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Response Letter 
 
 

Dear Editor, 

 

Thank you for concerning our manuscript in GMD. We appreciate you and the reviewers for 

your earnest work. The comments from the reviewers are very helpful, and the paper has been 

revised carefully according to these comments. Our point-by-point responses to the comments 

of the reviewers are attached, as well as a tracked-changes version of the manuscript. For the 

comments that we do not completely agree on (only a few), we also give our explanations in the 

point-by-point responses. 

 

We hope that this version of the manuscript is acceptable for publication in GMD.  

 

If you have any questions, please feel free to contact us. We appreciate your support very much. 

 

Thank you for your time and consideration. We look forward to your positive response. 

 

Sincerely, 

Haoyu Jiang, Ph.D. 

College of Life Science and Oceanography, Shenzhen University  

Email: Haoyujiang@szu.edu.cn 
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Response to Reviewer 3: 
 

For the record, this manuscript was sent to me for review as a revision. This is the first time 
I have seen and reviewed the manuscript. 
 
The authors present a data driven global wave model where a present wave height and a wind 
speed 6h ahead in time are used to estimate wave height 6h in the future. A “rolling model’ 
is created by repeating this step, and data assimilation is added to make the model more 
accurate. The only thing in these sections that should be highlighted more is how the data 
assimilation is performed. On line 185 it is stated that Data Assimilation is used to “correct 
the model’s “initial” SWH field.”, whereas later (line 366) it is stated that data is assimilated 
“every 6 hours”. Before going into more detailed critique, it needs to be stated that resulting 
model and its analysis are clearly suitable for publication in GMD. 
 
Dear Reviewer: 
 
We would like to thank you for dedicating time to carefully read our manuscript and provide 
feedback. We sincerely think your detailed comments have helped us to improve the manuscript, 
and revisions are made according to them. A revised version of the manuscript with changes 
highlighted is also attached to this response letter. We hope that the revised version of the 
manuscript meets your expectations. For the few comments where we hold a different 
perspective, we have provided detailed explanations in the following point-by-point responses. 
 
We would like to clarify that our model is a rolling forecast model with the simplest 1-hour-by-
1-hour time steps. Specifically, the model takes the SWH field at time Ti and the wind field at 
Ti+1 as inputs to predict the SWH at Ti+1 , which is similar to numerical wave models (NWMs). 
We believe this has been clarified in Section 2.2.1.  In this setting, the outputs of the last time 
step will be the “initial” field of the next time step, and the frequency of data assimilation can 
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be user-defined. Here, assimilation was conducted every 6 hour in our experiment, but a higher 
or lower assimilation frequency can also be used. Generally, a higher assimilation frequency 
leads to more accurate results but also entails increased computational costs, and vice versa.  
 
To better clarify this, we added some explanation to the revised manuscript: 
 
“…we tried to incorporate data assimilation techniques by integrating altimeter measurements 
to correct the model’s “initial” SWH field. It is noted that in our input-output setting, the outputs 
of the last time step will be the “initial” SWH field of the next time step….” 
 
“In our data assimilation experiment, assimilation was conducted every six hours (i.e., every six 
time steps, observations are used to corrected the outputs of the rolling model and the updated 
outputs are used as the new inputs at the next time step), beginning after the first 24 hours of the 
model run.  Of course, the frequency of data assimilation can be user-defined. A higher 
assimilation frequency generally leads to more accurate results but also entails increased 
computational costs, and vice versa.” 
 
The input and target of the study is the ERA5 reanalysis. Note that this reanalysis consists of 
a wave hindcast with most altimeter data assimilated into it. Note that due to the lack of 
sufficient wave data to generate a data dominated wave analysis, ERA5 still is mostly a wave 
model hindcast, and that its quality is inhomogeneous. As ERA5 is more accurate at the 
locations of the assimilated altimeter data, validating with ERA5 and cross referencing with 
the same altimeter data is a little incestuous and produces error measures that are too rosy. 
For this reason, I would have preferred developing the AI model with hindcast without DA, 
and then comparing the AI model, the input model and the altimeter data in a three-way 
approach would be a cleaner analysis of various data sources. This is not disqualifying for 
the present study, but the limitation (validation with dependent data) needs to be discussed. 
 



4 
 

We acknowledge the problems of ERA5 that you mentioned. In spite of these problems of ERA5, 
training an AI model requires high-quality input data to achieve reliable results. From this 
perspective, ERA5 is still a good dataset to train against.   
 
