
. 

Comment 1 

1. Abstract, lines 19-26, the results should focus not on how these three methods ranked based on daily 

precipitation but on what this application revealed about the method. How sensitive is the ranking to 

the selection of evaluation metrics? To GCM selection? To weighting of uncertainty vs. performance? 

To different climatological regions (as mentioned briefly at Lines 666 and 722)? Three QM methods is 

too small a pool to draw useful conclusions, and the vague language leaves too much unanswered 

(“QDM outperformed other methods in specific regions…” and “DQM…shows the highest uncertainty 

in certain regions”). 

Answer 

Thank you for your insightful response. We have revised the abstract as follows to fully incorporate 

your suggestions. Thank you again. 

This study proposed a Comprehensive Index (CI) that jointly considers bias correction performance 

metrics and uncertainty to guide the selection of quantile mapping methods. This approach reveals not 

only a performance-based ranking of bias correction methods but also how optimal method choices 

shift as the uncertainty weight varies. This study evaluated daily precipitation performance from 11 

CMIP6 GCMs corrected by Quantile Delta Mapping (QDM), Empirical Quantile Mapping (EQM), and 

Detrended Quantile Mapping (DQM) using ten evaluation metrics and applied TOPSIS (Technique for 

Order Preference by Similarity to an Ideal Solution) to compute performance-based rankings. 

Furthermore, Bayesian Model Averaging (BMA) was used to quantify both individual model and 

ensemble prediction uncertainties. Moreover, entropy based weighting of the ten evaluation metrics 

reveals that error based measures such as RMSE and MAE carry the highest information content 

(weights 0.13-0.28 and 0.15-0.22, respectively). By aggregating TOPSIS performance scores with 

BMA uncertainty measures, this study developed CI. Results show that EQM achieved the best 

performance across most metrics 0.30 (RMSE), 0.18 (MAE), 0.98 (R²), 0.87 (KGE), 0.93 (NSE), and 

0.99 (EVS) and exhibited the lowest uncertainty (variance = 0.0027) across all continents. QDM 

outperformed other methods in certain regions, reaching its lowest model uncertainty (variance = 

0.0025) in South America. EQM was selected most frequently under all weighting scenarios, while 

DQM was least chosen. In South America, DQM was preferred more often than QDM when 

performance was emphasized, whereas the opposite occurred when uncertainty was emphasized. These 

findings suggest that incorporating uncertainty leads to spatially heterogeneous and parameter 

dependent changes in optimal bias correction method choice that would be overlooked by metric only 

selection. 



Comment 2 

2. Lines 142-144, the three QM methods are outlined. Were these selected because they represent very 

different approaches to bias correction? Many other bias correction methods exist, from simple delta 

change to multivariate. Would a broader selection of methods test your ranking methods more robustly?  

Answer 

We agree that incorporating a broader range of bias-correction methods (e.g., simple delta change, 

multivariate approaches) would further reinforce the robustness of our CI evaluation. However, because 

our analysis applies all bias-correction schemes across 11 CMIP6 GCMs, computational costs increase 

dramatically. In particular, Cannon’s multivariate bias correction (MBC), which requires additional 

climate variables and increases run time by approximately fivefold per model, is especially demanding. 

Given these constraints, we selected three representative methods (QDM, EQM, DQM), all of which 

have been widely adopted in leading studies. 

https://doi.org/10.1016/j.jhydrol.2020.125685 

https://doi.org/10.1016/j.ejrh.2025.102223 

https://doi.org/10.5194/gmd-17-191-2024 

https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.1602 

https://doi.org/10.2166/wcc.2020.261 

Cannon et al. (2015), which introduced QDM, has been cited over 1,400 times to date, and EQM-related 

publications have been referenced over 100,000 times. By focusing on these three quantile mapping 

approaches, we span the key axes of bias-correction strategies from rare extreme precipitation to full-

distribution fitting to detrended adjustment enabling a comprehensive and balanced assessment. 

Moreover, comparing these representative methods is likely to attract substantial interest among both 

academic and industry researchers, thereby broadening the applicability and impact of our study. We 

appreciate the reviewer’s suggestion and will explicitly note these limitations and their rationale in the 

revised manuscript’s conclusion. Thank you once again for your understanding. Please translate the 

above text into English.: 

Furthermore, more bias correction methods should be used to extend the robustness of CI. 

