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Abstract 9 

This study proposed a Comprehensive Index (CI) that jointly considers bias correction 10 

performance metrics and uncertainty to guide the selection of quantile mapping methods. This 11 

approach reveals not only a performance-based ranking of bias correction methods but also 12 

how optimal method choices shift as the uncertainty weight varies. This study evaluated daily 13 

precipitation performance from 11 CMIP6 GCMs corrected by Quantile Delta Mapping 14 

(QDM), Empirical Quantile Mapping (EQM), and Detrended Quantile Mapping (DQM) using 15 

ten evaluation metrics and applied TOPSIS (Technique for Order Preference by Similarity to 16 

an Ideal Solution) to compute performance-based rankings. Furthermore, Bayesian Model 17 

Averaging (BMA) was used to quantify both individual model and ensemble prediction 18 

uncertainties. Moreover, entropy based weighting of the ten evaluation metrics reveals that 19 

error based measures such as RMSE and MAE carry the highest information content (weights 20 

0.13-0.28 and 0.15-0.22, respectively). By aggregating TOPSIS performance scores with BMA 21 

uncertainty measures, this study developed CI. Results show that EQM achieved the best 22 

performance across most metrics 0.30 (RMSE), 0.18 (MAE), 0.98 (R²), 0.87 (KGE), 0.93 23 

(NSE), and 0.99 (EVS) and exhibited the lowest uncertainty (variance = 0.0027) across all 24 

continents. QDM outperformed other methods in certain regions, reaching its lowest model 25 

uncertainty (variance = 0.0025) in South America. EQM was selected most frequently under 26 

all weighting scenarios, while DQM was least chosen. In South America, DQM was preferred 27 

more often than QDM when performance was emphasized, whereas the opposite occurred 28 

when uncertainty was emphasized. These findings suggest that incorporating uncertainty leads 29 

to spatially heterogeneous and parameter dependent changes in optimal bias correction method 30 

choice that would be overlooked by metric only selection. 31 
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1. Introduction 35 

The Coupled Model Intercomparison Project (CMIP) General Circulation Models 36 

(GCMs) have provided critical scientific evidence to explore climate change (IPCC, 2021; 37 

IPCC, 2022). Nevertheless, GCMs exhibit significant biases compared to observational data 38 

for reasons such as incomplete model parameterization and inadequate understanding of key 39 

physical processes (Evin et al., 2024; Zhang et al., 2024; Nair et al., 2023). These deficiencies 40 

with GCM have introduced various uncertainties in climate projections, making ensuring 41 

sufficient reliability in climate change impact assessments difficult. In this context, many 42 

studies have proposed various bias correction methods to reduce the discrepancies between 43 

observational data and GCM simulations, thereby providing more stable results than raw GCM-44 

based assessments (Cannon et al., 2015; Themeßl et al., 2012; Piani et al., 2010). Despite these 45 

advancements, the suggested bias correction methods differ in their statistical approaches, 46 

resulting in discrepancies in the climate variables adjusted for historical periods. Furthermore, 47 

the distribution of precipitation across continents and specific locations causes variations in the 48 

correction outcomes depending on the method used, which makes it challenging to reflect 49 

extreme climate events in future projections and adds another layer of confusion to climate 50 

change research (Song et al., 2022b; Maraun, 2013; Ehret et al., 2012; Enayati et al., 2021). 51 

Thus, exploring multiple aspects to make reasonable selections when applying bias correction 52 

methods specific to each continent and region is necessary.  53 

Many studies have developed appropriate bias correction methods based on various 54 

theories, which have reduced the difference between raw GCM simulations and observed 55 

precipitation (Abdelmoaty and Papalexiou, 2023; Shanmugam et al., 2024; Rahimi et al., 2021). 56 

The Quantile Mapping (QM) series has been widely adopted among bias correction methods 57 

due to its conceptual simplicity, ease of application, and adaptability to various methodologies. 58 

However, although standard QM methods have high performance in correcting stationary 59 

precipitation, they are less efficient in non-stationary data, such as extreme precipitation events 60 

(Song et al., 2022b). To address these limitations, recent studies proposed an improved QM 61 

approach to reflect future non-stationary precipitation across all quantiles of historical 62 

precipitation (Rajulapati and Papalexiou, 2023; Cannon et al., 2015; Cannon, 2018; Song et al., 63 

2022b). In recent years, climate studies using GCMs have adopted several improved QM 64 

methods that offer higher performance than previous methods to correct historical precipitation 65 

and project it accurately into the future. For example, Song et al. (2022b) performed bias 66 
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correction on daily historical precipitation over South Korea using distribution transformation 67 

methods they developed and found that the best QM method varied depending on the station. 68 

Additionally, previous studies have reported that QM performance varied by grid and station 69 

(Ishizaki et al., 2022; Chua et al., 2022). Furthermore, they compared the extreme precipitation 70 

of GCMs using the GEV distribution, which allows for more effective estimation of extreme 71 

precipitation, and demonstrated that the performance in estimating extreme precipitation varies 72 

according to different bias correction methods. From this perspective, these improved QMs 73 

may only guarantee uniform results across some grids and regions. Therefore, to analyze 74 

positive changes in future climate impact assessments, selecting appropriate bias correction 75 

methods based on a robust framework is essential. 76 

Multi-criteria decision analysis (MCDA) is efficient for prioritization because it can 77 

aggregate diverse information from various alternatives. MCDA has been extensively used 78 

across different fields to select suitable alternatives, with numerous studies confirming its 79 

stability in priority selection (Chae et al., 2022; Chung and Kim, 2014; Song et al., 2024a). 80 

Moreover, MCDA has been employed in future climate change studies to provide reasonable 81 

solutions to emerging problems, including the selection of bias correction methods for specific 82 

regions and countries (Homsi et al., 2019; Saranya and Vinish, 2021). Technique for Order 83 

Preference by Similarity to Ideal Solution (TOPSIS) is effectively utilized in our study's 84 

MCDA framework by integrating multiple evaluation metrics and calculating the distance 85 

between each alternative and the ideal solution, thereby enabling clear and intuitive 86 

prioritization decisions. However, MCDA's effectiveness is sensitive to the source and quality 87 

of alternatives, making accurate ranking challenging when information is lacking or overly 88 

focused on specific criteria (Song and Chung, 2016). Small-scale regional and observation-89 

based studies have conducted GCM performance evaluations, but global and continental-scale 90 

evaluations are rare due to the substantial time and cost required. 91 

GCM simulation includes uncertainties from various sources, such as model structure, 92 

initial condition, boundary condition, and parameters (Pathak et al., 2023; Cox and Stephenson, 93 

2007; Yip et al., 2011; Woldemeskel et al., 2014). The selection of bias correction methods 94 

contributes significantly to uncertainty in climate change research using GCMs. Jobst et al. 95 

(2018) argued that GHG emission scenarios, bias correction methods, and GCMs are primary 96 

sources of uncertainty in climate change assessments across various fields. The extensive 97 

uncertainties in GCMs complicate the efficient establishment of adaptation and mitigation 98 
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policies. This issue has increased awareness of the uncertainties inherent in historical 99 

simulations. Consequently, many studies have focused on estimating uncertainties using 100 

diverse methods to quantify these uncertainties (Giorgi and Mearns, 2002; Song et al., 2022a; 101 

Song et al., 2023). Although it is impossible to drastically reduce the uncertainty of GCM 102 

outputs due to the unpredictable nature of climate phenomena, uncertainties in GCM 103 

simulations can be reduced using ensemble principles, such as multi-model ensemble 104 

development using a rational approach (Song et al., 2024). However, accurately identifying 105 

biases in precipitation simulation remains challenging due to the lack of comprehensive 106 

equations reflecting Earth's physical processes. In this context, climate change studies have 107 

aimed to quantify the uncertainty of historical climate variables in GCMs, offering insights into 108 

the variability of GCM simulations (Pathak et al., 2023). Bias-corrected precipitation of GCMs 109 

using QM has shown high performance in the historical period, which is expected to result in 110 

better future predictions. However, the physical concepts of various QMs may lead to more 111 

significant uncertainty in the future (Lafferty et al., 2023). Therefore, efforts should be made 112 

to consider and reduce uncertainty in the GCM selection process. It will ensure the reliability 113 

of predictions by selecting an appropriate bias-correcting method. Furthermore, Bayesian 114 

Model Averaging (BMA) plays a crucial role in quantifying the predictive uncertainty of 115 

multiple climate models and enhancing the reliability of the final predictions, which is why it 116 

has been employed as an indispensable tool in our integrated evaluation. 117 

In light of the challenges outlined above, including discrepancies among bias 118 

correction methods, regional variability in precipitation distributions, and significant 119 

uncertainties in GCM outputs, there is a clear need for an integrated framework that evaluates 120 

the performance of various QM methods and quantifies their associated uncertainties. This 121 

study aims to compare the performance of three bias correction methods using daily historical 122 

precipitation data (1980-2014) from CMIP6 GCMs across six continents (South America: SA; 123 