Regarding the independence of result evaluation, we respectfully disagree the comment that 
“validating with ERA5 and cross referencing with the same altimeter data is a little incestuous 
and produces error measures that are too rosy”. If the comparison is made between ERA5 and 
the altimeter data that has been assimilated to ERA5, it will be, of course, incestuous or even 
unreasonable. However, the comparison is made between the AI model and ERA5, and between 
the AI model and altimeter measurements. We need to emphasize that once the training of the 
AI model is finished, it can be regarded as a model logically independent of ERA5 (or any 
hindcast dataset it is trained against). We can draw an analogy between the training process of 
AI models and the tuning process of NWMs, as both are essentially adjusting a set of empirical 
coefficients (though AI models typically have far more parameters to “train”). Specifically, we 
can tune the NWMs using ERA5 reanalysis data or directly with altimeter observations, and 
then validate the NWM results against ERA5 reanalysis or altimeter observations in a different 
periods (e.g., altimeter measurements from years not used in tuning). Here, the training and 
validation process of our AI model strictly follows this same logic. Therefore, we believe it will 
not introduce problems when using the ERA5 data as the training target and testing benchmark 
(of course, the training set and testing set should be separated), and the comparison made in this 
study is totally reasonable and will not generate rosy error metrics.  
 
Certainly, we by no means suggest that ERA5 constitutes the optimal training dataset for 
developing such AI models. On one hand, there undoubtedly exist better methodologies for 
calibrating NWM hindcast or assimilating/merging observations into NWM hindcasts. On the 
other hand, NWMs themselves are continually evolving, with their output data achieving 
progressively higher accuracy. The more fundamental objective of this manuscript remains 
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investigating the feasibility of this “simplest” input-output strategy in AI modeling. The quality 
of ERA5, according to our results, is adequate for this purpose.  
 
We hope this explanation meets with your approval. Should you hold differing views, we 
warmly welcome your further comments in the review report and would be pleased to continue 
the discussion on this matter. 
 
As a traditional wave modeler who has also worked in AI for decades, I find the justification 
for doing an AI model weak. On line 9 it is stated that wave models “are computationally 
intensive and constrained by incomplete physical representations of wave spectral evolution.”, 
yet the ERA5 data used here is founded in these limited models. Moreover, wave models 
provide much more data than the SWH for practical wave predictions, or in coupled 
environmental models. Yes, NWM are more expensive, but we have been providing 
operational forecasts since the 1960s with such models (contrary to suggestions provided on 
line 36), so apparently the expenses are not prohibitive. The paper will be stronger without 
half-baked justifications. 
 
We completely agree with the reviewer that NWM also has many (more) advantages compared 
to contemporary AI wave models (including the one in this study). Here, we list the limitations 
of NWM merely to demonstrate that the proposed AI model still has its merits that can overcome 
some of the NWM’s problems, not to claim that the AI model outperforms NWM, let alone 
suggest it could replace NWM.  
 
Although the ecWAM which ERA5 is based on also has the problem of incomplete physical 
representations of wave spectral evolution and numerical effects (e.g., discrete interaction 
approximation and garden sprinkler effect), these effects can be alleviated if enough data is 
assimilated/merged to the model output and assimilation can generate a more reliable analysis 
field. This is why today’s AI weather forecasts nowadays can beat numerical ones in some error 
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metrics by training against ERA5. Using the data combining observations and NWM outputs, 
we also realized a AI model that has better accuracy than NWMs with respect to SWHs recently 
(with a different input-output strategy) (Wang and Jiang 2024). However, we have to admit that 
the aim of this manuscript is not to overcome the incomplete physical representations and 
numerical effects, so we just simply mention this problem in the introduction.  
 
To provide a balanced perspective on both NWMs and AI-based wave models, we have added 
clarifying statements in the introduction's concluding section to address your concerns: 
 
“Although good results have been obtained by the AI model presented in this study, it is noted 
that we do not intend to suggest that the AI model is superior to traditional NWMs or that it 
could replace NWMs. NWMs still retain numerous advantages over AI approaches, such as their 
ability to provide parameters beyond SWH and their stronger physical interpretability, among 
other merits. The AI model we have developed should be more regarded as a model surrogate 
specifically for time- or computation-sensitive scenarios.” 
 
Ref.: 
Wang, X., & Jiang, H. (2024). Physics-guided deep learning for skillful wind-wave modeling. 
Science Advances, 10(49), eadr3559.  
 
Considering that wind waves dominated the higher wave heights and the overall errors 
worldwide, a model like this AI model that is focused on representing wind seas should result 
in reasonable wave heights but also will have issues in areas with multiple (dominant) swell 
fields. This is acknowledged in the manuscript in discussing the errors in “swell pools”. It 
would be nice to acknowledge the need of being able to do swell accurately too for many 
applications. Since the “waves across the Pacific” studies in the 1960s, it is well known that 
NWMs can do this well. Note that with the dominance of wind seas in model errors, the 
differences between cold and hot started results, as well as impacts of DA are at least 
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qualitatively expected. Note that this could be expected as present wave height and future 
wind speed allow for assessing where the dominant wind wave field is with respect to growth 
stage of the wave field. Did you check if additional accuracy can be attained if the present 
wind field is used too (this would be a proxy for wind sea and swell separation in the initial 
wave height in the algorithm)? 
 