Comment 3 

3. Line 148-149, the “frequency-adaptation technique” is applied to address potential biases. I did not 

see this explained further in the methods section. Did this add something beyond what is described by 

the definitions of the QM methods? 



Answer 

Thank you for your comment. In response to your comments, we have added the following to Section 

2.3 to clarify exactly what the frequency-adaptation technique is and what additional bias-correction 

benefits it provides. 

This technique removes the systematic wet bias caused by the model’s overestimation of dry days 

relative to observations. Based on this procedure, if effectively corrects the underestimation of excessive 

dry days during the summer and ensures stable performance even under rigorous cross validation. 

 

Comment 4 

4. Table 2 lists 10 evaluation metrics (though the table caption and line 193 state “seven”). It would 

help to add columns for the range of values each can take, and what value would indicate a ‘perfect’ fit. 

An obvious question is why so many somewhat redundant metrics are used (for example RMSE, MAE, 

MdAE). Could the method be employed with 2 or 3 metrics and perform as well? That would be a 

useful detail to explore. 

Answer 

Thank you for your comments. Error metrics such as RMSE, MAE, and MdAE are widely used to guide 

GCM selection and bias correction method decisions. We employed ten evaluation metrics in this study 

because these indicators are commonly cited when selecting optimal models and techniques, thereby 

enhancing the credibility of our results. However, recognizing that some metrics may provide redundant 

information and introduce bias in multi-criteria decision-making, we incorporated entropy theory to 

strengthen objectivity by assigning weights based on each metric’s distribution. For example, as shown 

in Table 3, metrics with identical error values receive markedly different entropy weights according to 

their information content. By applying entropy‐based weighting to all evaluation metrics, we ensure the 

reliability and fairness of the CI results. 

In response to your feedback, we have revised Table 2 as follows: 

Table 2. Information of the ten-evaluation metrics used in this study 

Metrics Equations Factors References Range 

RMSE = √
1

𝑛
∑(𝑋𝑖

𝑠𝑖𝑚 − 𝑋𝑖
𝑟𝑒𝑓

)
2

𝑛

𝑖=1

 
𝑋𝑖

𝑟𝑒𝑓
 reference 

data 

𝑋𝑖
𝑠𝑖𝑚  Bias 

corrected GCM 

 
[0, +∞) 

Best value: 0 

MAE =  ∑|𝑋𝑖
𝑠𝑖𝑚 − 𝑋𝑖

𝑟𝑒𝑓
|

𝑛

𝑖=1

 



𝑅2 =  1 −
∑ (𝑋𝑖

𝑠𝑖𝑚 − 𝑋𝑖
𝑟𝑒𝑓

)2𝑛
𝑖=1

(𝑋𝑖
𝑟𝑒𝑓

− 𝑋̅𝑖
𝑟𝑒𝑓

)2
 Galton, 1886 

(−∞, 1] 

Best value: 1 

Pbias =
∑ (𝑋𝑖

𝑟𝑒𝑓
− 𝑋𝑖

𝑠𝑖𝑚)𝑛
𝑖=1

∑ 𝑋𝑖
𝑟𝑒𝑓𝑛

𝑖=1

× 100  
(−∞, +∞) 

Best value: 0 

NSE = 1 −
∑ (𝑋𝑖

𝑠𝑖𝑚 − 𝑋𝑖
𝑟𝑒𝑓

)2𝑛
𝑖=1

∑ (𝑋𝑖
𝑟𝑒𝑓

− 𝑋̅𝑖
𝑟𝑒𝑓

)2𝑛
𝑖=1

 

Nash and 

Sutcliffe, 

1970 

(−∞, 1] 

Best value: 1 

MdAE =  𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖
𝑠𝑖𝑚 − 𝑋𝑖

𝑟𝑒𝑓
|) 

 

[0, +∞) 

Best value: 0 

MSLE =  
1

𝑛
∑(log(1 + 𝑋𝑖

𝑠𝑖𝑚) − log (1 + 𝑋𝑖
𝑟𝑒𝑓

))2

𝑛

𝑖=1

 
[0, +∞) 

Best value: 0 

EVS = 1 −
𝑉𝑎𝑟(𝑋𝑠𝑖𝑚 − 𝑋𝑟𝑒𝑓)

𝑉𝑎𝑟(𝑋𝑟𝑒𝑓)
 

(−∞, 1] 

Best value: 1 

KGE = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 

𝑟  Pearson 

product-

moment 

correlation 

𝛼  Variability 

error 

𝛽: Bias term 

Gupta et al. 

