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Abstract 9 

This study, conducted across six continents, evaluated and compared the effectiveness of three 10 

Quantile Mapping (QM) methods: Quantile Delta Mapping (QDM), Empirical Quantile 11 

Mapping (EQM), and Detrended Quantile Mapping (DQM) for correcting daily precipitation 12 

data from 11 CMIP6 General Circulation Models (GCMs). The performance of corrected 13 

precipitation data was evaluated using ten evaluation metrics, and the Technique for Order of 14 

Preference by Similarity to Ideal Solution (TOPSIS) was applied to calculate performance-15 

based priorities. Bayesian Model Averaging (BMA) was used to quantify model-specific and 16 

ensemble prediction uncertainties. Subsequently, this study developed a comprehensive index 17 

by aggregating the performance scores from TOPSIS with the uncertainty metrics from BMA. 18 

The results showed that EQM performed the best on all continents, effectively managing 19 

performance and uncertainty. QDM outperformed other methods in specific regions and was 20 

selected more frequently than DQM when greater weight was given to uncertainty. It suggests 21 

that daily precipitation corrected by QDM is more stable than DQM. On the other hand, DQM 22 

effectively reproduces dry climate but shows the highest uncertainty in certain regions, 23 

suggesting potential limitations in capturing long-term climate trends. This study emphasizes 24 

that both performance and uncertainty should be considered when choosing a bias correction 25 

method to increase the reliability of climate predictions. 26 
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1. Introduction 31 

The Coupled Model Intercomparison Project (CMIP) General Circulation Models 32 

(GCMs) have provided critical scientific evidence to explore climate change (IPCC, 2021; 33 

IPCC, 2022). Nevertheless, GCMs exhibit significant biases compared to observational data 34 

for reasons such as incomplete model parameterization and inadequate understanding of key 35 

physical processes (Evin et al., 2024; Zhang et al., 2024; Nair et al., 2023). These deficiencies 36 

with GCM have introduced various uncertainties in climate projections, making ensuring 37 

sufficient reliability in climate change impact assessments difficult. In this context, many 38 

studies have proposed various bias correction methods to reduce the discrepancies between 39 

observational data and GCM simulations, thereby providing more stable results than raw GCM-40 

based assessments (Cannon et al., 2015; Themeßl et al., 2012; Piani et al., 2010). Despite these 41 

advancements, the suggested bias correction methods differ in their physical approaches, 42 

resulting in discrepancies in the climate variables adjusted for historical periods. Furthermore, 43 

the distribution of precipitation across continents and specific locations causes variations in the 44 

correction outcomes depending on the method used, which makes it challenging to reflect 45 

extreme climate events in future projections and adds another layer of confusion to climate 46 

change research (Song et al., 2022b; Maraeun, 2013; Ehret et al., 2012; Enayati et al., 2021). 47 

Thus, exploring multiple aspects to make reasonable selections when applying bias correction 48 

methods specific to each continent and region is necessary.  49 

Many studies have developed appropriate bias correction methods based on various 50 

theories, which have reduced the difference between GCM simulations and observed 51 

precipitation (Abdelmoaty and Papalexiou, 2023; Shanmugam et al., 2024; Rahimi et al., 2021). 52 

The Quantile Mapping (QM) series has been widely adopted among bias correction methods 53 

due to its conceptual simplicity, ease of application, and adaptability to various methodologies. 54 

However, although standard QM methods have high performance in correcting stationary 55 

precipitation, they are less efficient in non-stationary data, such as extreme precipitation events 56 

(Song et al., 2022b). To address these limitations, a recent study proposed an improved QM 57 

approach to reflect future non-stationary precipitation across all quantiles of historical 58 

precipitation (Rajulapati and Papalexiou, 2023; Cannon et al., 2015; Cannon, 2018; Song et al., 59 

2022b). In recent years, climate studies using GCMs have adopted several improved QM 60 

methods that offer higher performance than previous methods to correct historical precipitation 61 

and project it accurately into the future. For example, Song et al. (2022b) performed bias 62 
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correction on daily historical precipitation over South Korea using distribution transformation 63 

methods they developed and found that the best QM method varied depending on the station. 64 

Additionally, previous studies have reported that QM performance varied by grid and station 65 

(Ishizaki et al., 2022; Chua et al., 2022). From this perspective, these improved QMs may only 66 

guarantee uniform results across some grids and regions. Therefore, to analyze positive 67 

changes in future climate impact assessments, selecting appropriate bias correction methods 68 

based on a robust framework is essential. 69 

Multi-criteria decision analysis (MCDA) is efficient for prioritization because it can 70 

aggregate diverse information from various alternatives. MCDA has been extensively used 71 

across different fields to select suitable alternatives, with numerous studies confirming its 72 

stability in priority selection (Chae et al., 2022; Chung and Kim, 2014; Song et al., 2024a). 73 

Moreover, MCDA has been employed in future climate change studies to provide reasonable 74 

solutions to emerging problems, including the selection of bias correction methods for specific 75 

regions and countries (Homsi et al., 2019; Saranya and Vinish, 2021). However, MCDA's 76 

effectiveness is sensitive to the source and quality of alternatives, making accurate ranking 77 

challenging when information is lacking or overly focused on specific criteria (Song and Chung, 78 

2016). Small-scale regional and observation-based studies have conducted GCM performance 79 

evaluations, but global and continental-scale evaluations are rare due to the substantial time 80 

and cost required. 81 

GCM simulation includes uncertainties from various sources, such as model structure, 82 

initial condition, boundary condition, and parameters (Pathak et al., 2023; Cox and Stephenson, 83 

2007; Yip et al., 2011; Woldemeskel et al., 2014). The selection of bias correction methods 84 

contributes significantly to uncertainty in climate change research using GCMs. Jobst et al. 85 

(2018) argued that GHG emission scenarios, bias correction methods, and GCMs are primary 86 

sources of uncertainty in climate change assessments across various fields. The extensive 87 

uncertainties in GCMs complicate the efficient establishment of adaptation and mitigation 88 

policies. This issue has increased awareness of the uncertainties inherent in historical 89 

simulations. Consequently, many studies have focused on estimating uncertainties using 90 

diverse methods to quantify these uncertainties (Giorgi and Mearns, 2002; Song et al., 2022a; 91 

Song et al., 2023).  Although it is impossible to drastically reduce the uncertainty of GCM 92 

outputs due to the unpredictable nature of climate phenomena, uncertainties in GCM 93 

simulations can be reduced using ensemble principles, such as multi-model ensemble 94 
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development using a rational approach (Song et al., 2024). However, accurately identifying 95 

biases in simulation precipitation remains challenging due to the lack of comprehensive 96 

equations reflecting Earth's physical processes. In this context, climate change studies have 97 

aimed to quantify the uncertainty of historical climate variables in GCMs, offering insights into 98 

the variability of GCM simulations (Pathak et al., 2023). Bias-corrected precipitation of GCMs 99 

using QM has shown high performance in the historical period, which is expected to result in 100 

better future predictions. However, the physical concepts of various QMs may lead to more 101 

significant uncertainty in the future (Lafferty et al., 2023). Therefore, efforts should be made 102 

to consider and reduce uncertainty in the GCM selection process. It will ensure the reliability 103 

of predictions by selecting an appropriate bias-correcting method.  104 

This study aims to compare the performance of three bias correction methods using 105 

daily historical precipitation data (1980-2014) from CMIP6 GCMs across six continents (South 106 

America: SA; North America: NA; Africa: AF; Europe: EU; Asia: AS; and Oceania: OA). Ten 107 

evaluation metrics were used to assess the performance of daily precipitation corrected by the 108 

three QM methods for each continent. Subsequently, the Technique for Order of Preference by 109 

Similarity to Ideal Solution (TOPSIS) of MCDA was applied to select an appropriate bias 110 

correction method for each continent. Additionally, the uncertainty in daily precipitation for 111 

historical periods was quantified using Bayesian Model Averaging (BMA). By integrating 112 

performance scores from TOPSIS and uncertainty metrics from BMA, this study developed a 113 

