing (R = 0.89), although the seasonal minima are offset by one month. Despite these differences, the small model–data bias

in pCO2 across all three biomes (RI between 1.02 and 1.07) and the broadly overlapping Probability Density Functions (PDFs)

for the SO domain mean pCO2 (Fig. S13a) indicate some level of agreement in the mean state. These findings underscore the

importance of mesoscale-resolving model resolution in the SO for capturing the variability of CO2.385

Figure 8. Seasonal cycle reproducibility of pCO2 for (a) BIOPERIANT12 , (b) CSIR-ML6 observation-based reconstruction, and (c) model–

data difference. Maps are overlaid with the northern mean biome borders corresponding to model/data SO biomes.

The spatial distribution of pCO2 shown in Fig. 9 (a–f) illustrates the seasonal differences between the model and observa-

tions, with the model tending to overestimate pCO2 in the SO-STSS and underestimate it in the SO-ICE biomes. Seasonal

cycle phasing differences in the SO-SPSS and SO-STSS biomes are apparent in the interannual time series (Fig. 9i, k), where

the model peaks in summer, in contrast to winter peaks in the data. The PDFs for pCO2 (Fig. 9h, j, l) show generally broader
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distributions (i.e. higher standard deviation) in the model across all biomes , whereas the data exhibit clearer inter-biome390

distinctions, such as the narrower pCO2 distribution in the SO-SPSS (Fig. 9j).

The seasonal cycle differences of pCO2 (and FCO2) in the model SO-SPSS and SO-STSS biomes, relative to observations,

may reflect the influence of different controlling mechanisms. In these biomes, the modelled pCO2 seasonal maximum occurs

in summer (JFM), in phase with the temperature maximum (Fig.7a), but out of phase with the chlorophyll peak, which occurs

about two months earlier (OND) (Fig.7i, 13), and with the associated nutrient drawdown (NO3 and Si; Fig.7j, l). This sug-395

gests that in the SO-SPSS and SO-STSS biomes, the seasonal cycle of pCO2 in the model is primarily driven by the thermal

component (Mongwe et al., 2016). By contrast, the seasonal cycles of pCO2 and FCO2 in the SO-ICE biome show better

phasing between model and data (Fig.7g, h), and the seasonal cycles of temperature, chlorophyll, and nutrients are also more

closely aligned (Fig.7i–l). However, the amplitude of the seasonal chlorophyll maximum in the model is approximately double

that of the observed estimate across all biomes. The climatology maps (Fig. 11) show that the model’s overestimation aligns400

with regions of high chlorophyll in the data, which may lead to a larger contribution of biological components driving pCO2,

particularly in the SO-ICE biome.

It is important to note that observational products, particularly those based on underway pCO2 observations used in recon-

structions, carry significant seasonal biases due to sparse coverage during winter months. Consequently, the true magnitude and

direction of the observed seasonal cycle of pCO2 and FCO2 in the SO remain uncertain (Gray et al., 2018; Landschützer et al.,405

2018; Gregor et al., 2019; Gruber et al., 2019; Bushinsky et al., 2019; Mackay and Watson, 2021). These seasonal sampling

biases may also propagate into longer-term variability artefacts in the reconstructions (Hauck et al., 2023). The discrepancies

between BIOPERIANT12 and the observational products, particularly in the SO-SPSS and SO-STSS biomes, may also reflect

the model’s limited representation of key biological processes (discussed in the Supplementary). We propose that a weaker

seasonal vertical flux of DIC in the model, shown by a smoother upper-ocean DIC gradient compared to the dataset (Fig.410

S11), reduces the potential for DIC entrainment during periods of enhanced vertical mixing, thereby dampening the seasonal

variability of DIC (Mongwe et al., 2016).