2009 

(−∞, 1] 

Best value: 1 

JS-D =
1

2
𝐷𝐾𝐿 (𝑃 ∥

𝑃 + 𝑄

2
) +

1

2
𝐷𝐾𝐿 (𝑄 ∥

𝑃 + 𝑄

2
) 

𝑃(𝑥) : 

Probability 

density 

distribution of 

reference data 

𝑄(𝑥) : 

Probability 

density 

distribution of 

GCM 

𝐷𝐾𝐿: KL-D 

Lin, 1991 
[0, 𝑙𝑛2] 

Best value: 0 

 

Comment 5 

5. For clarity, variables should not be used for different quantities. For example, α is used in equation 7 

as the scale factor in the GEV distribution, αw is in equation 10 (and doesn’t appear to be defined), and 

α is used in equation 16 as a performance weight. 

Answer 



Thank you for your comment. We appreciate your insight and have revised Equations 7 and 16 

accordingly. Thank you for your valuable comments. 

The modified Equations were 7 and 16 as follows: 

𝑔(𝑥) =  
1

𝑠
[1 − 𝑘

𝑥−𝜖

𝑠
]

1

𝑘
−1

𝑒𝑥𝑝 {− [1 − 𝑘
𝑥−𝜖

𝑠
]

1

𝑘
}      (7) 

where, 𝑘, 𝑠, and 𝜀 represents a shape, scale, and location of the GEV distribution, respectively. 

𝐶𝐼 =  𝜔 × 𝐶𝑖 − 𝛽 × 𝑈𝐼     (16) 

where, 𝑈𝐼  represents the uncertainty indicator. 𝑉𝑤  and 𝜎𝑒   represent the normalized weight 

variance and the normalized ensemble standard deviation, respectively, calculated using BMA. 𝐶𝑖 

represents the closeness coefficient calculated from TOPSIS. 𝜔 represents the weight given to the 

performance score, 𝛽  represents the weight given to the uncertainty indicator. Furthermore, by 

adjusting the weights 𝜔 and 𝛽, the study evaluated the QM methods under different scenarios. Equal 

weight ( 𝜔 = 0.5, 𝛽 =0.5) balances performance and uncertainty equally, and the emphasized 

performance weight ( 𝜔 = 0.7, 𝛽 =0.3) prioritize performance over uncertainty. The emphasized 

uncertainty weight (𝜔= 0.3, 𝛽=0.7) prioritize uncertainty over performance. The results from the CI 

provide a holistic evaluation of the QM methods, considering both their effectiveness in bias correction 

and the reliability of their predictions. 

Comment 6 

6. Figure 1, Since all points in all panels are in the first quadrant, just include that in the figure. That 

will help readers see the individual points better. That is a pretty standard way to present Taylor 

diagrams. Also, I would assume this is for the validation period (1997-2014) – it should be noted in the 

caption. 

Answer 

. 



 



Figure 1. Comparison of raw and corrected daily precipitation on six continents using Taylor diagrams 

(x-axis: standard deviation; y-axis: the correlation coefficient) 

Comment 7 

7. Line 319 (the beginning of section 3.1.2). From here to line 421 offer very little to the aim of the 

paper. The interpretation of the figures is all qualitative (two examples: for South America, Fig 2 “EQM 

demonstrated lower JSD values, as well as higher EVS and KGE values, compared to other methods.” 

and “QDM and DQM also performed well but exhibited slightly larger errors in some regions than 

EQM.”). First, statistical tests are needed to determine if any differences are statistically significant. 

Second, a discussion of whether the differences are physically meaningful is needed, such as EVS 

varying from 0.95 to 0.98 across the region and across methods. Again, if the effort is to rank QM 

methods, this is far from adequate. If the aim of the study is to demonstrate the application of the method 

and its sensitivity to methodological choices, then most of this section is not needed. 

Answer 

Thank you for your comment. The aim of this study is to highlight the limitations of selecting bias-

correction methods or GCMs based solely on evaluation metrics, as has been done in previous research. 