Comprehensive Index (CI), which was then used to select the best bias correction method for 114 

each continent. This comprehensive approach ensures a balanced consideration of both 115 

performance and uncertainty, enhancing understanding of the bias correction process based on 116 

the distribution of daily precipitation across continents. 117 

 118 

2. Datasets and methods 119 

2.1 General Circulation Model 120 

This study used 11 CMIP6 GCM to perform bias correction for daily precipitation in the 121 

historical period. This study used daily precipitation to correct bias because the natural 122 

variability relative to projected anthropogenically forced trends is much larger for precipitation 123 

than for temperature (Deser et al., 2012). Table 1 presents basic information, including model 124 

names, resolution, and variant labels. The model resolution of 11 CMIP6 GCMs was equally 125 
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re-gridded to 1°×1° using linear interpolation. Furthermore, this study's ensemble member of 126 

CMIP6 GCMs was the first member of realizations (r1). 127 

 128 

Table 1. Information of CMIP6 GCMs in this study 129 

Models Resolution Climate variables Variant label 
ACCESS-CM2 1.2° × 1.8° Daily precipitation r1i1p1f1 
ACCESS-ESM1-5 1.2° × 1.8° 
BCC-CSM2-MR 1.1° × 1.1° 
CanESM5 2.8° × 2.8° 
CESM2-WACCM 0.9° × 1.3° 
CMCC-CM2-SR5 ~ 0.9° 
CMCC-ESM2 0.9° × 1.25° 
EC-Earth3-Veg-LR 1.0° × 1.0° 
GFDL-ESM4 1.4° × 1.4° 
INM-CM4-8 ~ 0.9° 
IPSL-CM6A-LR 1.1° × 1.1° 

 130 

2.2 Reference data 131 

This study utilized ERA5 reanalysis data from the European Center for Medium-Range 132 

Weather Forecasts (ECMWF) as reference data. The model physics of ERA5 reanalysis data 133 

improved as it employed an Integrated Forecasting System based on CY41r2 (Hersbach et al., 134 

2020). ERA5 has been widely used in various studies to ensure the reliability of climate model 135 

evaluation and climate change assessment (Jeong et al., 2024; Virgilio et al., 2024; Baek et al., 136 

2024). The model resolution selected in this study was 1.0° × 1.0°, which was provided by the 137 

institution for research availability. The accuracy of assessing GCM simulation is crucial for 138 

replicating the spatial and temporal variability of observed data (Hamed et al., 2023). In this 139 

context, the ERA5 product has been commonly used to reproduce observed precipitation, for 140 

the evaluation of GCMs’ performances. 141 

 142 

2.3 Quantile mapping 143 

This study employed three (Quantile delta mapping, QDM; Detrended quantile mapping, DQM; 144 

Empirical quantile mapping, EQM) QM methods to correct the simulation of CMIP6 GCMs, 145 

and these methods are commonly used in climate change research based on the climate models 146 

(Switanek et al., 2017). This study divided the data into a training period (1980-1996) and a 147 

validation period (1997-2014) to correct the historical period's data. This approach minimizes 148 

the influence of uncertainties associated with future projections, allowing the study to focus on 149 
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evaluating the intrinsic performance differences of the QM methods. The frequency-adaptation 150 

technique, as described by Themeßl et al. (2012), was applied to address potential biases and 151 

improve the accuracy of the corrections. The corrected precipitation using the QM used a 152 

cumulative distribution function, as shown in Equation 1, to reduce the difference from the 153 

reference data. 154 

�̂�𝑚,𝑝(𝑡) = 𝐹𝑜,ℎ
−1{𝐹𝑚,ℎ[𝑥𝑚,𝑝(𝑡)]}     (1) 155 

where, �̂�𝑚,𝑝(𝑡) presents the bias-corrected results. 𝐹𝑜,ℎ represents the cumulative distribution 156 

function (CDF) of the observed data, and 𝐹𝑚,ℎ presents the CDF of the model data. The 157 

subscripts 𝑜 and 𝑚 denote observed and model data, respectively, and the subscript ℎ denotes 158 

the historical period. 159 

 QDM, developed by Cannon et al. (2015), preserves the relative changes ratio of modeled 160 

precipitation quantiles. In this context, QDM consists of bias correction terms derived from 161 

observed data and relative change terms obtained from the model. The computation process of 162 

QDM is carried out as described in Equation (2) to (4). 163 

�̂�𝑚,𝑝(𝑡) = �̂�𝑜:𝑚,ℎ:𝑝(𝑡) ∙ ∆𝑚(𝑡)    (2) 164 

�̂�𝑜:𝑚,ℎ:𝑝(𝑡) =  𝐹𝑜,ℎ
−1[𝐹𝑚,𝑝

(𝑡)
{𝑥𝑚,𝑝(𝑡)}]    (3) 165 

∆𝑚(𝑡) =  
𝑥𝑚,𝑝(𝑡)

𝐹𝑚,ℎ
−1 [𝐹𝑚,𝑝

(𝑡)
{𝑥𝑚,𝑝(𝑡)}]

   (4) 166 

where, �̂�𝑜:𝑚,ℎ:𝑝(𝑡) presents the bias corrected daily precipitation for the historical period, and 167 

∆𝑚(𝑡) the relative change in the model simulation between the reference period and the target 168 

period. In addition, the target period is calculated by multiplying the relative change (∆𝑚(𝑡)) 169 

at time (𝑡) multiplied by the bias-corrected precipitation in the reference period. ∆𝑚(𝑡) is 170 

defined as 𝑥𝑚,�̂�(𝑡)  divided by  𝐹𝑜,ℎ
−1[𝐹𝑚,𝑝

(𝑡)
{𝑥𝑚,𝑝(𝑡)}] . ∆𝑚(𝑡)  preserving the relative change 171 

between the reference and target periods. DQM, while more limited compared to QDM, 172 

integrates additional information regarding the projection of future precipitation. Furthermore, 173 

climate change signals estimated from DQM tend to be consistent with signals from baseline 174 

climate models. The computational process of DQM is performed as shown in Equation (5). 175 

�̂�𝑚,𝑝 = 𝐹𝑜,ℎ
−1 {𝐹𝑚,ℎ [

�̅�𝑚,ℎ𝑋𝑚,ℎ(𝑡)

�̅�𝑚,𝑝(𝑡)
]}

�̅�𝑚,𝑝(𝑡)

�̅�𝑚,ℎ
    (5) 176 

where, �̅�𝑚,ℎ and �̅�𝑚,𝑝 represent the long-term modeled averages for the historical reference 177 

period and the target period, respectively. 178 
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EQM is a method that corrects the quantiles of the empirical cumulative distribution function 179 

from a GCM simulation based on a reference precipitation distribution using a corrected 180 

transfer function (Dequé, 2007). The calculation process of EQM can be represented as follows 181 

in Equation (6). 182 

�̂�𝑚,𝑝(𝑡) = 𝐹𝑜,ℎ
−1(𝐹𝑚,ℎ(𝑥𝑚,𝑝(𝑡)))     (6) 183 

All these QMs can be applied to historical data correction in this approach. The bias correction 184 

is performed based on the relative changes between a reference period and a target period in 185 

the past, ensuring that the relative changes between these periods are preserved in the corrected 186 

data (Ansari et al., 2023; Tanimu et al., 2024; Cannon et al., 2015). 187 

 188 

2.4 Evaluation metrics 189 

This study used ten evaluation metrics to assess the output performance of three quantile 190 

mapping methods against the reference data for the validation period (1997-2014). Seven 191 

evaluation metrics used in this study are as follows: Root Mean Square Error (RMSE), Mean 192 

Absolute Error (MAE), Coefficient of Determination (𝑅2), Percent bias (Pbias), Nash-Sutcliffe 193 

Efficiency (NSE), Kling-Gupta efficiency (KGE), Median Absolute Error (MdAE), Mean 194 

Squared Logarithmic Error (MSLE), Explained Variance Score (EVS), and Jenson-Shannon 195 

divergence (JS-D). The equations of seven evaluation metrics are presented in Table 2.  196 

 197 

Table 2. Information of the seven-evaluation metrics used in this study 198 

Metrics Equations Factors References 

RMSE = √
1

𝑛
∑(𝑋𝑖

𝑠𝑖𝑚 − 𝑋𝑖
𝑟𝑒𝑓

)
2

𝑛

𝑖=1

 

𝑋𝑖
𝑟𝑒𝑓

 reference data 

𝑋𝑖
𝑠𝑖𝑚 Bias 

corrected GCM 

 

MAE =  ∑|𝑋𝑖
𝑠𝑖𝑚 − 𝑋𝑖

𝑟𝑒𝑓
|

𝑛

𝑖=1

 