3.4 Biogeochemistry

3.4.1 Dissolved Iron

Dissolved iron (dFe) limits phytoplankton growth across the surface of the SO, impacting the functioning of marine ecosystems415

and, consequently, the carbon cycle. It is therefore imperative that models accurately represent the spatial and seasonal distri-

bution of dFe. In the SO, dFe is notoriously undersampled, it occurs at low (nanomolar, nM) concentrations, and its complex

chemistry makes it difficult to observe. Here, we compare BIOPERIANT12 with a compilation of dFe observations collated by

Tagliabue et al. (2012) over 2000–2009 (Fig. 10). BIOPERIANT12 captures the observed spatial distribution of upper ocean

dFe concentrations, with elevated levels (> 0.4 n M) near coastal boundaries, downstream and around sub-Antarctic islands420

(particularly evident around Kerguelen), and in the vicinity of the Agulhas Retroflection (Fig. 10a, c). In regions distant from

land masses, simulated dFe concentrations are lower (< 0.3 n M), seen in the observations (Fig. 10b). Overall, the simulated
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Figure 9. Seasonal comparison (January vs. September climatology) of pCO2 for (a, d) BIOPERIANT12, (b, e) the CSIR-ML6 observation

based dataset, and (c, f) the model–data difference. Maps are overlaid with the northern mean biome borders corresponding to model/data SO

biomes. Evolution of area-weighted pCO2 for model vs. data and corresponding PDF for (g, h) SO-ICE, (h, i) SO-SPSS, and (k, l) SO-STSS

biomes.

open ocean surface dFe range lies on the lower end of the observed spectrum; this is consistent with previous findings that

PISCES tends to underestimate open ocean dFe in the SO. This is suggested to arise from the simplification of the biological

processes in the model that affects iron cycling and supply (Aumont et al., 2015; Tagliabue et al., 2016; Nicholson et al., 2019).425

22



The shape of the vertical dFe profile is important as it determines the amount of dFE that can be supplied to the surface

ocean through processes such as deep winter convective mixing and mesoscale eddy activity (Tagliabue et al., 2014; Nicholson

et al., 2019). BIOPERIANT12 reproduces the general features of the observed dFe profile (Fig. 10e), with low concentrations

in the upper 0–100 m from biological consumption, and increasing concentrations with depth due to remineralisation of sinking

organic material. Simulated dFe values compare reasonably well with observations in the upper 500 m, but tend to be lower at430

greater depths.

The scarcity of measurements during key seasonal transitions, particularly over winter (Fig. 10f), limits robust evaluation

of the simulated seasonal surface dFe. Nevertheless, austral summer (DJF) is expected to exhibit low surface dFe due to

biological consumption from spring to summer, while winter (JJA) is expected to show higher surface dFe as a result of

vertical entrainment of subsurface iron during deep convective mixing (Tagliabue et al., 2012). These seasonal variations are435

captured by BIOPERIANT12 (Fig. 10f), as also shown in the summer and winter distribution snapshots in Fig. 10c and d,

respectively.

Figure 10. Surface (0–50 m) dissolved iron (dFe) concentration for (a) BIOPERIANT12 annual climatological mean (b) observations from

2000–2009 (Tagliabue et al., 2012). Seasonal snapshots of BIOPERIANT12 dFe for (c) summer (5 January 2008) and (d) winter (18 August

2008). (e) Climatological mean vertical distribution of dFe for BIOPERIANT12 (red line = mean; red shading = spatial standard deviation)

and observations (blue). (f) Model vs. observation monthly climatology (lines) and standard deviation (shading); the number of observations

per month is shown by grey bars.
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3.4.2 Nutrients

Model RI values in Table 3 indicate that BIOPERIANT12 is able to reasonably reproduce the seasonal climatology of NO3 and

PO4 with relatively comparable seasonal cycles (Fig. 7), particularly in the more southern biomes (e.g. RI values between 1.02440

and 1.07 for both NO3 and PO4 in the SO-ICE and SO-SPSS biomes). However, simulated surface Si is less well represented

(RI = 1.79 for both SO-SPSS and SO-STSS): in the SO-SPSS, the model mean Si concentration (26.46 mmol l-1) is substantially

higher than observed (15.85 mmol l-1), with a reduced seasonal amplitude (5.47 vs. 11.3 mmol l-1) and only half the variability

(model RSD = 0.49). These discrepancies may stem from uncertainties in the silica dissolution process and its formulation in

the model Aumont et al. (2015), which may, in turn, affect the simulated diatom distribution.445

While model PO4 exhibits reasonable mean values, its variability is also underestimated, at only 36 % of that observed. It is

important to note that much of the observational dataset is biased towards the productive season (austral summer) in the SO,

which may result in lower observed surface nutrient values (Fig. 7, S16).