North America: NA; Africa: AF; Europe: EU; Asia: AS; and Oceania: OA). Ten evaluation 124 

metrics were used to assess the performance of daily precipitation corrected by the three QM 125 

methods for each continent. Subsequently, the Technique for Order of Preference by Similarity 126 

to Ideal Solution (TOPSIS) of MCDA was applied to select an appropriate bias correction 127 

method for each continent. Additionally, the uncertainty in daily precipitation for historical 128 

periods was quantified using BMA. By integrating performance scores from TOPSIS and 129 

uncertainty metrics from BMA, this study developed a Comprehensive Index (CI), which was 130 
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then used to select the best bias correction method for each continent. This comprehensive 131 

approach ensures a balanced consideration of both performance and uncertainty, enhancing 132 

understanding of the bias correction process based on the distribution of daily precipitation 133 

across continents. 134 

 135 

2. Datasets and methods 136 

2.1 General Circulation Model 137 

This study used 11 CMIP6 GCM to perform bias correction for daily precipitation in the 138 

historical period. The variant label for the GCMs used in this study was r1i1p1f1. Table 1 139 

presents basic information, including model names, resolution. The model resolution of 11 140 

CMIP6 GCMs was equally re-gridded to 1°×1° using linear interpolation. Furthermore, this 141 

study's ensemble member of CMIP6 GCMs was the first member of realizations (r1). 142 

 143 

Table 1. Information of CMIP6 GCMs in this study 144 

Institution Models Resolution 
Commonwealth scientific and industrial research 

organization/ Australia 

ACCESS-CM2 1.2° × 1.8° 
ACCESS-ESM1-5 1.2° × 1.8° 

Beijing Climate Center/China BCC-CSM2-MR 1.1° × 1.1° 
Canadian Centre for Climate Modeling and 

Analysis/ Canada 

CanESM5 
2.8° × 2.8° 

National Center for Atmospheric Research CESM2-WACCM 0.9° × 1.3° 
Euro-Mediterranean Center on Climate Change 

coupled climate model/ Italy 

CMCC-CM2-SR5 ~ 0.9° 
CMCC-ESM2 0.9° × 1.25° 

EC-Earth Climate Model Consortium/ EC-EARTH 

consortium 
EC-Earth3-Veg-LR 1.0° × 1.0° 

National Oceanic and Atmospheric Administration/ 

United States 
GFDL-ESM4 1.4° × 1.4° 

Institute for Numerical Mathematics/ Russia INM-CM4-8 ~ 0.9° 
Institute Pierre Simon Laplace/ France IPSL-CM6A-LR 1.1° × 1.1° 

 145 

2.2 Reference data 146 

This study utilized re-gridded precipitation data derived from ERA5 reanalysis products 147 

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The 148 

original ERA5 precipitation data, available at a 0.25° × 0.25° spatial resolution, was re-gridded 149 

to a 1.0° × 1.0° resolution using the Python library xESMF. The data units were converted from 150 

meters per day (m/day) to millimeters per day (mm/day) for consistency with other datasets. 151 

The dataset is part of the FROGS (Frequent Rainfall Observations on Grids) database, which 152 
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integrates various precipitation products, including satellite-based, gauge-based, and reanalysis 153 

data (Roca et al., 2019). The re-gridded dataset was selected for its spatial compatibility with 154 

the study's objectives, facilitating the evaluation of General Circulation Model (GCM) 155 

simulations in replicating observed precipitation patterns. The FROGS database provides a 156 

robust framework for intercomparison and assessment of precipitation products across different 157 

sources. FROGS database has been widely used in various studies to ensure the reliability of 158 

climate model evaluation and climate change assessment (Wood et al., 2021; Roca and Fiolleau, 159 

2020; Petrova et al., 2024). 160 

 161 

2.3 Quantile mapping 162 

This study employed three (Quantile delta mapping, QDM; Detrended quantile mapping, DQM; 163 

Empirical quantile mapping, EQM) QM methods to correct the simulation of CMIP6 GCMs, 164 

and these methods are commonly used in climate change research based on the climate models 165 

(Switanek et al., 2017). The global application imposed substantial computational demands. 166 

Consequently, the scope was limited to these three techniques, and incorporating additional 167 

bias-correction methods in future work would further strengthen robustness. For calibration 168 

and evaluation, the dataset was divided into a training period (1980–1996) and a validation 169 

period (1997–2014). This approach minimizes the influence of uncertainties associated with 170 

future projections, allowing the study to focus on evaluating the intrinsic performance 171 

differences of the QM methods. The frequency-adaptation technique, as described by Themeßl 172 

et al. (2012), was applied to address potential biases and improve the accuracy of the 173 

corrections. This technique removes the systematic wet bias caused by the model’s 174 

overestimation of dry days relative to observations. Based on this procedure, it effectively 175 

corrects the underestimation of excessive dry days during the summer and ensures stable 176 

performance even under rigorous cross validation. The corrected precipitation using the QM 177 

used a cumulative distribution function, as shown in Equation 1, to reduce the difference from 178 

the reference data. 179 

𝑥̂𝑚,𝑝(𝑡) = 𝐹𝑜,ℎ
−1{𝐹𝑚,ℎ[𝑥𝑚,𝑝(𝑡)]}     (1) 180 

where, 𝑥̂𝑚,𝑝(𝑡) presents the bias-corrected results. 𝐹𝑜,ℎ represents the cumulative distribution 181 

function (CDF) of the observed data, and 𝐹𝑚,ℎ presents the CDF of the model data. The 182 

subscripts 𝑜 and 𝑚 denote observed and model data, respectively, and the subscript ℎ denotes 183 

the historical period. 184 
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 QDM, developed by Cannon et al. (2015), preserves the relative changes ratio of modeled 185 

precipitation quantiles. In this context, QDM consists of bias correction terms derived from 186 

observed data and relative change terms obtained from the model. The computation process of 187 

QDM is carried out as described in Equation (2) to (4). 188 

𝑥̂𝑚,𝑝(𝑡) = 𝑥̂𝑜:𝑚,ℎ:𝑝(𝑡) ∙ ∆𝑚(𝑡)    (2) 189 

𝑥̂𝑜:𝑚,ℎ:𝑝(𝑡) =  𝐹𝑜,ℎ
−1[𝐹𝑚,𝑝

(𝑡)
{𝑥𝑚,𝑝(𝑡)}]    (3) 190 

∆𝑚(𝑡) =  
𝑥𝑚,𝑝(𝑡)

𝐹𝑚,ℎ
−1 [𝐹𝑚,𝑝

(𝑡)
{𝑥𝑚,𝑝(𝑡)}]

   (4) 191 

where, 𝑥̂𝑜:𝑚,ℎ:𝑝(𝑡) presents the bias corrected daily precipitation for the historical period, and 192 

∆𝑚(𝑡) the relative change in the model simulation between the reference period and the target 193 

period. In addition, the target period is calculated by multiplying the relative change (∆𝑚(𝑡)) 194 

at time (𝑡) multiplied by the bias-corrected precipitation in the reference period. ∆𝑚(𝑡) is 195 

defined as 𝑥𝑚,𝑝̂(𝑡)  divided by  𝐹𝑜,ℎ
−1[𝐹𝑚,𝑝

(𝑡)
{𝑥𝑚,𝑝(𝑡)}] . ∆𝑚(𝑡)  preserving the relative change 196 

between the reference and target periods. DQM, while more limited compared to QDM, 197 

integrates additional information regarding the projection of future precipitation. Furthermore, 198 

climate change signals estimated from DQM tend to be consistent with signals from baseline 199 

climate models. The computational process of DQM is performed as shown in Equation (5). 200 

𝑥̂𝑚,𝑝 = 𝐹𝑜,ℎ
−1 {𝐹𝑚,ℎ [

𝑋̅𝑚,ℎ𝑋𝑚,ℎ(𝑡)

𝑋̅𝑚,𝑝(𝑡)
]}

𝑋̅𝑚,𝑝(𝑡)

𝑋̅𝑚,ℎ
    (5) 201 

where, 𝑋̅𝑚,ℎ and 𝑋̅𝑚,𝑝 represent the long-term modeled averages for the historical reference 202 

period and the target period, respectively. 203 

EQM is a method that corrects the quantiles of the empirical cumulative distribution function 204 

from a GCM simulation based on a reference precipitation distribution using a corrected 205 

transfer function (Dequé, 2007). The calculation process of EQM can be represented as follows 206 

in Equation (6). 207 

𝑥̂𝑚,𝑝(𝑡) = 𝐹𝑜,ℎ
−1(𝐹𝑚,ℎ(𝑥𝑚,𝑝(𝑡)))     (6) 208 

All these QMs can be applied to historical data correction in this approach. The bias correction 209 

is performed based on the relative changes between a reference period and a target period in 210 

the past, ensuring that the relative changes between these periods are preserved in the corrected 211 

data (Ansari et al., 2023; Tanimu et al., 2024; Cannon et al., 2015). 212 

 213 

2.4 Evaluation metrics 214 
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This study evaluated the performance of three quantile-mapping methods against reference 215 

data during the validation period (1997-2014) using ten metrics commonly employed in climate 216 

research, and used these metrics to identify the optimal GCMs and bias-correction techniques. 217 