𝑅2 =  1 −
∑ (𝑋𝑖

𝑠𝑖𝑚 − 𝑋𝑖
𝑟𝑒𝑓

)2𝑛
𝑖=1

(𝑋𝑖
𝑟𝑒𝑓

− �̅�𝑖
𝑟𝑒𝑓

)2
 

Galton, 

1886 

Pbias =
∑ (𝑋𝑖

𝑟𝑒𝑓
− 𝑋𝑖

𝑠𝑖𝑚)𝑛
𝑖=1

∑ 𝑋𝑖
𝑟𝑒𝑓𝑛

𝑖=1

× 100  
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NSE = 1 −
∑ (𝑋𝑖

𝑠𝑖𝑚 − 𝑋𝑖
𝑟𝑒𝑓

)2𝑛
𝑖=1

∑ (𝑋𝑖
𝑟𝑒𝑓

− �̅�𝑖
𝑟𝑒𝑓

)2𝑛
𝑖=1

 

Nash and 

Sutcliffe, 

1970 

MdAE =  𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖
𝑠𝑖𝑚 − 𝑋𝑖

𝑟𝑒𝑓
|) 

 
MSLE =  

1

𝑛
∑(log(1 + 𝑋𝑖

𝑠𝑖𝑚) − log (1 + 𝑋𝑖
𝑟𝑒𝑓

))2

𝑛

𝑖=1

 

EVS = 1 −
𝑉𝑎𝑟(𝑋𝑠𝑖𝑚 − 𝑋𝑟𝑒𝑓)

𝑉𝑎𝑟(𝑋𝑟𝑒𝑓)
 

KGE = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 

𝑟 Pearson product-

moment 

correlation 

𝛼 Variability error 

𝛽: Bias term 

Gupta et 

al. 2009 

JS-D =
1

2
𝐷𝐾𝐿 (𝑃 ∥

𝑃 + 𝑄

2
) +

1

2
𝐷𝐾𝐿 (𝑄 ∥

𝑃 + 𝑄

2
) 

𝑃(𝑥) : Probability 

density distribution 

of reference data 

𝑄(𝑥) : Probability 

density distribution 

of GCM 

𝐷𝐾𝐿: KL-D 

Lin, 1991 

 199 

Ten evaluation metrics selected in this study assess GCM performance from various 200 

perspectives, including error (RMSE, MAE, MdAE, and MSLE), deviation (Pbias), accuracy ( 201 

𝑅2, NSE), variability (EVS), correlation and overall performance (KGE), and distributional 202 

differences (JSD). These metrics complement each other by offering a comprehensive 203 

evaluation framework. For instance, while NSE evaluates the overall fit of the simulated data 204 

to observations, KGE provides a holistic view by integrating correlation, variability, and bias 205 

into a single efficiency score, and JS-D captures the difference between the distributions of the 206 

reference data and the bias-corrected GCM output. 207 

 208 

2.5 Generalized extreme value 209 
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This study used generalized extreme value (GEV) to compare the extreme precipitation 210 

calculated by the bias-corrected GCM at each grid of six continents over the historical period. 211 

The historical precipitation was compared with the distribution of reference data and bias-212 

corrected GCM above the 95th quantile of the Probability Density Function (PDF) of the GEV 213 

distribution (Hosking et al. 1985). In addition, this study compared the distribution differences 214 

between the reference data based on the GEV distribution and the corrected GCM using JSD. 215 

GEV distribution is commonly used to confirm extreme values in climate variables. The PDF 216 

of the GEV distribution is shown in Equation 7, and the parameters of the GEV distribution 217 

were estimated using L-moment (Hosking, 1990). 218 

𝑔(𝑥) =  
1

𝛼
[1 − 𝑘

𝑥−𝜖

𝛼
]

1

𝑘
−1

𝑒𝑥𝑝 {− [1 − 𝑘
𝑥−𝜖

𝛼
]

1

𝑘
}      (7) 219 

where, 𝑘, 𝛼, and 𝜀 represents a shape, scale, and location of the GEV distribution, respectively.   220 

 221 

2.6 Bayesian model averaging (BMA) 222 

The BMA is a statistical technique that combines multiple models to provide predictions that 223 

account for model uncertainty (Hoeting et al., 1999). BMA is used to integrate predictions from 224 

GCMs to improve the robustness and reliability of the resulting assemblies. The posterior 225 

probability of each model is calculated based on Bayes' theorem as shown in Equation 8. 226 

𝑃(𝑀𝑘 ∣ 𝐷) =
𝑃(𝐷∣𝑀𝑘)𝑃(𝑀𝑘)

∑ 𝑃(𝐷∣𝑀𝑗)𝑃(𝑀𝑗)𝐾
𝑗=1

      (8) 227 

where, 𝑃(𝑀𝑘) is the prior probability of model 𝑀𝑘, and 𝑃(𝐷 ∣ 𝑀𝑘) s the likelihood of the data 228 

𝐷 given model 𝑀𝑘, 𝑃(𝑀𝑘 ∣ 𝐷) is the posterior probability of model 𝑀𝑘. In addition, the BMA 229 

prediction �̂�𝐵𝑀𝐴 is the weighted average of the predictions from each model as shown in 230 

Equation 9.  231 

�̂�𝐵𝑀𝐴 = ∑ 𝑃(𝑀𝑘 ∣ 𝐷)�̂�𝑘
𝐾
𝑘=1   (9) 232 

where, �̂�𝑘 is the prediction from model 𝑀𝑘. In this study, BMA was used to quantify the model 233 

uncertainty and ensemble prediction uncertainty for daily precipitation corrected by three QM 234 

methods (QDM, EQM, and DQM) applied to 11 CMIP6 GCMs, as shown in Equations 10 and 235 

11.  236 

𝛼𝑤
2 =

1

𝐾
∑ (𝑤𝑘 − �̅�)2𝐾

𝑘=1     (10) 237 
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where, 𝐾 is the number of models, 𝑤𝑘 = 𝑃(𝑀𝑘 ∣ 𝐷) is the weight of model 𝑀𝑘, �̅� is the mean 238 

of the weights, given by �̅� =
1

𝐾
∑ 𝑤𝑘

𝐾
𝑘=1 . A higher variance in model weights indicates more 239 

significant prediction differences, implying greater model uncertainty. 240 

𝜎𝐵𝑀𝐴 = √
1

𝐾
∑ (�̂�𝑘 − �̂�𝐵𝑀𝐴)2𝐾

𝑘=1     (11) 241 

𝜎𝐵𝑀𝐴 is standard deviation of the BMA ensemble predictions,  �̂�𝑘 is the prediction from each 242 

model 𝑀𝑘 , �̂�𝐵𝑀𝐴 is the weighted average prediction from BMA. This standard deviation 243 

represents the variability among the ensemble predictions and serves as an indicator of 244 

uncertainty. A lower standard deviation implies higher consistency among predictions, 245 

indicating lower uncertainty, while a higher standard deviation suggests greater variability and 246 

higher uncertainty.  247 

 248 

2.7 TOPSIS 249 

This study used TOPSIS to calculate a rational priority among three QM methods based on the 250 

outcomes derived from evaluation metrics. Furthermore, the closeness coefficient calculated 251 

using TOPSIS was used as the performance metric for the CI. Proposed by Hwang and Yoon 252 

(1981), TOPSIS is a multi-criteria decision-making technique frequently used in water 253 

resources and climate change research to select alternatives (Song et al., 2024). As described 254 

in Equation 12 and 13, the proximity of the three QM methods is calculated based on the 255 

Positive Ideal Solution (PIS) and the Negative Ideal Solution (NIS). 256 

𝐷𝑖
+ = √∑ 𝑤𝑗(𝑓𝑗

+ − 𝑓𝑖,𝑗)2𝑛
𝑗=1     (12) 257 

𝐷𝑖
− = √∑ 𝑤𝑗(𝑓𝑗

− − 𝑓𝑖,𝑗)2𝑛
𝑗=1     (13) 258 

where, 𝐷𝑖
+ is the Euclidean distance of each criterion from the PIS, summing the whole criteria 259 

for an alternative 𝑓𝑗
+, 𝑗 presents the normalized value for the alternative 𝑓𝑗

+. 𝑤𝑗 presents weight 260 

assigned to the criterion 𝑗. 𝐷𝑖
− is the distance between the alternative 𝑓𝑗

− and the NIS. The 261 

relative closeness is calculated as shown in Equation 14. The optimal value is closer to 1 and 262 

represents a reasonable alternative.  263 

𝐶𝑖 =
𝐷𝑖

−

(𝐷𝑖
−+𝐷𝑖

+)
    (14) 264 
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This study used entropy theory to calculate the weights for each criterion. Entropy weighting 265 

ensures sufficient objectivity by calculating weights based on the variability and distribution 266 

of data. This approach minimizes subjectivity, preventing biases in the weighting process. 267 

