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Abstract 15 

Winter precipitation types (WPTs) are controlled by many factors, including thermodynamic and microphysical processes. 

Therefore, realistically simulating interactions between precipitation particles and the atmosphere is important when 

diagnosing the WPT. In the present study, we analyze the performance of a modified version of the one-dimensional spectral 

bin model (SBM; version 1DSBM-19M) of Carlin and Ryzhkov (2019), which simulates the change in the physical 

characteristics of precipitation particles of various sizes as they fall from the cloud top to the ground and diagnoses surface 20 

WPT. We compare the performance of the SBM and four other diagnostic methods that use the following variables: 1) 

atmospheric thickness, 2) wet-bulb temperature, 3) temperature and relative humidity, and 4) wet-bulb temperature and low-

level lapse rate. Three reference WPTs (snow [SN], rain [RA], and RASN) are obtained from particle size velocity (PARSIVEL) 

disdrometer data using a newly proposed decision tree algorithm. The results show that the SBM has the highest overall hit 

rate for all cases among five diagnostic methods. In contrast, the hit rate of the SBM for each WPT shows lower performance 25 

for RA than the other methods. These results indicate that the SBM simulations tend to underestimate melting compared to 

observations. We thus explore the effects of the SBM’s microphysics scheme on the extent of melting in cases of misdiagnosed 

RA. An optimized SBM that uses the climatological snow density-diameter relationship for the Pyeongchang region produces 

an increased amount of melting and achieves improved skill scores compared to the current SBM, which uses a snow density-

diameter relationship for the Colorado region.   30 

1. Introduction 

There is a complex variety of winter precipitation types (WPTs) such as rain (RA), snow (SN), rain and snow (RASN), ice 

pellets (IPs), freezing rain (FZRA), and a mixture of ice pellets and freezing rain (IPFZRA). Various thermodynamical and 

microphysical processes can determine surface WPTs in nature. Some microphysical processes, such as melting, freezing, 

evaporation, and sublimation, change the phase and/or mass of precipitation particles and are diabatic thermodynamic 35 

processes. Other microphysical processes, such as riming and aggregation, modify particle size distributions (PSDs), habits, 

and the physical characteristics of individual particles such as their fall velocity and density (Heymsfield, 1972; Pruppacher 

and Klett, 1997; Libbrecht, 2001; Barthazy and Schefold, 2006; Lee et al., 2015; Gong et al., 2020; Vázquez-Martín et al., 

2020). Aggregation widens PSDs by increasing the size of particles, while riming increases the terminal fall velocity and 

density of the particles. Thus, the complexity of these processes should be accounted for when seeking to accurately diagnose 40 

WPTs.  

Several simple empirical methods are commonly used to predict WPTs based on empirical relationships between specific 

meteorological variables and WPTs. For example, the atmospheric thickness can be used to classify WPTs. Because 

atmospheric thickness is proportional to the mean virtual temperature (Tv) between two layers, a larger thickness is associated 

with a higher possibility of melting. Different thresholds for atmospheric thickness are used depending on the region under 45 

investigation (Koolwine, 1975; Stewart and King, 1987; Bluestein, 1993; Lee et al., 2014). In addition, nomograms of relative 
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humidity (RH) and temperature (T) on the ground can be used to determine the WPT. Matsuo et al. (1981) proposed RH-T 

relationships to distinguish three WPTs (RA, RASN, and SN), and Lee et al. (2014) subsequently modified this using 

observational data. The wet-bulb temperature (Tw) can also be used as a predictor. Tw is defined as the temperature of the air 

when brought to saturation by the evaporation of water. Tw is a better-conserved quantity than T, which makes it useful for 50 

short-range predictions. Häggmark et al. (2000) developed a probability density function (PDF) for SN as a function of the 

surface Tw (Tw0). Recently, joint probability distributions for SN using Tw and Γlow (low-level lapse rate; the rate of change of 

temperature from the surface to 500 m above ground level [AGL], in °C km-1) have been proposed based on an analysis of 

global statistical data (Sims and Liu, 2015). By including the Γlow, the scheme proposed by Sims and Liu (2015) takes into 

account situations where the melting of ice particles begins while they are falling, which is especially important for conditions 55 

that include low-level temperature inversions. However, because this scheme was developed using global data without regional 

and/or synoptic weather dependence, it is only valid when used in a globally averaged manner. The validity for the regions of 

this study has not been investigated in Sims and Liu (2015). In addition to those described here, many other WPT diagnostic 

methods based on the environment or numerical model data have been proposed (e.g., Ramer, 1993; Baldwin et al., 1994; 

Bourgouin, 2000; Schuur et al., 2012; Benjamin et al., 2016). As an example, Benjamin et al. (2016) suggested diagnostic 60 

logic for WPT using output of the Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) models such as 2-m T, 

total precipitation, precipitation except graupel, snow-only precipitation, snow fraction, precipitation rate, and so on. The 

diagnostic logic classifies four WPTs (RA, SN, FZRA, IP) based on a decision tree method. 

Other studies have attempted to predict WPTs using the environmental data combined with an explicit microphysical model 

(e.g., Reeves et al., 2016). This approach is motivated by the fact that the rate of change between phases varies with particle 65 

size; for example, small particles may entirely melt while larger particles remain predominantly ice. This subsequently affects 

refreezing because the threshold for T needed to initiate refreezing depends on whether an ice nucleus remains in the particle 

or whether it is entirely liquid. As such, the accurate diagnosis of WPTs at the surface requires consideration of these processes 

as a function of particle size, particularly for a mixture of WPTs (e.g., RASN and IPFZRA). 

The one-dimensional spectral bin model (SBM) proposed by Reeves et al. (2016) separates the precipitation PSD into 70 

various bins and calculates the phase change for each of these bins at sequential height intervals using heat balance equations 

that depend on the environmental T and humidity (Rogers and Yau, 1989; Pruppacher and Klett, 1997). The resultant WPT 

(RA, SN, RASN, IP, FZRA, or IPFZRA) is predicted based on the relative fractions of ice and liquid at the surface (see Sect. 

3.2 for more details). The original formulation (Reeves et al. 2016) used a fixed PSD of aggregated SN particles with various 

degrees of riming and was mass-conserving by only considering melting and refreezing. Carlin and Ryzhkov (2019) expanded 75 

the microphysical component of the SBM to include varying PSDs, multiple particle habits, and sublimation and evaporation. 

The addition of sublimation and evaporation is because these processes may effectively eliminate the hydrometeor mass at the 

low end of the PSD, thus affecting the resulting classification. Evaluation of the original SBM optimized for the United States 

(Reeves et al., 2016) revealed that the model was highly skilled in discriminating FZRA and IPs, but achieved slightly lower 

scores for SN and RA when compared to other algorithms that rely only on environmental metrics (Ramer, 1993; Baldwin et 80 
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al., 1994; Bourgouin, 2000; Schuur et al., 2012). Owing to this continued development, there have been different versions of 

the SBM documented in the literature: the original version of Reeves et al. (2016), the so-called 1DSBM-19 described above 

(Carlin and Ryzhkov, 2019), and the new 1DSBM-19M presented herein (i.e., a modified version of 1DSBM-19). The 

1DSBM-19M is used in this study, with the differences with 1DSBM-19 described at https://doi.org/10.5281/zenodo.14350651 

(Carlin et al. 2024). 85 

Intensive observation networks employing a variety of instruments (e.g., disdrometers, weighing gauges, radar, lidar, and 

rawinsondes) were established at many sites along the South Korean coastline and across the Taebaek mountains during the 

International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic Winter Games campaign (ICE-POP 

2018, Lee and Kim, 2019; Gehring et al., 2020). The Taebaek mountain ranges are complex, experiencing sudden changes in 

surface conditions due to the effects of the relatively warm ocean and cold mountainous terrain frequently occurring in this 90 

region. Thus, winter precipitation in this region is affected by different synoptic patterns, orographic effects, and air-sea 

interactions (Nam et al., 2014; Kim et al., 2019). There are also many local and small-scale phenomena to consider, such as 

the occurrence of cold pools due to the development of coastal fronts, the formation of inversion layers aloft as a result of these 

cool pools, and greater low-level thermal instability due to warm and moist advection from the ocean. Nevertheless, although 

the accurate diagnosis of the WPT is challenging in this region, the intensive observation data density available due to the ICE-95 

POP network allows for an extensive evaluation and optimization of previously proposed WPT diagnosis methods.  

