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Abstract

This study proposed a Comprehensive Index (CI) that jointly considers bias correction
performance metrics and uncertainty to guide the selection of quantile mapping methods. This
approach reveals not only a performance-based ranking of bias correction methods but also
how optimal method choices shift as the uncertainty weight varies. This study evaluated daily
precipitation performance from 11 CMIP6 GCMs corrected by Quantile Delta Mapping
(QDM), Empirical Quantile Mapping (EQM), and Detrended Quantile Mapping (DQM) using
ten evaluation metrics and applied TOPSIS (Technique for Order Preference by Similarity to
an ldeal Solution) to compute performance-based rankings. Furthermore, Bayesian Model
Averaging (BMA) was used to quantify both individual model and ensemble prediction
uncertainties. Moreover, entropy based weighting of the ten evaluation metrics reveals that
error based measures such as RMSE and MAE carry the highest information content (weights
0.13-0.28 and 0.15-0.22, respectively). By aggregating TOPSIS performance scores with BMA
uncertainty measures, this study developed CI. Results show that EQM achieved the best
performance across most metrics 0.30 (RMSE), 0.18 (MAE), 0.98 (R3, 0.87 (KGE), 0.93
(NSE), and 0.99 (EVS) and exhibited the lowest uncertainty (variance = 0.0027) across all
continents. QDM outperformed other methods in certain regions, reaching its lowest model
uncertainty (variance = 0.0025) in South America. EQM was selected most frequently under
all weighting scenarios, while DQM was least chosen. In South America, DQM was preferred
more often than QDM when performance was emphasized, whereas the opposite occurred
when uncertainty was emphasized. These findings suggest that incorporating uncertainty leads
to spatially heterogeneous and parameter dependent changes in optimal bias correction method

choice that would be overlooked by metric only selection.
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1. Introduction

The Coupled Model Intercomparison Project (CMIP) General Circulation Models
(GCMs) have provided critical scientific evidence to explore climate change (IPCC, 2021;
IPCC, 2022). Nevertheless, GCMs exhibit significant biases compared to observational data
for reasons such as incomplete model parameterization and inadequate understanding of key
physical processes (Evin et al., 2024; Zhang et al., 2024; Nair et al., 2023). These deficiencies
with GCM have introduced various uncertainties in climate projections, making ensuring
sufficient reliability in climate change impact assessments difficult. In this context, many
studies have proposed various bias correction methods to reduce the discrepancies between
observational data and GCM simulations, thereby providing more stable results than raw GCM-
based assessments (Cannon et al., 2015; ThemeRB| et al., 2012; Piani et al., 2010). Despite these
advancements, the suggested bias correction methods differ in their statistical approaches,
resulting in discrepancies in the climate variables adjusted for historical periods. Furthermore,
the distribution of precipitation across continents and specific locations causes variations in the
correction outcomes depending on the method used, which makes it challenging to reflect
extreme climate events in future projections and adds another layer of confusion to climate
change research (Song et al., 2022b; Maraun, 2013; Ehret et al., 2012; Enayati et al., 2021).
Thus, exploring multiple aspects to make reasonable selections when applying bias correction
methods specific to each continent and region is necessary.

Many studies have developed appropriate bias correction methods based on various
theories, which have reduced the difference between raw GCM simulations and observed
precipitation (Abdelmoaty and Papalexiou, 2023; Shanmugam et al., 2024; Rahimi et al., 2021).
The Quantile Mapping (QM) series has been widely adopted among bias correction methods
due to its conceptual simplicity, ease of application, and adaptability to various methodologies.
However, although standard QM methods have high performance in correcting stationary
precipitation, they are less efficient in non-stationary data, such as extreme precipitation events
(Song et al., 2022b). To address these limitations, recent studies proposed an improved QM
approach to reflect future non-stationary precipitation across all quantiles of historical
precipitation (Rajulapati and Papalexiou, 2023; Cannon et al., 2015; Cannon, 2018; Song et al.,
2022b). In recent years, climate studies using GCMs have adopted several improved QM
methods that offer higher performance than previous methods to correct historical precipitation

and project it accurately into the future. For example, Song et al. (2022b) performed bias
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correction on daily historical precipitation over South Korea using distribution transformation
methods they developed and found that the best QM method varied depending on the station.
Additionally, previous studies have reported that QM performance varied by grid and station
(Ishizaki et al., 2022; Chua et al., 2022). Furthermore, they compared the extreme precipitation
of GCMs using the GEV distribution, which allows for more effective estimation of extreme
precipitation, and demonstrated that the performance in estimating extreme precipitation varies
according to different bias correction methods. From this perspective, these improved QMs
may only guarantee uniform results across some grids and regions. Therefore, to analyze
positive changes in future climate impact assessments, selecting appropriate bias correction
methods based on a robust framework is essential.

Multi-criteria decision analysis (MCDA) is efficient for prioritization because it can
aggregate diverse information from various alternatives. MCDA has been extensively used
across different fields to select suitable alternatives, with numerous studies confirming its
stability in priority selection (Chae et al., 2022; Chung and Kim, 2014; Song et al., 2024a).
Moreover, MCDA has been employed in future climate change studies to provide reasonable
solutions to emerging problems, including the selection of bias correction methods for specific
regions and countries (Homsi et al., 2019; Saranya and Vinish, 2021). Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) is effectively utilized in our study's
MCDA framework by integrating multiple evaluation metrics and calculating the distance
between each alternative and the ideal solution, thereby enabling clear and intuitive
prioritization decisions. However, MCDA's effectiveness is sensitive to the source and quality
of alternatives, making accurate ranking challenging when information is lacking or overly
focused on specific criteria (Song and Chung, 2016). Small-scale regional and observation-
based studies have conducted GCM performance evaluations, but global and continental-scale
evaluations are rare due to the substantial time and cost required.

GCM simulation includes uncertainties from various sources, such as model structure,
initial condition, boundary condition, and parameters (Pathak et al., 2023; Cox and Stephenson,
2007; Yip et al., 2011; Woldemeskel et al., 2014). The selection of bias correction methods
contributes significantly to uncertainty in climate change research using GCMs. Jobst et al.
(2018) argued that GHG emission scenarios, bias correction methods, and GCMs are primary
sources of uncertainty in climate change assessments across various fields. The extensive

uncertainties in GCMs complicate the efficient establishment of adaptation and mitigation
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policies. This issue has increased awareness of the uncertainties inherent in historical
simulations. Consequently, many studies have focused on estimating uncertainties using
diverse methods to quantify these uncertainties (Giorgi and Mearns, 2002; Song et al., 20223;
Song et al., 2023). Although it is impossible to drastically reduce the uncertainty of GCM
outputs due to the unpredictable nature of climate phenomena, uncertainties in GCM
simulations can be reduced using ensemble principles, such as multi-model ensemble
development using a rational approach (Song et al., 2024). However, accurately identifying
biases in precipitation simulation remains challenging due to the lack of comprehensive
equations reflecting Earth's physical processes. In this context, climate change studies have
aimed to quantify the uncertainty of historical climate variables in GCMs, offering insights into
the variability of GCM simulations (Pathak et al., 2023). Bias-corrected precipitation of GCMs
using QM has shown high performance in the historical period, which is expected to result in
better future predictions. However, the physical concepts of various QMs may lead to more
significant uncertainty in the future (Lafferty et al., 2023). Therefore, efforts should be made
to consider and reduce uncertainty in the GCM selection process. It will ensure the reliability
of predictions by selecting an appropriate bias-correcting method. Furthermore, Bayesian
Model Averaging (BMA) plays a crucial role in quantifying the predictive uncertainty of
multiple climate models and enhancing the reliability of the final predictions, which is why it
has been employed as an indispensable tool in our integrated evaluation.