 268 

2.8 Comprehensive index (CI) 269 

This study proposed a CI to select the best QM method by combining performance scores and 270 

model uncertainty indicators. The CI integrates the performance scores (closeness coefficient) 271 

derived from the TOPSIS method with the uncertainty quantified using BMA. This approach 272 

allows for a balanced evaluation that considers both the effectiveness of the QM methods and 273 

the associated uncertainties. Uncertainty was quantified in two ways. Model-specific weight 274 

variance was calculated using the variance of the model weights assigned by BMA, 275 

representing the uncertainty in selecting the appropriate QM. The standard deviation of BMA 276 

ensemble prediction was calculated to capture the spread and, thus, the uncertainty of the 277 

ensemble forecasts. Both the indicators were normalized using a min-max scaler to ensure 278 

comparability. The CI is calculated individually for every grid and can reflect climate 279 

characteristics. Framework provides flexibility in determining the weighting of uncertainty or 280 

performance depending on the study objectives. Additionally, the methodology offers 281 

flexibility in selecting performance and uncertainty metrics. Alternative MCDA methods 282 

beyond TOPSIS can be utilized for performance indicators, or indices that effectively represent 283 

the model's performance can be employed to calculate the CI. Similarly, for uncertainty 284 

indicators, approaches such as variance, standard deviation, or other uncertainty quantification 285 

techniques can be applied to enhance the robustness of the framework further. Finally, the 286 

calculation process of the CI is performed as shown in Equations 15 and 16. 287 

𝑈𝐼 =  
𝑉𝑤+𝜎𝑒

2
    (15) 288 

𝐶𝐼 =  𝛼 × 𝐶𝑖 − 𝛽 × 𝑈𝐼     (16) 289 

where, 𝑈𝐼  represents the uncertainty indicator. 𝑉𝑤  and 𝜎𝑒   represent the normalized weight 290 

variance and the normalized ensemble standard deviation, respectively, calculated using BMA. 291 

𝐶𝑖 represents the closeness coefficient calculated from TOPSIS. 𝛼 represents the weight given 292 

to the performance score, 𝛽  represents the weight given to the uncertainty indicator. 293 

Furthermore, by adjusting the weights 𝛼 and 𝛽, the study evaluated the QM methods under 294 

different scenarios. Equal weight (𝛼 = 0.5, 𝛽 =0.5) balances performance and uncertainty 295 

equally, and the emphasized performance weight (𝛼= 0.7, 𝛽=0.3) prioritize performance over 296 
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uncertainty. The emphasized uncertainty weight (𝛼= 0.3, 𝛽=0.7) prioritize uncertainty over 297 

performance. The results from the CI provide a holistic evaluation of the QM methods, 298 

considering both their effectiveness in bias correction and the reliability of their predictions. 299 

 300 

3. Result 301 

3.1 Assessment of bias correction reproducibility across continents  302 

3.1.1 Comparison of bias correction effects  303 

This study applied three QM methods to correct daily precipitation data from 11 CMIP6 GCMs 304 

across six continents. Figure 1 presents the results of comparing daily precipitation data before 305 

and after bias correction using the Taylor diagram. In general, the precipitation corrected by 306 

DQM showed a larger difference from the reference data than other methods. In contrast, EQM 307 

performed better than DQM, and many models showed results close to the reference data. The 308 

precipitation corrected by QDM also showed good performance in most continents but slightly 309 

lower than EQM. Nevertheless, QDM showed clearly better results than DQM. 310 

Regarding correlation coefficients, precipitation corrected by DQM showed relatively high 311 

values between 0.8 and 0.9 but lower than EQM and QDM. The precipitation corrected by 312 

EQM showed high agreement with the reference data, recording correlation coefficients above 313 

0.9 in most continents. QDM generally showed similar correlation coefficients to EQM but 314 

slightly lower values than EQM in North America and Asia. 315 

For RMSE, precipitation corrected by DQM was higher than EQM and QDM, indicating that 316 

the corrected precipitation differed more from the reference data. On the other hand, EQM had 317 

the lowest RMSE and showed superior performance compared to other methods. QDM had 318 

slightly higher RMSE than EQM but still outperformed DQM. 319 

In terms of standard deviation, precipitation corrected by DQM was higher or lower than the 320 

reference data in most continents. On the other hand, precipitation corrected by EQM was 321 

similar to the reference data and almost identical to the reference data in Africa and Asia. QDM 322 

was similar to the reference data in some continents but showed slight differences from EQM. 323 

These results imply that the precipitation corrected by the three methods outperforms the raw 324 

simulation, which confirms that the GCM's daily precipitation is reliably corrected in the 325 

historical period. 326 

 327 
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 328 

Figure 1. Comparison of raw and corrected daily precipitation on six continents using Taylor 329 

diagrams 330 
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3.1.2 Spatial distribution of bias correction performance 331 

This study evaluated the performance of daily precipitation across six continents using ten 332 

evaluation metrics for 11 CMIP6 GCMs. Figures 2 and S1 present the spatial patterns of these 333 

evaluation metrics, calculated for daily precipitation from the bias corrected GCMs in South 334 

America. Overall, the precipitation corrected by EQM demonstrated lower JSD values, as well 335 

as higher EVS and KGE values, compared to other methods. The precipitation corrected by 336 

EQM showed higher EVS in certain regions but slightly lower performance in MdAE and Pbias 337 

across some grids. DQM exhibited performance similar to EQM and QDM in most evaluation 338 

indices but was relatively lower in most evaluation metrics. The precipitation corrected by the 339 

three methods was underestimated compared to the reference data in northern South America, 340 

while it was overestimated in eastern South America. In addition, precipitation corrected by 341 

the DQM method tended to be overestimated more than the other methods, while the EQM 342 

method showed the opposite result. Furthermore, the daily precipitation corrected by EQM 343 

showed the lowest overall error and high performance in both NSE and 𝑅2. QDM and DQM 344 

also performed well but exhibited slightly larger errors in some regions than EQM. 345 

 346 
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 347 

Figure 2. Performance comparison of DQM, EQM, and QDM using evaluation metrics (JSD, 348 

EVS, MdAE, Pbias, and KGE) for daily precipitation in South America. 349 
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Figures 3 and S2 present the spatial patterns of these evaluation metrics, calculated for daily 350 

precipitation from the bias corrected GCMs in South America. Regarding error metrics (MAE, 351 

MSLE, RMSE, and MdAE), precipitation corrected using DQM showed relatively lower 352 

performance across North America, with substantial errors in the southern region. In contrast, 353 

precipitation corrected using EQM demonstrated superior performance across the continent 354 

compared to other methods. QDM exhibited similar error performance to EQM but slightly 355 

higher errors in the southern region. 356 

For correlation metrics (NSE and 𝑅2), DQM-corrected precipitation had lower performance 357 

than other methods, although some grid cells in the central and eastern regions showed high 358 

performance, with values exceeding 0.995. The precipitation corrected using EQM showed the 359 

highest performance, especially in the central and eastern regions, where most grid points 360 

showed correlation coefficients above 0.995. QDM, while achieving correlation metrics above 361 

0.978 for most grid points, had slightly lower performance than the other methods. 362 

Regarding Pbias, all three methods tended to overestimate precipitation relative to the reference 363 

data across most grid points in North America, while corrected precipitation in Greenland was 364 

underestimated. For JSD, EVS, and KGE metrics, EQM-corrected precipitation showed the 365 

highest performance, with DQM and QDM performing lower than EQM. 366 

 367 
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 368 

Figure 3. Performance comparison of DQM, EQM, and QDM using evaluation metrics (MAE, 369 