In this study, we aim to compare the performance of the SBM (version 1DSBM-19M) with empirical methods in terms of 

diagnosing the WPT using observations from rawinsondes. The four empirical approaches tested are the 1000-850 hPa 

thickness (H850 method), RH0-T0 method (Lee et al., 2014), Tw0 (Häggmark et al., 2000), and Tw0-Γlow method (Sims and Liu, 

2015). The diagnosed WPT is verified using WPT data obtained from particle size velocity (PARSIVEL) disdrometers 100 

collected during the ICE-POP 2018 period (Nov. 2017–Apr.  2018).  

 

2. Data 

2.1 ICE-POP 2018 observation sites 

The northeastern region of South Korea is characterized by cold air and warm ocean temperatures in winter and complex, 105 

steeply sloped terrain from mountain ranges to the ocean (Fig. 1). An intensive observational survey was conducted in this 

region during the ICE-POP 2018 campaign from November 2017 to April 2018, with twenty PARSIVELs installed at 18 sites 

(the cross symbols in Fig. 1a) along the coastline and in the mountain ranges to record WPTs under various atmospheric 

conditions. Rawinsonde observations were also made every 3 h at five sites: two sites in the coastal region (Sokcho [SCW] 

and Gangwon Weather Administration [GWW]), one site in the entrance of the mountain ranges (Bokwang1-ri Community 110 

Center [BKC]), and two sites in mountain valleys (Myeonon Observatory [MOO] and Daegwallyeong Regional Weather 

Office [DGW]). In addition, 11 micro rain radars (MRRs) were installed at some of the sites (square symbols in Fig. 1a). The 
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MRRs are vertically pointing K-band radars and their data are useful for understanding the vertical characteristics of 

precipitation. 

The eastern sites in the Taebaek Mountains are at a relatively low altitude, with SCW, GWW, and BKC 18, 79, and 175 m 115 

above mean sea level (MSL), whereas the western sites (DGW and MOO) are at 773 and 532 m above MSL, respectively. We 

analyze the PARSIVEL data to identify the WPTs from the five sites (SCW, MOO, BKC, Gangneung-Wonju National 

University [GWU], and DGW: Figs. 1b–1f) that are collocated with or closest to a rawinsonde observation. The PARSIVEL 

data at GWU are matched with sounding data from GWW, which is about 3.88 km away with a similar altitude (GWU: 36 m 

MSL). This atmospheric environment and high-resolution soundings are optimal for comprehensively testing the diagnosis of 120 

WPT.  

 

 
Figure 1. (a) Topography and observational supersites in the north-east region of South Korea during the ICE-POP 2018 period. 

Photographs of PARSIVELs at the five sites: (b) SCW, (c) MOO, (d) BKC, (e) GWU, (f) DGW. Cross symbols indicate PARSIVELs 125 
and squares (circles) indicate MRRs (rawinsondes) in (a). The sites used in this study are labelled with text in (a). 
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2.2 Observational data and quality control 

A PARSIVEL is a disdrometer that uses a laser beam with a wavelength of 780 nm to obtain a particle’s equivolume diameter 

(D, mm) and terminal fall velocity (Vt, m s-1) based on changes in the laser beam signals. The measurable range of D (Vt) is 130 

from 0.3 mm (0.1 m s-1) to 30 mm (20 m s-1). The overall error of D is within 5% and Vt has errors ranging from 10 % to 25% 

as D changes (Löffler-Mang and Joss, 2000). We suggest how to deal with these measurement errors in Section 3.1. Version 

2 PARSIVELs and level 1 data are used in the present study. Level 1 data are format-converted with no processing and provide 

particle counts for individual diameter and velocity channels (a 32 by 32 array) every 1 min. Because the observed PARSIVEL 

data contain outliers that may be the result of various forms of error, such as calibration errors and “margin fallers” (Yuter et 135 

al., 2006), we eliminate any of the level 1 data that meet at least one of the following two criteria: i) D < 1 mm and ii) Vt > 

1.4Va. Va is the empirical relationship between D and Vt established by Atlas et al. (1973).  

A modem-type rawinsonde (M10) is used for the ICE-POP 2018 campaign (In et al., 2018). The observation variables 

recorded by the M10 rawinsonde are pressure (P, hPa), T (°C), RH (%), wind speed (WS, m s-1) and wind direction (WD, °) 

at 1 s intervals. Additionally, Tw is calculated using the two-parameter relationship for T and RH suggested by Stull (2011). 140 

Although rawinsonde data are useful as a reference of atmospheric vertical structure, the absolute accuracy of T and RH of the 

M10 rawinsonde sensor are 0.3°C and 3%, respectively (In et al. 2018). The impact of these measurement errors can be 

significant near 0 °C, where phase changes of precipitation particles occur. 

The MRRs are modulated continuous wave (FMCW) radars using a solid-state transmitter with a frequency of 24 GHz 

(Maahn and Kollias, 2012). In this study, the range resolution of the MRRs is set to 150 m. This resolution is enough to identify 145 

the ML because the average ML depth based on dual-polarization radar measurements from the Korean peninsula during 

winter is about 670 m (Allabakash et al. 2019). MRR data includes vertical profiles of radar reflectivity (Z, dBZ) and Doppler 

velocity (Vr, m s–1) in precipitation. Z and Vr can be contaminated by noise including non-meteorological echoes. Also, if Vr 

exceeds the Nyquist velocity boundaries (-6 m s–1 ~ 6 m s–1) of the MRR, aliasing of Vr will occur (Maahn and Kollias, 2012). 

In general, large raindrops in heavy rainfall events cause the aliased data. Therefore, raw data from the MRRs are quality-150 

controlled using de-aliasing and the noise removal algorithm suggested by Maahn and Kollias (2012). The processed MRR 

data are used to provide additional context for important cases in the present study.  

 

3. Methods 

3.1 Determining the winter precipitation type 155 

Three WPTs are considered in the present study: SN, RA, and RASN. SN is defined as solid precipitation such as dry snow, 

while RA is defined as liquid precipitation. FZRA is included in RA because FZRA it is in a liquid phase when observed by a 

PARSIVEL. RASN is mixed-phase precipitation that includes wet snow. IPs are very difficult to identify using only 

PARSIVEL data without photographic data because the Vt of IP can have two modes: a low-speed mode that is similar to the 
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Vt of graupel or small hail and a high-speed mode similar to raindrops (Nagumo and Fujiyoshi, 2015). Thus, the lack of multi-160 

angle snowflake cameras (MASCs) or similar equipment at some sites (DGW, SCW, and MOO) is an issue for this analysis. 

In addition, IPs in the Pyeongchang region are only observed under very specific atmospheric conditions (i.e., very strong 

inversion [> 5 K] with a freezing layer at 800–900 hPa and melting layer (ML) at 700–800 hPa; Chae et al., 2024) and are thus 

rare.  

The 5-min PARSIVEL data are projected onto a Yuter et al. (2006) scheme that divides the data into three regions (RA, SN, 165 

and an ambiguous region; Fig. 2a) after which the number (N) of particles for each type is counted. The fraction of FRA and 

FSN are calculated using the following equations: 

 

{
FRA = 100 (%) ×

𝑁RA

𝑁Total

FSN = 100 (%) ×
𝑁SN

𝑁Total

                     (1) 

 170 

where NRA and NSN are the number of particles identified as raindrops and snow particles, respectively, and NTotal is the number 

of particles across all three regions.  