At 200 m depth, however, RI values for all three nutrients indicate good model–data agreement (ranging between 1.00 and

1.30; Table S1, Fig. S17). Nutrient concentrations at this depth are stable in the model, with standard deviations smaller than450

those from the observational climatology (Fig. S11). Over the model simulation period (Fig. S16 and S17), there is a slight

declining trend in nutrient concentrations, particularly noticeable in the SO-SPSS both at the surface and at 200 m, which

should be taken into consideration in process studies.

3.4.3 Surface chlorophyll

To evaluate the model’s representation of biological variability, we compare surface chlorophyll concentrations from BIOPE-455

RIANT12 with the OC-CCI v6 satellite-derived dataset (Table 1) gridded at a comparable resolution of 9 km and aggregated

weekly to match the model output. BIOPERIANT12 broadly captures the spatial patterns of surface chlorophyll concentrations

(Fig. 11). For example, the model captures enhanced chlorophyll levels near continental margins and in frontal regions such as

the Subantarctic Zone (SAZ; not shown), while lower chlorophyll concentrations are simulated in more oligotrophic regions

like the South Pacific sector of the SO. However, there are notable differences in the summer pattern (Fig. 11a–c), such as460

the overestimation of the spatial extent of elevated chlorophyll concentrations associated with shallow topography. While the

overestimation of chlorophyll occurs regardless of spatial aggregation, the inclusion of these elevated regions within biome

definitions contributes to the overestimation of biome-mean values and results in variability more than twice that observed

(RSD > 2.00 in Table 3).

SCR (Fig. 12) suggests the overestimation of model chlorophyll arises from the temporal variability : the response of model465

chlorophyll is strongly seasonal, whereas satellite indicates strong intra-seasonal variability. Nevertheless, BIOPERIANT12

shows good agreement with OC-CCIv6 in terms of the climatological seasonal cycle (Fig. 7i), with correlations greater than

0.86 in all SO biomes, and the timing of peak chlorophyll with bloom maxima generally occurring in December (Fig. 13

with timing differences within 14 days. A biome-mean comparison (Fig. 13, S18) further shows that bloom initiation and

termination, defined using the biomass threshold method of 5 % (Ryan-Keogh et al., 2023), are reproduced with varying470
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degrees of success. In the SO-STSS biome, both the model and observations show bloom onset in August and decline in May.

For the SO-SPSS biome, both datasets agree on a September onset, the model sustains the bloom approximately 93 days longer

than observed, extending into June (vs. March in data). In the SO-ICE biome, while model–data agree on termination in May,

the model bloom initiates 3 months after observations (October vs. August).

Figure 11. Climatological total chlorophyll concentrations for January and September for (a, b) BIOPERIANT12 and (d, e) the OC-CCI

observation-based product. SCR of surface chlorophyll for (c)BIOPERIANT12 and (f) observations. Model vs. observation seasonal cycle

of surface chlorophyll for (g) SO-ICE, (h) SO-SPSS, and (i) SO-STSS biomes.

These results demonstrate that while BIOPERIANT12 captures key spatial and seasonal features of chlorophyll in the SO, it475

likely underrepresents the higher-frequency biological variability evident in observations; even at mesoscale-resolving resolu-

tion. Underlying ocean dynamics that could be further improved in BIOPERIANT12 include the representation of shelf-slope

dynamics and mixing processes. For instance, enhanced vertical mixing may prolong bloom duration, as seen in the SO-SPSS

biome, where the modelled bloom persists nearly three months beyond satellite-based estimates. Additionally, the biogeochem-

ical processes that drive productivity and blooms in the SO such as nutrient limitation (especially iron), fixed phytoplankton480

stoichiometry, and prescribed chlorophyll-to-carbon ratios, also require further refinement. The overestimation of chlorophyll

magnitude and mismatches in bloom timing suggest that processes governing phytoplankton bloom dynamics, particularly

those modulated by mesoscale physical variability, warrant further investigation.

However, chlorophyll model vs. satellite data comparisons are inherently challenging, with both sources subject to internal

biases and uncertainties. Limitations in satellite observations arise from the satellite itself, such as solar zenith angle, cloud485
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cover, and sea ice contamination, particularly at high latitudes; as well as from environmental complexities of the SO like the

presence of subsurface chlorophyll maxima and algorithms not well suited to these conditions (Clow et al., 2024; Aumont

et al., 2015).