MSLE, NSE, 𝑅2, and RMSE) for daily precipitation in North America. 370 

 371 

In this study, the daily precipitation in Africa was corrected using three QM methods, and the 372 

performance is shown in Figures 4 and S3. Overall, the JSD of precipitation corrected by the 373 

three methods showed similar spatial patterns, but the precipitation of DQM showed lower 374 

performance than the other methods in the southern region. In terms of EVS, the precipitation 375 

of DQM showed higher variability than the other methods. The precipitation of QDM showed 376 
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lower variability in southern Africa than DQM, but overall, it showed higher variability than 377 

EQM. The precipitation of EQM showed lower variability in southern and central Africa but 378 

still showed high variability in the northern region. Analyzing the error performance, the 379 

precipitation corrected by QDM showed the best performance compared to the other methods. 380 

In particular, QDM showed the highest performance in North Africa (MAE: 0.03, and MSLE: 381 

0.004), and EQM's error performance was lower than QDM's in most indicators but better than 382 

DQM's. Finally, EQM performed the highest in correlation metrics (NSE and 𝑅2), and QDM 383 

performed better than DQM. 384 
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 385 

Figure 4. Performances of DQM, EQM, and QDM using evaluation metrics (JSD, EVS, MdAE, 386 

Pbias, and KGE) for daily precipitation in Africa. 387 
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Figures 5 and S4 show the spatial results of the grid-based evaluation metrics for the European 388 

region. In terms of error metrics, EQM-corrected precipitation performed the best across 389 

Europe compared to other methods. In contrast, QDM-corrected precipitation performed 390 

similarly to DQM in MAE and MSLE but significantly outperformed DQM in RMSE. 391 

Regarding NSE and R, EVS, and KGE metrics, EQM-corrected precipitation performed 392 

overwhelmingly better than other methods. QDM precipitation performed better than DQM, 393 

while DQM performed the worst. Regarding Pbias, EQM-corrected precipitation was 394 

underestimated compared to the reference data in most parts of Europe. In contrast, QDM-395 

corrected precipitation was more similar to the reference data compared to other methods, and 396 

DQM precipitation was overestimated compared to the reference data except in central Europe. 397 
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Figure 5. Performances of DQM, EQM, and QDM using evaluation metrics (MAE, MSLE, 399 

NSE, 𝑅2, and RMSE) for daily precipitation in Europe. 400 

Figures 6 and S5 show the results of spatially quantifying the corrected precipitation in Asia 401 

using various evaluation metrics. Regarding error metrics, EQM-corrected precipitation stands 402 

out with its superior performance, particularly in RMSE, which was consistently below 1.35 in 403 

most areas except for certain parts of Central Asia. In contrast, DQM-corrected precipitation 404 

showed the poorest performance in error metrics. QDM-corrected precipitation demonstrated 405 

a performance similar to EQM but slightly lower in East Asia and North Asia. In NSE and R, 406 

the precipitation corrected by EQM performed better than other methods, especially in 407 

Southwest and East Asia. In contrast, the precipitation corrected by DQM performed lower 408 

than other methods. Regarding EVS, the precipitation corrected by EQM showed the lowest 409 

variability, while QDM showed higher variability than EQM but lower variability than DQM. 410 

In the case of Pbias, precipitation corrected by DQM was overestimated compared to the 411 

reference data throughout Asia. The precipitation corrected by EQM was underestimated in 412 

most regions except Central Asia. Precipitation in QDM showed a similar spatial pattern to that 413 

in EQM, but the range of Pbias was more diverse. 414 

 415 
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 416 

Figure 6. Performances of DQM, EQM, and QDM using evaluation metrics (JSD, EVS, MdAE, 417 

Pbias, and KGE) for daily precipitation in Asia. 418 

 419 

Figures 7 and S6 show the results of spatially quantifying the corrected daily precipitation in 420 

Oceania using various evaluation metrics. In terms of error metrics, the precipitation estimated 421 

by the three QM methods performed similarly in MAE, MdAE, and MSLE. However, the 422 

precipitation corrected by EQM performed better in RMSE than the other methods. In the case 423 

of JSD, all three methods performed well. 424 
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Regarding EVS, the precipitation corrected by EQM showed lower variability than the other 425 

methods, and DQM showed higher performance than QDM. In Pbias, the precipitation adjusted 426 

by QDM was overestimated compared to the reference data in Oceania, while the precipitation 427 

corrected by DQM and EQM was underestimated compared to the reference data in central and 428 

southern Oceania. Finally, in KGE, precipitation corrected by EQM showed the highest 429 

performance, while DQM showed the lowest. 430 
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 431 

Figure 7. Performances of DQM, EQM, and QDM using evaluation metrics (MAE, MSLE, 432 

NSE, 𝑅2, and RMSE) for daily precipitation in Asia. 433 
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Figure 8 visualizes the results of evaluating the bias-corrected precipitation data using 11 434 

CMIP6 GCMs on six continents using ten evaluation metrics as boxplots. Overall, the 435 

precipitation corrected by EQM outperforms the other methods on most continents. In 436 

particular, EQM performs the best on the error metrics. QDM performs slightly lower than 437 

EQM but still maintains a high level of performance on all continents. On the other hand, DQM 438 

has more significant errors and relatively poor performance compared to the other methods on 439 

most metrics. 440 



27 

 

 441 

Figure 8. Performances of DQM, EQM, and QDM of historical period precipitation using 442 

boxplots based on ten evaluation metrics 443 

 444 
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3.1.3 Comparison of reproducibility for extreme daily precipitation 445 

This study compared the daily extreme precipitation corrected by three methods using the GEV 446 

distribution. Figure 9 compares the distribution differences of the daily precipitation adjusted 447 

by the biased bias correction methods based on the GEV distribution using the JSD. In general, 448 

the JSD values for precipitation from DQM, EQM, and QDM are very low for most continents, 449 

indicating that the GEV distributions are almost identical among the three methods. Although 450 

there are some outliers, the overall distribution differences are not significant, suggesting little 451 

difference among the three methods when correcting for historical precipitation. However, in 452 

Europe, unlike other continents, the differences between the first and third quartiles of the JSD 453 

are relatively significant, indicating that the distributions can vary significantly from grid to 454 

grid depending on the QM method. 455 

 456 

 457 

Figure 9. Comparison of distribution differences for GEV distribution using JSD across six 458 

continents. 459 

 460 

Figure 10 shows the probability density functions for extreme precipitation above the 95th 461 

percentile of the GEV distribution. Overall, DQM shows the highest probability density for 462 
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extreme precipitation across all continents and has the widest distribution, indicating that DQM 463 

corrects more extreme precipitation. On the other hand, EQM shows the lowest probability 464 

density and conservatively corrects for extreme precipitation. QDM shows probability 465 

densities between EQM and DQM across most continents but closer to EQM. 466 

 467 

Figure 10. Comparison of probability densities for extreme precipitation values above the 95th 468 

percentile using GEV.  469 

 470 

3.2 Prioritization of bias correction methods based on performance 471 

3.2.1 Results of weight for evaluation metrics 472 

In this study, the weights were calculated by applying entropy theory to the evaluation metrics 473 

used in the TOPSIS analysis, and the results are presented in Table 3. JSD had the highest 474 

weight in South America because the estimated JSD from 11 CMIP6 GCMs was an important 475 

metric for evaluating model performance differences. These results indicate that the differences 476 

between distributions are significant. On the other hand, EVS and NSE in South America had 477 

very low weights, suggesting that the variability and efficiency of precipitation were considered 478 

less important than other indicators. For North America, the RMSE, MSLE, and MAE metrics 479 

were of significant importance, as evidenced by their high weights. These error metrics 480 
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revealed substantial regional differences. In contrast, EVS carried a negligible weight, 481 

suggesting it was less important in explaining variability in North America. For Africa, MdAE 482 

and JSD metrics were of considerable importance, as indicated by their high weights. These 483 

metrics were key evaluation factors in Africa. Conversely, EVS carried a low weight, 484 

suggesting it was considered relatively less important. RMSE had the highest weight in Europe, 485 

and KGE also had a relatively high weight, indicating that these metrics were considered 486 

important evaluation criteria in Europe. In Asia, MAE and MSLE had high weights, suggesting 487 

that these metrics were important evaluation metrics. On the other hand, EVS and NSE were 488 

considered less important due to their low variability. JSD, KGE, RMSE, and MAE were 489 

assigned high weights in Oceania, indicating that these metrics are essential factors. On the 490 

other hand, R2 and NSE were assigned low weights. 491 

 492 

Table 3. Entropy-based weights for evaluation metrics across different continents 493 