We obtain a total of 131 matched precipitation cases to validate the five diagnostic methods during the ICE-POP period (1 

November 2017–30 April 2018). If precipitation is observed when a sounding launches at a specific time and site, the event 

includes a matched precipitation case. Cases are identified that feature measurable precipitation at any of the five sounding 175 

sites that satisfies two conditions. We identify precipitation cases at each site that satisfy two conditions: i) NRA+NSN ≥ 15 

within 5 min of the sounding start time, and ii) –4 °C < T0 < 6 °C and RH0 > 40 % at the sounding start time. Here, T0 and RH0 

are the data recorded 1 s after the start of the sounding that represent the surface T and RH measured by the rawinsonde. Based 

on this hydrometeor-type classification scheme, the dominant WPT of the matched precipitation cases is determined using the 

newly developed algorithm with the quality-controlled 5-min PARSIVEL data (Fig. 2b).  180 

The newly developed algorithm consists of three steps:  i) an FRA check, ii) an FSN check, and iii) redetermination of the WPT. 

First, we classify RA from the matched precipitation cases while taking into account potential differences in the hardware 

calibration of each PARSIVEL. If the hardware is correctly calibrated, FRA should be 100% for pure rainfall cases. The 

normalized frequency (NF) distributions of FRA during the ICE-POP period with a TAWS of > 7 °C are shown in Fig. 3. NF can 

be calculated as the frequency of each class divided by the total frequency. TAWS is the 5-min mean temperature from the 185 

nearest automatic weather station (AWS), and FRA is calculated using 5-min PARSIVEL data from the same site. The only 

exception is BKC, which has no corresponding AWS station; in this case, the FRA from the PARSIVEL at BKC and TAWS at 

GWU are matched, with the TAWS corrected for the difference in altitude between the two sites assuming a general temperature 

lapse rate (6.5 °C/km). The FRA at which the cumulative NF (solid black line) reaches a threshold value of 0.05 is defined as 

Fsite (dotted black line). Fsite varies by site (GWU: 65.2 %; BKC: 81.1 %; SCW: 61.6 %; MOO: 57.9 %; and DGW: 68.1 %). 190 

Based on the information presented in Fig. 3, the matched precipitation cases at each site with FRA > Fsite are classified as RA. 
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Figure 2. (a) Yuter et al. (2006) scheme. The color indicates the determined precipitation type, where blue (red) indicates RA (SN) 

and green indicates ambiguous precipitation type. (b) A new decision tree algorithm of WPT from PARSIVEL data. The number of 

each WPT are shown in parentheses. 195 
 

Second, we divide the remaining cases into high SN fraction (FSN > 50 %) and low SN fraction (FSN ≤ 50 %) groups. The 

high SN fraction group indicates a greater likelihood of dry snowfall and is classified as SN, while the low SN fraction group 

indicates a greater likelihood of wet snowfall and is classified as RASN. After these first two steps, the 131 matched 

precipitation cases are provisionally divided into 24 RA, 20 RASN, and 87 SN cases.  200 

 

 

Figure 3. Normalized frequency distribution of FRA of pure rainfall cases with TAWS > 7 °C during the ICE-POP period at (a) GWU, 

(b) BKC, (c) SCW, (d) MOO, and (e) DGW. The black solid line is cumulative NF and the black dotted line is the 0.05 threshold. 
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In the third step, we manually examine the classification results using Vt -D scatterplots and redetermine the WPT of some 205 

cases that are clearly misclassified. Two RA cases and a SN case that have multiple curves in the Vt -D scatterplots are 

reclassified as RASN. Four RASN cases with a single curve similar to an empirical RA curve (Atlas et al., 1973) are reclassified 

as RA. Another four RASN cases with a single curve similar to an empirical graupel curve (Lee et al., 2015) are reclassified 

as SN. Two SN cases with a widely scattered distribution in their Vt-D scatterplot despite weak wind conditions (< 3 m s-1) at 

the near-surface are reclassified as RASN. Two RASN cases with predominantly small snowflakes with various fall speeds 210 

are reclassified as SN because the cases are characterized by strong wind (≥ 9 m s-1) near the surface and at low levels (< 1 

km AGL), strong speed shear (≥ 5 m s-1 per km), and very cold conditions (maximum Tw in sounding profile ≤ –3 °C). Strong 

wind shear can lead to greater turbulence, thus generating tiny snowflakes (Dedekind et al., 2023) with chaotic movement that 

are more likely to be erroneously classified as RASN.  

Following this redetermination step, a total of 26 RA, 15 RASN, and 90 SN cases are identified. The number of matched 215 

precipitation cases by observation site and WPT are listed in Table 1. More than half of the SN cases (56 of 90) occur at 

mountain sites (DGW and MOO), whereas many of the RA cases (17 of 26) occur at coastal sites (SCW, GWU, and BKC). A 

similar number of RASN cases occur at both site types.   

 

Table 1. The number of matched precipitation cases for each observation site and WPT.  220 

Observation site Number SN RASN RA 

SCW 20 11 4 5 

GWU 10 4 2 4 

BKC 29 19 2 8 

DGW 37 33 2 2 

MOO 35 23 5 7 

Total 131 90 15 26 

 

 

3.2 Winter precipitation type diagnosis methods 

The efficacy of the SBM and four empirical methods for diagnosing WPT is evaluated using the observed sounding data. 

Nomograms for the WPT for each of the four empirical methods are presented in Fig. 4. H850 diagnoses the WPT based on a 225 

threshold 1000–850 hPa thickness that is empirically determined (Fig. 4a; Lee et al., 2014). H850 is calculated as follows:  

  

H850 =
𝑅𝑑 𝑇𝑣̅̅ ̅

𝑔
ln

𝑃1

𝑃2
                           (2) 
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{

RA: H850 ≥  HRA 
SN: H850 <  HSN

RASN: HSN ≤ H850 < HRA

                                                                                                        (3) 

 230 

where Rd is the dry air constant (287 J K-1 kg-1), 𝑔 is the standard gravitational acceleration (m s-2), P1 is 1000 hPa, P2 is 850 

hPa, and 𝑇�̅� is the mean Tv between 850 hPa and 1000 hPa. Tv is calculated as a function of T, P, and RH (Lin, 2016). When 

the 1000 hPa data are unavailable, such as at the high-altitude sites (DGW and MOO), we use the 𝑇𝑣 at 925 hPa as an alternative 

for 𝑇�̅�. The diagnosed WPT is SN if H850 is lower than HSN, while it is RA if H850 is higher than HRA. When H850 is between 

HSN and HRA, the diagnosed WPT is RASN. Lee et al. (2014) determined that the HSN and HRA of South Korea at low-altitude 235 

sites (< 100 m MSL) are 1281 gpm and 1297 gpm, respectively, whereas the HSN and HRA of DGW are 1299 gpm and 1313 

gpm, respectively. The WPTs at GWU, BKC, and SCW are diagnosed using the former critical values, while DGW and MOO 

are diagnosed using the latter. The reason for using different critical values is that GWU, BKC, and SCW are located near the 

East sea at a low altitude and east of the Taebaek mountains whereas DGW and MOO are located within the Taebaek mountains 

and have a relatively higher altitude (Fig. 1a). 240 

 

 

Figure 4. Nomograms for diagnosis of WPT. The different colors indicate SN (red), RASN (green), and RA (blue). Classification of 

WPT by using (a) H850 and (b) RH0-T0 graph are shown with the dashed lines suggested in Lee et al. (2014). (c) Probability function 

(solid line) of SN as a function of the wet-bulb temperature at surface, Tw0 (Haggmark and Ivarsson, 1997). (d) Probability 245 
distribution (solid and dashed lines) of SN on Tw0-Γlow graph for land areas (Sims and Liu, 2015). Here, the subscript ‘0’ indicate the 

near-surface value. 
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The RH0-T0 method employs the shifted Matsuo scheme suggested by Lee et al. (2014). Figure 4b presents the diagnosed 

WPTs based on the RH0-T0 plot, with the two dashed lines derived from the following equations (Lee et al., 2014):  

 250 

RH0 =  −12 𝑇0 + 120                          (4) 

 

RH0 =  −
100

13
 𝑇0 + 89.5                           (5) 

 

where T0 and RH0 are in °C and %, respectively. Equations (4) and (5) are used to separate RA from RASN and RASN from 255 

SN, respectively.  

 Third, the Tw0 method uses the probability of SN as a function of Tw0 to diagnose WPT (Fig. 4c, Häggmark et al., 2000). 