In light of the challenges outlined above, including discrepancies among bias
correction methods, regional variability in precipitation distributions, and significant
uncertainties in GCM outputs, there is a clear need for an integrated framework that evaluates
the performance of various QM methods and quantifies their associated uncertainties. This
study aims to compare the performance of three bias correction methods using daily historical
precipitation data (1980-2014) from CMIP6 GCMs across six continents (South America: SA;
North America: NA; Africa: AF; Europe: EU; Asia: AS; and Oceania: OA). Ten evaluation
metrics were used to assess the performance of daily precipitation corrected by the three QM
methods for each continent. Subsequently, the Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS) of MCDA was applied to select an appropriate bias correction
method for each continent. Additionally, the uncertainty in daily precipitation for historical
periods was quantified using BMA. By integrating performance scores from TOPSIS and

uncertainty metrics from BMA, this study developed a Comprehensive Index (CI), which was



then used to select the best bias correction method for each continent. This comprehensive
approach ensures a balanced consideration of both performance and uncertainty, enhancing
understanding of the bias correction process based on the distribution of daily precipitation

across continents.

2. Datasets and methods

2.1 General Circulation Model

This study used 11 CMIP6 GCM to perform bias correction for daily precipitation in the
historical period. The variant label for the GCMs used in this study was rlilplfl. Table 1
presents basic information, including model names, resolution. The model resolution of 11
CMIP6 GCMs was equally re-gridded to 1°x1° using linear interpolation. Furthermore, this

study's ensemble member of CMIP6 GCMs was the first member of realizations (rl).

Table 1. Information of CMIP6 GCMs in this study

Institution Models Resolution

Commonwealth scientific and industrial research ACCESS-CM2 1.2° x 1.8°
organization/ Australia ACCESS-ESM1-5 | 1.2°x1.8°
Beijing Climate Center/China BCC-CSM2-MR 1.1°x1.1°
Canadian Centre for Climate Modeling and CanESM5 o o

. 2.8°x2.8
Analysis/ Canada
National Center for Atmospheric Research CESM2-WACCM | 0.9° x1.3°
Euro-Mediterranean Center on Climate Change CMCC-CM2-SR5 | ~0.9°
coupled climate model/ Italy CMCC-ESM2 0.9° x 1.25°
EC-Earfth Climate Model Consortium/ EC-EARTH EC-Earth3-Veg-LR | 1.0° x 1.0°
consortium
Nat_lonal Oceanic and Atmospheric Administration/ GEDL-ESM4 1 4° x 1.4°
United States
Institute for Numerical Mathematics/ Russia INM-CM4-8 ~0.9°
Institute Pierre Simon Laplace/ France IPSL-CM6A-LR 1.1°x1.1°

2.2 Reference data

This study utilized re-gridded precipitation data derived from ERAS5 reanalysis products
provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The
original ERAS precipitation data, available at a 0.25° x 0.25° spatial resolution, was re-gridded
toa 1.0°x 1.0°resolution using the Python library XESMF. The data units were converted from
meters per day (m/day) to millimeters per day (mm/day) for consistency with other datasets.
The dataset is part of the FROGS (Frequent Rainfall Observations on Grids) database, which
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integrates various precipitation products, including satellite-based, gauge-based, and reanalysis
data (Roca et al., 2019). The re-gridded dataset was selected for its spatial compatibility with
the study's objectives, facilitating the evaluation of General Circulation Model (GCM)
simulations in replicating observed precipitation patterns. The FROGS database provides a
robust framework for intercomparison and assessment of precipitation products across different
sources. FROGS database has been widely used in various studies to ensure the reliability of
climate model evaluation and climate change assessment (Wood et al., 2021; Roca and Fiolleau,
2020; Petrova et al., 2024).

2.3 Quantile mapping

This study employed three (Quantile delta mapping, QDM; Detrended quantile mapping, DQM;
Empirical quantile mapping, EQM) QM methods to correct the simulation of CMIP6 GCMs,
and these methods are commonly used in climate change research based on the climate models
(Switanek et al., 2017). The global application imposed substantial computational demands.
Consequently, the scope was limited to these three techniques, and incorporating additional
bias-correction methods in future work would further strengthen robustness. For calibration
and evaluation, the dataset was divided into a training period (1980-1996) and a validation
period (1997-2014). This approach minimizes the influence of uncertainties associated with
future projections, allowing the study to focus on evaluating the intrinsic performance
differences of the QM methods. The frequency-adaptation technique, as described by Themeg|
et al. (2012), was applied to address potential biases and improve the accuracy of the
corrections. This technique removes the systematic wet bias caused by the model’s
overestimation of dry days relative to observations. Based on this procedure, it effectively
corrects the underestimation of excessive dry days during the summer and ensures stable
performance even under rigorous cross validation. The corrected precipitation using the QM
used a cumulative distribution function, as shown in Equation 1, to reduce the difference from
the reference data.

Zmp(®) = Fop {Fnn[¥mp®]} (1)

where, X, ,(t) presents the bias-corrected results. F, , represents the cumulative distribution
function (CDF) of the observed data, and F,, , presents the CDF of the model data. The

subscripts o and m denote observed and model data, respectively, and the subscript h denotes

the historical period.
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QDM, developed by Cannon et al. (2015), preserves the relative changes ratio of modeled
precipitation quantiles. In this context, QDM consists of bias correction terms derived from
observed data and relative change terms obtained from the model. The computation process of
QDM is carried out as described in Equation (2) to (4).

fm,p () = Xoim Jp ®)-An(®) (2

k\o:m,h:p ) = F(t) {xm p (t)} (3)
_ Xm,p (L)
An(®) = ﬂmew

where, X, n.p () presents the bias corrected daily precipitation for the historical period, and
A, (t) the relative change in the model simulation between the reference period and the target
period. In addition, the target period is calculated by multiplying the relative change (A, (t))
at time (t) multiplied by the bias-corrected precipitation in the reference period. A, (t) is
defined as x,,,(¢) divided by F;} EY S {%mp (). A (t) preserving the relative change
between the reference and target perlods. DQM, while more limited compared to QDM,
integrates additional information regarding the projection of future precipitation. Furthermore,
climate change signals estimated from DQM tend to be consistent with signals from baseline

climate models. The computational process of DQM is performed as shown in Equation (5).

Ee — -1 )?m,hxm,h(t) Xm,p(t)
Xmp = Lon {Fm,h[ X () } F (5)

where, X,,, , and )?m,p represent the long-term modeled averages for the historical reference

period and the target period, respectively.

EQM is a method that corrects the quantiles of the empirical cumulative distribution function
from a GCM simulation based on a reference precipitation distribution using a corrected
transfer function (Dequé, 2007). The calculation process of EQM can be represented as follows
in Equation (6).

R (8) = Pyt (Fron (s (£))) (6)

All these QMs can be applied to historical data correction in this approach. The bias correction
is performed based on the relative changes between a reference period and a target period in
the past, ensuring that the relative changes between these periods are preserved in the corrected
data (Ansari et al., 2023; Tanimu et al., 2024; Cannon et al., 2015).

2.4 Evaluation metrics
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This study evaluated the performance of three quantile-mapping methods against reference
data during the validation period (1997-2014) using ten metrics commonly employed in climate
research, and used these metrics to identify the optimal GCMs and bias-correction techniques.
Recognizing that redundancy among metrics can bias multi-criteria decision making, this study
applied an entropy-based weighting scheme that assigns weights according to each metric’s
distribution to enhance objectivity. Ten evaluation metrics used in this study are as follows:
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination
(R?), Percent bias (Pbias), Nash-Sutcliffe Efficiency (NSE), Kling-Gupta efficiency (KGE),
Median Absolute Error (MdAE), Mean Squared Logarithmic Error (MSLE), Explained
Variance Score (EVS), and Jenson-Shannon divergence (JSD). The equations of ten evaluation

metrics are presented in Table 2.