While uncertainty in future climate projections is well recognized, model uncertainty arising from initial 

and boundary conditions, as well as uncertainty introduced by multiple bias-correction methods, also 

exists. Therefore, we have proposed a framework that incorporates these uncertainties into the selection 

process, and we demonstrate that considering uncertainty leads to differences in the optimal bias-

correction method chosen at each grid cell. In this context, Section 3.1.2 illustrates the spatial variability 

in method choice—for example, by the differing area ranges of each category shown in the legend of 

Figure 2. Furthermore, we assessed statistical significance using the Friedman and Wilcoxon tests. The 

results of the statistical tests are as follows: 

3.1.2 Spatial distribution of bias correction performance 

This study used the Friedman method to statistically test the ten-evaluation metrics, as shown in Table 

3. Overall, all evaluation metrics showed highly significant differences across the six continents, with 

p-values below 0.001. Even metrics that exhibited relatively larger raw form p-values such as MdAE in 

South America and JSD in North America remained well below the 0.05 threshold. Figure 2 further 

depicts Wilcoxon pairwise comparisons of QM methods for each continent. In South America, the 

comparisons between EQM and DQM as well as between QDM and EQM yielded large –log₁₀(p) values, 

indicating that divergence and fit metrics drive methodological differences in that region. In North 

America, MSLE and MdAE were significant for QDM versus DQM, while JSD was significant for 

EQM versus DQM. In Africa and Asia, correlation metrics (NSE and R²) showed statistically significant 



differences in QDM versus DQM comparisons. Finally, JSD and MSLE emerged as the primary metrics 

distinguishing EQM from DQM. 

 

Table 3. Statistical significance comparison of ten evaluation metrics based on Friedman tests over six 

continents 

Metrics 
South 

America 

North 

America 
Africa Europe Asia Oceania 

RMSE 0.000 0.000 0.000 0.000 0.000 0.000 

MAE 0.000 0.000 0.000 0.000 0.000 0.000 

𝑅2 0.000 0.000 0.000 0.000 0.000 0.000 

NSE 0.000 0.000 0.000 0.000 0.000 0.000 

KGE 0.000 0.000 0.000 0.000 0.000 0.000 

Pbias 0.000 0.000 0.000 0.000 0.000 0.000 

MdAE 3.39E-22 0.000 0.000 1.80E-106 0.000 4.28E-172 

MSLE 2.21E-09 0.000 1.51E-260 5.14E-109 0.000 7.78E-89 

EVS 0.000 0.000 0.000 0.000 0.000 0.000 

JSD 5.57E-101 3.19E-50 5.27E-10 1.20E-116 6.29E-79 2.09E-52 

 



 

Figure 2. Statistical significance comparison of ten evaluation metrics based on Wilcoxon tests over six 

continents 

We also substantially shortened the text in Section 3.1.2 and provided more quantitative results [Section 

3.1.2]. 

Furthermore, we noted in the methodology that we used the Friedman and Wilcoxon tests as follows: 

This study used the Friedman test to perform statistical comparisons among the three bias-correction 

methods (DQM, EQM, QDM), and when the Friedman test indicated overall significant differences, 

pairwise Wilcoxon signed-rank tests were conducted between each method pair to determine which 

specific comparisons differed. The detailed concepts of the two methods can be found in Friedman 

(1937) and Wilcoxon (1945). 

Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. 



Journal of the American Statistical Association, 32(200), 675-701. 1937. 

https://doi.org/10.1080/01621459.1937.10503522 

Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80-83. 1945. 

https://doi.org/10.2307/3001968 

Comment 8 

8. Following on comment 7, Figures 2-7 show the results for different metrics for different continents 

(again, presumably for the validation period, but that should be clearly stated in figure captions). Figures 

2-7 all suffer from the same issues, but I will mostly focus on Figure 2. The color bars are non-linear – 

while each color segment is the same length, the interval they represent varies widely. For example, the 

row for Pbias the yellow represents a range of less than 2% while the purple represents over 20%, so a 

3% negative bias is indistinguishable from a 20% negative bias. The scales themselves are confusing: 

for JSD the red colors are the worst skill, while for EVS red is the best skill. Every row is different in 

this regard. Some indices are unitless and others have units, and that should be represented. Some rows 

show a wide range of values (Pbias in Fig 2) while others show virtually identical values (NSE in Fig 

3, where the colors vary only from 0.98 to 1.0), so where some differences are shown they may 

essentially be all the same value. 

Answer 

Thank you for your comment. The captions for Figures 2-7 now clearly indicate the validation period, 

and the color-bar scales have been redefined by dividing values into five quantiles to address the 

nonlinearity issue. Optimal metric values are consistently shown in red and the worst in green, and units 

have been added to any metrics that require them. 

The figure below shows Figure 3 among the revised examples. 