We used threshold probability values of 10% and 90% for the classification of WPT. Thus, the diagnosed WPT is SN if the 

wet-bulb temperature at the surface (Tw0) is lower than 0.5 °C, whereas it is classified as RA if Tw0 is larger than 1.8 °C. When 

0.5 °C ≤ Tw0 < 1.8 °C, the diagnosed WPT is RASN. Other probability values (20/80% and 30/70%) are also explored. 260 

Using global surface-based (land station and shipboard) observations over multiple decades, Sims and Liu (2015) studied 

the influence of various geophysical parameters on precipitation phase, including near-surface air T, atmospheric moisture, the 

low-level vertical T lapse rate (Γlow), surface skin temperature, surface pressure, and land cover type. Because snow melting 

occurs at close to Tw (~0 °C) instead of the actual air T, they evaluated the SN-RA transition using Tw instead of air T. Their 

analysis indicated that, in addition to Tw, the vertical T lapse rate between the surface and 500 m significantly affects the 265 

precipitation phase. For example, at a near-surface Tw of 0 °C, a lapse rate of 4 °C km-1 results in a conditional probability of 

0.814 for solid precipitation, while a lapse rate of –3 °C km-1 (inversion) results in a probability of 0.404 (Fig. 4d: conditional 

probability of solid precipitation on land). Based on this finding, they developed a WPT diagnostic scheme that employs Tw 

and Γlow as inputs and returns the conditional probability of solid precipitation. The conditional probability was derived by the 

ratio of the number of solid precipitation cases divided by the number of any precipitation cases under the prescribed Tw and 270 

Γlow conditions. This algorithm has been incorporated into the current Global Precipitation Measurement (GPM) mission 

algorithm used to determine precipitation phases (Huffman et al. 2020). Because the probability is computed using global data 

without accounting for regional and/or synoptic weather dependencies, its performance over the ICE-POP 2018 domain has 

not been examined. Similar to the previous method, threshold probabilities of 0.1 and 0.9 are used to classify the WPT using 

the Tw0-Γlow method (Fig. 4d), though other threshold values (0.2/0.8 and 0.3/0.7) are also explored. Γlow is defined as  275 

 

 Γlow =
(𝑇0m AGL−𝑇500m AGL)

0.5 km
                           (6) 

     

As described in Sect. 1, the SBM simulates the characteristics of precipitation particles across the size spectrum as they fall 

through the ambient environment. Figure 5a presents the general process used by the SBM. When initialized from an external 280 
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sounding (as done in this study), the cloud top is denoted as the highest height with a RH of at least 80% (Reeves et al., 2016). 

From the cloud top to the surface, environmental variables are then calculated and interpolated to a 10-m vertical grid spacing. 

Because the particle bins are independent (i.e., no aggregation/breakup is accounted for), the SBM loops through each height 

level for a given particle size bin before considering the next larger size. Sublimation occurs in environments subsaturated 

with respect to ice if the particles have no meltwater; if the particles do contain meltwater, evaporation occurs if the 285 

environment is subsaturated with respect to water. Similarly, melting occurs if there is ice mass remaining and the surface T 

of the particle reaches 0 C. Refreezing occurs under two conditions: if there is both liquid and ice present in a particle and the 

Tw is below 0 C, or if the Tw is at or below the nucleation T (Tc, C) regardless of the remaining ice mass because re-nucleation 

is assumed to occur. Each microphysical process results in temporal trends in either the ice and/or water mass, which is used 

to calculate the total change in ice or water mass within a given grid level based on the particle residence time. After this, all 290 

of the particle properties (e.g., density and terminal fall velocity) are updated to reflect the new mass and composition of each 

particle, and these serve as the initial particle properties for the subsequent grid level. This process continues until the bin is 

empty (i.e., the entire particle mass has sublimated or evaporated) or until the surface is reached. For more details, see Reeves 

et al. (2016) and Carlin and Ryzhkov (2019).  

 295 

 

Figure 5. (a) Flow chart describing the SBM structure (adapted from Reeves et al., 2016; Carlin and Ryzhkov, 2019). (b) Contoured 

frequency by altitude diagram (CFAD) of RH from rawinsonde data for the 131 matched precipitation cases. 

 

Once all of the particle characteristics at the ground level have been calculated, an overall WPT classification is determined 300 

based on the rainfall rate (R; mm h-1) and snowfall rate (SR; mm h-1) calculated from the ground PSD. The WPT logic of 

1DSBM-19 considers the relative fractions of R and SR, the cloud-top T (to determine whether ice nucleation occurs), the 

number of times the Tw profile crosses 0 C, and the surface Tw (Reeves et al., 2016) to determine which of the six WPTs is 
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dominant. However, in the present study, we are primarily interested in RA, SN, and RASN only. Therefore, we simplify the 

classification scheme of 1DSBM-19 as follows: 305 

 

{
RA: 𝑅 > 0 mm h−1 and 𝑆𝑅 = 0 mm h−1 
SN: 𝑅 = 0 mm h−1 and 𝑆𝑅 > 0 mm h−1

RASN: 𝑅 > 0 mm h−1 and 𝑆𝑅 > 0 mm h−1

                               (7) 

  

The SBM parameters used in this study are presented in Table 2. The particles are separated into 20 size bins and initialized 

as ‘unrimed low-density snow aggregates’ because there are only 13 graupel-like events among the 91 SN events following 310 

the hydrometeor classification method suggested by Lee et al. (2015). The size bins are delineated such that the equivolume 

diameters of fully melted particles of equal mass in each bin are 0.1 mm apart. The largest size bin used in this study, with a 

fully melted equivolume diameter Dmw,max of 1.95 mm, is about 2 times the mean value of the mass-weighted mean diameter 

(~ 1 mm) obtained from long-term rainfall observations in South Korea (Bang et al., 2020; Kwon et al., 2020). The Tc is set to 

–6 C following Reeves et al. (2016). The initial PSDs are assumed to be inverse exponential ( = 0) and are obtained through 315 

a statistical analysis of PARSIVEL data in the Pyeongchang region (Bang et al., 2019). The average values of N0 and  (Table 

2) are taken from the averages of the leeward and windward sites examined by Bang et al. (2019). Because the PSDs used to 

initialize the model are measured at the surface, we assume no mass growth/loss from the particles (e.g., 

evaporation/sublimation) for simplicity and instead only consider melting/refreezing. The assumption of mass conservation 

should generally be valid for this study because almost all of the precipitation cases are nearly saturated (RH > 80 %) below 5 320 

km AGL (Fig. 5b). The initial PSD is fixed for all events because of the lack of aircraft microphysical observation data and 

the exclusion of explicit aggregation/riming processes in the microphysics scheme in the current SBM. 

 

Table 2. Parameters for the SBM simulation used in this study.  

Control variable Value 

SN habit Aggregates 

rd (Riming degree) 1 (No riming) 

Bin size and Dw,max 

(in terms of melted diameter Dw)  
0.1 mm, 1.95 mm 

Tc (Nucleation temperature) -6 °C 

N0 (Intercept parameter) 5834 m-3 mm-1 

 (Slope parameter) 1.22699 mm-1 

  (Shape parameter) 0 

Thermodynamic processes Melting, (Re)freezing 

 325 
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3.3 Evaluation methods 

We evaluate the performance of the five different methods against the observed WPTs described in Sect. 3.1. We 

quantitatively evaluate the methods using the hit rate (h, %) and modified hit rate (ℎ′, %) as the skill scores:  

 

ℎ =
E

O
 × 100%                                    (8) 330 

 

ℎ′ =
1

3
(ℎSN + ℎRASN + ℎRA)  × 100%                          (9) 

 

where O is the number of observed cases, and E is the number of correctly diagnosed cases from among the observed cases 

for each method. We calculate the ℎ, ℎSN, ℎRASN, ℎRA, and ℎ′ for each of the diagnosis methods. Here, h without a subscript 335 

is the overall hit rate. h with a subscript (SN, RASN, RA) represents the accuracy for each WPT type, while ℎ′ is the average 

accuracy across all three WPTs. Additionally, skill scores that consider false alarms (F) are also calculated:  

 

CSI =
E

O+F
       (10) 

 340 

FAR =
F

E+F
       (11) 

 

where CSI is the critical success index and FAR is the false alarm rate (Shin et al. 2022). The skill scores are also compared 

between the mountain sites (DGW and MOO) and coastal sites (GWU, SCW, and BKC), and the effect of vertical Tw profiles 

on the accuracy of each diagnosis method is investigated to assess the strengths and weaknesses of each diagnosis method.  345 

We also evaluate the microphysics scheme in the SBM by analyzing cases that are misdiagnosed by the SBM. Misdiagnosis 

of the precipitation in the Pyeongchang region may occur due to regional differences in microphysical precipitation 

characteristics. In particular, the current SBM uses a snow density–diameter relationship obtained from 2D-video disdrometer 

(2DVD) data in Colorado (𝜌𝑠 = 0.178 𝐷−0.922; Brandes et al., 2007). 