As noted, the model performs well in wind-sea conditions but less so in swell regions, as 
discussed in the “swell pools” error analysis. Undeniably, swells play a crucial role in many 
applications, thus, there are needs of being able to model swell accurately. However, although 
the propagation of swells has been well understood since the famous field experiment, 'Waves 
Across the Pacific', they their behavior retains characteristics of an initial-value problem, 
making swells a persistent source of error in current NWMs (e.g., Jiang et al. 2016). Therefore, 
NWM also usually perform worse in swell-dominated regions than in wind-sea-dominated 
regions. From Figure S4 in the Supporting Information, it can be seen that NWM demonstrates 
similarly low correlation coefficients in “swell pool” regions, which is only marginally higher 
than our AI model (as shown in Figure R1 below). This explains why we consider the AI model's 
performance in swell-dominated regions is still acceptable.  
 
Regarding the suggestion to incorporate the present wind field as an additional input, we made 
some tests according to the reviewers suggestion. However, we found that it did not lead to 
improvement compared to the current model. This is not surprising because the variation of 
wind is usually very small within one hour so that the pattern of the present wind field and the 
1-h future wind field is very similar. Moreover, although wind-sea and swell SWH can be 
roughly separated using wind speed + SWH information (which we believe is exactly the reason 
for our AI model can still model swells with acceptable accuracy), the evolution of swell SWH 
is also dependent on the direction and period of swells.  
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Figure R1. The spatial distributions of correlation coefficients (upper) and RMSE (lower) 
between model results and CCI-sea state data in 2020 for global ocean: (left) AI model V.S. 
CCI-sea state, and (right) WW3-ST6 NWM V.S. CCI-sea state. The left column is from Figure 
5 in the manuscript and the right column is from Figure S4 in the Supporting Information. 
 
While adding the present wind field is insufficient for swell modelling, adding additional 
historical wind fields can indeed improve swell modelling, as demonstrated in our previous 
paper (Wang and Jiang 2024). This enhancement stems from the nonlinear teleconnection 
between swell energy and distant historical wind forcing. However, with increased wind field 
inputs, the significance of the initial SWH field diminishes substantially, while the model's 
physical framework and input-output relationships undergo fundamental modifications. 
Consequently, in the present study, we maintain our methodological focus on the simplest 
rolling modelling approach, i.e., one wind field + one SWH field.  
 
Ref.: 
Jiang, H., Babanin, A. V., & Chen, G. (2016). Event-based validation of swell arrival time. 
Journal of Physical Oceanography, 46(12), 3563-3569.  
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Wang, X., & Jiang, H. (2024). Physics-guided deep learning for skillful wind-wave modeling. 
Science Advances, 10(49), eadr3559. 
 
Specific comments:  
Line 17: “… the errors of the model diverge lightly …”. Perhaps  use “accumulate” or 
“increase” as this is not divergence in the classical meaning in environmental sciences. 
 
Thank you to the reviewer for pointing this out and we have changed the words from 
“diverge/divergence” to “accumulate/accumulation” in the revised manuscript.  
 
Line 20: “This deep learning model can not only serve as an efficient surrogate for traditional 
numerical wave models but also provide a baseline for statistical modeling of global SWH 
due to its simplicity in inputs and outputs.” For model uncertainty, where generally only wave 
heights are considered, this indeed could be a good application. 
 
We appreciate your positive recognition of the potential application of our deep learning model 
in providing a baseline for statistical modeling of global SWH. To better stress this model is 
only for wave height, this sentence is slightly revised to : 
 
“This deep learning model can not only serve as an efficient surrogate for traditional numerical 
wave models with respect to SWH but also…” 
 
Line 32-33: WW3 is referred to by its manual, SWAN by foundational papers. Please balance 
your references (I would prefer foundational references, and manuals only when the model 
is used to identify the version). 
 

Thank you for pointing this out and we have changed the citation： 
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Tolman, H. L.: The numerical model WAVEWATCH: a third generation model for hindcasting 
of wind waves on tides in shelf seas, Delft University of Technology, Department of Civil 
Engineering, Fluid Mechanics Group, Delft, 1989. 
 
Line 114: The WW3 data is not used here at all. Why is it in the materials section then? 
 