 RMS

E 

MAE 𝑅2 NSE KGE Pbias MdAE MSLE EVS JSD 

South 

America 

0.1439 0.1536 0.0001 0.0001 0.0005 0.0238 0.1754 0.1934 0.0004 0.3088 

North 

America 

0.2289 0.1908 0.0001 0.0001 0.0007 0.0118 0.2152 0.2117 0.0001 0.1411 

Africa 0.1319 0.1686 0.0002 0.0002 0.0002 0.0855 0.2436 0.1911 0.0002 0.1786 

Europe 0.2821 0.1762 0.0022 0.0022 0.0063 0.0378 0.1754 0.1666 0.0021 0.1490 

Asia 0.2073 0.1954 0.00003 0.00003 0.0001 0.0305 0.2300 0.2024 0.00003 0.1342 

Oceania 0.2384 0.2204 0.0013 0.0013 0.0068 0.0214 0.2338 0.2093 0.0012 0.0660 

 494 

3.2.2 Selection of the best bias correction method based on TOPSIS 495 

Figures 11 and S7 present the best bias correction method selected for each continent using the 496 

TOPSIS approach. In Figure 11(a), the spatial distribution of the most effective bias correction 497 

method across the grid points of each continent is shown. In contrast, Figure 11(b) shows the 498 

number of grid points selected for each QM method. In South America, EQM was chosen as 499 

the best method in most grid points, with EQM being selected in over 1,500 grid points. In 500 

contrast, QDM was selected in fewer than 700 grid cells, making it the least chosen method in 501 

South America. Across all continents except South America, EQM was selected as the best 502 

model in the majority of grid cells, with the number of selected grid points (North America: 503 

7,583; Africa: 2,879; Europe: 2,719; Asia: 8,793; and Oceania: 1,659). On the other hand, 504 
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DQM was the least chosen method across all continents. For QDM, although it was the second 505 

most selected method across all continents except South America, the difference in the number 506 

of grid points between QDM and EQM is significant. 507 

 508 

Figure 11 Spatial distribution for selected best bias correction methods across continents 509 

using TOPSIS 510 

 511 

3.3 Uncertainty quantification of bias corrected daily precipitation 512 

3.3.1 Uncertainty by model 513 

This study quantifies the daily precipitation uncertainty of 11 CMIP6 GCMs, corrected using 514 

three different BMA methods. Figure 12 shows the distribution of GCM weight variances 515 

calculated by BMA across six continents. In South America, the highest weight variance was 516 

observed mainly in DQM. EQM showed high weight variance in the northern region but lower 517 

variance than DQM in most other regions. QDM exhibited the lowest weight variance, with 518 

values less than 0.00113 in most regions. In North America, EQM had the lowest weight 519 

variance, with values between 0.00055 and 0.00024 in most regions. QDM showed the lowest 520 

model uncertainty across North America, with more regions where weight variances were 521 

closer to 0 than the other methods. On the other hand, DQM exhibited high weight variance 522 

overall, with exceptionally high model uncertainty in the northeast and southern regions. In 523 
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Africa, EQM's weight variance was estimated to be low overall, resulting in low model 524 

uncertainty in most regions. For QDM, weight variance was low in some regions but higher 525 

than 0.00113 in others. DQM showed high weight variance in most regions except for the 526 

northern area, indicating high model uncertainty across the continent. EQM's weight variance 527 

was the lowest in Europe compared to the other methods, with weight variances close to 0 528 

across the continent. QDM also showed low weight variance overall, though higher than EQM. 529 

DQM exhibited high weight variance in most regions except for Central Europe. In Asia, EQM 530 

showed low weight variance in most regions except Southeast Asia. QDM's weight variance 531 

was similar to EQM's, though some regions had higher model uncertainty. DQM showed high 532 

weight variance in most regions except for some Southwest and North Asian areas. For Oceania, 533 

the weight variances of EQM and DQM were mainly similar, but DQM showed a higher weight 534 

variance overall. 535 
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 536 

Figure 12. Spatial distribution of weight variance across continents for bias corrected CMIP6 537 

GCMs using BMA 538 
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Figure 13 shows the distribution of GCM weight variances calculated using BMA across six 539 

continents, presented as boxplots. Overall, EQM has the smallest weight variance, and QDM 540 

has the second smallest weight variance on all continents except South America. In contrast, 541 

in South America, QDM has the smallest weight variance, and EQM has the second smallest. 542 

DQM consistently has the largest weight variance across all continents, indicating the highest 543 

model uncertainty. 544 

 545 

 546 

Figure 13. Weight variance for bias correction methods across six continents using box plots. 547 

 548 

3.3.2 Uncertainty by ensemble prediction 549 

This study developed a daily precipitation ensemble for the historical period based on 11 550 

CMIP6 GCMs using BMA. Figure 14 shows the standard deviation of daily precipitation for 551 

the historical period by continent for the ensemble developed using BMA with 11 CMIP6 552 

GCMs. Overall, the ensemble predicted using EQM provided stable precipitation projection 553 

with low standard deviations across most continents. The QDM ensemble showed similar 554 

results to EQM for most continents except Oceania, but the standard deviations were slightly 555 

higher. On the other hand, the ensemble using DQM exhibited higher standard deviations than 556 
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the other methods for all continents and had the largest prediction uncertainty. In Oceania, the 557 

ensembles predicted by the three methods showed similar results. However, the prediction 558 

uncertainty was estimated to be lower in the order of EQM, DQM, and QDM due to slight 559 

differences. 560 
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 561 

Figure 14. Spatial distribution of standard deviation for daily precipitation across continents 562 

for bias corrected CMIP6 GCMs using BMA 563 
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 564 

Figure 15 shows the standard deviation of daily precipitation for the ensemble forecasted by 565 

BMA using three methods, DQM, EQM, and QDM, in a boxplot for each continent. Overall, 566 

the EQM ensemble showed the lowest standard deviation across all continents, providing the 567 

most stable daily precipitation forecasts. The QDM ensemble showed slightly higher standard 568 

deviations than EQM for most continents, but there was no significant difference between the 569 

two methods. In contrast, the DQM ensemble showed the highest standard deviation and the 570 

largest prediction uncertainty. 571 

 572 

 573 

Figure 15. Spatial distribution of standard deviation for daily precipitation across continents 574 

for bias corrected CMIP6 GCMs using BMA 575 

 576 

3.4 Evaluation of bias correction methods using CI  577 

3.4.1 Results of CI by each weighting case 578 

This study compared three QM methods by generating a CI based on three cases of weighting 579 

values that considered both model performance and uncertainty. Figures 16, S8, and S9 show 580 
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the comprehensive indices calculated by applying equal weights and weights emphasizing 581 

performance and uncertainty, respectively. 582 

EQM showed the highest CI across all continents when equal weights were applied. However, 583 

the index was lower in southern Europe and southeastern North America, but it calculated high 584 

values in most other regions. QDM showed high index values in some regions, although they 585 

were lower than those of EQM. For example, the CI results were high in the northern and 586 

western parts of North America and the central part of Europe. On the other hand, DQM was 587 

generally unsuitable in most regions but showed a relatively high index in Oceania. 588 

When weights that emphasized performance were applied, DQM showed a high index in the 589 

central part of South America but low performance in most continents. Nevertheless, DQM 590 

showed a better index than QDM in some parts of Oceania. EQM showed the best index across 591 

most continents. While QDM was less suitable than EQM, it was still evaluated as a useful 592 

method in some continents. 593 

Even when applying weights that increased the emphasis on uncertainty, similar results were 594 

obtained with the other weighting values. In particular, EQM was evaluated as the most suitable 595 

model across all continents, while DQM showed the opposite results. 596 
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 597 
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Figure 16. Spatial distribution of comprehensive indices for bias correction methods with equal 598 

weights (𝛼: 0.5, 𝛽: 0.5) across continents 599 

 600 

Figure 17 presents a comparison of the comprehensive indices for three QM methods with 601 

different weights for each continent using box plots. Overall, all methods showed higher 602 

indices than the other weighting values in the values that emphasized more weight on 603 

performance. In all weighted values, DQM showed the lowest indices in all continents except 604 

for South America and Oceania, where it was slightly higher or similar to QDM. EQM showed 605 

the best composite indices in all continents, outperforming performance and uncertainty. QDM 606 

showed high comprehensive indices in most continents, and the gap with EQM narrowed 607 

significantly in the weighting values that emphasized performance more. Nevertheless, QDM 608 

overall had lower comprehensive indices than EQM. 609 

 610 

 611 

Figure 17. CI for three bias correction methods across continents with varying weights on 612 

performance and uncertainty 613 

 614 
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3.4.2 Selection of best bias correction method 615 