Table 2. Information of the ten-evaluation metrics used in this study

Metrics Equations Factors References Range
1 n
_ . f 2
RMSE - EZ(X;lm —x") [0, +c0)
= Best value:
- 0
MAE = Y st —xy|
i=1
. —00,1
Logm-xrehr | X Galton, (e 1l
R? =1- o oref Best value:
X7 =X "7)? reference 1886
l l 1
data
. ; . (—o00, +0)
n(xrer — xstmy X5'™ Bias
Pbias =S L %100 Best value:
X corrected
0
GCM
. Nash and (—o0,1]
n (Xglm _ Xref)z
NSE =1 == L Sutcliffe, | Best value:
n(x'e — xrely2
R ‘ 1970 1
[0, +0)
MdAE = median(|x§™ - X7 ) Best value:
0
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230
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234

[0, +o0)

Best value:

n
1 |
- EZ(log(l + X$m) — log (1
MSLE -

+X;))? 0

(—oo, 1]
Best value:
1

Var(xsm — xrel)
Var(Xef)

EVS

r Pearson
product-

moment (—o0,1]
=1 ] Gupta et
KGE correlation | 2009 Best value:
—Jr—=1D2+(a—-12?+ (L —-1)? I al.

\/( )+ ( ¥+@E-D a Variability 1

error
B: Bias term
P(x)
Probability

density
distribution
of reference
1 P+

=Dy, (p I _Q> [0, In2]

2 data )
JSD Lin, 1991 | Best value:

P
+ 5Dk (Q [ %Q> Q(x) 0
Probability

density
distribution
of GCM
Dy, KL-D

Ten evaluation metrics selected in this study assess GCM performance from various

perspectives, including error (RMSE, MAE, MdAE, and MSLE), deviation (Pbias), accuracy (

R?, NSE), variability (EVS), correlation and overall performance (KGE), and distributional

differences (JSD). These metrics complement each other by offering a comprehensive

evaluation framework. For instance, while NSE evaluates the overall fit of the simulated data

to observations, KGE provides a holistic view by integrating correlation, variability, and bias
10
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into a single efficiency score, and JSD captures the difference between the distributions of the
reference data and the bias-corrected GCM output. This study used the Friedman test to
perform statistical comparisons among the three bias-correction methods (DQM, EQM, QDM),
and when the Friedman test indicated overall significant differences, pairwise Wilcoxon
signed-rank tests were conducted between each method pair to determine which specific
comparisons differed. The detailed concepts of the two methods can be found in Friedman
(1937) and Wilcoxon (1945).

2.5 Generalized extreme value

This study used generalized extreme value (GEV) to compare the extreme precipitation
calculated by the bias-corrected GCM at each grid of six continents over the historical period.
The historical precipitation was compared with the distribution of reference data and bias-
corrected GCM above the 95th quantile of the Probability Density Function (PDF) of the GEV
distribution (Hosking et al. 1985). In addition, this study compared the distribution differences
between the reference data based on the GEV distribution and the corrected GCM using JSD.
GEV distribution is commonly used to confirm extreme values in climate variables. The PDF
of the GEV distribution is shown in Equation 7, and the parameters of the GEV distribution
were estimated using L-moment (Hosking, 1990).

gx) = i[l - k%]%_l exp {— [1 - k% %} (7)

where, k, s, and ¢ represents a shape, scale, and location of the GEV distribution, respectively.

2.6 Bayesian model averaging (BMA)

The BMA is a statistical technique that combines multiple models to provide predictions that
account for model uncertainty (Hoeting et al., 1999). BMA is used to integrate predictions from
GCMs to improve the robustness and reliability of the resulting assemblies. The posterior

probability of each model is calculated based on Bayes' theorem as shown in Equation 8.
P(DIMy)P(M
( k) ( k) (8)

T P(DIMj)P(M))
where, P(M,) is the prior probability of model M;, and P(D | M},) the likelihood of the data
D given model M,, P(M, | D) is the posterior probability of model M;. In addition, the BMA

P(My | D) =

prediction Qg4 is the weighted average of the predictions from each model as shown in

Equation 9.
11
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QBMA = Il§=1 P(M | D)Qk ©

where, Q,, is the prediction from model M,. In this study, BMA was used to quantify the model
uncertainty and ensemble prediction uncertainty for daily precipitation corrected by three QM
methods (QDM, EQM, and DQM) applied to 11 CMIP6 GCMs, as shown in Equations 10 and
11.

1 —
af = =Tk (we —W)? (10)
where, K is the number of models, wy, = P(M,, | D) is the weight of model M;, w is the mean
of the weights, given by w = %211;1 wy. A higher variance in model weights indicates more

significant prediction differences, implying greater model uncertainty.

oBMA = [155 (0 - 0BMAY (11

oBMA is standard deviation of the BMA ensemble predictions, Q, is the prediction from each
model M,,, QBMA is the weighted average prediction from BMA. This standard deviation
represents the variability among the ensemble predictions and serves as an indicator of
uncertainty. A lower standard deviation implies higher consistency among predictions,
indicating lower uncertainty, while a higher standard deviation suggests greater variability and

higher uncertainty.

2.7 TOPSIS

This study used TOPSIS to calculate a rational priority among three QM methods based on the
outcomes derived from evaluation metrics. Moreover, this study employed entropy theory to
compute objective weights for the evaluation metrics as an alternative to TOPSIS (Shannon
and Weaver 1949). The closeness coefficient calculated using TOPSIS was used as the
performance metric for the CI. Proposed by Hwang and Yoon (1981), TOPSIS is a multi-
criteria decision-making technique frequently used in water resources and climate change
research to select alternatives (Song et al., 2024). As described in Equation 12 and 13, the
proximity of the three QM methods is calculated based on the Positive Ideal Solution (PIS) and
the Negative Ideal Solution (NIS).

D} = \/z?zlw,-(n-*—ﬁ,m (12)

D = \/zyzlevf—ﬁj)z (13)
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where, D;" is the Euclidean distance of each criterion from the PIS, summing the whole criteria

foran alternative f;, j presents the normalized value for the alternative f;". w; presents weight
assigned to the criterion j. D; is the distance between the alternative f;~ and the NIS. The

relative closeness is calculated as shown in Equation 14. The optimal value is closer to 1 and

represents a reasonable alternative.

S (14)

L' (oj+Dh)

This study used entropy theory to calculate the weights for each criterion. Entropy weighting
ensures sufficient objectivity by calculating weights based on the variability and distribution

of data. This approach minimizes subjectivity, preventing biases in the weighting process.

2.8 Comprehensive index (CI)

This study proposed a Cl to select the best QM method by combining performance scores and
model uncertainty indicators. The CI integrates the performance scores (closeness coefficient)
derived from the TOPSIS method with the uncertainty quantified using BMA. This approach
allows for a balanced evaluation that considers both the effectiveness of the QM methods and
the associated uncertainties. Uncertainty was quantified in two ways. Model-specific weight
variance was calculated using the variance of the model weights assigned by BMA,
representing the uncertainty in selecting the appropriate QM. The standard deviation of BMA
ensemble prediction was calculated to capture the spread and, thus, the uncertainty of the
ensemble forecasts. Both the indicators were normalized using a min-max scaler to ensure
comparability. The CI is calculated individually for every grid and can reflect climate
characteristics. Framework provides flexibility in determining the weighting of uncertainty or
performance depending on the study objectives. Additionally, the methodology offers
flexibility in selecting performance and uncertainty metrics. Alternative MCDA methods
beyond TOPSIS can be utilized for performance indicators, or indices that effectively represent
the model's performance can be employed to calculate the CI. Similarly, for uncertainty
indicators, approaches such as variance, standard deviation, or other uncertainty quantification
techniques can be applied to enhance the robustness of the framework further. Finally, the

calculation process of the Cl is performed as shown in Equations 15 and 16.