We did compare the performance of the AI model with the WW3-ST6 in the part of discussing 
the error of ‘swell pools’. This is why we can say that our model is comparable to those of state-
of-the-art NWMs, and why we can say AI model performs well across global oceans in general, 
both in wind-sea- and swell-dominated regions (although the expression “both in…” is removed 
in the revised manuscript). To save the number of figures in the text and to make the manuscript 
more reader-friendly, we put the figures of the results of the comparison between the WW3-ST6 
and the CCI-Sea State in the Supporting Information Figure S4.  
 
Line 185: DA use for “initial” wave height is misleading, as data is assimilated every 6h (Line 
366). 
 
Thank you for pointing this out. To better explain this, we added a sentence after this part: “It is 
noted that in our input-output setting, the outputs of the last time step will be the “initial” SWH 
field of the next time step.” This should eliminate the potential misunderstandings.   
  
Line 193: Adding a measure for the representation of the signal such as variance of the wave 
height (as in a Taylor diagram) would be useful, since minimizing a rms error tends to result 
in a smooth model that smooths out some highs and lows. 
 
We are a bit confused about this comment as Line 193 (equations) seems to be not relevant to 
your comment. We assume you are talking about the error metrics. However, when the RMSE 
and correlation coefficient are known, the location in the Taylor diagram is determined. 
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Therefore, we think the four error metrics used in this study is sufficient to describe the error 
property. In our opinion, Taylor diagram is more suited for the comparison of several different 
models, but here we only have AI model and WW3-ST6, thus, we do not feel the necessity of 
using a Taylor diagram.  
 
Also, minimizing the RMSE does not necessarily tend to result in a model that smooth out highs 
and lows. This only happens only when the problem is too complex for the model to accurately 
capture the high and low variations. When it comes to the modelling of SWH, we believe this 
poses even less of a concern because the variation of SWH is usually smooth itself since SWH 
can be regarded as a “low-pass filter” of winds.  
 
If we misunderstood this comment, it will be nice if you can expand it a bit.  
 
Figure 2: It appears from the wavy behavior in the DA runs that data is created every 3 hours, 
not every 6 hours are claimed in the description of the AI model. This needs to be explained 
before publication. 
 
We confirm that data assimilation is performed every 6 hours, as described in the manuscript, 
and this can also be verified in Figure 2. For example, in Figure 2(a), the red box highlights a 
24-hour period. Within this period, the blue curve exhibits 4 distinct upward steps, each 
corresponding to an assimilation event. These steps indicate the corrections applied to the model 
every 6 hours. We hope this clarification addresses any concerns about the assimilation 
frequency. 
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Figure R2. Figure 2a in the manuscript. To better show the wavy behaviour of the curve, we 
use a red rectangular to show the four upward steps within 24 hours. The lines represent the 
mean values of the error metrics for the experiments starting from different initial SWH fields. 
The shaded areas around the lines indicate the range of error metrics across different 
experiments with varying initial SWH fields. 
 
Line 250: Note that the general statement about the effects of DA is accurate, but does not 
acknowledge that validating with the same but sparse data is not likely to be representative 
for areas without a recent observation. 
 
We are also a bit confused about this comment. Are you suggesting that sparse altimeter 
observations are insufficient for evaluating areas without a recent observation? However, it 
should be emphasized that these results derive from 236 parallel experiments, in which the 
altimeter data can be considered effectively global in coverage. Moreover, most altimeters 
complete an Earth orbit in under two hours, resulting in spatial dislocations between the 
validation dataset and previously assimilated altimeter observations. To further address this 
issue, we included independent in-situ buoy observations for further validation (Figure 6 and S7 
in the revised manuscript). The results of the comparison are in good agreement with those 
obtained from the altimeter data, supporting the robustness of our model. 
 
Again, if we misunderstood this comment, it will be nice if you can expand it a bit.  



13 
 

 
Line 294: many years of experience with the GSE has taught us that the GSE results in 
unrealistic wave fields but has little impact on error statistics. I find this argument weak for 
that reason. 
 
We respectfully maintain a differing perspective: when wave fields appear unrealistic, this 
indicates that data errors/inconsistencies have become substantial enough to be visually 
identifiable. In such cases, maybe one should no claim that "the error statistics have little impact 
on error statistics". In many scenarios, since SWHs in swell-dominated regions are typically 
smaller, the absolute errors (e.g., RMSE) induced by the GSE may appear small. However, this 
often corresponds to significantly increased relative errors, manifested through decreased 
correlation coefficients. While the random errors from GSE may not be as consequential as the 
first two factors mentioned, we contend they nevertheless make non-negligible contributions to 
the overall error.  
 
Lines 326-333: The statements on the first and last lines about swell and wind seas do not 
seem to be consistent. 
 