Recognizing that redundancy among metrics can bias multi-criteria decision making, this study 218 

applied an entropy-based weighting scheme that assigns weights according to each metric’s 219 

distribution to enhance objectivity. Ten evaluation metrics used in this study are as follows: 220 

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination 221 

(𝑅2), Percent bias (Pbias), Nash-Sutcliffe Efficiency (NSE), Kling-Gupta efficiency (KGE), 222 

Median Absolute Error (MdAE), Mean Squared Logarithmic Error (MSLE), Explained 223 

Variance Score (EVS), and Jenson-Shannon divergence (JSD). The equations of ten evaluation 224 

metrics are presented in Table 2.  225 

 226 

Table 2. Information of the ten-evaluation metrics used in this study 227 

Metrics Equations Factors References Range 

RMSE = √
1

𝑛
∑(𝑋𝑖

𝑠𝑖𝑚 − 𝑋𝑖
𝑟𝑒𝑓

)
2

𝑛

𝑖=1

 

𝑋𝑖
𝑟𝑒𝑓

 

reference 

data 

𝑋𝑖
𝑠𝑖𝑚 Bias 

corrected 

GCM 

 

[0, +∞) 

Best value: 

0 
MAE =  ∑|𝑋𝑖

𝑠𝑖𝑚 − 𝑋𝑖
𝑟𝑒𝑓

|

𝑛

𝑖=1

 

𝑅2 =  1 −
∑ (𝑋𝑖

𝑠𝑖𝑚 − 𝑋𝑖
𝑟𝑒𝑓

)2𝑛
𝑖=1

(𝑋𝑖
𝑟𝑒𝑓

− 𝑋̅𝑖
𝑟𝑒𝑓

)2
 

Galton, 

1886 

(−∞, 1] 

Best value: 

1 

Pbias =
∑ (𝑋𝑖

𝑟𝑒𝑓
− 𝑋𝑖

𝑠𝑖𝑚)𝑛
𝑖=1

∑ 𝑋𝑖
𝑟𝑒𝑓𝑛

𝑖=1

× 100  

(−∞, +∞) 

Best value: 

0 

NSE = 1 −
∑ (𝑋𝑖

𝑠𝑖𝑚 − 𝑋𝑖
𝑟𝑒𝑓

)2𝑛
𝑖=1

∑ (𝑋𝑖
𝑟𝑒𝑓

− 𝑋̅𝑖
𝑟𝑒𝑓

)2𝑛
𝑖=1

 

Nash and 

Sutcliffe, 

1970 

(−∞, 1] 

Best value: 

1 

MdAE =  𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖
𝑠𝑖𝑚 − 𝑋𝑖

𝑟𝑒𝑓
|)  

[0, +∞) 

Best value: 

0 
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MSLE 
=  

1

𝑛
∑(log(1 + 𝑋𝑖

𝑠𝑖𝑚) − log (1

𝑛

𝑖=1

+ 𝑋𝑖
𝑟𝑒𝑓

))2 

[0, +∞) 

Best value: 

0 

EVS = 1 −
𝑉𝑎𝑟(𝑋𝑠𝑖𝑚 − 𝑋𝑟𝑒𝑓)

𝑉𝑎𝑟(𝑋𝑟𝑒𝑓)
 

(−∞, 1] 

Best value: 

1 

KGE 
= 1

− √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 

𝑟 Pearson 

product-

moment 

correlation 

𝛼 Variability 

error 

𝛽: Bias term 

Gupta et 

al. 2009 

(−∞, 1] 

Best value: 

1 

JSD 

=
1

2
𝐷𝐾𝐿 (𝑃 ∥

𝑃 + 𝑄

2
)

+
1

2
𝐷𝐾𝐿 (𝑄 ∥

𝑃 + 𝑄

2
) 

𝑃(𝑥) : 

Probability 

density 

distribution 

of reference 

data 

𝑄(𝑥) : 

Probability 

density 

distribution 

of GCM 

𝐷𝐾𝐿: KL-D 

Lin, 1991 

[0, 𝑙𝑛2] 

Best value: 

0 

 228 

Ten evaluation metrics selected in this study assess GCM performance from various 229 

perspectives, including error (RMSE, MAE, MdAE, and MSLE), deviation (Pbias), accuracy ( 230 

𝑅2, NSE), variability (EVS), correlation and overall performance (KGE), and distributional 231 

differences (JSD). These metrics complement each other by offering a comprehensive 232 

evaluation framework. For instance, while NSE evaluates the overall fit of the simulated data 233 

to observations, KGE provides a holistic view by integrating correlation, variability, and bias 234 
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into a single efficiency score, and JSD captures the difference between the distributions of the 235 

reference data and the bias-corrected GCM output. This study used the Friedman test to 236 

perform statistical comparisons among the three bias-correction methods (DQM, EQM, QDM), 237 

and when the Friedman test indicated overall significant differences, pairwise Wilcoxon 238 

signed-rank tests were conducted between each method pair to determine which specific 239 

comparisons differed. The detailed concepts of the two methods can be found in Friedman 240 

(1937) and Wilcoxon (1945). 241 

 242 

2.5 Generalized extreme value 243 

This study used generalized extreme value (GEV) to compare the extreme precipitation 244 

calculated by the bias-corrected GCM at each grid of six continents over the historical period. 245 

The historical precipitation was compared with the distribution of reference data and bias-246 

corrected GCM above the 95th quantile of the Probability Density Function (PDF) of the GEV 247 

distribution (Hosking et al. 1985). In addition, this study compared the distribution differences 248 

between the reference data based on the GEV distribution and the corrected GCM using JSD. 249 

GEV distribution is commonly used to confirm extreme values in climate variables. The PDF 250 

of the GEV distribution is shown in Equation 7, and the parameters of the GEV distribution 251 

were estimated using L-moment (Hosking, 1990). 252 

𝑔(𝑥) =  
1

𝑠
[1 − 𝑘

𝑥−𝜖

𝑠
]

1

𝑘
−1

𝑒𝑥𝑝 {− [1 − 𝑘
𝑥−𝜖

𝑠
]

1

𝑘
}      (7) 253 

where, 𝑘, 𝑠, and 𝜀 represents a shape, scale, and location of the GEV distribution, respectively.   254 

 255 

2.6 Bayesian model averaging (BMA) 256 

The BMA is a statistical technique that combines multiple models to provide predictions that 257 

account for model uncertainty (Hoeting et al., 1999). BMA is used to integrate predictions from 258 

GCMs to improve the robustness and reliability of the resulting assemblies. The posterior 259 

probability of each model is calculated based on Bayes' theorem as shown in Equation 8. 260 

𝑃(𝑀𝑘 ∣ 𝐷) =
𝑃(𝐷∣𝑀𝑘)𝑃(𝑀𝑘)

∑ 𝑃(𝐷∣𝑀𝑗)𝑃(𝑀𝑗)𝐾
𝑗=1

      (8) 261 

where, 𝑃(𝑀𝑘) is the prior probability of model 𝑀𝑘, and 𝑃(𝐷 ∣ 𝑀𝑘) the likelihood of the data 262 

𝐷 given model 𝑀𝑘, 𝑃(𝑀𝑘 ∣ 𝐷) is the posterior probability of model 𝑀𝑘. In addition, the BMA 263 

prediction 𝑄̂𝐵𝑀𝐴 is the weighted average of the predictions from each model as shown in 264 

Equation 9.  265 
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𝑄̂𝐵𝑀𝐴 = ∑ 𝑃(𝑀𝑘 ∣ 𝐷)𝑄̂𝑘
𝐾
𝑘=1   (9) 266 

where, 𝑄̂𝑘 is the prediction from model 𝑀𝑘. In this study, BMA was used to quantify the model 267 

uncertainty and ensemble prediction uncertainty for daily precipitation corrected by three QM 268 

methods (QDM, EQM, and DQM) applied to 11 CMIP6 GCMs, as shown in Equations 10 and 269 