Vwtoe
2% (15)

Ul =

Cl=wXxC,—pxUl (16)
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where, Ul represents the uncertainty indicator. V,, and o, represent the normalized weight
variance and the normalized ensemble standard deviation, respectively, calculated using BMA.
C; represents the closeness coefficient calculated from TOPSIS. w represents the weight given
to the performance score, 8 represents the weight given to the uncertainty indicator.
Furthermore, by adjusting the weights w and g, the study evaluated the QM methods under
different scenarios. Equal weight (w= 0.5, f#=0.5) balances performance and uncertainty
equally, and the emphasized performance weight (w= 0.7, $=0.3) prioritize performance over
uncertainty. The emphasized uncertainty weight (w= 0.3, £=0.7) prioritize uncertainty over
performance. The results from the CI provide a holistic evaluation of the QM methods,

considering both their effectiveness in bias correction and the reliability of their predictions.

3. Result

3.1 Assessment of bias correction reproducibility across continents

3.1.1 Comparison of bias correction effects

A Taylor diagram was used to compare the bias-corrected and raw GCM precipitation with the
observed data, and Figure 1 presents the results of applying the three QM methods to 11 CMIP6
GCMs. In general, the precipitation corrected by DQM showed a larger difference from the
reference data than other methods. In contrast, EQM performed better than DQM, and many
models showed results close to the reference data. The precipitation corrected by QDM also
showed good performance in most continents but slightly lower than EQM. Nevertheless,
QDM showed clearly better results than DQM.

Regarding correlation coefficients, precipitation corrected by DQM showed relatively high
values between 0.8 and 0.9 but lower than EQM and QDM. The precipitation corrected by
EQM showed high agreement with the reference data, recording correlation coefficients above
0.9 in most continents. QDM generally showed similar correlation coefficients to EQM but
slightly lower values than EQM in North America and Asia.

For RMSE, precipitation corrected by DQM was higher than EQM and QDM, indicating that
the corrected precipitation differed more from the reference data. On the other hand, EQM had
the lowest RMSE and showed superior performance compared to other methods. QDM had
slightly higher RMSE than EQM but still outperformed DQM.

In terms of standard deviation, precipitation corrected by DQM was higher or lower than the
reference data in most continents. On the other hand, precipitation corrected by EQM was

14



358  similar to the reference data and almost identical to the reference data in Africa and Asia. QDM
359  was similar to the reference data in some continents but showed slight differences from EQM.
360  These results imply that the precipitation corrected by the three methods outperforms the raw
361  simulation, which confirms that the GCM's daily precipitation is reliably corrected in the
362 historical period.

363



(a)

(b)

()

(d)

Taylor diagram

8

A
A, .
\A\ \ \
— D
\
AN EY
0.2 04 06 o "
- 60°
“ .
—— ' )\
4 ﬁ‘\
- X 0°
\ e
SR e
proe2 030403
i
- Y
s
L4 .
A N

0.3

~— a0

&
.4 0.5 e (D

I
%)

(a)
(b)
()
(d)
(e)

bl 2 d bl 2l g 2 2 d g 2

South America
North America
Africa

Europe

Asia

Oceania

ACCESS-CM2_BIAS
ACCESS-CM2_RAW
ACCESS-ESM1-5_BIAS
ACCESS-ESM1-5_RAW
BCC-CSM2-MR_BIAS
BCC-CSM2-MR_RAW
CESM2-WACCM_BIAS
CESM2-WACCM_RAW
CMCC-CM2-SR5_BIAS
CMCC-CM2-SRS_RAW
CMCC-ESM2_BIAS
CMCC-ESM2_RAW
CanESM5_BIAS
CanESM5_RAW
EC-Earth3-Veg-LR BIAS
EC-Earth3-Veg-LR_RAW
GFDL-ESM4_BIAS
GFDL-ESM4_RAW
INM-CM4-8_BIAS
INM-CM4-8_RAW
IPSL-CM6A-LR_BIAS
IPSL-CM6A-LR_RAW

* Reference



365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

Figure 1. Comparison of raw and bias-corrected daily precipitation across six continents during
the validation period (1997-2014) using Taylor diagrams (x-axis: standard deviation; y-axis:

correlation coefficient)

3.1.2 Spatial distribution of bias correction performance

This study used the Friedman test to evaluate whether the three quantile-mapping methods
(QDM, DQM, EQM) rank differently across the 11 downscaled GCMs for each of the ten-
evaluation metrics within each continent. A p-value < 0.05 indicates that the methods rank
differently for the metric, and in this section all Friedman p-values were < 0.001
(Supplementary Table S1). When the Friedman test was significant, pairwise differences were
examined with the Wilcoxon signed-rank test. The results, summarized in Supplementary
Figure S1, show that most method pairs are significant across continents.

The spatial patterns of the evaluation metrics computed from the bias-corrected daily
precipitation data of GCMs in South America are presented as shown in Figure 2. Overall, the
precipitation corrected by EQM demonstrated lower JSD values, as well as higher EVS and
KGE values, compared to other methods. The precipitation corrected by EQM showed higher
EVS in certain regions but slightly lower performance in MdAE and Pbias across some grids.
DQM exhibited performance similar to EQM and QDM in most evaluation indices but was
relatively lower in most evaluation metrics. The precipitation corrected by the three methods
was underestimated compared to the reference data in northern South America, while it was
overestimated in eastern South America. In addition, precipitation corrected by the DQM
method tended to be overestimated more than the other methods, while the EQM method
showed the opposite result. Furthermore, the daily precipitation corrected by EQM showed the
lowest overall error and high performance in both NSE and R?. QDM and DQM also

performed well but exhibited slightly larger errors in some regions than EQM.



391
392

393
394
395
396
397
398
399
400
401
402

DQM EQM QDM DQM EQM QDM

EVS
MSLE

JSD
NSE

KGE

Pbias (%)

MAE (mm)
RZ

MAAE (mm)
RMSE (mm)

Figure 2. Performance comparison of DQM, EQM, and QDM for the validation period (1997-

2014) using evaluation metrics for daily precipitation in South America.

Figure 3 shows spatial patterns of evaluation metrics for bias-corrected daily precipitation in
North America. DQM exhibited poorer error performance (MAE, MSLE, RMSE, MdAE),
especially in the southern region, while EQM achieved the best error metrics continent wide
and QDM ’s errors were only slightly higher. For correlation metrics (NSE, R?), EQM yielded
the highest coefficients (mostly above 0.995), DQM lagged except for some high values in
central and eastern grids, and QDM showed slightly lower correlations (around 0.978). All
three methods overestimated precipitation (Pbias) at most grid points, with notable

underestimation in Greenland. On divergence and distribution metrics (JSD, EVS, KGE), EQM
18
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again outperformed both DQM and QDM. Consequently, EQM consistently provided the most
accurate and reliable precipitation corrections in North America, while DQM introduced the

greatest uncertainty.
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Figure 3. Performance comparison of DQM, EQM, and QDM for the validation period (1997-
2014) using evaluation metrics for daily precipitation in North America.