These two statements are not contradictory. The first statement conveys that the AI model 
demonstrates reasonably robust performance across both wind-sea and swell conditions. The 
last statement indicates that even if readers consider the swell performance less optimal, they 
should at least acknowledge the model's capability in wind-sea scenarios—where it could serve 
as an effective surrogate for NWMs.  
 
To clarify this point and prevent potential misinterpretation, we have further removed the phrase 
"both in wind-sea- and swell-dominated regions." 
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Response to Reviewer 4: 
 

Summary:  
This study constructed an AI model for predicting the significant wave height (SWH) 
parameter globally using a convolution neural network with the U-Net architecture. The AI 
SWH model is trained on 18 years of ERA5 reanalysis by using the SWH and the 10-m surface 
wind vector fields at two consecu6ve 6mes (i.e., rolling prediction strategy). Therefore, the AI 
model “simulates” SWH in a manner similar to the numerical wave models with an initial 
SWH field and the forecasted 10-m wind fields. Evaluation of AI SWH model performance 
in 2020 shows that this AI SWH model performs as good as the WaveWatch III model with 
the ST6 physics. The global error patterns against ERA5 SWH and CCI-Sea State analysis 
product further show that the AI-SWH model produces more reliable SWH prediction in 
wind-sea conditions than in swell-dominant conditions. The authors conclude that this AI 
SWH model can be a more efficient approach to produce global forecast of significant wave 
height than traditional numerical wave models. 
 

Dear Reviewer: 
 
We would like to thank you for your patience in reading the paper in detail and your valuable 
comments. We sincerely think your detailed comments have helped us to improve the 
manuscript. Below, we present our point-by-point response (text in black denotes our replies). 
We hope the manuscript is now acceptable following our revisions and explanations.  
 
Major comments: 
Introduction:  
My impression is that the introduction somewhat overstated the powerfulness of AI model or 
AI SWH model. It is true that the numerical wave models have limitations in 
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parameterizations of the wind input term and the dissipation term that govern the spectral 
evolutions. But I don’t think the AI model are completely free from these limitations since it 
learns from ERA5 and inherently adopts those limitations the authors stated. I suggest the 
authors toning down a bit this aspect when writing about the advantages of the AI model and 
not giving an impression that the AI model alone could overcome the physical limitations of 
the numerical wave models.  
 
We completely agree with the reviewer that numerical wave models (NWMs) also has many 
(more) advantages compared to contemporary AI wave models (including the one in this study). 
Here, we list the limitations of NWM merely to demonstrate that the proposed AI model still 
has its merits that can overcome some of the NWM’s problems/limitations, not to claim that the 
AI model outperforms NWM, let alone suggest it could replace NWM.  
 
To provide a balanced perspective on both NWMs and AI-based wave models, we have added 
clarifying statements in the introduction's concluding section to address your concerns: 
 
“Although good results have been obtained by the AI model presented in this study, it is noted 
that we do not intend to suggest that the AI model is superior to traditional NWMs or that it 
could replace NWMs. NWMs still retain numerous advantages over AI approaches, such as their 
ability to provide parameters beyond SWH and their stronger physical interpretability, among 
other merits. The AI model we have developed should be more regarded as a model surrogate 
specifically for time- or computation-sensitive scenarios.” 
 
 

Thinking about the results from a more physical perspective:  
It is quite interesting that the AI model is skilful in predicting the SWH associated with wind 
seas. I am just curious if this means that the AI SWH model has learned some physics of the 
wave evolution. Could the authors comment on whether this AI model be run in an idealized 
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setup to produce the SWH of fetch-dependent wind waves under constant and uniform wind 
forcings at different wind speeds? Would the relationship between SWH and U10 in this AI 
model (i.e., (SWH-U10)AI) behave similar to some empirical relations between U10, fetch, 
and SWH? For example, for fully developed seas, I think the authors can compute the SWH 
associated with the Pierson-Moskowitz spectrum at different wind speeds and obtain a SWH-
U10 relationship predicted by the Pierson-Moskowitz spectrum (i.e., (SWH-U10)PM). For 
fetch dependent seas similarly, (SWH-U10)JONSWAP can be found for different fetches. 
 

Thank you for this insightful comment.  
 
The AI model is trained to learn the statistical relationships present in the training dataset rather 
than explicitly solving physical equations governing wave evolution. From this perspective, one 
can say that the AI model has learned some physics of the wave evolution, from a statistical 
point of view. In particular, our cold-start experiments demonstrate that when driven by realistic 
wind fields, the AI model progressively produces results closer to ground truth. This suggests, 
to some extent, that the AI has learned quantitative patterns of wave growth (labelling these as 
physics may be inappropriate—what the AI discovers remains fundamentally statistical in 
nature). Furthermore, SWH data in current wave models/reanalyses fundamentally adhere to the 
statistical relationships between U10 and SWH. When the AI model produces results consistent 
with these wave models/reanalyses, it implicitly indicates that these established relationships 
are largely preserved within the AI model. 
 