11.  270 

𝛼𝑤
2 =

1

𝐾
∑ (𝑤𝑘 − 𝑤̅)2𝐾

𝑘=1     (10) 271 

where, 𝐾 is the number of models, 𝑤𝑘 = 𝑃(𝑀𝑘 ∣ 𝐷) is the weight of model 𝑀𝑘, 𝑤̅ is the mean 272 

of the weights, given by 𝑤̅ =
1

𝐾
∑ 𝑤𝑘

𝐾
𝑘=1 . A higher variance in model weights indicates more 273 

significant prediction differences, implying greater model uncertainty. 274 

𝜎𝐵𝑀𝐴 = √
1

𝐾
∑ (𝑄̂𝑘 − 𝑄̂𝐵𝑀𝐴)2𝐾

𝑘=1     (11) 275 

𝜎𝐵𝑀𝐴 is standard deviation of the BMA ensemble predictions,  𝑄̂𝑘 is the prediction from each 276 

model 𝑀𝑘 , 𝑄̂𝐵𝑀𝐴 is the weighted average prediction from BMA. This standard deviation 277 

represents the variability among the ensemble predictions and serves as an indicator of 278 

uncertainty. A lower standard deviation implies higher consistency among predictions, 279 

indicating lower uncertainty, while a higher standard deviation suggests greater variability and 280 

higher uncertainty.  281 

 282 

2.7 TOPSIS 283 

This study used TOPSIS to calculate a rational priority among three QM methods based on the 284 

outcomes derived from evaluation metrics. Moreover, this study employed entropy theory to 285 

compute objective weights for the evaluation metrics as an alternative to TOPSIS (Shannon 286 

and Weaver 1949). The closeness coefficient calculated using TOPSIS was used as the 287 

performance metric for the CI. Proposed by Hwang and Yoon (1981), TOPSIS is a multi-288 

criteria decision-making technique frequently used in water resources and climate change 289 

research to select alternatives (Song et al., 2024). As described in Equation 12 and 13, the 290 

proximity of the three QM methods is calculated based on the Positive Ideal Solution (PIS) and 291 

the Negative Ideal Solution (NIS). 292 

𝐷𝑖
+ = √∑ 𝑤𝑗(𝑓𝑗

+ − 𝑓𝑖,𝑗)2𝑛
𝑗=1     (12) 293 

𝐷𝑖
− = √∑ 𝑤𝑗(𝑓𝑗

− − 𝑓𝑖,𝑗)2𝑛
𝑗=1     (13) 294 
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where, 𝐷𝑖
+ is the Euclidean distance of each criterion from the PIS, summing the whole criteria 295 

for an alternative 𝑓𝑗
+, 𝑗 presents the normalized value for the alternative 𝑓𝑗

+. 𝑤𝑗 presents weight 296 

assigned to the criterion 𝑗. 𝐷𝑖
− is the distance between the alternative 𝑓𝑗

− and the NIS. The 297 

relative closeness is calculated as shown in Equation 14. The optimal value is closer to 1 and 298 

represents a reasonable alternative.  299 

𝐶𝑖 =
𝐷𝑖

−

(𝐷𝑖
−+𝐷𝑖

+)
    (14) 300 

This study used entropy theory to calculate the weights for each criterion. Entropy weighting 301 

ensures sufficient objectivity by calculating weights based on the variability and distribution 302 

of data. This approach minimizes subjectivity, preventing biases in the weighting process. 303 

 304 

2.8 Comprehensive index (CI) 305 

This study proposed a CI to select the best QM method by combining performance scores and 306 

model uncertainty indicators. The CI integrates the performance scores (closeness coefficient) 307 

derived from the TOPSIS method with the uncertainty quantified using BMA. This approach 308 

allows for a balanced evaluation that considers both the effectiveness of the QM methods and 309 

the associated uncertainties. Uncertainty was quantified in two ways. Model-specific weight 310 

variance was calculated using the variance of the model weights assigned by BMA, 311 

representing the uncertainty in selecting the appropriate QM. The standard deviation of BMA 312 

ensemble prediction was calculated to capture the spread and, thus, the uncertainty of the 313 

ensemble forecasts. Both the indicators were normalized using a min-max scaler to ensure 314 

comparability. The CI is calculated individually for every grid and can reflect climate 315 

characteristics. Framework provides flexibility in determining the weighting of uncertainty or 316 

performance depending on the study objectives. Additionally, the methodology offers 317 

flexibility in selecting performance and uncertainty metrics. Alternative MCDA methods 318 

beyond TOPSIS can be utilized for performance indicators, or indices that effectively represent 319 

the model's performance can be employed to calculate the CI. Similarly, for uncertainty 320 

indicators, approaches such as variance, standard deviation, or other uncertainty quantification 321 

techniques can be applied to enhance the robustness of the framework further. Finally, the 322 

calculation process of the CI is performed as shown in Equations 15 and 16. 323 

𝑈𝐼 =  
𝑉𝑤+𝜎𝑒

2
    (15) 324 

𝐶𝐼 =  𝜔 × 𝐶𝑖 − 𝛽 × 𝑈𝐼     (16) 325 
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where, 𝑈𝐼  represents the uncertainty indicator. 𝑉𝑤  and 𝜎𝑒   represent the normalized weight 326 

variance and the normalized ensemble standard deviation, respectively, calculated using BMA. 327 

𝐶𝑖 represents the closeness coefficient calculated from TOPSIS. 𝜔 represents the weight given 328 

to the performance score, 𝛽  represents the weight given to the uncertainty indicator. 329 

Furthermore, by adjusting the weights 𝜔 and 𝛽, the study evaluated the QM methods under 330 

different scenarios. Equal weight (𝜔 = 0.5, 𝛽 =0.5) balances performance and uncertainty 331 

equally, and the emphasized performance weight (𝜔= 0.7, 𝛽=0.3) prioritize performance over 332 

uncertainty. The emphasized uncertainty weight (𝜔= 0.3, 𝛽=0.7) prioritize uncertainty over 333 

performance. The results from the CI provide a holistic evaluation of the QM methods, 334 

considering both their effectiveness in bias correction and the reliability of their predictions. 335 

 336 

3. Result 337 

3.1 Assessment of bias correction reproducibility across continents  338 

3.1.1 Comparison of bias correction effects  339 

A Taylor diagram was used to compare the bias-corrected and raw GCM precipitation with the 340 

observed data, and Figure 1 presents the results of applying the three QM methods to 11 CMIP6 341 

GCMs. In general, the precipitation corrected by DQM showed a larger difference from the 342 

reference data than other methods. In contrast, EQM performed better than DQM, and many 343 

models showed results close to the reference data. The precipitation corrected by QDM also 344 

showed good performance in most continents but slightly lower than EQM. Nevertheless, 345 

QDM showed clearly better results than DQM. 346 

Regarding correlation coefficients, precipitation corrected by DQM showed relatively high 347 

values between 0.8 and 0.9 but lower than EQM and QDM. The precipitation corrected by 348 

EQM showed high agreement with the reference data, recording correlation coefficients above 349 

0.9 in most continents. QDM generally showed similar correlation coefficients to EQM but 350 

slightly lower values than EQM in North America and Asia. 351 

For RMSE, precipitation corrected by DQM was higher than EQM and QDM, indicating that 352 

the corrected precipitation differed more from the reference data. On the other hand, EQM had 353 

the lowest RMSE and showed superior performance compared to other methods. QDM had 354 

slightly higher RMSE than EQM but still outperformed DQM. 355 

In terms of standard deviation, precipitation corrected by DQM was higher or lower than the 356 

reference data in most continents. On the other hand, precipitation corrected by EQM was 357 
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similar to the reference data and almost identical to the reference data in Africa and Asia. QDM 358 

was similar to the reference data in some continents but showed slight differences from EQM. 359 

These results imply that the precipitation corrected by the three methods outperforms the raw 360 

simulation, which confirms that the GCM's daily precipitation is reliably corrected in the 361 

historical period. 362 

 363 
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 364 
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Figure 1. Comparison of raw and bias-corrected daily precipitation across six continents during 365 

the validation period (1997–2014) using Taylor diagrams (x-axis: standard deviation; y-axis: 366 

correlation coefficient) 367 

 368 

3.1.2 Spatial distribution of bias correction performance 369 

This study used the Friedman test to evaluate whether the three quantile-mapping methods 370 

(QDM, DQM, EQM) rank differently across the 11 downscaled GCMs for each of the ten-371 

evaluation metrics within each continent. A p-value < 0.05 indicates that the methods rank 372 

differently for the metric, and in this section all Friedman p-values were <  0.001 373 

(Supplementary Table S1). When the Friedman test was significant, pairwise differences were 374 

examined with the Wilcoxon signed-rank test. The results, summarized in Supplementary 375 

Figure S1, show that most method pairs are significant across continents. 376 

The spatial patterns of the evaluation metrics computed from the bias-corrected daily 377 

precipitation data of GCMs in South America are presented as shown in Figure 2. Overall, the 378 

precipitation corrected by EQM demonstrated lower JSD values, as well as higher EVS and 379 

KGE values, compared to other methods. The precipitation corrected by EQM showed higher 380 

EVS in certain regions but slightly lower performance in MdAE and Pbias across some grids. 381 

DQM exhibited performance similar to EQM and QDM in most evaluation indices but was 382 

relatively lower in most evaluation metrics. The precipitation corrected by the three methods 383 

was underestimated compared to the reference data in northern South America, while it was 384 

overestimated in eastern South America. In addition, precipitation corrected by the DQM 385 

method tended to be overestimated more than the other methods, while the EQM method 386 

showed the opposite result. Furthermore, the daily precipitation corrected by EQM showed the 387 

lowest overall error and high performance in both NSE and 𝑅2 . QDM and DQM also 388 

performed well but exhibited slightly larger errors in some regions than EQM. 389 