 

Figure 3. Performance comparison of DQM, EQM, and QDM for the validation period (1997-2014) 

using evaluation metrics for daily precipitation in South America. 

 

Comment 9 

9. The subset of indices shown in Figures 2-7 varies. While the supplemental material may complete 

the set, it should be consistent. 

Answer 

Thank you for your comment. To incorporate your comment, we have merged all metric-related figures 

from the supplemental material into the main text (Figures 3-9). 



The figure below shows Figure 4 among the revised examples. 

 

Figure 4. Performance comparison of DQM, EQM, and QDM for the validation period (1997-2014) 

using evaluation metrics for daily precipitation in North America. 

Comment 10 

Figure 8 summarizes on a continental scale the performance using each metric. Without any statistical 

test, the apparent differences cannot be claimed to represent anything. Also, with wide variability (in 

some metrics) across each continent, a single continent-wide average may not be very meaningful. 

Answer 

Thank you for your comment. First, we performed statistical tests based on the reviewer’s comments 

using the Friedman and Wilcoxon paired comparison tests. These results are presented in Section 3.1.2. 

Furthermore, since boxplots display not only the median but also the maximum, minimum, first and 

third quartiles, and any outliers, they are not based solely on mean values. In fact, each boxplot contains 

all grid‐cell results; using only the mean would produce a single value, making it impossible to generate 

a boxplot. To enrich the presentation of these results, we have revised the main text as follows. 

Figure 9 presents the distribution of ten evaluation metrics for bias-corrected daily precipitation across 

six continents using boxplots. Each box shows the interquartile range (IQR) and median of the metric 

values computed over 11 CMIP6 GCMs. Overall, EQM’s boxes generally have lower medians and 

narrower IQRs for error metrics (RMSE, MSLE, MAE) on most continents, indicating both smaller 

typical errors and less scatter compared to QDM and DQM. QDM’s boxplots lie slightly above those 



of EQM but still exhibit relatively tight IQRs, suggesting consistently strong performance. In contrast, 

DQM often has higher median errors, wider IQRs, and more extreme outliers, reflecting larger and more 

variable biases relative to the other methods. 

Comment 11 

Section 3.1.3 looks at extreme precipitation. This is not well integrated into the rest of the paper, and 

only includes a cursory look at continent-aggregated values. It does not fit into any of the rest of Section 

3. Line 445 claims differences are “relatively significant” and that distributions “vary significantly”. 

Since there is no mention of statistical tests, these terms are inappropriate. 

Answer 

Thank you for your insightful comment. We have revised Section 3.1.3 to incorporate both a formal 

statistical test and a clear explanation of why extreme value behavior was analyzed separately. The 

updated paragraph now reads [Section 3.1.1] 

This study also compared how well each bias correction method reproduces extreme precipitation by 

fitting a Generalized Extreme Value (GEV) distribution to the corrected daily values and then 

quantifying the distributional differences. Figure 10 shows the JSD of GEV fitted daily precipitation 

for DQM, EQM, and QDM on each continent. Across most continents, the median JSD for all three 

methods is extremely low (on the order of 10−4
 to 10−5

), and even the interquartile ranges fall within 

narrow bands indicating that statistically the GEV curves for DQM, EQM, and QDM are almost 

indistinguishable for historical data.  



 

Figure 10. Comparison of distribution differences for GEV distribution using JSD across six continents. 

 

Table 4 shows the results of a Friedman test and subsequent Wilcoxon signed rank pairwise comparisons 

for the ten highest daily precipitation values exceeding the 95th percentile on each continent. The 

Friedman test yielded a p-value of 4.5399 ×10−5, indicating a highly significant difference and that at 

least one of the three quantile‐mapping methods differs systematically. All Wilcoxon pairwise 

comparisons between methods produced 0.00195 on every continent, demonstrating that no two bias‐

correction approaches generate equivalent extreme‐precipitation estimates. 

 

Table 4. Friedman test and Wilcoxon paired comparison Test (p-values) by continent for precipitation 

exceeding the 95th percentile based on the GEV distribution 

Continent Friedman 
Wilcoxon 

DQM & EQM DQM & QDM EQM & QDM 

South America 

4.5399 × 10−5 0.00195 0.00195 0.00195 
North America 

Africa 

Europe 



Asia 

Oceania 

 

Because the reproducibility of extreme values in the corrected GCM is essential for impact assessments, 

Figure 11 presents the estimated probability density function (PDF) of precipitation values above the 

95th percentile for the same GEV fit. Overall, DQM shows the highest probability density for extreme 

precipitation across all continents and has the widest tail, indicating that DQM boosts extreme events 

most aggressively. In contrast, EQM shows the lowest and narrowest density conservatively correcting 

extremes (often 5-8 % below DQM’s values). QDM falls between EQM and DQM in most regions but 

remains closer to EQM. 