Based on the CI, this study selected the best bias correction method for each continent. Figure 616 

18 shows how the best bias correction method was selected for each continent by applying 617 

various weighting values of the CI. Overall, EQM was selected as the best correction method 618 

for most continents in all weighting values and was selected more than other methods in North 619 

America, Europe, Asia, and Oceania. DQM was selected the least in most continents except 620 

for South America and Oceania, and the number of selected grids tended to decrease as the 621 

weighting for uncertainty increased. QDM was selected as the proper bias correction method 622 

in western North America, southern and eastern Africa, and northern Europe. In addition, QDM 623 

was selected the most in Southeast Asia in all weighting values. 624 
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 625 

Figure 18. Selection of best bias correction methods across continents based on CI depending 626 

on weighting values. 627 

 628 
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Figure 19 shows the number of selected grids for the best bias correction method across 629 

continents based on three weighting values. Overall, EQM was the most frequently selected 630 

method across all weighting values, demonstrating superior performance across all continents 631 

compared to the other methods. Interestingly, as the weight for uncertainty increased, the 632 

number of grids where EQM was selected also increased, while the number decreased as the 633 

weight for performance increased. In contrast, QDM was chosen as the second-best method on 634 

most continents, except for South America and Oceania. The number of selected grids for 635 

QDM slightly increased as the performance weight increased. DQM was the least selected 636 

method across most continents, indicating that it was the least suitable overall. 637 

 638 

 639 

Figure 19. Ratios of selected grids for best bias correction methods across continents based on 640 

different weighting values 641 

 642 

4. Discussion 643 

Bias correction methods are widely used in correcting GCM outputs, and previous studies have 644 

compared the performance of various methods (Homsi et al., 2019; Saranya and Vinish, 2021). 645 

Among these, Quantile Mapping (QM) has consistently shown superior performance compared 646 

to other methods, making it a widely used approach for bias correction. In particular, QDM, 647 

EQM, and DQM, which are the focus of this study, are frequently employed in research 648 

exploring and applying climate change projections based on GCM outputs (Cannon et al., 2015; 649 

Switanek et al., 2016; Song et al., 2022a). Analyzing the strengths and limitations of these three 650 

methods will provide valuable insights for climate researchers, enabling them to choose the 651 

most suitable bias correction method for specific regions. In this context, this study further 652 

evaluates the performance of QDM, EQM, and DQM, especially for daily precipitation, and 653 
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investigates how these methods perform across different regions. Unlike previous studies that 654 

focused on the performance of bias correction methods (Song et al., 2024a; Teutschbein and 655 

Seibert, 2012; Smitha et al., 2018), this study suggests a CI that integrates the performance and 656 

uncertainty metrics. This approach enhances the robustness of bias correction method selection 657 

and provides a more holistic evaluation framework. This section discusses the strengths and 658 

weaknesses of each method from various perspectives to provide a more balanced assessment. 659 

 660 

4.1 Evaluation of bias correction methods performance 661 

The daily precipitation corrected by the three QM methods outperformed the raw GCM data 662 

(see Figure 1). All three methods showed strong overall performance, as indicated by the 663 

Taylor diagram, producing consistently good results across different regions. This highlights 664 

the need to use multiple performance metrics to fully understand the strengths and weaknesses 665 

of the three QM methods, as relying on a single analysis or macroscopic perspective can 666 

overlook important details. From this perspective, many studies have emphasized the 667 

application of a multifaceted analysis in selecting bias correction methods (Homsi et al., 2019; 668 

Cannon et al., 2015; Berg et al., 2022; Song et al., 2023). The spatial distribution of correction 669 

performance, as discussed in Section 3.1.2, varies significantly by continent. Figures 2 to 7 670 

reveal that the evaluated metrics differ across continents, underscoring the importance of 671 

region-specific correction methods. This finding aligns with Song et al. (2023), highlighting 672 

the importance of selecting appropriate correction methods based on the precipitation 673 

distribution at observation sites. Moreover, studies such as Homsi et al. (2019) and Saranya 674 

and Vinish (2021) also emphasize the variability in bias correction performance depending on 675 

the regional climate and data characteristics, reinforcing the need for tailored approaches. Of 676 

course, the three QM methods showed high performance across most continents, effectively 677 

correcting the biases in daily precipitation from GCMs. However, the corrected daily 678 

precipitation varies subtly among the three methods, with these differences becoming more 679 

pronounced in extreme events or specific evaluation metrics. For example, the three QM 680 

methods tend to perform less effectively in regions with high precipitation, but their 681 

performance also varies by grid (e.g., southern India in Asia: RMSE; central Oceania: Pbias 682 

and EVS; central Europe: Pbias, MdAE, and KGE). While EQM performs well across most 683 

continents, DQM and QDM show superior results in specific regions. Similar results were 684 

made by Cannon et al. (2015), which highlighted differences in the performance of bias 685 
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correction methods, particularly in handling extreme precipitation events. QDM's error-related 686 

metrics (South America: RMSE, MAE, and MSLE) are nearly identical to EQM's, yet QDM 687 

outperforms EQM regarding MdAE on more grids. These findings suggest that a more nuanced 688 

and detailed analysis of precipitation corrected by GCMs is necessary, aligning with the 689 

conclusions of Gudmundsson et al. (2012), which emphasize that the effectiveness of bias 690 

correction methods can vary significantly depending on local climate characteristics, 691 

highlighting the importance of selecting appropriate methods for each region. These results 692 

suggest a more detailed precipitation analysis from corrected GCMs is needed. 693 

This study compared the three QM methods for daily precipitation events above the 95th 694 

percentile (extreme precipitation) using the GEV distribution, as shown in Figure 10. The 695 

results indicate that DQM tends to correct more extreme precipitation events than QDM, 696 

aligning with previous findings that DQM captures a broader range of extremes. The unique 697 

characteristics of DQM caused these results. DQM overestimated the corrected extreme 698 

precipitation due to the relative variability in the data introduced through detrending, and the 699 

subsequent reintroduction of the long-term mean during the correction step widened the range 700 

of extreme precipitation, leading to overestimation compared to the reference data in areas with 701 

high variability. At the same time, QDM and EQM take a more conservative approach (as noted 702 

in previous studies such as Cannon et al., 2015). These findings suggest that EQM and QDM 703 

may be more suitable in regions vulnerable to floods and extreme weather events that require 704 

a more balanced and cautious approach. However, when comparing the differences in GEV 705 

distributions, there was no significant difference between methods in regions like Oceania and 706 

Europe (see Figure 9). These results imply that EQM can better handle extreme values or 707 

outliers in the data by directly comparing and correcting past and future distributions. In 708 

particular, EQM is consistent with previous studies in that it more accurately corrects observed 709 

distributions in non-stationary and highly variable climate variables, such as precipitation 710 