However, we need to note that the AI model works in a different way from NWMs. After the 
AI model finish its training, the input form of the AI model needs to be exactly the same as that 
used in the training. In our case, the input of the our AI model has to be global SWH at Ti and 
global wind field at Ti+1. Some important but constant information, such as bathymetry and 
coastal morphology, and even the curvature of the Earth, are implicitly embedded in the AI 
model in a statistical way. Therefore, from our understanding, it seems to be impossible to 
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conduct idealized tests that can be easily done by NWMs, such as fetch-limited and duration-
limited tests, in our AI model framework. This is also a limitation of the AI model. In our AI 
model, given the global domain of simulation, even prescribing a spatially “uniform” wind 
direction in the input fields is inherently unfeasible due to the spherical effect. Similarly, the AI 
model is not suitable for certain toy model experiments, e.g., we cannot setup a simulation of 
global SWH on an Earth without any land, which NWMs can easily handle.  
 
Specific comments:  
 
Methods: 
 1. How long does it take to train this AI Model on 18 years of data? Would it be fair to 
mention this training time as well?  
 

We have mentioned the training time in Section 2.2.3 (Model Training) in the revised 
manuscript, which reads: “We used six batches for training and trained the model for up to 30 
epochs at a learning rate of 0.0001 using the AdamW optimizer. To alleviate overfitting, we 
implemented a commonly used deep learning technique where training is halted when the loss 
in the validation set does not decrease for four epochs. Using our training samples (data from 
2000 to 2017), training took approximately one hour per epoch on an NVIDIA RTX 4090 GPU. ” 
Therefore, it takes less than ~30 hours to train this AI model using the data from 2000 to 2017.  
 

2. Would the results changes if testing was conducted using data from 2018, 2020, and 2021 
together? Have the authors tested how sensitive this model is to different ratios of the training 
data, the evaluation data, and the model testing data? Can authors provide some answers to 
these questions in the method?  
 

According to the your suggestion, we also conducted the model test using the data from 2018, 
2019, 2020, 2021. The following Figure R3 shows the presents the error curves of the AI model 
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on the test sets from 2018, 2019, 2020, and 2021. From this figure, it is evident that the model 
performs consistently across these three test sets, with differences in correlation coefficient (CC) 
and root mean square error (RMSE) being less than 0.003 and 0.03, respectively. Such 
differences are similar to the difference of error metrics for NWMs across different years. This 
results demonstrate that the model exhibits strong robustness and generalization ability across 
different test periods. This results align with our expectations: a properly developed statistical 
model, when evaluated on unseen test data, should demonstrate consistent performance across 
different years.  

 

 
Figure R3. The variation of global overall error metrics between the AI SWH model (training 
with the data of years 2000-2017) outputs and ERA5 with simulation time using data of different 
years as the testing set: (a) CC, (b) RMSE. The lines represent the mean values of the error 
metrics for the experiments starting from different initial SWH fields. The shaded areas around 
the lines indicate the range of error metrics across different experiments with varying initial 
SWH fields. 
 

Similarly, following your comments, we tested how sensitive this model is to different amount 
of the training data. According to the basic knowledge of deep learning, the ratio among the 
three datasets is not critical. However, insufficient training data volume may indeed lead to 
either overfitting or underfitting issues. Figure R4 shows the error curves of the AI model trained 
with different amounts of training data and evaluated on the 2020 test set. It can be seen that the 
model performance increase with the increase of the size of the training dataset.  
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Figure R4. The variation of global overall error metrics between the AI SWH model outputs 
and ERA5 with simulation time using data of different periods as the training set (testing using 
the data of year 2020): (a) CC, (b) RMSE. The lines represent the mean values of the error 
metrics for the experiments starting from different initial SWH fields. The shaded areas around 
the lines indicate the range of error metrics across different experiments with varying initial 
SWH fields. 
 
The results presented in both Figure R3 and Figure R4 are within expectations. We have not 
included the these findings and their associated discussion in the revised manuscript because we 
intentionally avoid delving into how technical details of the AI models (e.g., training data 
volume, model architecture, hyperparameters, number of layers and parameters) influence the 
model results. To some extent, when given the predefined input-output framework, there will 
almost always be opportunities - however marginal - for performance improvement of AI 
models through such technical refinements. We are not saying these technical details lack 
importance, but these details primarily represent engineering challenges in model 
implementation: through extensive experimentation, one could systematically explore which 
specific model architectures, hyperparameters, and training datasets might yield optimal results 
within this input-output framework.  
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3. Did the authors perform some model tuning based on the evaluation dataset? if so, it would 
be great if the authors document what parameters have been tuned using the validation set 
from 2022.  
 