 390 
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 391 

Figure 2. Performance comparison of DQM, EQM, and QDM for the validation period (1997-392 

2014) using evaluation metrics for daily precipitation in South America. 393 

 394 

Figure 3 shows spatial patterns of evaluation metrics for bias‐corrected daily precipitation in 395 

North America. DQM exhibited poorer error performance (MAE, MSLE, RMSE, MdAE), 396 

especially in the southern region, while EQM achieved the best error metrics continent wide 397 

and QDM’s errors were only slightly higher. For correlation metrics (NSE, 𝑅2), EQM yielded 398 

the highest coefficients (mostly above 0.995), DQM lagged except for some high values in 399 

central and eastern grids, and QDM showed slightly lower correlations (around 0.978). All 400 

three methods overestimated precipitation (Pbias) at most grid points, with notable 401 

underestimation in Greenland. On divergence and distribution metrics (JSD, EVS, KGE), EQM 402 
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again outperformed both DQM and QDM. Consequently, EQM consistently provided the most 403 

accurate and reliable precipitation corrections in North America, while DQM introduced the 404 

greatest uncertainty. 405 

 406 

 407 

Figure 3. Performance comparison of DQM, EQM, and QDM for the validation period (1997-408 

2014) using evaluation metrics for daily precipitation in North America. 409 

 410 

Daily precipitation in Africa was corrected using three QM methods, and performance is shown 411 

in Figure 4. All three methods produced similar JSD spatial patterns, though DQM’s 412 

performance was notably lower in southern Africa. In terms of EVS, DQM exhibited the 413 

highest variability, QDM was intermediate, and EQM showed the lowest variability in southern 414 

and central regions (but remained high in the north). For error metrics, QDM performed best 415 

overall, particularly in North Africa (MAE = 0.03, MSLE = 0.004), followed by EQM, then 416 

DQM. EQM achieved the highest correlation scores (NSE and 𝑅2) across most grid points, 417 

with QDM outperforming DQM. 418 
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 419 

Figure 4. Performance comparison of DQM, EQM, and QDM for the validation period (1997-420 

2014) using evaluation metrics for daily precipitation in Africa 421 

 422 

Figure 5 shows the spatial results of the grid-based evaluation metrics for the European region. 423 

In terms of error metrics, EQM-corrected precipitation performed the best across Europe 424 

compared to other methods. In contrast, QDM-corrected precipitation performed similarly to 425 

DQM in MAE and MSLE but significantly outperformed DQM in RMSE. 426 

Regarding NSE and 𝑅2 , EVS, and KGE metrics, EQM-corrected precipitation performed 427 

overwhelmingly better than other methods. QDM precipitation performed better than DQM, 428 

while DQM performed the worst. Regarding Pbias, EQM-corrected precipitation was 429 

underestimated compared to the reference data in most parts of Europe. In contrast, QDM-430 

corrected precipitation was more similar to the reference data compared to other methods, and 431 

DQM precipitation was overestimated compared to the reference data except in central Europe. 432 
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 433 

Figure 5. Performance comparison of DQM, EQM, and QDM for the validation period (1997-434 

2014) using evaluation metrics for daily precipitation in Europe. 435 

 436 

Figure 6 compares bias-corrected daily precipitation in Asia using various evaluation metrics. 437 

For error metrics, EQM provided the best performance its RMSE remained below 1.35 over 438 

most regions while DQM had the lowest errors. QDM’s error values were similar to EQM but 439 

slightly higher in East and North Asia. In terms of NSE and 𝑅2, EQM again led, especially in 440 

Southwest and East Asia, with DQM lagging behind. For EVS, EQM showed the lowest 441 

variability, QDM was intermediate, and DQM the highest. Regarding Pbias, DQM tended to 442 

overestimate precipitation continent wide, EQM underestimated in most areas except Central 443 

Asia, and QDM’s spatial pattern resembled EQM but with a wider Pbias range. 444 

 445 
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 446 

Figure 6. Performance comparison of DQM, EQM, and QDM for the validation period (1997-447 

2014) using evaluation metrics for daily precipitation in Asia. 448 

 449 

Figure 7 shows the results of spatially quantifying the corrected daily precipitation in Oceania 450 

using various evaluation metrics. In terms of error metrics, the precipitation estimated by the 451 

three QM methods performed similarly in MAE, MdAE, and MSLE. However, the 452 

precipitation corrected by EQM performed better in RMSE than the other methods. In the case 453 

of JSD, all three methods performed well. Regarding EVS, the precipitation corrected by EQM 454 

showed lower variability than the other methods, and DQM showed higher performance than 455 

QDM. In Pbias, the precipitation adjusted by QDM was overestimated compared to the 456 

reference data in Oceania, while the precipitation corrected by DQM and EQM was 457 

underestimated compared to the reference data in central and southern Oceania. Finally, in 458 

KGE, precipitation corrected by EQM showed the highest performance, while DQM showed 459 

the lowest. 460 



23 

 

 461 

Figure 7. Performance comparison of DQM, EQM, and QDM for the validation period (1997-462 

2014) using evaluation metrics for daily precipitation in Oceania. 463 

 464 

Figure 8 presents the distribution of the ten-evaluation metrics for bias-corrected daily 465 

precipitation averaged over each continent, summarized as boxplots. Each box shows the 466 

interquartile range (IQR) and median of the metric values computed over 11 CMIP6 GCMs. 467 

Overall, EQM’s boxes generally have lower medians and narrower IQRs for error metrics 468 

(RMSE, MSLE, MAE) on most continents, indicating both smaller typical errors and less 469 

scatter compared to QDM and DQM. QDM’s boxplots lie slightly above those of EQM but 470 

still exhibit relatively tight IQRs, suggesting consistently strong performance. In contrast, 471 

DQM often has higher median errors, wider IQRs, and more extreme outliers, reflecting larger 472 

and more variable biases relative to the other methods. 473 
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 474 

Figure 8. Performances of DQM, EQM, and QDM of historical period precipitation using 475 

boxplots based on ten evaluation metrics 476 

 477 
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3.1.3 Comparison of reproducibility for extreme daily precipitation 478 

This study also compared how well each bias correction method reproduces extreme 479 

precipitation by fitting a Generalized Extreme Value (GEV) distribution to the corrected daily 480 

values and then quantifying the distributional differences. Figure 9 shows the JSD of GEV 481 

fitted daily precipitation for DQM, EQM, and QDM on each continent. Across most continents, 482 

the median JSD for all three methods is extremely low (on the order of 10−4
 to 10−5

), and 483 

even the interquartile ranges fall within narrow bands indicating that statistically the GEV 484 

curves for DQM, EQM, and QDM are almost indistinguishable for historical data.  485 

 486 

Figure 9. Comparison of distribution differences for GEV distribution using JSD across six 487 

continents. 488 

 489 

Table S2 shows the results of a Friedman test and subsequent Wilcoxon signed rank pairwise 490 

comparisons for the ten highest daily precipitation values exceeding the 95th percentile on each 491 

continent. The Friedman test yielded a p-value of 4.5399 ×10−5, indicating a highly significant 492 

difference and that at least one of the three quantile‐mapping methods differs systematically. 493 

All Wilcoxon pairwise comparisons between methods produced 0.00195 on every continent, 494 

demonstrating that no two bias‐correction approaches generate equivalent extreme‐495 
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precipitation estimates. Furthermore, the fact that both tests yielded identical results across 496 

continents indicates that the sign and rank structure of the three methods was the same in every 497 

continent, which in turn shows that the direction of the differences was consistent for each 498 

GCM. 499 

Because the reproducibility of extreme values in the corrected GCM is essential for impact 500 

assessments, Figure 10 presents the estimated probability density function (PDF) of 501 

precipitation values above the 95th percentile for the same GEV fit. Overall, DQM shows the 502 

highest probability density for extreme precipitation across all continents and has the widest 503 

tail, indicating that DQM boosts extreme events most aggressively. In contrast, EQM shows 504 

the lowest and narrowest density conservatively correcting extremes (often 5-8 % below 505 

DQM’s values). QDM falls between EQM and DQM in most regions but remains closer to 506 

EQM. 507 

 508 

Figure 10. Comparison of probability densities for extreme precipitation values above the 95th 509 

percentile using GEV  510 

 511 

3.2 Prioritization of bias correction methods based on performance 512 

3.2.1 Results of weight for evaluation metrics 513 
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By conducting Friedman and Wilcoxon tests on the evaluation metrics, this study confirms that 514 

the observed differences in entropy‐derived weights are statistically significant. In this study, 515 

the weights were calculated by applying entropy theory to the evaluation metrics used in the 516 