Daily precipitation in Africa was corrected using three QM methods, and performance is shown
in Figure 4. All three methods produced similar JSD spatial patterns, though DQM’s
performance was notably lower in southern Africa. In terms of EVS, DQM exhibited the
highest variability, QDM was intermediate, and EQM showed the lowest variability in southern
and central regions (but remained high in the north). For error metrics, QDM performed best
overall, particularly in North Africa (MAE = 0.03, MSLE = 0.004), followed by EQM, then
DQM. EQM achieved the highest correlation scores (NSE and R?) across most grid points,
with QDM outperforming DQM.
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Figure 4. Performance comparison of DQM, EQM, and QDM for the validation period (1997-

2014) using evaluation metrics for daily precipitation in Africa

Figure 5 shows the spatial results of the grid-based evaluation metrics for the European region.
In terms of error metrics, EQM-corrected precipitation performed the best across Europe
compared to other methods. In contrast, QDM-corrected precipitation performed similarly to
DQM in MAE and MSLE but significantly outperformed DQM in RMSE.

Regarding NSE and R?, EVS, and KGE metrics, EQM-corrected precipitation performed
overwhelmingly better than other methods. QDM precipitation performed better than DQM,
while DQM performed the worst. Regarding Pbias, EQM-corrected precipitation was
underestimated compared to the reference data in most parts of Europe. In contrast, QDM-
corrected precipitation was more similar to the reference data compared to other methods, and

DQM precipitation was overestimated compared to the reference data except in central Europe.
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Figure 5. Performance comparison of DQM, EQM, and QDM for the validation period (1997-

2014) using evaluation metrics for daily precipitation in Europe.

Figure 6 compares bias-corrected daily precipitation in Asia using various evaluation metrics.
For error metrics, EQM provided the best performance its RMSE remained below 1.35 over
most regions while DQM had the lowest errors. QDM’s error values were similar to EQM but
slightly higher in East and North Asia. In terms of NSE and R?, EQM again led, especially in
Southwest and East Asia, with DQM lagging behind. For EVS, EQM showed the lowest
variability, QDM was intermediate, and DQM the highest. Regarding Pbias, DQM tended to
overestimate precipitation continent wide, EQM underestimated in most areas except Central

Asia, and QDM ’s spatial pattern resembled EQM but with a wider Pbias range.
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Figure 6. Performance comparison of DQM, EQM, and QDM for the validation period (1997-

2014) using evaluation metrics for daily precipitation in Asia.

Figure 7 shows the results of spatially quantifying the corrected daily precipitation in Oceania
using various evaluation metrics. In terms of error metrics, the precipitation estimated by the
three QM methods performed similarly in MAE, MdAE, and MSLE. However, the
precipitation corrected by EQM performed better in RMSE than the other methods. In the case
of JSD, all three methods performed well. Regarding EVS, the precipitation corrected by EQM
showed lower variability than the other methods, and DQM showed higher performance than
QDM. In Pbias, the precipitation adjusted by QDM was overestimated compared to the
reference data in Oceania, while the precipitation corrected by DQM and EQM was
underestimated compared to the reference data in central and southern Oceania. Finally, in
KGE, precipitation corrected by EQM showed the highest performance, while DQM showed

the lowest.
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Figure 7. Performance comparison of DQM, EQM, and QDM for the validation period (1997-

2014) using evaluation metrics for daily precipitation in Oceania.

Figure 8 presents the distribution of the ten-evaluation metrics for bias-corrected daily
precipitation averaged over each continent, summarized as boxplots. Each box shows the
interquartile range (IQR) and median of the metric values computed over 11 CMIP6 GCM:s.
Overall, EQM’s boxes generally have lower medians and narrower IQRs for error metrics
(RMSE, MSLE, MAE) on most continents, indicating both smaller typical errors and less
scatter compared to QDM and DQM. QDM’s boxplots lie slightly above those of EQM but
still exhibit relatively tight IQRs, suggesting consistently strong performance. In contrast,
DQM often has higher median errors, wider IQRs, and more extreme outliers, reflecting larger

and more variable biases relative to the other methods.
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3.1.3 Comparison of reproducibility for extreme daily precipitation

This study also compared how well each bias correction method reproduces extreme
precipitation by fitting a Generalized Extreme Value (GEV) distribution to the corrected daily
values and then quantifying the distributional differences. Figure 9 shows the JSD of GEV
fitted daily precipitation for DQM, EQM, and QDM on each continent. Across most continents,
the median JSD for all three methods is extremely low (on the order of 10"*to 10_5), and
even the interquartile ranges fall within narrow bands indicating that statistically the GEV
curves for DQM, EQM, and QDM are almost indistinguishable for historical data.
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Figure 9. Comparison of distribution differences for GEV distribution using JSD across six

continents.

Table S2 shows the results of a Friedman test and subsequent Wilcoxon signed rank pairwise
comparisons for the ten highest daily precipitation values exceeding the 95th percentile on each
continent. The Friedman test yielded a p-value of 4.5399 x10~°, indicating a highly significant
difference and that at least one of the three quantile-mapping methods differs systematically.
All Wilcoxon pairwise comparisons between methods produced 0.00195 on every continent,

demonstrating that no two bias-correction approaches generate equivalent extreme-
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precipitation estimates. Furthermore, the fact that both tests yielded identical results across
continents indicates that the sign and rank structure of the three methods was the same in every
continent, which in turn shows that the direction of the differences was consistent for each
GCM.

Because the reproducibility of extreme values in the corrected GCM is essential for impact
assessments, Figure 10 presents the estimated probability density function (PDF) of
precipitation values above the 95th percentile for the same GEV fit. Overall, DQM shows the
highest probability density for extreme precipitation across all continents and has the widest
tail, indicating that DQM boosts extreme events most aggressively. In contrast, EQM shows
the lowest and narrowest density conservatively correcting extremes (often 5-8 % below
DQM’s values). QDM falls between EQM and DQM in most regions but remains closer to
EQM.
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Figure 10. Comparison of probability densities for extreme precipitation values above the 95th

percentile using GEV

3.2 Prioritization of bias correction methods based on performance

3.2.1 Results of weight for evaluation metrics
26
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By conducting Friedman and Wilcoxon tests on the evaluation metrics, this study confirms that
the observed differences in entropy-derived weights are statistically significant. In this study,
the weights were calculated by applying entropy theory to the evaluation metrics used in the
TOPSIS analysis, and the results are presented in Table 3. JSD had the highest weight in South
America because the estimated JSD from 11 CMIP6 GCMs was an important metric for
evaluating model performance differences. These results indicate that the differences between
distributions are significant. On the other hand, EVS and NSE in South America had very low
weights, suggesting that the variability and efficiency of precipitation were considered less
important than other indicators. For North America, the RMSE, MSLE, and MAE metrics were
of significant importance, as evidenced by their high weights. These error metrics revealed
substantial regional differences. In contrast, EVS carried a negligible weight, suggesting it was
less important in explaining variability in North America. For Africa, MdAAE and JSD metrics
were of considerable importance, as indicated by their high weights. These metrics were key
evaluation factors in Africa. Conversely, EVS carried a low weight, suggesting it was
considered relatively less important. RMSE had the highest weight in Europe, and KGE also
had a relatively high weight, indicating that these metrics were considered important evaluation
criteria in Europe. In Asia, MAE and MSLE had high weights, suggesting that these metrics
were important evaluation metrics. On the other hand, EVS and NSE were considered less
important due to their low variability. In Oceania, high weights were assigned to JSD, KGE,
RMSE, and MAE, suggesting that these metrics are critical for evaluating model performance.

On the other hand, R? and NSE were assigned low weights.