 

Figure 11. Comparison of probability densities for extreme precipitation values above the 95th 

percentile using GEV  

 

By adding the Friedman test (p < 0.001) to Table 4’s description and explicitly explaining why extreme 

value PDFs (Figure 10) matter, we have addressed the concern about statistical significance and the 

physical relevance of extreme precipitation differences. Thank you again for helping us strengthen this 

section. 



Comment 12 

12. Figure 9, Why do the scales between the top and bottom rows vary so widely (max of 0.15 vs 

0.00024)? Does this figure only represent the 95th percentile like Fig 10? 

Answer 

Thank you for highlighting the apparent discrepancy in scales between Figures 9 and 10. We agree that 

it is important to clarify why the two figures display such different numerical ranges and how each 

figure serves a distinct analytical purpose. Figure 9 presents boxplots of the Jensen–Shannon 

Divergence (JSD) calculated over the entire GEV return‐level distribution for each continent and each 

bias‐correction method (QDM, EQM, DQM). By summarizing JSD values at every quantile, Figure 9 

captures the full range of distributional differences—from the lowest return levels up to the most 

extreme values. Because JSD across all quantiles can span several orders of magnitude (especially when 

comparing methods under different climate regimes), the y-axis scales in Figure 9 vary to accommodate 

the true spread of values on each panel. This ensures that each continent’s boxplot accurately shows the 

full extent of distributional differences rather than compressing them into a single, uniform scale. Figure 

10, on the other hand, focuses exclusively on the upper tail of the GEV distribution, specifically the 

precipitation values above the 95th percentile. In other words, rather than evaluating JSD at every 

quantile, Figure 10 isolates the probability‐density functions for extreme precipitation events (the top 

5% of modeled intensities) and directly compares those densities across the three correction methods. 

Because probability densities in the extreme tail are inherently much smaller (on the order of 10⁻⁴), the 

plotted values in Figure 10 appear in a much narrower range (with a maximum of around 0.00024). 

This deliberately zoomed‐in view allows readers to see the subtle yet important differences in how each 

method handles the most extreme precipitation events, which would be difficult to discern if overlaid 

on the full‐distribution scale used in Figure 9. 

Comment 13 

13. Figure 10, what are the values and units for the x-axis? Again, while these lines appear to be different 

the densities are extremely close (the y-axis scales cover a very small range) and no statistical test results 

are presented, so drawing conclusions is limited. 

Answer 

Thank you for your comment. In response, we have added the x-axis units to Figure 10.  



 

Figure 10. Comparison of probability densities for extreme precipitation values above the 95th 

percentile using GEV.  

We also conducted statistical tests on the GEV 95th-percentile precipitation values using the Friedman 

and pairwise Wilcoxon tests, as shown in Table S6. Based on these results, we have revised the 

paragraph as follows: 

Table 4. Friedman test and Wilcoxon paired comparison Test (p-values) by continent for precipitation 

exceeding the 95th percentile based on the GEV distribution 

Continent Friedman 
Wilcoxon 

DQM & EQM DQM & QDM EQM & QDM 

South America 

4.5399 × 10−5 0.00195 0.00195 0.00195 

North America 

Africa 

Europe 

Asia 

Oceania 

 

Furthermore, the main text has been revised as follows: 



This study also compared how well each bias correction method reproduces extreme precipitation by 

fitting a Generalized Extreme Value (GEV) distribution to the corrected daily values and then 

quantifying the distributional differences. Figure 9 shows the JSD of GEV fitted daily precipitation for 

DQM, EQM, and QDM on each continent. Across most continents, the median JSD for all three 

methods is extremely low (on the order of 10−4
 to 10−5

), and even the interquartile ranges fall within 

narrow bands indicating that statistically the GEV curves for DQM, EQM, and QDM are almost 

indistinguishable for historical data.  

 

Figure 9. Comparison of distribution differences for GEV distribution using JSD across six continents. 