TOPSIS analysis, and the results are presented in Table 3. JSD had the highest weight in South 517 

America because the estimated JSD from 11 CMIP6 GCMs was an important metric for 518 

evaluating model performance differences. These results indicate that the differences between 519 

distributions are significant. On the other hand, EVS and NSE in South America had very low 520 

weights, suggesting that the variability and efficiency of precipitation were considered less 521 

important than other indicators. For North America, the RMSE, MSLE, and MAE metrics were 522 

of significant importance, as evidenced by their high weights. These error metrics revealed 523 

substantial regional differences. In contrast, EVS carried a negligible weight, suggesting it was 524 

less important in explaining variability in North America. For Africa, MdAE and JSD metrics 525 

were of considerable importance, as indicated by their high weights. These metrics were key 526 

evaluation factors in Africa. Conversely, EVS carried a low weight, suggesting it was 527 

considered relatively less important. RMSE had the highest weight in Europe, and KGE also 528 

had a relatively high weight, indicating that these metrics were considered important evaluation 529 

criteria in Europe. In Asia, MAE and MSLE had high weights, suggesting that these metrics 530 

were important evaluation metrics. On the other hand, EVS and NSE were considered less 531 

important due to their low variability. In Oceania, high weights were assigned to JSD, KGE, 532 

RMSE, and MAE, suggesting that these metrics are critical for evaluating model performance. 533 

On the other hand, R2 and NSE were assigned low weights. 534 

 535 

Table 3. Entropy-based weights for evaluation metrics across different continents 536 

 RMS

E 

MAE 𝑅2 NSE KGE Pbias MdAE MSLE EVS JSD 

South 

America 

0.1439 0.1536 0.0001 0.0001 0.0005 0.0238 0.1754 0.1934 0.0004 0.3088 

North 

America 

0.2289 0.1908 0.0001 0.0001 0.0007 0.0118 0.2152 0.2117 0.0001 0.1411 

Africa 0.1319 0.1686 0.0002 0.0002 0.0002 0.0855 0.2436 0.1911 0.0002 0.1786 

Europe 0.2821 0.1762 0.0022 0.0022 0.0063 0.0378 0.1754 0.1666 0.0021 0.1490 

Asia 0.2073 0.1954 0.00003 0.00003 0.0001 0.0305 0.2300 0.2024 0.00003 0.1342 

Oceania 0.2384 0.2204 0.0013 0.0013 0.0068 0.0214 0.2338 0.2093 0.0012 0.0660 

 537 
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3.2.2 Selection of the best bias correction method based on TOPSIS 538 

Figures 11 and S2 present the best bias correction method selected for each continent using the 539 

TOPSIS approach. In Figure 11, the spatial distribution of the most effective bias correction 540 

method across the grid points of each continent is shown. Figure S2 shows the number of grid 541 

points selected for each QM method. In South America, EQM was chosen as the best method 542 

in most grid points, with EQM being selected in over 1,500 grid points. In contrast, QDM was 543 

selected in fewer than 700 grid cells, making it the least chosen method in South America. 544 

Across all continents except South America, EQM was selected as the best model in the 545 

majority of grid cells, with the number of selected grid points (North America: 7,583; Africa: 546 

2,879; Europe: 2,719; Asia: 8,793; and Oceania: 1,659). On the other hand, DQM was the least 547 

chosen method across all continents. For QDM, although it was the second most selected 548 

method across all continents except South America, the difference in the number of grid points 549 

between QDM and EQM is significant. 550 

 551 

Figure 11 Spatial distribution for selected best bias correction methods across continents 552 

using TOPSIS 553 

 554 

3.3 Uncertainty quantification of bias corrected daily precipitation 555 

3.3.1 Uncertainty by model 556 
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This study quantifies the daily precipitation uncertainty of 11 CMIP6 GCMs, corrected using 557 

three different BMA methods. Figure 12 shows the distribution of GCM weight variances 558 

calculated by BMA across six continents. In South America, the highest weight variance was 559 

observed mainly in DQM. EQM showed high weight variance in the northern region but lower 560 

variance than DQM in most other regions. QDM exhibited the lowest weight variance, with 561 

values less than 0.00113 in most regions. In North America, EQM had the lowest weight 562 

variance, with values between 0.00055 and 0.00024 in most regions. QDM showed the lowest 563 

model uncertainty across North America, with more regions where weight variances were 564 

closer to 0 than the other methods. On the other hand, DQM exhibited high weight variance 565 

overall, with exceptionally high model uncertainty in the northeast and southern regions. In 566 

Africa, EQM's weight variance was estimated to be low overall, resulting in low model 567 

uncertainty in most regions. For QDM, weight variance was low in some regions but higher 568 

than 0.00113 in others. DQM showed high weight variance in most regions except for the 569 

northern area, indicating high model uncertainty across the continent. EQM's weight variance 570 

was the lowest in Europe compared to the other methods, with weight variances close to 0 571 

across the continent. QDM also showed low weight variance overall, though higher than EQM. 572 

DQM exhibited high weight variance in most regions except for Central Europe. In Asia, EQM 573 

showed low weight variance in most regions except Southeast Asia. QDM's weight variance 574 

was similar to EQM's, though some regions had higher model uncertainty. DQM showed high 575 

weight variance in most regions except for some Southwest and North Asian areas. For Oceania, 576 

the weight variances of EQM and DQM were mainly similar, but DQM showed a higher weight 577 

variance overall. 578 
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 579 

Figure 12. Spatial distribution of weight variance across continents for bias corrected CMIP6 580 

GCMs using BMA 581 

 582 

Figure 13 shows the distribution of GCM weight variances calculated using BMA across six 583 

continents, presented as boxplots. Overall, EQM has the smallest weight variance, and QDM 584 

has the second smallest weight variance on all continents except South America. In contrast, 585 

in South America, QDM has the smallest weight variance, and EQM has the second smallest. 586 
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DQM consistently has the largest weight variance across all continents, indicating the highest 587 

model uncertainty. 588 

 589 

 590 

Figure 13. Weight variance for bias correction methods across six continents using box plots. 591 

 592 

3.3.2 Uncertainty by ensemble prediction 593 

A daily precipitation ensemble for the historical period was generated using BMA on 11 594 

CMIP6 GCMs, and the standard deviation of daily precipitation by continent is presented as 595 

shown in Figure 14. Overall, the ensemble predicted using EQM provided stable precipitation 596 

projection with low standard deviations across most continents. The QDM ensemble showed 597 

similar results to EQM for most continents except Oceania, but the standard deviations were 598 

slightly higher. On the other hand, the ensemble using DQM exhibited higher standard 599 

deviations than the other methods for all continents and had the largest prediction uncertainty. 600 

In Oceania, the ensembles predicted by the three methods showed similar results. However, 601 

the prediction uncertainty was estimated to be lower in the order of EQM, DQM, and QDM 602 

due to slight differences. 603 
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 604 

Figure 14. Spatial distribution of standard deviation for daily precipitation across continents 605 

for bias corrected CMIP6 GCMs using BMA 606 

 607 

Figure 15 shows the standard deviation of daily precipitation for the ensemble forecasted by 608 

BMA using three methods, DQM, EQM, and QDM, in a boxplot for each continent. Visually, 609 
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EQM tends to show the lowest medians across continents, QDM appears slightly higher, and 610 

DQM tends to show the highest medians. The interquartile ranges overlap broadly within most 611 

continents and the differences in medians are small in magnitude. 612 

 613 

 614 

Figure 15. Spatial distribution of standard deviation for daily precipitation across continents 615 

for bias corrected CMIP6 GCMs using BMA 616 

 617 

3.4 Evaluation of bias correction methods using CI  618 

3.4.1 Results of CI by each weighting case 619 

This study compared three QM methods by generating a CI based on three cases of weighting 620 

values that considered both model performance and uncertainty. Figures 16, S3, and S4 show 621 

the comprehensive indices calculated by applying equal weights and weights emphasizing 622 

performance and uncertainty, respectively. 623 

EQM showed the highest CI across all continents when equal weights were applied. However, 624 

the index was lower in southern Europe and southeastern North America, but it calculated high 625 

values in most other regions. QDM showed high index values in some regions, although they 626 

were lower than those of EQM. For example, the CI results were high in the northern and 627 
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western parts of North America and the central part of Europe. On the other hand, DQM was 628 

generally unsuitable in most regions but showed a relatively high index in Oceania. 629 

When weights that emphasized performance were applied, DQM showed a high index in the 630 

central part of South America but low performance in most continents. Nevertheless, DQM 631 

showed a better index than QDM in some parts of Oceania. EQM showed the best index across 632 

most continents. While QDM was less suitable than EQM, it was still evaluated as a useful 633 

method in some continents. 634 

Even when applying weights that increased the emphasis on uncertainty, similar results were 635 

obtained with the other weighting values. In particular, EQM was evaluated as the most suitable 636 

model across all continents, while DQM showed the opposite results. 637 
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 638 