Table 3. Entropy-based weights for evaluation metrics across different continents

RMS | MAE R? NSE KGE Pbias | MJAE | MSLE | EVS JSD

E
South 0.1439 | 0.1536 | 0.0001 0.0001 0.0005 | 0.0238 | 0.1754 0.1934 0.0004 0.3088
America
North 0.2289 | 0.1908 | 0.0001 0.0001 0.0007 | 0.0118 | 0.2152 0.2117 0.0001 0.1411
America

Africa 0.1319 | 0.1686 | 0.0002 0.0002 0.0002 | 0.0855 | 0.2436 0.1911 0.0002 0.1786

Europe 0.2821 | 0.1762 | 0.0022 0.0022 0.0063 | 0.0378 | 0.1754 0.1666 0.0021 0.1490

Asia 0.2073 | 0.1954 | 0.00003 | 0.00003 | 0.0001 | 0.0305 | 0.2300 0.2024 0.00003 | 0.1342

Oceania 0.2384 | 0.2204 | 0.0013 0.0013 0.0068 | 0.0214 | 0.2338 0.2093 0.0012 0.0660
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3.2.2 Selection of the best bias correction method based on TOPSIS

Figures 11 and S2 present the best bias correction method selected for each continent using the
TOPSIS approach. In Figure 11, the spatial distribution of the most effective bias correction
method across the grid points of each continent is shown. Figure S2 shows the number of grid
points selected for each QM method. In South America, EQM was chosen as the best method
in most grid points, with EQM being selected in over 1,500 grid points. In contrast, QDM was
selected in fewer than 700 grid cells, making it the least chosen method in South America.
Across all continents except South America, EQM was selected as the best model in the
majority of grid cells, with the number of selected grid points (North America: 7,583; Africa:
2,879; Europe: 2,719; Asia: 8,793; and Oceania: 1,659). On the other hand, DQM was the least
chosen method across all continents. For QDM, although it was the second most selected
method across all continents except South America, the difference in the number of grid points
between QDM and EQM is significant.

(@) (b) (c)

(a) North America (b) South America (¢) Africa (d) Asia (e) Oceania
®@EQM ®DQM QDM

Figure 11 Spatial distribution for selected best bias correction methods across continents
using TOPSIS

3.3 Uncertainty quantification of bias corrected daily precipitation
3.3.1 Uncertainty by model
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This study quantifies the daily precipitation uncertainty of 11 CMIP6 GCMs, corrected using
three different BMA methods. Figure 12 shows the distribution of GCM weight variances
calculated by BMA across six continents. In South America, the highest weight variance was
observed mainly in DQM. EQM showed high weight variance in the northern region but lower
variance than DQM in most other regions. QDM exhibited the lowest weight variance, with
values less than 0.00113 in most regions. In North America, EQM had the lowest weight
variance, with values between 0.00055 and 0.00024 in most regions. QDM showed the lowest
model uncertainty across North America, with more regions where weight variances were
closer to 0 than the other methods. On the other hand, DQM exhibited high weight variance
overall, with exceptionally high model uncertainty in the northeast and southern regions. In
Africa, EQM's weight variance was estimated to be low overall, resulting in low model
uncertainty in most regions. For QDM, weight variance was low in some regions but higher
than 0.00113 in others. DQM showed high weight variance in most regions except for the
northern area, indicating high model uncertainty across the continent. EQM's weight variance
was the lowest in Europe compared to the other methods, with weight variances close to 0
across the continent. QDM also showed low weight variance overall, though higher than EQM.
DQM exhibited high weight variance in most regions except for Central Europe. In Asia, EQM
showed low weight variance in most regions except Southeast Asia. QDM's weight variance
was similar to EQM's, though some regions had higher model uncertainty. DQM showed high
weight variance in most regions except for some Southwest and North Asian areas. For Oceania,
the weight variances of EQM and DQM were mainly similar, but DQM showed a higher weight

variance overall.
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Figure 12. Spatial distribution of weight variance across continents for bias corrected CMIP6
GCMs using BMA

Figure 13 shows the distribution of GCM weight variances calculated using BMA across six
continents, presented as boxplots. Overall, EQM has the smallest weight variance, and QDM
has the second smallest weight variance on all continents except South America. In contrast,
in South America, QDM has the smallest weight variance, and EQM has the second smallest.
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DQM consistently has the largest weight variance across all continents, indicating the highest

model uncertainty.
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Figure 13. Weight variance for bias correction methods across six continents using box plots.

3.3.2 Uncertainty by ensemble prediction

A daily precipitation ensemble for the historical period was generated using BMA on 11
CMIP6 GCMs, and the standard deviation of daily precipitation by continent is presented as
shown in Figure 14. Overall, the ensemble predicted using EQM provided stable precipitation
projection with low standard deviations across most continents. The QDM ensemble showed
similar results to EQM for most continents except Oceania, but the standard deviations were
slightly higher. On the other hand, the ensemble using DQM exhibited higher standard
deviations than the other methods for all continents and had the largest prediction uncertainty.
In Oceania, the ensembles predicted by the three methods showed similar results. However,
the prediction uncertainty was estimated to be lower in the order of EQM, DQM, and QDM
due to slight differences.
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Figure 14. Spatial distribution of standard deviation for daily precipitation across continents
for bias corrected CMIP6 GCMs using BMA

Figure 15 shows the standard deviation of daily precipitation for the ensemble forecasted by

BMA using three methods, DQM, EQM, and QDM, in a boxplot for each continent. Visually,
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EQM tends to show the lowest medians across continents, QDM appears slightly higher, and
DQM tends to show the highest medians. The interquartile ranges overlap broadly within most

continents and the differences in medians are small in magnitude.
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Figure 15. Spatial distribution of standard deviation for daily precipitation across continents
for bias corrected CMIP6 GCMs using BMA

3.4 Evaluation of bias correction methods using ClI

3.4.1 Results of CI by each weighting case

This study compared three QM methods by generating a Cl based on three cases of weighting
values that considered both model performance and uncertainty. Figures 16, S3, and S4 show
the comprehensive indices calculated by applying equal weights and weights emphasizing
performance and uncertainty, respectively.

EQM showed the highest CI across all continents when equal weights were applied. However,
the index was lower in southern Europe and southeastern North America, but it calculated high
values in most other regions. QDM showed high index values in some regions, although they

were lower than those of EQM. For example, the CI results were high in the northern and
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western parts of North America and the central part of Europe. On the other hand, DQM was
generally unsuitable in most regions but showed a relatively high index in Oceania.

When weights that emphasized performance were applied, DQM showed a high index in the
central part of South America but low performance in most continents. Nevertheless, DQM
showed a better index than QDM in some parts of Oceania. EQM showed the best index across
most continents. While QDM was less suitable than EQM, it was still evaluated as a useful
method in some continents.

Even when applying weights that increased the emphasis on uncertainty, similar results were
obtained with the other weighting values. In particular, EQM was evaluated as the most suitable
model across all continents, while DQM showed the opposite results.
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638
639  Figure 16. Spatial distribution of comprehensive indices for bias correction methods with equal

640  weights (a: 0.5, 8: 0.5) across continents

641

642  Figure 17 presents a comparison of the comprehensive indices for three QM methods with

643  different weights for each continent using box plots. Overall, all methods showed higher
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indices than the other weighting values in the values that emphasized more weight on
performance. In all weighted values, DQM showed the lowest indices in all continents except
for South America and Oceania, where it was slightly higher or similar to QDM. EQM showed
the best composite indices in all continents, outperforming performance and uncertainty. QDM
showed high comprehensive indices in most continents, and the gap with EQM narrowed
significantly in the weighting values that emphasized performance more. Nevertheless, QDM

overall had lower comprehensive indices than EQM.
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Figure 17. CI for three bias correction methods across continents with varying weights on

performance and uncertainty

Under the three weighting scenarios defined in the main text, the Friedman test produced p-
values effectively rounded to zero for every continent, indicating highly significant differences
among DQM, EQM, and QDM (Table S3 in the Supplementary Material). Subsequent pairwise
Wilcoxon tests showed that most method comparisons remained significant across all regions.