A region-specific density–diameter relationship is derived from 2DVD measurements at DGW (collected by Lee et al., 2015) 350 

to reflect the microphysical characteristics of snow in this region. A power-law-based regression is performed using the 

weighted total least square (WTLS) method (Amemiya, 1997) to minimize the deviation from both the x and y axes (Lee et al., 

2015). The region-specific density-diameter relationship for this dataset that include dendrites, plates, and needles is derived 

as follows: 

 355 

𝜌𝑠 = 0.09 𝐷−1.01                    (12) 
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In this relationship, the density of the snow particles in this region is generally lower than Brandes et al. (2007), though with 

a similar inverse relationship between the diameter and density. Using this relationship to optimize the microphysical scheme 

of the SBM, we investigate the performance of the optimized model for the misdiagnosed cases.  360 

 

4. Results 

4.1 Overall accuracy of the diagnosed precipitation types 

We evaluate the performance of the H850 method, the RH0-T0 method, the Tw0 method with 10 % and 90 % probability values, 

the Tw0-Γlow method with 0.1 and 0.9 threshold values, the current SBM, and the optimized SBM (Figs. 6a–f, respectively) in 365 

terms of diagnosing the WPT of the matched precipitation cases. Overall, the optimized SBM produces the highest h (93.1 %) 

and ℎ′ (87.5 %). The lowest h is from the RH0-T0 method (71.8 %), while the lowest ℎ′ is exhibited by the Tw0 method (68.4 %). 

The H850 method (h: 72.5 %; ℎ′: 77.5 %) and the RH0-T0 method (h: 71.8 %; ℎ′: 78.0 %) have similar skill scores. The skill 

score sensitivity of the Tw0 and Tw0-Γlow methods is analyzed according to probability values (or threshold values). The skill 

scores of the Tw0 method with 20 % and 80 % probability values are h=86.3 % and ℎ′=66.6 %, compared to h=86.3 % and 370 

h′=63.7 % for probability values of 30 % and 70 % (data not shown), which are lower than those for the default 10 % and 90 % 

thresholds (Fig. 6c). In addition, the skill scores of the Tw0-Γlow method with 0.2 and 0.8 threshold values are h=88.5 % and 

ℎ′=78.8 %, while that for 0.3 and 0.7 threshold values are h=90.8 % and ℎ′=77.1 % (data not shown). The Tw0-Γlow method 

with 0.1 and 0.9 threshold values has a lower h (85.5 %) and a higher ℎ′ (85.6 %) (Fig. 6d). 

Although the H850 and RH0-T0 methods are optimized for the Korea region, their h and h′ are lower than those of the SBM 375 

and Tw0-Γlow method. The Tw0 method exhibits a relatively large difference between h (86.3%) and ℎ′ (68.4%), with the 

inclusion of Tw0 improving the diagnosis of SN because the accuracy of SN for methods that include Tw0 (Figs. 6c and 6d) is 

much higher than those that do not include Tw0 (Figs. 6a, 6b). Although the Tw0 method has the highest hSN (98.9%), a 

significant number of RASN events are misdiagnosed as SN (hRASN: 33.3%). Because the 90 % conditional probability of SN 

for land areas varies from Tw0 = – 0.1 °C at Γlow = 11 °C km-1 to Tw0 = – 4.1 °C at Γlow = – 5 °C km-1 (Sims and Liu, 2015, Fig. 380 

4d), Tw0 = 0.5 °C is too warm for the threshold. The Tw0-Γlow method approach has a higher accuracy for the diagnosis of RASN 

cases and lower accuracy for SN cases compared to the SBM. However, hRA is relatively low for the SBM (h: 69.2%), with 8 

of the 26 RA cases diagnosed as RASN, suggesting that the amount of melting differed between the simulations and the actual 

event. The diagnosis accuracy for the RA cases improves when using the optimized SBM by about 15%, while the accuracy 

for the other WPTs does not differ between the current and optimized SBMs. 385 
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Figure 6. Evaluation summary of the five diagnosis methods for 131 matched precipitation cases (all cases). The methods are (a) the 

thickness method H850, (b) shifted Matsuo scheme on a RH0 - T0 method, (c) the wet-bulb temperature method Tw0, (d) Sims and Liu 390 
scheme on the Tw0-Γlow method, (e) the current SBM, and (f) the optimized SBM. The x-axis is observed precipitation type and the 

colors indicate the fraction of the diagnosed precipitation types: red: SN, green: RASN, blue: RA. The diagnosed fraction of 

precipitation types is shown on the y-axis with the number of cases labelled in each bar. The hit rate (𝒉) and modified hit rate (𝒉′) 
are shown in the numbers on the top of each image.  

 395 
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Figure 7. Same as in Fig. 6 except for the 72 mountain cases.  

 

The matched precipitation cases are divided into mountain sites (DGW and MOO) and coastal sites (GWU, BKC, and SCW), 400 

with the skill scores presented in Figs. 7 and 8, respectively. For the mountain sites, the h (94.4 %) and ℎ′ (89.3 %) are the 

highest for the optimized SBM (94.4 % and 89.3 %, respectively) and the lowest values are observed with the RH0-T0 method 

approach (h: 76.4 %) and the Tw0 method (ℎ′: 47.6 %; hRASN: 0 %). For the coastal sites, the Tw0 method and the optimized 

SBM (h: 91.5 %) and the Tw0-Γlow method (ℎ′: 88.2 %) exhibit the highest accuracy; in contrast, the H850 produces the lowest 

accuracy (h: 62.7 %; ℎ′: 72.3 %; hSN: 47.1 %). The skill scores for the Tw0 method at the mountain sites are lower than the 405 

coastal sites, whereas the opposite is true for the H850 method and the RH0-T0 method approach. The Tw0 method exhibits 

significant differences in both hRASN and hRA with terrain, with coastal site scores exceeding mountain sites. The H850 and RH0-
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T0 methods exhibit large differences in hSN with changes in the terrain, with the mountain sites scoring higher than coastal sites. 

In contrast, the skill scores for the SBM are higher at the mountain sites compared to coastal sites, while the skill scores for 

the optimized SBM with RA cases are higher than those for the current SBM at both mountain sites and coastal sites. The h of 410 

the Tw0-Γlow method at the mountain sites is higher than the h at the coastal sites, while the ℎ′ is lower. The Tw0-Γlow method 

and the SBM exhibit considerable differences in hRA, with the Tw0-Γlow method producing a lower hRA at the mountain sites 

than the coastal sites and the SBM demonstrating the opposite.  

 

 415 

 

Figure 8. Same as in Fig. 6 except for the 59 coastal cases. 

 



19 

 

Table 3. CSI of the five diagnosis methods as event category. ‘Bolded’ (‘Underlined’) values denote the best (worst) performance 

among five diagnosis methods within each event category. 420 

Event category 

 

Diagnosis method 

All cases Mountain cases Coastal cases 

SN RASN RA SN RASN RA SN RASN RA 

H850 method 0.681 0.265 0.741 0.807 0.300 0.667 0.471 0.241 0.778 

RH0-T0 method 0.652 0.265 0.778 0.741 0.273 0.667 0.500 0.259 0.833 

Tw0 method 0.890 0.227 0.704 0.859 0 0.444 0.944 0.500 0.833 

Tw0-Γlow method 0.848 0.438 0.769 0.897 0.429 0.556 0.765 0.444 0.882 

Current SBM 0.946 0.480 0.692 0.931 0.500 0.889 0.971 0.467 0.588 

Optimized SBM 0.946 0.571 0.846 0.931 0.556 1 0.971 0.583 0.765 

 

Table 4. As in Table 3, but for FAR. 