Figure 16. Spatial distribution of comprehensive indices for bias correction methods with equal 639 

weights (𝛼: 0.5, 𝛽: 0.5) across continents 640 

 641 

Figure 17 presents a comparison of the comprehensive indices for three QM methods with 642 

different weights for each continent using box plots. Overall, all methods showed higher 643 
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indices than the other weighting values in the values that emphasized more weight on 644 

performance. In all weighted values, DQM showed the lowest indices in all continents except 645 

for South America and Oceania, where it was slightly higher or similar to QDM. EQM showed 646 

the best composite indices in all continents, outperforming performance and uncertainty. QDM 647 

showed high comprehensive indices in most continents, and the gap with EQM narrowed 648 

significantly in the weighting values that emphasized performance more. Nevertheless, QDM 649 

overall had lower comprehensive indices than EQM. 650 

 651 

 652 

Figure 17. CI for three bias correction methods across continents with varying weights on 653 

performance and uncertainty 654 

 655 

Under the three weighting scenarios defined in the main text, the Friedman test produced p-656 

values effectively rounded to zero for every continent, indicating highly significant differences 657 

among DQM, EQM, and QDM (Table S3 in the Supplementary Material). Subsequent pairwise 658 

Wilcoxon tests showed that most method comparisons remained significant across all regions. 659 

The only notable exception occurred in Oceania under equal weighting, where the p-value of 660 
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3.93 × 10−1 failed to reach significance at the 0.05 level. These findings demonstrate that, 661 

aside from that single case in Oceania, the choice of scenarios exerts a statistically significant 662 

impact on composite scores across all continents. 663 

 664 

3.4.2 Selection of best bias correction method 665 

Based on the CI, this study selected the best bias correction method for each continent. Figure 666 

18 shows how the best bias correction method was selected for each continent by applying 667 

various weighting values of the CI. Overall, EQM was selected as the best correction method 668 

for most continents in all weighting values and was selected more than other methods in North 669 

America, Europe, Asia, and Oceania. DQM was selected the least in most continents except 670 

for South America and Oceania, and the number of selected grids tended to decrease as the 671 

weighting for uncertainty increased. QDM was selected as the best bias correction method in 672 

western North America, southern and eastern Africa, and northern Europe. In addition, QDM 673 

was selected the most in Southeast Asia in all weighting values. 674 
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 675 

Figure 18. Selection of best bias correction methods across continents based on CI depending 676 

on weighting values. 677 

 678 
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Figure 19 shows the number of selected grids for the best bias correction method across 679 

continents based on three weighting values. Overall, EQM was the most frequently selected 680 

method across all weighting values, demonstrating superior performance across all continents 681 

compared to the other methods. Interestingly, as the weight for uncertainty increased, the 682 

number of grids where EQM was selected also increased, while the number decreased as the 683 

weight for performance increased. In contrast, QDM was chosen as the second-best method on 684 

most continents, except for South America and Oceania. The number of selected grids for 685 

QDM slightly increased as the performance weight increased. DQM was the least selected 686 

method across most continents, indicating that it was the least suitable overall. 687 

 688 

 689 

Figure 19. Ratios of selected grids for best bias correction methods across continents based on 690 

different weighting values 691 

 692 

4. Discussion 693 

Bias correction methods are widely used in correcting GCM outputs, and previous studies have 694 

compared the performance of various methods (Homsi et al., 2019; Saranya and Vinish, 2021). 695 

Among these, Quantile Mapping (QM) has consistently shown superior performance compared 696 

to other methods, making it a widely used approach for bias correction. In particular, QDM, 697 

EQM, and DQM, which are the focus of this study, are frequently employed in research 698 

exploring and applying climate change projections based on GCM outputs (Cannon et al., 2015; 699 

Switanek et al., 2016; Song et al., 2022a). Analyzing the strengths and limitations of these three 700 

methods will provide valuable insights for climate researchers, enabling them to choose the 701 

most suitable bias correction method for specific regions. In this context, this study further 702 
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evaluates the performance of QDM, EQM, and DQM, especially for daily precipitation, and 703 

investigates how these methods perform across different regions. Unlike previous studies that 704 

focused on the performance of bias correction methods (Song et al., 2024a; Teutschbein and 705 

Seibert, 2012; Smitha et al., 2018), this study suggests a CI that integrates the performance and 706 

uncertainty metrics. This approach enhances the robustness of bias correction method selection 707 

and provides a more holistic evaluation framework. This section discusses the strengths and 708 

weaknesses of each method from various perspectives to provide a more balanced assessment. 709 

 710 

4.1 Evaluation of bias correction methods performance 711 

The daily precipitation corrected by the three QM methods outperformed the raw GCM data 712 

(see Figure 1). All three methods, as evidenced by the Taylor diagram, demonstrated overall 713 

stronger performance than the raw GCM and consistently produced good results across various 714 

regions. Nonetheless, the performance of the bias-corrected GCMs clearly differs. This 715 

highlights the need to use multiple performance metrics to fully understand the strengths and 716 

weaknesses of the three QM methods, as relying on a single analysis or macroscopic 717 

perspective can overlook important details. From this perspective, many studies have 718 

emphasized the application of a multifaceted analysis in selecting bias correction methods 719 

(Homsi et al., 2019; Cannon et al., 2015; Berg et al., 2022; Song et al., 2023). The spatial 720 

distribution of correction performance, as discussed in Section 3.1.2, varies significantly by 721 

continent. Figures 2 to 7 reveal that the evaluated metrics differ across continents, underscoring 722 

the importance of region-specific correction methods. This finding aligns with Song et al. 723 

(2023), highlighting the importance of selecting appropriate correction methods based on the 724 

precipitation distribution at observation sites. Moreover, studies such as Homsi et al. (2019) 725 

and Saranya and Vinish (2021) also emphasize the variability in bias correction performance 726 

depending on the regional climate and data characteristics, reinforcing the need for tailored 727 

approaches. Of course, the three QM methods showed high performance across most continents, 728 

effectively correcting the biases in daily precipitation from GCMs. However, the corrected 729 

daily precipitation varies subtly among the three methods, with these differences becoming 730 

more pronounced in extreme events or specific evaluation metrics. For example, the three QM 731 

methods tend to perform less effectively in regions with high precipitation, but their 732 

performance also varies by grid (e.g., southern India in Asia: RMSE; central Oceania: Pbias 733 

and EVS; central Europe: Pbias, MdAE, and KGE). While EQM performs well across most 734 
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continents, DQM and QDM show superior results in specific regions. Similar results were 735 

made by Cannon et al. (2015), which highlighted differences in the performance of bias 736 

correction methods, particularly in handling extreme precipitation events. QDM's error-related 737 

metrics (South America: RMSE, MAE, and MSLE) are nearly identical to EQM's, yet QDM 738 

outperforms EQM regarding MdAE on more grids. These findings suggest that a more nuanced 739 

and detailed analysis of precipitation corrected by GCMs is necessary, aligning with the 740 

conclusions of Gudmundsson et al. (2012), which emphasize that the effectiveness of bias 741 

correction methods can vary significantly depending on local climate characteristics, 742 

highlighting the importance of selecting appropriate methods for each region. These results 743 

suggest a more detailed precipitation analysis from corrected GCMs is needed. 744 

This study compared the three QM methods for daily precipitation events above the 95th 745 

percentile (extreme precipitation) using the GEV distribution, as shown in Figure 10. The 746 

results indicate that DQM tends to correct more extreme precipitation events than QDM, 747 

aligning with previous findings that DQM captures a broader range of extremes. The unique 748 

characteristics of DQM caused these results. DQM overestimated the corrected extreme 749 

precipitation due to the relative variability in the data introduced through detrending, and the 750 

subsequent reintroduction of the long-term mean during the correction step widened the range 751 

of extreme precipitation, leading to overestimation compared to the reference data in areas with 752 

high variability. At the same time, QDM and EQM take a more conservative approach (as noted 753 

in previous studies such as Cannon et al., 2015). These findings suggest that EQM and QDM 754 

may be more suitable in regions vulnerable to floods and extreme weather events that require 755 

a more balanced and cautious approach. However, when comparing the differences in GEV 756 

distributions, there was no significant difference between methods in regions like Oceania and 757 

Europe (see Figure 10). These results imply that EQM can better handle extreme values or 758 

outliers in the data by directly comparing and correcting past and future distributions. In 759 

particular, EQM is consistent with previous studies in that it more accurately corrects observed 760 

distributions in non-stationary and highly variable climate variables, such as precipitation 761 

(Themeßl et al., 2012; Maraun, 2013; Gudmundsson et al., 2012). These positive aspects are 762 

mainly due to EQM’s ability to align the empirical ECDFs of reference and model data across 763 

all quantiles, allowing it to correct biases with high precision at both central tendencies and 764 

extremes.  Although there are significant advantages in observing the results of the correction 765 

method in detail from various perspectives, presenting these results without integrating them 766 
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into a reasonable framework can increase confusion and uncertainty in climate change research 767 