The only notable exception occurred in Oceania under equal weighting, where the p-value of
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3.93 x 1071 failed to reach significance at the 0.05 level. These findings demonstrate that,
aside from that single case in Oceania, the choice of scenarios exerts a statistically significant

impact on composite scores across all continents.

3.4.2 Selection of best bias correction method

Based on the CI, this study selected the best bias correction method for each continent. Figure
18 shows how the best bias correction method was selected for each continent by applying
various weighting values of the CI. Overall, EQM was selected as the best correction method
for most continents in all weighting values and was selected more than other methods in North
America, Europe, Asia, and Oceania. DQM was selected the least in most continents except
for South America and Oceania, and the number of selected grids tended to decrease as the
weighting for uncertainty increased. QDM was selected as the best bias correction method in
western North America, southern and eastern Africa, and northern Europe. In addition, QDM
was selected the most in Southeast Asia in all weighting values.
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Figure 19 shows the number of selected grids for the best bias correction method across
continents based on three weighting values. Overall, EQM was the most frequently selected
method across all weighting values, demonstrating superior performance across all continents
compared to the other methods. Interestingly, as the weight for uncertainty increased, the
number of grids where EQM was selected also increased, while the number decreased as the
weight for performance increased. In contrast, QDM was chosen as the second-best method on
most continents, except for South America and Oceania. The number of selected grids for
QDM slightly increased as the performance weight increased. DQM was the least selected

method across most continents, indicating that it was the least suitable overall.

a: 0.5 p:0.5 a:0.7 $:0.3 a: 0.3 p:0.7

Selected grid points (%)
]

EQM DOM QDM EQM DOM QDM EQM DQM QDM

e SOUth America s NOrth America s Africa s EUrope s Asia == Oceania

Figure 19. Ratios of selected grids for best bias correction methods across continents based on

different weighting values

4. Discussion

Bias correction methods are widely used in correcting GCM outputs, and previous studies have
compared the performance of various methods (Homsi et al., 2019; Saranya and Vinish, 2021).
Among these, Quantile Mapping (QM) has consistently shown superior performance compared
to other methods, making it a widely used approach for bias correction. In particular, QDM,
EQM, and DQM, which are the focus of this study, are frequently employed in research
exploring and applying climate change projections based on GCM outputs (Cannon et al., 2015;
Switanek et al., 2016; Song et al., 2022a). Analyzing the strengths and limitations of these three
methods will provide valuable insights for climate researchers, enabling them to choose the
most suitable bias correction method for specific regions. In this context, this study further
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evaluates the performance of QDM, EQM, and DQM, especially for daily precipitation, and
investigates how these methods perform across different regions. Unlike previous studies that
focused on the performance of bias correction methods (Song et al., 2024a; Teutschbein and
Seibert, 2012; Smitha et al., 2018), this study suggests a CI that integrates the performance and
uncertainty metrics. This approach enhances the robustness of bias correction method selection
and provides a more holistic evaluation framework. This section discusses the strengths and

weaknesses of each method from various perspectives to provide a more balanced assessment.

4.1 Evaluation of bias correction methods performance

The daily precipitation corrected by the three QM methods outperformed the raw GCM data
(see Figure 1). All three methods, as evidenced by the Taylor diagram, demonstrated overall
stronger performance than the raw GCM and consistently produced good results across various
regions. Nonetheless, the performance of the bias-corrected GCMs clearly differs. This
highlights the need to use multiple performance metrics to fully understand the strengths and
weaknesses of the three QM methods, as relying on a single analysis or macroscopic
perspective can overlook important details. From this perspective, many studies have
emphasized the application of a multifaceted analysis in selecting bias correction methods
(Homsi et al., 2019; Cannon et al., 2015; Berg et al., 2022; Song et al., 2023). The spatial
distribution of correction performance, as discussed in Section 3.1.2, varies significantly by
continent. Figures 2 to 7 reveal that the evaluated metrics differ across continents, underscoring
the importance of region-specific correction methods. This finding aligns with Song et al.
(2023), highlighting the importance of selecting appropriate correction methods based on the
precipitation distribution at observation sites. Moreover, studies such as Homsi et al. (2019)
and Saranya and Vinish (2021) also emphasize the variability in bias correction performance
depending on the regional climate and data characteristics, reinforcing the need for tailored
approaches. Of course, the three QM methods showed high performance across most continents,
effectively correcting the biases in daily precipitation from GCMs. However, the corrected
daily precipitation varies subtly among the three methods, with these differences becoming
more pronounced in extreme events or specific evaluation metrics. For example, the three QM
methods tend to perform less effectively in regions with high precipitation, but their
performance also varies by grid (e.g., southern India in Asia: RMSE; central Oceania: Pbias
and EVS; central Europe: Pbias, MdAE, and KGE). While EQM performs well across most
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continents, DQM and QDM show superior results in specific regions. Similar results were
made by Cannon et al. (2015), which highlighted differences in the performance of bias
correction methods, particularly in handling extreme precipitation events. QDM's error-related
metrics (South America: RMSE, MAE, and MSLE) are nearly identical to EQM's, yet QDM
outperforms EQM regarding MdAE on more grids. These findings suggest that a more nuanced
and detailed analysis of precipitation corrected by GCMs is necessary, aligning with the
conclusions of Gudmundsson et al. (2012), which emphasize that the effectiveness of bias
correction methods can vary significantly depending on local climate characteristics,
highlighting the importance of selecting appropriate methods for each region. These results
suggest a more detailed precipitation analysis from corrected GCMs is needed.

This study compared the three QM methods for daily precipitation events above the 95th
percentile (extreme precipitation) using the GEV distribution, as shown in Figure 10. The
results indicate that DQM tends to correct more extreme precipitation events than QDM,
aligning with previous findings that DQM captures a broader range of extremes. The unique
characteristics of DQM caused these results. DQM overestimated the corrected extreme
precipitation due to the relative variability in the data introduced through detrending, and the
subsequent reintroduction of the long-term mean during the correction step widened the range
of extreme precipitation, leading to overestimation compared to the reference data in areas with
high variability. At the same time, QDM and EQM take a more conservative approach (as noted
in previous studies such as Cannon et al., 2015). These findings suggest that EQM and QDM
may be more suitable in regions vulnerable to floods and extreme weather events that require
a more balanced and cautious approach. However, when comparing the differences in GEV
distributions, there was no significant difference between methods in regions like Oceania and
Europe (see Figure 10). These results imply that EQM can better handle extreme values or
outliers in the data by directly comparing and correcting past and future distributions. In
particular, EQM is consistent with previous studies in that it more accurately corrects observed
distributions in non-stationary and highly variable climate variables, such as precipitation
(Themell et al., 2012; Maraun, 2013; Gudmundsson et al., 2012). These positive aspects are
mainly due to EQM’s ability to align the empirical ECDFs of reference and model data across
all quantiles, allowing it to correct biases with high precision at both central tendencies and
extremes. Although there are significant advantages in observing the results of the correction

method in detail from various perspectives, presenting these results without integrating them
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into a reasonable framework can increase confusion and uncertainty in climate change research
(Wu et al., 2022). Therefore, it is essential to introduce a structured framework such as MCDA

to provide a single integrated result.