Table 4 shows the results of a Friedman test and subsequent Wilcoxon signed rank pairwise comparisons 

for the ten highest daily precipitation values exceeding the 95th percentile on each continent. The 

Friedman test yielded a p-value of 4.5399 ×10−5, indicating a highly significant difference and that at 

least one of the three quantile‐mapping methods differs systematically. All Wilcoxon pairwise 

comparisons between methods produced 0.00195 on every continent, demonstrating that no two bias‐

correction approaches generate equivalent extreme‐precipitation estimates. 

Table 4. Friedman test and Wilcoxon paired comparison Test (p-values) by continent for precipitation 

exceeding the 95th percentile based on the GEV distribution 

Continent Friedman Wilcoxon 



DQM & EQM DQM & QDM EQM & QDM 

South America 

4.5399 × 10−5 0.00195 0.00195 0.00195 

North America 

Africa 

Europe 

Asia 

Oceania 

 

Because the reproducibility of extreme values in the corrected GCM is essential for impact assessments, 

Figure 10 presents the estimated probability density function (PDF) of precipitation values above the 

95th percentile for the same GEV fit. Overall, DQM shows the highest probability density for extreme 

precipitation across all continents and has the widest tail, indicating that DQM boosts extreme events 

most aggressively. In contrast, EQM shows the lowest and narrowest density conservatively correcting 

extremes (often 5-8 % below DQM’s values). QDM falls between EQM and DQM in most regions but 

remains closer to EQM. 

 

Figure 10. Comparison of probability densities for extreme precipitation values above the 95th 

percentile using GEV 



 

Comment 14 

Line 464, the weights are “calculated by applying entropy theory”, but that does not appear to have 

been discussed in the methods section of the paper. This should be mentioned there with appropriate 

citations. 

Answer 

Thank you for your comment. We have added the following sentence to Section 2.7:  

Moreover, this study employed entropy theory to compute objective weights for the evaluation metrics 

as an alternative to TOPSIS (Shannon and Weaver 1949). 

Additionally, we have included the following references. 

Shannon, C. E., and Weaver, W.: The mathematical theory of communication. University of Illinois 

Press. 1949 

Comment 15 

Line 464, While this seems like the more important part of the effort, higher and lower weights are only 

discussed qualitatively, and while “significant importance” is mentioned (Line 471) and differences are 

claimed to be “significant” (Line 499) no assessment of significance is shown. 

Answer 

Thank you for your comment. As noted in Section 3.1.2, we applied these nonparametric tests to the 

ten evaluation metrics (RMSE, MAE, R², NSE, KGE, Pbias, MdAE, MSLE, EVS, JSD) used in our 

entropy‐weight calculation. The full test statistics and p-values are now provided in Table 4, 

demonstrating that, for each continent, metrics such as JSD in South America and RMSE/MAE/MSLE 

in North America differ from lower-weighted metrics (e.g., EVS, NSE) at p < 0.01. Because entropy 

weights directly reflect these underlying metric differences, this analysis confirms that descriptors like 

significance and differences are grounded in robust statistical evidence rather than qualitative judgment 

alone. 

Below is the revised paragraph including our new sentence: 

By conducting Friedman and Wilcoxon tests on the evaluation metrics, this study confirms that the 

observed differences in entropy‐derived weights are statistically significant. In this study, the weights 

were calculated by applying entropy theory to the evaluation metrics used in the TOPSIS analysis, and 

the results are presented in Table 5. 



We trust these additions fully address your concern by linking our qualitative statements to the 

quantitative results of the Friedman and Wilcoxon tests. Thank you again for guiding us toward a more 

rigorous and transparent presentation.   

Comment 16 

16. Figs. 12, 14, and 16 have many of the same issues as Figure 2-7, noted in comment 8 above. 

Answer 

Thank you for your comment. We have revised all Figures 12, 14, and 16 in response to your comments, 

and we have also updated the figures in the supplementary materials accordingly (Figure S2 and S3). 



 

Figure 13. Spatial distribution of weight variance across continents for bias corrected CMIP6 GCMs 

using BMA 

 

Comment 17 

17. Lines 557-563 discuss Fig. 15. It is claimed that “the EQM ensemble showed the lowest standard 

deviation across all continents.” The box and whisker plots clearly shows nearly identical results for all 

methods, and I would be shocked if any of the differences showed any statistical significance. The 



conclusions here are just not supported. 

Answer 

Thank you for your comment. We have revised the sentence as follows in response to your comments. 