Figure 12. Seasonal cycle reproducibility (SCR) of surface chlorophyll concentration for (a) BIOPERIANT12, (b) the OC-CCIv6

observation-based product, and (c) model–observation SCR bias.

Figure 13. Climatological bloom characteristics from BIOPERIANT12 and the OC-CCI observation-based product overlaid on the seasonal

cycle of surface chlorophyll for (a) SO-ICE, (b) SO-SPSS, and (c) SO-STSS biomes.
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4 Conclusions

The complex dynamics of the SO have been the focus of extensive research, particularly due to their role in the climate system490

and carbon cycle. While model intercomparisons help expose the strengths and weaknesses of ESMs, individual models remain

intricate systems defined by numerous interacting assumptions, making the isolation of specific biases challenging. In contrast,

BIOPERIANT12 offers a relatively simpler, high-resolution coupled ocean–ice–biogeochemistry configuration with a stable

and realistic mean state as shown by the evaluation of the physical ocean metrics. Thus, providing a useful reference framework

for process studies, bias diagnostics, and future model experimentation.495

Despite its mesoscale-resolving resolution, BIOPERIANT12 still shows notable limitations in simulating key biogeochem-

ical processes in the SO. In particular, the model overestimates chlorophyll concentrations and exhibits variability more than

twice that of satellite-based observations across all SO biomes. The timing and duration of phytoplankton blooms also differ

from observations, with blooms sometimes initiating too late or persisting beyond observed termination, as in the SO-SPSS

biome. These discrepancies highlight the importance of mesoscale processes and their interactions with BGC, such as shelf-500

slope dynamics, vertical mixing, and nutrient limitation, especially of iron. While some regional biases remain, there are

systematic biases attributable to the model formulation and not the configuration design, such as the commonly used fixed

chlorophyll-to-carbon ratios and phytoplankton stoichiometry which may limit the model to fully capture the dynamical nature

of SO productivity. These issues are common to many biogeochemical models and point to structural limitations beyond just

this configuration.505

While this model description paper focuses on introducing the BIOPERIANT12 platform and evaluating its large-scale

physical and biogeochemical patterns, the use of low-resolution gridded observational datasets inherently limits the depth to

which model–data mismatches can be interpreted. In high-resolution configurations such as BIOPERIANT12, discrepancies

with observations often reveal limitations, not only in the model formulation but also in the observing systems themselves.

BIOPERIANT12 offers an opportunity to diagnose and potentially reduce structural biases; however, doing so requires an510

equally robust understanding of observational uncertainty.

For physical processes, this has been discussed in the context of the development and constraining of ocean circulation

models by Fox-Kemper et al. (2019). In the context of BGC, particularly for surface carbon fluxes, understanding the drivers

of primary production and bloom dynamics is critical (Thomalla et al., 2023). Although satellite products have the necessary

spatiotemporal coverage to inform these processes, there are limitations as addressed by Clow et al. (2024). For surface ocean515

pCO2, the biases and sampling limitations are discussed by Djeutchouang et al. (2022), highlighting the challenges of sparse

coverage.

These findings underscore the need to refine both the physical and biogeochemical components of models to better represent

sub-seasonal variability and the complex drivers of productivity in the SO. With this goal in mind, BIOPERIANT12 provides a

coherent, high-resolution, three-dimensional dataset that is well-suited for understanding upper-ocean physical-biogeochemical520

processes and interactions on daily to interannual time scales. It has already proven useful for investigate SO sampling biases

through observing system simulation experiments (e.g. in air–sea CO2 flux estimates, Djeutchouang et al., 2022), and to
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understand role and contributions of mesoscale features in shaping carbon and heat distributions (Smith et al., 2023). While

the computational demands of this configuration constrain long-duration sensitivity studies, the insights gained from model–

observation mismatches point to specific regions and processes where improvements are needed, and where newer model525

versions and higher-resolution datasets can help advance our understanding.
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CeCILL license. The exact version of the model used to produce the results used in this paper is archived on Zenodo (https://doi.org/10.
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