No, we did not perform any model parameter tuning based on the validation/testing set. 
 
4. Also, it is not very obvious to me how or why choosing 2022 for validation can prevent 
overfitting. Could the authors demonstrate that this AI model is not overfitting in some way? 
 

We employed the commonly used early stopping strategy in deep learning to alleviate  
overfitting. Specifically, during training, we monitored the mean squared error (MSE) on the 
validation set, and if the MSE remained unchanged or started to increase for several consecutive 
epochs, training was terminated to alleviate overfitting to the training data. We realized that we 
forgot to mention this in the manuscript, which is our problem, this has been added to manuscript:  
 
“We used six batches for training and trained the model for up to 30 epochs at a learning rate of 
0.0001 using the AdamW optimizer. To alleviate overfitting, we implemented a commonly used 
deep learning technique where training is halted when the loss in the validation set does not 
decrease for four epochs.”  
 
In principle, the choice of a validation set is flexible as long as it does not overlap with the 
training or test sets. Our decision to use 2022 as the validation set was based on two key 
considerations: (1) The year 2022 is temporally distant from the test set, allowing for a more 
objective assessment of the model's generalization ability and helping to reveal potential 
overfitting issues. (2) There is no corresponding CCI altimeter data for 2022, meaning that this 
year’s data could not be used for other parts of our analysis (comparing with CCI data). This 
made it a natural choice as an independent validation set. 
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Even with the implementation of early stopping strategy, we cannot conclusively demonstrate 
that the AI model is not overfitting. Your comments rightly reminded us that replacing “prevent” 
with “alleviate” would constitute a more precise formulation. 
 
 

Results: 
1. Figure 2: With data assimilation, why do the time series of the 4 error metrics have a zigzag 
pattern?  
 
This pattern is simply a natural consequence of the data assimilation process, which is performed 
every 6 hours, using altimeter observations to correct the SWH output of the last time step and 
using the corrected SWHs as the input of the next time step. After each assimilation, the 
accuracy of the model output improves as errors are corrected. Then as rolling model continues, 
small errors continue to accumulate, leading to a gradual decline in accuracy until the next 
assimilation step.  
 
2. Figure 4: Do the spatial distributions of the 4 error metrics change in different seasons?  
 
Sure, the spatial distributions of error metrics will change in different seasons, because the wave 
climates are different for different seasons. Such a change can be observed in all wave models, 
such as simple statistical models, AI models, and NWMs.  
 
Figure R5 illustrates the error curves of the AI model in different seasons during the rolling 
inference process. The results clearly indicate seasonal differences in errors: the overall errors 
are lowest in JJA and highest in DJF, although the difference is generally small.  
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Figure R5. The variation of global overall error metrics between the AI SWH model outputs 
and ERA5 with simulation time in different seasons: (a) CC, (b) bias, (c) RMSE, and (d) SI. The 
lines represent the mean values of the error metrics for the experiments starting from different 
initial SWH fields. The shaded areas around the lines indicate the range of error metrics across 
different experiments with varying initial SWH fields. 

 

We also examined the spatial distribution of the AI model’s 240-hour hindcast errors, as shown 
in Figure R6. The error patterns are also different in different seasons, which is linked to the 
strong seasonal variations in wave climate. However, these patterns all show that the model 
perform well in wind-sea dominated regions and the performance degrades in swell-dominated 
regions.  

(a) (b)

(c) (d)
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Figure R6. Global distributions of (left) correlation coefficients and (right) RMSEs between AI 
model outputs and ERA5 for different seasons: (a,b) DJF, (c,d) MAM, (e,f) JJA, (g,h) SON.  
 
 

3. By focusing on analysing results after the errors stabilize, do the authors imply that this AI 
SWH model is more suitable for wave forecast beyond 10 days (240 hrs) without data 
assimilation and beyond 3-4 days with data assimilation?  
 

No, we are not implying that the AI SWH model is more reliable when the errors become stable.  
 
It is noted that while one application of our AI SWH model is SWH forecast, it is essential to 
emphasize that wave models—whether numerical or statistical—are not limited to forecasting 
wave conditions over a few days. Besides, the performance of wave forecasting, rely not only 
on the performance of wave model, but also on the accuracy of wind forecasting.  
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Here, the reason for focusing on the results after the errors stabilize is to demonstrate that the 
error of the AI rolling model does not accumulate indefinitely if the model is driven by high-
quality forcing fields. More importantly, after reaching a stable state, the AI model achieves 
accuracy comparable to state-of-the-art numerical wave models, demonstrate its usability. With 
available observational data, data assimilation helps the model stabilize more quickly and 
achieve better results. This results indicate that such an AI wave model can be used for long-
term hindcasts, projections, and rolling forecasts of SWH. 
 