4.2 Uncertainties of model and ensemble prediction in bias correction methods

In climate modeling, quantifying uncertainty is essential to assess the reliability of bias-
corrected precipitation data. This study applied BMA to quantify the uncertainty of three QM
methods on a continental basis, addressing both model-specific and ensemble prediction
uncertainties. Similar to the findings by Cannon et al. (2015), this analysis demonstrates how
different bias correction methods yield varying uncertainty levels based on the underlying
climate models. Notably, EQM showed the lowest weight variance across most continents,
which means that the inter-model uncertainty for 11 GCMs corrected by EQM is lower than
that of the other QM methods. The low uncertainty associated with EQM aligns with previous
studies like Themell et al. (2012), which found that EQM consistently reduced discrepancies
between modeled and observed data across regions. EQM's ability to manage extreme
precipitation and anomalous values based on observed distributions contributes to its reliability,
a feature also emphasized by Gudmundsson et al. (2012). On the other hand, DQM showed the
highest weight variance across all continents, indicating more significant uncertainty when
applied to various GCMs. This uncertainty was particularly pronounced in regions with
complex climate conditions, such as Southeast Asia, East Africa, and the Alps in Europe. These
results align with Berg et al. (2022), who highlighted DQM's limitations in capturing long-term
climate trends and extreme events. The higher uncertainty associated with DQM suggests that,
while its detrending process is effective in correcting the mean, it may struggle in regions
dominated by nonlinear climate patterns, as it does not sufficiently account for all quantiles in
the distribution, particularly extremes, as noted by Cannon et al. (2015). QDM, though showing
lower weight variance than DQM, still demonstrated higher uncertainty than EQM in regions
with diverse climate characteristics. These results are consistent with the study of Tong et al.
(2021), suggesting that QDM performs better under moderate precipitation scenarios. However,
the uncertainty may increase under highly variable or extreme weather conditions. Furthermore,
this study extended the uncertainty analysis to ensemble predictions, calculating the standard
deviation of daily precipitation for each continent using BMA. The EQM-based ensemble

consistently exhibited low standard deviations across all continents, indicating that EQM offers
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the most stable and reliable precipitation predictions. This finding echoes the conclusions
drawn by Teng et al. (2015), where EQM provided more accurate and less uncertain projections.
In contrast, DQM presented the most significant prediction uncertainty, reinforcing the need
for caution when applying DQM in studies that require high-confidence data. These results
emphasize the importance of weighing performance and uncertainty when choosing a suitable
bias correction method. EQM's consistent performance in reducing uncertainty across model-
specific and ensemble forecasts highlights its robustness as a preferred choice for climate
research. However, the substantial uncertainty associated with DQM suggests that its use
should be limited to regions where its detrending process can be beneficial. Overall, these
findings stress the critical role of uncertainty quantification in climate change impact
assessments and underscore the need for selecting bias correction methods based on a

comprehensive evaluation of both performance and uncertainty.

4.3 Integrated assessment of bias correction methods

This study selected the optimal QM method for each continent based on the CI, which considers
uncertainty and performance. The critical point is that uncertainty is decisive when selecting a
bias correction method. As shown in Figure 19, the optimal correction method varies depending
on the continent, and the selected method also changes depending on the weight. These results
suggest that uncertainty still exists, as Berg et al. (2022) pointed out, and that uncertainty must
be considered when selecting the optimal method. In other words, even if the QM method has
high performance, it is difficult to make a reasonable selection if the uncertainty contained in
the method is significant. Overall, EQM showed the highest CI value in all continents, which
means that it provides the most balanced results in terms of performance and uncertainty. These
results are consistent with previous studies (Lafon et al., 2013; Teutschbein and Seibert, 2012;
Teng et al., 2015) that showed high precipitation correction accuracy and excellent
performance, especially under complex climate conditions. QDM was evaluated highly in some
regions but performed worse than EQM overall. Berg et al. (2022) also pointed out that QDM
is superior in general climate conditions but may perform worse in extreme climate situations,
suggesting that this may increase the uncertainty of QDM in extreme climates. DQM was
evaluated as an unsuitable method in most regions due to low CI values, which is consistent
with the limitations of DQM mentioned in Cannon et al. (2015) and Berg et al. (2022). It was

confirmed that DQM performs relatively well in dry climates but may perform worse in various
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climate conditions. In addition, some differences were observed with the results based on
TOPSIS. For example, DQM was selected more than QDM in South America, but when the
uncertainty weight was applied, QDM was selected more. Conversely, in Oceania, QDM was
selected more than DQM, but when the uncertainty weight was increased to 0.7, DQM was
selected more. These results are consistent with those of Lafferty and Sriver (2023), showing
that when significant uncertainty exists, uncertainty can be greater despite high bias correction

performance.

5. Conclusion

This study corrected and compared historical daily precipitation from 11 CMIP6 GCMs using
three QM methods. Eleven statistical metrics were used to evaluate the precipitation
performance corrected by three QM methods, and TOPSIS was applied to select performance-
based priorities. BMA was applied to quantify model-specific and ensemble prediction
uncertainties. Additionally, suitable QM methods were selected and compared using a CI that
integrates TOPSIS performance scores with BMA uncertainty metrics. The conclusions of this
study are as follows:

1. EQM showed the highest overall index across all continents, indicating that it provides
the most balanced approach in terms of performance and uncertainty.

2. DQM effectively reproduced the dry climate in North Africa and parts of Central and
Southwest Asia but showed the highest uncertainty across all continents. These results
suggest that DQM may lose some long-term trend information, making it less reliable
in regions prone to extreme weather events.

3. QDM performed better in certain regions, such as Southeast Asia, and was selected
more often than DQM when uncertainty was given greater weight. QDM may be a
promising alternative in areas where uncertainty plays a significant role.

4. Selecting an appropriate QM is required for high performance, and significant
uncertainty can complicate rational decision-making. Therefore, a multifaceted
approach considering performance and uncertainty is essential in climate modeling.

In conclusion, EQM has emerged as the preferred method due to its balanced performance, but
this study emphasizes the importance of regional assessment and careful consideration of
uncertainty when selecting a QM method. Furthermore, EQM is the most balanced method

regarding performance and uncertainty and will likely be preferred in future climate modeling
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studies. However, there may be more suitable QM methods depending on the region, and a
comprehensive evaluation with various weights is needed. Therefore, when establishing
climate change response strategies or policy decisions, it is essential to take a multifaceted
approach that considers uncertainty together rather than relying on a single indicator or
performance alone. It will enable more reliable predictions and better decision-making. Future
research should integrate greenhouse gas scenarios to improve the accuracy of climate
predictions and provide a more comprehensive understanding of future climate risks.

Furthermore, more bias correction methods should be used to extend the robustness of Cl.

Code and data availability

Codes for benchmarking the xclim of python package are available from
https://doi.org/10.5281/zenodo.10685050 (Bourgault et al., 2024). Furthermore, the CI
proposed in this study, along with the TOPSIS and BMA used within it, is available at
https://doi.org/ 10.5281/zen0do0.14351816 (Song, 2024b). The data used in this study are
publicly available from multiple sources. CMIP6 General Circulation Models (GCMSs) outputs
were obtained from the Earth System Grid Federation (ESGF) data portal at https://esgf-
node.lInl.gov/search/cmip6/. Users can select data types such as climate variables, time series,
and experiment 1D, which can be downloaded as NC files. Furthermore, CMIP6 GCMs output
can also be accessed in Eyring et al. (2016) The ERAS reanalysis dataset used in this study is
available through the Copernicus Data Store (CDS) provided by ECMWF
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-
levels?tab=overview). ERAS is available at https://doi.org/10.24381/cds.bd0915c6 (Hersbach
et al., 2023). The daily precipitation datasets from CMIP6 GCM and ERAS5 used in this study
are available at https://doi.org/10.6084/m9.figshare.27999167.v5 (Song, 2024c).
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