(Themeßl et al., 2012; Maraun, 2013; Gudmundsson et al., 2012). These positive aspects are 711 

mainly due to EQM’s ability to align the empirical ECDFs of reference and model data across 712 

all quantiles, allowing it to correct biases with high precision at both central tendencies and 713 

extremes.  Although there are significant advantages in observing the results of the correction 714 

method in detail from various perspectives, presenting these results without integrating them 715 

into a reasonable framework can increase confusion and uncertainty in climate change research 716 
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(Wu et al., 2022). Therefore, it is essential to introduce a structured framework such as MCDA 717 

to provide a single integrated result. 718 

 719 

4.2 Uncertainties of model and ensemble prediction in bias correction methods 720 

In climate modeling, quantifying uncertainty is essential to assess the reliability of bias-721 

corrected precipitation data. This study applied BMA to quantify the uncertainty of three QM 722 

methods on a continental basis, addressing both model-specific and ensemble prediction 723 

uncertainties. Similar to the findings by Cannon et al. (2015), this analysis demonstrates how 724 

different bias correction methods yield varying uncertainty levels based on the underlying 725 

climate models. Notably, EQM showed the lowest weight variance across most continents, 726 

which means that the inter-model uncertainty for 11 GCMs corrected by EQM is lower than 727 

that of the other QM methods. The low uncertainty associated with EQM aligns with previous 728 

studies like Themeßl et al. (2012), which found that EQM consistently reduced discrepancies 729 

between modeled and observed data across regions. EQM's ability to manage extreme 730 

precipitation and anomalous values based on observed distributions contributes to its reliability, 731 

a feature also emphasized by Gudmundsson et al. (2012). On the other hand, DQM showed the 732 

highest weight variance across all continents, indicating more significant uncertainty when 733 

applied to various GCMs. This uncertainty was particularly pronounced in regions with 734 

complex climate conditions, such as Southeast Asia, East Africa, and the Alps in Europe. These 735 

results align with Berg et al. (2022), who highlighted DQM's limitations in capturing long-term 736 

climate trends and extreme events. The higher uncertainty associated with DQM suggests that, 737 

while its detrending process is effective in correcting the mean, it may struggle in regions 738 

dominated by nonlinear climate patterns, as it does not sufficiently account for all quantiles in 739 

the distribution, particularly extremes, as noted by Cannon et al. (2015). QDM, though showing 740 

lower weight variance than DQM, still demonstrated higher uncertainty than EQM in regions 741 

with diverse climate characteristics. These results are consistent with the study of Tong et al. 742 

(2021), suggesting that QDM performs better under moderate precipitation scenarios. However, 743 

the uncertainty may increase under highly variable or extreme weather conditions. Furthermore, 744 

this study extended the uncertainty analysis to ensemble predictions, calculating the standard 745 

deviation of daily precipitation for each continent using BMA. The EQM-based ensemble 746 

consistently exhibited low standard deviations across all continents, indicating that EQM offers 747 

the most stable and reliable precipitation predictions. This finding echoes the conclusions 748 
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drawn by Teng et al. (2015), where EQM provided more accurate and less uncertain projections. 749 

In contrast, DQM presented the most significant prediction uncertainty, reinforcing the need 750 

for caution when applying DQM in studies that require high-confidence data. These results 751 

emphasize the importance of weighing performance and uncertainty when choosing a suitable 752 

bias correction method. EQM's consistent performance in reducing uncertainty across model-753 

specific and ensemble forecasts highlights its robustness as a preferred choice for climate 754 

research. However, the substantial uncertainty associated with DQM suggests that its use 755 

should be limited to regions where its detrending process can be beneficial. Overall, these 756 

findings stress the critical role of uncertainty quantification in climate change impact 757 

assessments and underscore the need for selecting bias correction methods based on a 758 

comprehensive evaluation of both performance and uncertainty. 759 

 760 

4.3 Integrated assessment of bias correction methods  761 

This study selected the optimal QM method for each continent based on the CI, which considers 762 

uncertainty and performance. The critical point is that uncertainty is decisive when selecting a 763 

bias correction method. As shown in Figure 19, the optimal correction method varies depending 764 

on the continent, and the selected method also changes depending on the weight. These results 765 

suggest that uncertainty still exists, as Berg et al. (2022) pointed out, and that uncertainty must 766 

be considered when selecting the optimal method. In other words, even if the QM method has 767 

high performance, it is difficult to make a reasonable selection if the uncertainty contained in 768 

the method is significant. Overall, EQM showed the highest CI value in all continents, which 769 

means that it provides the most balanced results in terms of performance and uncertainty. These 770 

results are consistent with previous studies (Lafon et al., 2013; Teutschbein and Seibert, 2012; 771 

Teng et al., 2015) that showed high precipitation correction accuracy and excellent 772 

performance, especially under complex climate conditions. QDM was evaluated highly in some 773 

regions but performed worse than EQM overall. Berg et al. (2022) also pointed out that QDM 774 

is superior in general climate conditions but may perform worse in extreme climate situations, 775 

suggesting that this may increase the uncertainty of QDM in extreme climates. DQM was 776 

evaluated as an unsuitable method in most regions due to low CI values, which is consistent 777 

with the limitations of DQM mentioned in Cannon et al. (2015) and Berg et al. (2022). It was 778 

confirmed that DQM performs relatively well in dry climates but may perform worse in various 779 

climate conditions. In addition, some differences were observed with the results based on 780 



48 

 

TOPSIS. For example, DQM was selected more than QDM in South America, but when the 781 

uncertainty weight was applied, QDM was selected more. Conversely, in Oceania, QDM was 782 

selected more than DQM, but when the uncertainty weight was increased to 0.7, DQM was 783 

selected more. These results are consistent with those of Lafferty and Sriver (2023), showing 784 

that when significant uncertainty exists, uncertainty can be greater despite high bias correction 785 

performance. In conclusion, EQM is the most balanced method regarding performance and 786 

uncertainty and will likely be preferred in future climate modeling studies. However, there may 787 

be more suitable QM methods depending on the region, and a comprehensive evaluation with 788 

various weights is needed. Therefore, when establishing climate change response strategies or 789 

policy decisions, it is essential to take a multifaceted approach that considers uncertainty 790 

together rather than relying on a single indicator or performance alone. It will enable more 791 

reliable predictions and better decision-making. 792 

 793 

5. Conclusion 794 

This study corrected and compared historical daily precipitation from 11 CMIP6 GCMs using 795 

three QM methods. Eleven statistical metrics were used to evaluate the precipitation 796 

performance corrected by three QM methods, and TOPSIS was applied to select performance-797 

based priorities. BMA was applied to quantify model-specific and ensemble prediction 798 

uncertainties. Additionally, suitable QM methods were selected and compared using a CI that 799 

integrates TOPSIS performance scores with BMA uncertainty metrics. The conclusions of this 800 

study are as follows: 801 

1. EQM showed the highest overall index across all continents, indicating that it provides 802 

the most balanced approach in terms of performance and uncertainty. 803 

2. DQM effectively reproduced the dry climate in North Africa and parts of Central and 804 

Southwest Asia but showed the highest uncertainty across all continents. These results 805 

suggest that DQM may lose some long-term trend information, making it less reliable 806 

in regions prone to extreme weather events. 807 

3. QDM performed better in certain regions, such as Southeast Asia, and was selected 808 

more often than DQM when uncertainty was given greater weight. QDM may be a 809 

promising alternative in areas where uncertainty plays a significant role. 810 
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4. Selecting an appropriate QM is required for high performance, and significant 811 

uncertainty can complicate rational decision-making. Therefore, a multifaceted 812 

approach considering performance and uncertainty is essential in climate modeling. 813 

In conclusion, EQM has emerged as the preferred method due to its balanced performance, but 814 

this study emphasizes the importance of regional assessment and careful consideration of 815 

uncertainty when selecting a QM method. Future research should integrate greenhouse gas 816 

scenarios to improve the  accuracy of climate predictions and provide a more comprehensive 817 

understanding of future climate risks. Based on the results of this study, future studies can 818 

develop hybrid methodologies that combine the strengths of each QM. 819 

 820 

Code and data availability 821 

Codes for benchmarking the xclim of python package are available from 822 

https://doi.org/10.5281/zenodo.10685050 (Bourgault et al., 2024). Furthermore, the CI 823 

proposed in this study, along with the TOPSIS and BMA used within it, is available at 824 

https://doi.org/ 10.5281/zenodo.14351816 (Song, 2024b). The data used in this study are 825 

publicly available from multiple sources. CMIP6 General Circulation Models (GCMs) outputs 826 

were obtained from the Earth System Grid Federation (ESGF) data portal at https://esgf-827 

node.llnl.gov/search/cmip6/. Users can select data types such as climate variables, time series, 828 

and experiment ID, which can be downloaded as NC files. Furthermore, CMIP6 GCMs output 829 

can also be accessed in Eyring et al. (2016) The ERA5 reanalysis dataset used in this study is 830 

available through the Copernicus Data Store (CDS) provided by ECMWF 831 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-832 

levels?tab=overview). ERA5 is available at https://doi.org/10.24381/cds.bd0915c6 (Hersbach 833 

et al., 2023). The daily precipitation datasets from CMIP6 GCM and ERA5 used in this study 834 

are available at https://doi.org/10.6084/m9.figshare.27999167.v5 (Song, 2024c).  835 
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