For real-world forecast/hindcast problem, it is noted there cannot be “perfect” initial field. The 
initial field for each forecast cycle derives from either the prior forecast field or analysis field. 
Consequently, during rolling forecasts, the model's initial conditions at every time step typically 
reach a stable error state. Given these initial fields, if the AI model driven by high-quality future 
wind fields (e.g., analyzed wind fields), the model would maintain stable error characteristics – 
this is the rationale for SWH hindcast, both for our AI model and NWMs. However, in 
operational wave forecasting, the driving wind fields themselves accumulate increasing errors 
with forecast lead time, inevitably leading to progressive degradation of wave forecast quality - 
an inherent limitation for all wave forecasting, also for both AI models or NWMs.  
 
4. Although the authors acknowledged that this paper does not compare with in-situ 
observations, to showcase the effectiveness of this AI model, I think it can still be worthwhile 
to compare the AI SWH model, WW3-ST6 hindcast, and ERA5 reanalysis, against a few in-
situ buoy observations in the manner of a short time series at some key locations (e.g., some 
key swell-dominated locations versus wind-sea dominated locations) or weather conditions 
(e.g., westerlies or more uniform wind conditions versus tropical or extra-tropical cyclones). 
 

We sincerely appreciate the reviewer’s valuable suggestion. In response, we have conducted a 
comparison between different models and NDBC buoy observations, following the same 
evaluation method used for CCI-sea state altimeter data. The results demonstrate consistency 
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with the comparisons using CCI-sea state altimeter data. For the AI rolling model without data 
assimilation, once the simulation stabilizes after approximately 240 hours of rolling inference, 
its performance is comparable to the state-of-the-art NWM, WW3-ST6. This further validates 
the effectiveness of our AI model. In contrast, for the models that used assimilation, there was 
a substantial improvement in all error metrics, demonstrating the effectiveness of assimilation 
in AI modeling. The following four figures have now been included in the revised manuscript 
and Supporting Information.  
 

 
Figure R7. The comparison between SWHs from the AI model and NDBC Buoy in 2020 for 
global ocean. (a) The scatter plot between the SWHs from the two datasets. (b-e) The spatial 
distributions of CC, bias, RMSE, and SI, respectively. 
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Figure R8. The same as Figure R7, but the AI model has assimilated the data from CCI-Sea 
State every six hours. 
 

 
Figure R9. The same as Figure R7, but the comparison is between the WW3-ST6 and NDBC 
Buoy. 
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Figure R10. The same as Figure R7, but the comparison is between the ERA5 and NDBC Buoy. 
 

 

Discussion:  
It will be helpful if the authors can be more specific about the suitable applications with the 
AI SWH model. (e.g., time scales of the operational wave forecast, locations, seasons etc.) 
 

We have put the discussions of the potential applications of the AI model in Section 5 
(Concluding Remarks). Which reads: “An important advantage of the AI SWH model proposed 
here is its low computational cost compared to traditional NWMs. For example, on a personal 
laptop equipped with a single RTX 3060 GPU, the AI model can perform a 1-year global SWH 
rolling simulation at a resolution of 0.5° × 0.5° × 1h in just 10 minutes. In contrast, traditional 
NWMs, such as the WAVEWATCH III model, typically require several days to complete a 
simulation with the same output, even on supercomputing facilities. This makes the AI model 
particularly valuable in time-sensitive and resource-constrained scenarios, where it can be used 
as a surrogate for the NWMs. One potential application of this model is ensemble modeling, 
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both in operational wave forecasting and wave climate studies. In these applications, it is 
challenging to run NWMs multiple times using wind fields from different ensemble members 
of weather forecast models (for wave forecasting) or of various climate scenarios for long-term 
projection (for wave climate projection) due to the limitation of computational resources. In 
contrast, these tasks can be efficiently completed using the AI model, even on a standard laptop.” 
These can be regarded as the potential applications of all AI wave models.  
 

Besides, in the last paragraph, we wrote that: “We have demonstrated that the current SWH field 
and the wind field at the next time step are minimum requirements for the inputs of an AI SWH 
model. Such simplicity of model inputs and outputs makes this model a potential baseline for 
AI-based modeling of global SWH.” This can be regarded as a special application for this 
specific model.   
 
Regarding the time scales of the operational wave forecast, it is dependent on the performance 
of forecasting wind fields, while the ability of weather forecast is clearly beyond the scope of 
this study.  Regarding the locations and seasons, as discussed in the manuscript, this AI model 
is more suited for wind-sea dominated conditions. Therefore, if a region has active wind fields 
(in some seasons), it will be suited for the application of the AI model (in the season that wind 
fields are active).  
 

 

 

  