Event category 

 

Diagnosis method 

All cases Mountain cases Costal cases 

SN RASN RA SN RASN RA SN RASN RA 

H850 method 0.016 0.723 0.048 0.021 0.684 0 0 0.750 0.067 

RH0-T0 method 0.032 0.723 0.045 0.044 0.714 0 0 0.731 0.062 

Tw0 method 0.101 0.583 0.050 0.127 1 0 0.056 0.286 0.062 

Tw0-Γlow method 0.025 0.548 0 0.037 0.538 0 0 0.556 0 

Current SBM 0.033 0.455 0 0.036 0.375 0 0.029 0.500 0 

Optimized SBM 0.033 0.333 0 0.036 0.286 0 0.029 0.364 0 

 

 

The CSI (Table 3) and FAR (Table 4) are calculated from Figs. 6, 7, and 8. The five diagnosis methods have generally lower 425 

CSI for RASN (0~0.583) and higher CSI for RA (0.667~1) and SN (0.471~0.971). Similarly, the FAR of the five diagnosis 

methods shows the highest false alarm rate for RASN (0.286~1) and the lowest false alarm rate for RA (0~0.067) and SN 

(0~0.127).  The optimized SBM shows improved CSI as compared to the current SBM and the best performance for all WPT 

categories except RA at coastal sites. The FAR of the optimized SBM is only improved for RASN.  

 430 
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4.2 Dependence of diagnosis accuracy on wet-bulb temperature profiles  

The environments of the coastal and mountain sites in the Pyeongchang region differ in many respects. In the coastal region, 

the low-level atmosphere is more humid and warmer than the mountain region due to the East Sea. The mountain region often 435 

has inversion layers near the surface due to radiative cooling, regional subsidence inversions, and cold-air damming. Near-

surface inversion layers can strongly influence the accuracy of ground-based WPT diagnosis. The difference in the altitudes 

between the two regions also affects Vt because of differences in air density. Wind shear effects associated with specific 

synoptic wind patterns can enhance riming processes in the mountains of the Pyeongchang region (Kim et al., 2021). Therefore, 

we assess the impact of the atmospheric conditions on the performance of the five methods based on the characteristics of Tw 440 

profiles. 

Figure 9 presents the observed WPTs based on the nomograms used for the four empirical methods. Figure 9a shows the 

distribution of observed WPTs using the H850 method. The H850 values for SN cases range from 1273 gpm to 1305 gpm at 

mountain sites and from 1269 gpm to 1297 gpm at coastal sites. The H850 values for RA cases range from 1297 gpm to 1329 

gpm at mountain sites and from 1289 gpm to 1321 gpm at coastal sites. The H850 values for RASN cases range from 1294 gpm 445 

to 1308 gpm at the mountain sites and from 1282 gpm to 1302 gpm at the coastal sites. A large proportion of the H850 values 

for RASN are distributed between HSN and HRA at both mountain and coastal sites. However, the H850 of many SN cases 

overlaps with that of RASN cases, with the overlap especially noticeable at coastal sites.  

Figure 9b presents RH0-T0 scatterplots with the shifted Matsuo scheme (Lee et al., 2014). Many SN cases are misdiagnosed 

as RASN due to the low T0 threshold value when RH0 > 85%. Thus, we can speculate that the advection of low-level warm 450 

and humid air (T0 = ~0 °C; RH0 > 85%) during snow is likely to increase its misdiagnosis as RASN.  

Figure 9c displays the distribution of observed WPTs using Tw0. The dashed lines at Tw0 = 0.5 °C and Tw0 = 1.8 °C represent 

the thresholds suggested by Häggmark et al. (2000). The Tw0 of SN cases ranges from –6 °C to 1 °C and that of RA cases 

ranges from –1 °C to 3.5 °C for mountain sites, compared to –6 °C to 0 °C and 1 °C to 5.5 °C for coastal sites, respectively. 

The Tw0 for RASN cases at the mountain sites ranges from –2 °C to 0.5 °C. A broad overlap of RASN and other WPTs 455 

highlights the difficulty in diagnosing WPTs in mountain regions with a single Tw0 threshold. In contrast, the distributions of 

WPTs as a function of Tw0 are much more clearly separated at the coastal sites.  

Figure 9d presents the two-dimensional distribution of observed WPTs based on the Tw0–Γlow method with a threshold snow 

probability of 0.1 and 0.9 (Sims and Liu, 2015). The Γlow of RA varies widely, though it tends toward positive values. However, 

three RA cases with Tw0 > 0 °C and Γlow  < –2 °C km-1 have a ground inversion layer at the mountain sites and two of them are 460 

misdiagnosed as RASN. In addition, two mountain cases are misdiagnosed as RA with high Γlow (> 8 °C km-1).  One is possibly 

FZRA (Tw0 ~ –1 °C) and the other (Tw0: ~ 1 °C) indicates the presence of a complex atmospheric vertical structure (i.e., a  

melting layer aloft and near-surface refreezing layer). A RASN case with a Tw0 of around –2 °C and a Γlow of ~ 8.5 °C km-1 

also requires investigation into the atmospheric vertical structure.  

 465 
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Figure 9. Representation of observed WPTs (colors) on (a) H850 histogram, (b) RH0-T0 scatterplots, (c) Tw0 histogram, and (d) Tw0-

Γlow scatterplots. The colors indicate observed WPTs: SN (red), RASN (green) and RA (blue). The circle (cross) symbols indicate 

mountain (coastal) sites. The dashed lines indicate the threshold values for diagnosing WPTs. 

 470 

The performance of each diagnosis method is also investigated as a function of the atmospheric vertical structure (i.e., the 

Tw profile) (Fig. 10–12). Figures 10a and 10b display the Tw profiles for observed SN cases at mountain and coastal sites, 

respectively, with bold lines indicating misdiagnosed cases. Figure 10 shows that characteristics of the Tw profile below 1 km 

AGL strongly influence the performance of all five diagnosis methods for SN cases. The H850 and RH0-T0 methods tend to 

misdiagnose SN as RASN when relatively warm conditions are present below 1 km AGL. This tendency is especially 475 

noticeable at coastal sites, suggesting that SN cases with relatively warm and moist environments are frequently observed at 

coastal sites in the Pyeongchang region. These cases can be accurately diagnosed as SN by using Tw0 as the threshold instead 

of T0. The Tw0-Γlow method tends to misdiagnose the WPT in some warm environments with low vertical lapse rates that occur 

at coastal sites, indicating that a slight adjustment of the Tw0 threshold is required. The two SN cases misdiagnosed by the SBM 

at the mountain sites have a very thin (< 50 m depth) near-surface warm layer (WL; a layer with Tw > 0 °C in this study), 480 
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highlighting a potential need to slightly increase the wet-bulb temperature threshold used to partition SN from RASN for very 

shallow near-surface warm layers.  

 

 

Figure 10. Tw profiles for observed SN cases occurring at (a) mountain sites and (b) coastal sites. The blue, red, and green lines 485 
indicate diagnosed RA, SN, and RASN cases, respectively, for the H850 thickness, shifted Matsuo scheme on RH0 - T0 method, wet-

bulb temperature Tw0, Tw0-Γlow method, and the current SBM methods. Bold lines indicate misdiagnosed cases.  

 

Figures 11a and 11b present the Tw profiles of the mountain and coastal sites, respectively, for RASN cases. The ground 

temperature for mountain RASN cases tends to be colder than that for coastal RASN cases, which strongly influences the 490 

performance of the wet-bulb temperature method. A RASN case at the mountain site MOO (21 UTC on 4 Mar 2018; the same 

as the cold RASN case with a Tw0 of approximately –2 °C and a Γlow of ~ 8.5 °C km-1) is misdiagnosed by all five methods. 