(Wu et al., 2022). Therefore, it is essential to introduce a structured framework such as MCDA 768 

to provide a single integrated result. 769 

 770 

4.2 Uncertainties of model and ensemble prediction in bias correction methods 771 

In climate modeling, quantifying uncertainty is essential to assess the reliability of bias-772 

corrected precipitation data. This study applied BMA to quantify the uncertainty of three QM 773 

methods on a continental basis, addressing both model-specific and ensemble prediction 774 

uncertainties. Similar to the findings by Cannon et al. (2015), this analysis demonstrates how 775 

different bias correction methods yield varying uncertainty levels based on the underlying 776 

climate models. Notably, EQM showed the lowest weight variance across most continents, 777 

which means that the inter-model uncertainty for 11 GCMs corrected by EQM is lower than 778 

that of the other QM methods. The low uncertainty associated with EQM aligns with previous 779 

studies like Themeßl et al. (2012), which found that EQM consistently reduced discrepancies 780 

between modeled and observed data across regions. EQM's ability to manage extreme 781 

precipitation and anomalous values based on observed distributions contributes to its reliability, 782 

a feature also emphasized by Gudmundsson et al. (2012). On the other hand, DQM showed the 783 

highest weight variance across all continents, indicating more significant uncertainty when 784 

applied to various GCMs. This uncertainty was particularly pronounced in regions with 785 

complex climate conditions, such as Southeast Asia, East Africa, and the Alps in Europe. These 786 

results align with Berg et al. (2022), who highlighted DQM's limitations in capturing long-term 787 

climate trends and extreme events. The higher uncertainty associated with DQM suggests that, 788 

while its detrending process is effective in correcting the mean, it may struggle in regions 789 

dominated by nonlinear climate patterns, as it does not sufficiently account for all quantiles in 790 

the distribution, particularly extremes, as noted by Cannon et al. (2015). QDM, though showing 791 

lower weight variance than DQM, still demonstrated higher uncertainty than EQM in regions 792 

with diverse climate characteristics. These results are consistent with the study of Tong et al. 793 

(2021), suggesting that QDM performs better under moderate precipitation scenarios. However, 794 

the uncertainty may increase under highly variable or extreme weather conditions. Furthermore, 795 

this study extended the uncertainty analysis to ensemble predictions, calculating the standard 796 

deviation of daily precipitation for each continent using BMA. The EQM-based ensemble 797 

consistently exhibited low standard deviations across all continents, indicating that EQM offers 798 
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the most stable and reliable precipitation predictions. This finding echoes the conclusions 799 

drawn by Teng et al. (2015), where EQM provided more accurate and less uncertain projections. 800 

In contrast, DQM presented the most significant prediction uncertainty, reinforcing the need 801 

for caution when applying DQM in studies that require high-confidence data. These results 802 

emphasize the importance of weighing performance and uncertainty when choosing a suitable 803 

bias correction method. EQM's consistent performance in reducing uncertainty across model-804 

specific and ensemble forecasts highlights its robustness as a preferred choice for climate 805 

research. However, the substantial uncertainty associated with DQM suggests that its use 806 

should be limited to regions where its detrending process can be beneficial. Overall, these 807 

findings stress the critical role of uncertainty quantification in climate change impact 808 

assessments and underscore the need for selecting bias correction methods based on a 809 

comprehensive evaluation of both performance and uncertainty. 810 

 811 

4.3 Integrated assessment of bias correction methods  812 

This study selected the optimal QM method for each continent based on the CI, which considers 813 

uncertainty and performance. The critical point is that uncertainty is decisive when selecting a 814 

bias correction method. As shown in Figure 19, the optimal correction method varies depending 815 

on the continent, and the selected method also changes depending on the weight. These results 816 

suggest that uncertainty still exists, as Berg et al. (2022) pointed out, and that uncertainty must 817 

be considered when selecting the optimal method. In other words, even if the QM method has 818 

high performance, it is difficult to make a reasonable selection if the uncertainty contained in 819 

the method is significant. Overall, EQM showed the highest CI value in all continents, which 820 

means that it provides the most balanced results in terms of performance and uncertainty. These 821 

results are consistent with previous studies (Lafon et al., 2013; Teutschbein and Seibert, 2012; 822 

Teng et al., 2015) that showed high precipitation correction accuracy and excellent 823 

performance, especially under complex climate conditions. QDM was evaluated highly in some 824 

regions but performed worse than EQM overall. Berg et al. (2022) also pointed out that QDM 825 

is superior in general climate conditions but may perform worse in extreme climate situations, 826 

suggesting that this may increase the uncertainty of QDM in extreme climates. DQM was 827 

evaluated as an unsuitable method in most regions due to low CI values, which is consistent 828 

with the limitations of DQM mentioned in Cannon et al. (2015) and Berg et al. (2022). It was 829 

confirmed that DQM performs relatively well in dry climates but may perform worse in various 830 
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climate conditions. In addition, some differences were observed with the results based on 831 

TOPSIS. For example, DQM was selected more than QDM in South America, but when the 832 

uncertainty weight was applied, QDM was selected more. Conversely, in Oceania, QDM was 833 

selected more than DQM, but when the uncertainty weight was increased to 0.7, DQM was 834 

selected more. These results are consistent with those of Lafferty and Sriver (2023), showing 835 

that when significant uncertainty exists, uncertainty can be greater despite high bias correction 836 

performance. 837 

 838 

5. Conclusion 839 

This study corrected and compared historical daily precipitation from 11 CMIP6 GCMs using 840 

three QM methods. Eleven statistical metrics were used to evaluate the precipitation 841 

performance corrected by three QM methods, and TOPSIS was applied to select performance-842 

based priorities. BMA was applied to quantify model-specific and ensemble prediction 843 

uncertainties. Additionally, suitable QM methods were selected and compared using a CI that 844 

integrates TOPSIS performance scores with BMA uncertainty metrics. The conclusions of this 845 

study are as follows: 846 

1. EQM showed the highest overall index across all continents, indicating that it provides 847 

the most balanced approach in terms of performance and uncertainty. 848 

2. DQM effectively reproduced the dry climate in North Africa and parts of Central and 849 

Southwest Asia but showed the highest uncertainty across all continents. These results 850 

suggest that DQM may lose some long-term trend information, making it less reliable 851 

in regions prone to extreme weather events. 852 

3. QDM performed better in certain regions, such as Southeast Asia, and was selected 853 

more often than DQM when uncertainty was given greater weight. QDM may be a 854 

promising alternative in areas where uncertainty plays a significant role. 855 

4. Selecting an appropriate QM is required for high performance, and significant 856 

uncertainty can complicate rational decision-making. Therefore, a multifaceted 857 

approach considering performance and uncertainty is essential in climate modeling. 858 

In conclusion, EQM has emerged as the preferred method due to its balanced performance, but 859 

this study emphasizes the importance of regional assessment and careful consideration of 860 

uncertainty when selecting a QM method. Furthermore, EQM is the most balanced method 861 

regarding performance and uncertainty and will likely be preferred in future climate modeling 862 
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studies. However, there may be more suitable QM methods depending on the region, and a 863 

comprehensive evaluation with various weights is needed. Therefore, when establishing 864 

climate change response strategies or policy decisions, it is essential to take a multifaceted 865 

approach that considers uncertainty together rather than relying on a single indicator or 866 

performance alone. It will enable more reliable predictions and better decision-making. Future 867 

research should integrate greenhouse gas scenarios to improve the accuracy of climate 868 

predictions and provide a more comprehensive understanding of future climate risks. 869 

Furthermore, more bias correction methods should be used to extend the robustness of CI. 870 

 871 

Code and data availability 872 

Codes for benchmarking the xclim of python package are available from 873 

https://doi.org/10.5281/zenodo.10685050 (Bourgault et al., 2024). Furthermore, the CI 874 

proposed in this study, along with the TOPSIS and BMA used within it, is available at 875 

https://doi.org/ 10.5281/zenodo.14351816 (Song, 2024b). The data used in this study are 876 

publicly available from multiple sources. CMIP6 General Circulation Models (GCMs) outputs 877 

were obtained from the Earth System Grid Federation (ESGF) data portal at https://esgf-878 

node.llnl.gov/search/cmip6/. Users can select data types such as climate variables, time series, 879 

and experiment ID, which can be downloaded as NC files. Furthermore, CMIP6 GCMs output 880 

can also be accessed in Eyring et al. (2016) The ERA5 reanalysis dataset used in this study is 881 

available through the Copernicus Data Store (CDS) provided by ECMWF 882 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-883 

levels?tab=overview). ERA5 is available at https://doi.org/10.24381/cds.bd0915c6 (Hersbach 884 

et al., 2023). The daily precipitation datasets from CMIP6 GCM and ERA5 used in this study 885 

are available at https://doi.org/10.6084/m9.figshare.27999167.v5 (Song, 2024c).  886 
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