The Tw profile of this case has an isothermal layer at 1.7–2.2 km AGL with a Tw of about –0.5 °C. However, the PARSIVEL 

data clearly reveals the presence of liquid-phase particles (FRA = 42.55 %). We assume that melting occurs in the isothermal 

layer although there are no data revealing the presence of a warm layer, such as vertical-pointing radar data, at MOO. The 495 
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SBM misdiagnoses two mountain RASN cases and a coastal RASN case as SN. These cases have a near-surface Tw very close 

to 0 °C but slightly less than 0 °C.  

 

 

Figure 11. As in Figure 10, but for observed RASN cases. 500 

 

Figures 12a and 12b present the Tw profiles for mountain and coastal sites, respectively, for RA cases. Many RA cases at 

the mountain sites have a deep warm layer and an inversion layer below 1.5 km AGL (the black dotted oval in Fig. 12a) 

whereas RA cases with a shallow warm layer and no inversion layer frequently occur at the coastal sites (the black dotted oval 

in Fig. 12b). The SBM performs well in the former scenario but poorly in the latter. Other methods produce the opposite results, 505 

with superior performance at the coastal sites. The presence of inversion layers makes diagnosis based solely on ground 

conditions difficult. The SBM simulations sufficiently melt all particles within deep warm layers (i.e., 500–1500 m) in the 

former scenario. However, some cases of misdiagnosed RA have relatively shallow warm layer depths (< 500 m). The SBM 

simulations diagnose RASN for these cases because of the incomplete melting of large particles. For some cases with complex 
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atmospheric profiles, the SBM diagnoses RASN for FZRA-like cases (the red arrow in Fig. 12a) with a single warm layer and 510 

single cold layer (a layer with Tw < 0 °C below the warm layer in the present study) and for two cases with double warm layers 

and a single cold layer (the red arrow in Fig. 12b).  

  

 

Figure 12. As in Figure 10, but for observed RA cases. The arrows denote misclassified profiles that are discussed further in section 515 
4.2. 

 

4.3 Analysis of the misdiagnosed cases and optimization of the Spectral Bin Model 

Overall, the SBM misdiagnoses two observed SN cases, three observed RASN cases, and eight observed RA cases. The 

misdiagnosed SN cases have a very shallow warm layer near the ground. The misdiagnosed RASN cases have no warm layer 520 

in the Tw profile but the maximum Tw in the sounding profile is very close to 0 °C. We hypothesize that observation or 

representativeness errors in the sounding may play an important role in the misdiagnosis of these SN and RASN cases. For 



25 

 

example, there are hardware errors of the rawinsonde sensor. Changes in the rawinsonde path due to variation in wind speed 

and/or direction also can influence the diagnosis of the WPT because the atmosphere is not homogeneous. 

The eight misdiagnosed RA cases are listed in Table 5. Warm layer depth is defined as the depth of the layer with Tw > 0 °C 525 

in the Tw profile. We divide the cases into three groups according to the warm layer depth and the number of warm layers: (1) 

a single warm layer with a depth of more than 400 m, (2) a single warm layer with a depth of less than 400 m and low-level 

warm advection, or (3) double warm layers. Group 1 has a warm layer with a depth of 400–600 m, Group 2 has a warm layer 

with a depth of 200–400 m and southerly flow at low levels, and Group 3 has a cold layer between a surface warm layer and 

a higher warm layer. 530 

 

Table 5. The description of RA cases misdiagnosed by the SBM. Here, warm layer depth is defined as the depth of the Tw > 0 °C 

layer in the profile. ‘Aloft’ indicates that the layer is not adjoined to the surface.  

Group name Date/Time Site Warm layer depth AGL with Tw = 0 °C 

(1) Single warm layer  

with depth > 400 m 

28 Feb  2018 / 09 UTC BKC 480 m 480 m 

28 Feb  2018 / 12 UTC BKC 440 m 440 m 

28 Feb  2018 / 12 UTC GWU 410 m 410 m 

15 Mar  2018 / 15 UTC MOO 660 m (aloft) 1810 m, 1150 m 

(2) Single warm layer 

with depth < 400 m   

and low-level  

warm advection 

07 Mar 2018 / 12 UTC GWU 200 m 200 m 

07 Mar 2018 / 15 UTC SCW 170 m 170 m 

(3) Double warm layer 
15 Mar  2018 / 12 UTC GWU 660 m (aloft), 470 m 2400 m, 1740 m, 470 m 

15 Mar  2018 / 12 UTC BKC 730 m (aloft), 280 m 2330 m, 1600 m, 280 m 

 

 535 

Only a representative example from each group is shown because each group has similar atmospheric environmental 

characteristics. We also compare the simulation results between the current and optimized SBMs. Figure 13 presents the 

environmental profiles from the rawinsondes and Vt–D scatterplots from the corresponding PARSIVEL taken at around 1200 

UTC 28 Feb 2018 from GWU in Group 1 (Fig. 13a,d), 1200 UTC 7 Mar 2018 from GWU in Group 2 (Fig. 13b,e), and 1200 

UTC 15 Mar 2018 from GWU in Group 3 (Fig. 13c,f). A wide distribution of raindrop sizes (Dmax: ~ 4.25 mm) following the 540 

RA curve is presented in Fig. 13d for a 400-m warm layer with strong easterly winds (Fig. 13a). In contrast, a narrow raindrop 

size distribution (Dmax: ~ 1.62 mm) following the RA curve is displayed in Fig. 13e for a 200-m warm layer with strong low-

level southerly winds (Fig. 13b). Fig. 13f also shows a relatively narrow raindrop size distribution (Dmax: ~ 2.5 mm) with the 

matched profile characterized by an elevated warm layer and another warm layer near the ground (Fig. 13c). 

 545 
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Figure 13. Environmental profiles (a-c) from rawinsondes and (d-f) Vt - D scatterplots from PARSIVELs for Event 1, Event 2 and 

Event 3, respectively. The blue solid (dotted) line in environmental profile indicates T (Tw) and the grey solid line is RH. ‘P’ (Plate), 

‘D’ (Dendrite), ‘G’ (Graupel), and 'N’ (Needle) in the scatterplots depict empirical size-fall speed relationships suggested by Lee et 550 
al. (2015). ‘R’ (Raindrop) is the empirical relationship suggested by Atlas et al. (1973). The Yuter et al. (2006) scheme is marked as 

blue solid line in the scatterplots. 

 

Figure 14 presents the relationship between the height and liquid water fraction (fw) for the current and optimized SBMs as 

a function of the particle size for the cases shown in Fig. 13. The simulation results from the current SBM for Event 1 show 555 

the incomplete melting of large particles (> 1.75 mm) (Fig. 14a), whereas the fw distribution from the optimized SBM shows 

complete melting of all particles at 200 m AGL (Fig. 14e). The simulation results for Event 2 show that particles with a Dw of 

≤ 1.05 mm completely melt in the current SBM, compared with 1.35 mm for the optimized version (Figs. 14b and 14f); the 

optimized SBM simulation significantly increases the amount of melting. However, the maximum diameter with complete 

melting (~ 1.35 mm) in the simulation is still slightly smaller than the observed Dmax (~ 1.62 mm). This difference could be 560 

the result of three sources of error: northward advection of the rawinsonde due to low-level southerly winds, hardware 

calibration issues for the GWU PARSIVEL, and/or the growth of raindrops via a collision–coalescence process. Collision-

coalescence is also an important factor for the classification of WPT because the process increases the average raindrop size 
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and decreases the number concentration of small drops. However, this process is not currently included in the SBM owing to 

algorithm efficiency demands but it is a major area for future improvement.  565 

 

 
 
Figure 14.  Liquid water fraction distribution as a function of height and Dw for Event 1, Event 2, and Event 3. (a)~(d) Simulation 

result of the SBM, (e)~(g) Simulation result of the optimized SBM. 570 

 

Simulation results for Event 3 (Figs. 14c and 14g) show melting, refreezing, and additional melting during the descent of 

the particles from the cloud top to the ground. At the surface, the melting of large particles is incomplete in both the current 

SBM and optimized SBM although a deep warm layer (depth: ~ 500 m) below the cold layer is present. The SBM assumes 

that the fall speed of the particles undergoing refreezing follows the relationship for IPs suggested by Kumjian et al. (2012). 575 

Because IPs generally have a larger density and fall velocity than snowflakes, the melting speed for IPs is relatively slow. To 

better understand Event 3, we analyzed MRR data. Figure 15 presents the time–height series for Z and -Vr observed by the 

MRR at GWW on 15 Mar 2018. Near the sounding time, the precipitation system drastically changes from a shallow system 

(cloud top of ~ 1.5 km AGL) to a seeder-feeder system (cloud top of ~ 3.5 km AGL) (Figs. 15a and 15b). It is possible that 

the rawinsonde sensor passed the feeder–seeder system but the ground precipitation observed by the PARSIVEL appears to 580 
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originate from the shallow system observed earlier in the time series. Indeed, the Doppler fall velocities measured by the MRR 

from the sounding time onward between 1.0 and 1.5 km AGL are relatively slow and are unlikely to correspond to IPs as 

suggested by the SBM when initialized with a higher cloud top (Fig. 14c,g). Therefore, we re-run the SBM simulation with 

the cloud top set to 1.5 km. The simulation results from this new run are shown in Figs. 14d and 14h. Both the SBM and the 

optimized SBM show an increase in melting amount in the warm layer near the ground compared to Figs. 14c and 14g, with 585 

the optimized SBM simulating the complete melting of all particles by 200 m AGL.  

 

 
Figure 15.  (a) Z and (b) -Vr timeseries observed from the MRR in GWW on 15 Mar 2018. Solid dotted line indicates sounding start 

time of Event 3. 590 

 

In summary, the potential main causes of the misdiagnosis of RA cases when using the SBM are suboptimal microphysical 

assumptions and sources of error in the input data. Optimization of the microphysics scheme using data from the Pyeongchang 

region significantly increases the amount of melting compared to simulations using the current microphysics scheme in the 

SBM. Among the eight misdiagnosed cases in the SBM, four are correctly diagnosed by the optimized SBM. If a more accurate 595 

cloud top is also considered, two more cases are correctly diagnosed by the optimized SBM. These results indicate that using 

accurate cloud top information can produce more reasonable SBM simulations. Although Group 2 cases are still misdiagnosed 

by the optimized SBM, the simulation accuracy could be further improved if information on horizontal advection and the 

maximum particle size are considered.  
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5. Summary and future work 600 

The performance of the SBM in diagnosing WPT was evaluated through a comparison with other empirical/statistical 

methods (H850 method, RH0-T0 method, Tw0 method, and Tw0-Γlow method) for 131 matched precipitation cases during the ICE-

POP 2018 period. The observed WPTs were determined from 5-min PARSIVEL data using a newly designed decision tree 

algorithm. This algorithm classified the three WPTs—SN, RASN, and RA—using FRA and FSN based on the Yuter et al. (2006) 

scheme and manual analysis of Vt - D scatterplots. The WPTs diagnosed by the five methods were obtained using matched 605 

sounding data. A simplified WPT classification scheme for the SBM using R and SR was used, even though the SBM can 

classify additional WPTs. Various skill scores (h, h ′ , hSN, hRASN, hRA, CSI, and FAR) were calculated to evaluate the 

performance of the diagnosis methods. In addition to the overall skill scores, the effect of the WPTs (SN, RASN, and RA), 

terrain (i.e., mountain vs. coastal sites), and atmospheric vertical structure (Tw profiles) on the performance of the compared 

methods was examined.  610 

The current SBM (which ranked 1st for h) and the Tw0-Γlow method approach (which ranked 1st for h′) achieved higher 

scores than the other methods for all matched precipitation cases. The accuracy of the SBM was highest for the mountain sites, 

whereas the accuracy of the Tw0 and Tw0-Γlow methods was highest for the coastal sites. Coastal SN cases featuring relatively 

warm and moist environments can lead to misdiagnosis when using the H850 and RH0-T0 methods. Most of the RASN cases 

that occurred at the mountain sites were characterized by a very shallow warm layer near the surface. These cases led to poor 615 

diagnosis using the wet-bulb temperature method. Ground-based or low-level-based methods showed low accuracy for 

mountain RA cases with a near-ground inversion layer, whereas the SBM performed well for these cases. Conversely, the 

SBM exhibited relatively poor accuracy for some coastal RA cases with a warm layer depth of less than 500 m. These results 

suggested that SBM simulations tend to produce less melting compared to the observed precipitation. 

The microphysics scheme used in the SBM was evaluated by analyzing three groups of misdiagnosed RA cases: those with 620 

a single warm layer with a depth more than 400 m, those with a single warm layer with a depth less than 400 m and low-level 

warm advection, and those with double warm layers. We also attempted to optimize the microphysics scheme of the SBM 

using a region-specific density–diameter relationship and compare the simulations between the current and optimized SBMs 

for the three groups. Overall, the optimized SBM demonstrated an increased amount of melting and improved skill scores (h, 

h′, CSI for RASN and RA, FAR for RASN) than the current SBM. The optimized SBM also correctly diagnosed the WPT of 625 

the double warm layer group when more representative cloud top height data were used. 

The potential of the SBM for diagnosing the WPT was thus confirmed in the present study. The performance of the current 

SBM was superior to some existing optimized methods (the H850 and RH0-T0 methods) and the skill scores were improved 

further via regional optimization of the SBM’s microphysics scheme. Furthermore, there is a need to verify the microphysics 

scheme in the SBM in more detail, such as for IP events and so on. We will focus on the development of a combined SBM 630 

with 3-dimensional reanalysis field data (e.g. Local Data Assimilation and Prediction System) for the acquisition of three-
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dimensional WPT information. Accurate three-dimensional WPT information will be helpful for various fields such as aviation 

warning, understanding detail structure of cloud/precipitation system and so on.  

 

 635 

Code and data availability. The source code of SBM (version 1DSBM-19M) is available at https://doi.org/10.5281/zenodo. 

14350651 (Carlin et al. 2024). The model output of SBM (version 1DSBM-19M) used in this study is available at 

https://doi.org/10.5281/zenodo.14353025 (Bang and Lee, 2024). The processed PARSIVEL, sounding, and AWS dataset used 

in this study are available at https://doi.org/10.5281/zenodo.14351937 (Bang et al. 2024). The new decision tree algorithm of 

surface precipitation type for PARSIVEL data and final decision results are available at 640 

https://doi.org/10.5281/zenodo.14353519 (Bang et al. 2024). The plotting program for MRR data is available at 

https://doi.org/10.5281/zenodo.14352684 (Bang and Kim, 2024). Finally, the calculation and plotting program for the 5 

diagnosis methods are available at https://doi.org/10.5281/zenodo.14354011 (Bang et al. 2024). 

 

Appendix: List of Acronyms 645 

 

1DSBM One-Dimensional Spectral Bin Model 

AGL Above Ground Level 

AWS Automatic Weather Station 

BKC Bokwang1-ri Community Center 

CFAD Contoured Frequency by Altitude Diagram 

CSI Critical Success Index 

DGW Daegwallyeong Regional Weather Office 

FAR False Alarm Rate 

FMCW Frequency Modulated Continuous Wave 

FZRA Freezing Rain 

GPM Global Precipitation Measurement 

GWU Gangneung-Wonju National University 

GWW Gangwon Weather Administration 

HRRR High-Resolution Rapid Refresh 

ICE-POP International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic Winter Games 

campaign 

IP Ice Pellet 

IPFZRA Mixture of Ice Pellets and Freezing Rain 
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MOO Myeonon Observatory 

MRR Micro Rain Radar 

MSL Mean Sea Level 

NF Normalized Frequency 

PARSIVEL PARticle SIze VELocity 

PDF Probability Density Function 

PSD Particle Size Distribution 

RA Rain 

RASN Mixture of Rain and Snow 

RH Relative Humidity 

SBM Spectral Bin Model 

SCW Sokcho Weather Administration 

SN Snow 

AWS Automatic Weather Station 

T Temperature 

WPT Winter Precipitation Type 

WTLS Weighted Total Least Square 
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