Figure 15 shows the standard deviation of daily precipitation for the ensemble forecasted by BMA using 

three methods, DQM, EQM, and QDM, in a boxplot for each continent. Overall, EQM exhibited the 

lowest median standard deviation across all continents. QDM showed slightly higher median standard 

deviations than EQM across most continents, though the difference was minimal. In contrast, DQM 

showed the highest median standard deviation, indicating the greatest prediction uncertainty. 

 

Comment 18 

18. Fig 17 shows the final comprehensive index across all continents. That some apparent differences 

emerge is due to weighting the uncertainty (as in Fig 15) less. Statistical tests are needed here too, and 

then it could be explored why the closeness index changes the results so strongly. 

Answer 

Thank you for your comment. To address your feedback, we applied the Friedman and pairwise 

Wilcoxon tests, and we have added Table 6 and the following text to the manuscript.  

Under the three weighting scenarios defined in the main text, the Friedman test produced p-values 

effectively rounded to zero for every continent, indicating highly significant differences among DQM, 

EQM, and QDM. Subsequent pairwise Wilcoxon tests showed that most method comparisons remained 

significant across all regions. The only notable exception occurred in Oceania under equal weighting, 

where the p-value of 3.93 × 10−1  failed to reach significance at the 0.05 level. These findings 

demonstrate that, aside from that single case in Oceania, the choice of scenarios exerts a statistically 

significant impact on composite scores across all continents. 

 

Table 6. P-values of Friedman and Pairwise Wilcoxon tests for DQM, EQM, and QDM across 

continents under different α/β weightings 

𝛼: 0.5, 𝛽: 0.5 

Continents Friedman Wilcoxon 

DQM & EQM DQM & QDM EQM & QDM 

South America 1.01E-160 1.99E-135 4.53E-16 2.07E-191 

North America 0.00E+00 0.00E+00 0.00E+00 0.00E+00 



Africa 0.00E+00 0.00E+00 1.75E-234 3.20E-211 

Europe 0.00E+00 0.00E+00 1.07E-106 0.00E+00 

Asia 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Oceania 0.00E+00 1.76E-266+ 3.93E-01 6.93E-287 

𝛼: 0.7, 𝛽: 0.3 

South America 2.33E-150 2.69E-120 2.17E-18 4.40E-189 

North America 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Africa 0.00E+00 0.00E+00 6.40E-226 3.76E-200 

Europe 0.00E+00 0.00E+00 6.42E-129 0.00E+00 

Asia 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Oceania 0.00E+00 1.78E-295 1.63E-02 6.49E-285 

𝛼: 0.3, 𝛽: 0.7 

South America 3.73E-175 2.50E-160 1.01E-11 8.12E-189 

North America 0.00E+00 0.00E+00 1.28E-277 0.00E+00 

Africa 0.00E+00 0.00E+00 2.47E-249 2.90E-232 

Europe 0.00E+00 0.00E+00 2.08E-59 0.00E+00 

Asia 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Oceania 6.63E-250 4.75E-193 3.39E-02 6.27E-285 

 

Comment 19 

1. Line 42, rather than saying the bias corrections differ in “physical approaches”, “statistical 

approaches” would be more accurate. 

Answer 

Thank you for your comment. We have revised the text as follows in response to your comment. 

Despite these advancements, the suggested bias correction methods differ in their statistical approaches, 

resulting in discrepancies in the climate variables adjusted for historical periods. 

Comment 20 

2. Line 47, Correct spelling of Maraun. 

Answer 

Thank you for your comment. We have revised the text as follows in response to your comment. 

Furthermore, the distribution of precipitation across continents and specific locations causes variations 

in the correction outcomes depending on the method used, which makes it challenging to reflect extreme 

climate events in future projections and adds another layer of confusion to climate change research 



(Song et al., 2022b; Maraun, 2013; Ehret et al., 2012; Enayati et al., 2021). 

Comment 21 

3. Line 61, Elaborate on “higher performance.” Is this the same as “better skill”? 

Answer 

Thank you for your comment. We have revised the text as follows in response to your comment. 

In recent years, climate studies using GCMs have adopted several improved QM methods that offer 

better skill meaning reduced bias and more accurate distributional matching than previous approaches 

to correct historical precipitation and project it into the future. 

Comment 22 

4. Line 136, the model resolution “was provided by the institution for research availability.” This is 

confusing. Is there a citation to add? 

Answer 

Thank you for your comment. This sentence was removed during an earlier review process. 

Comment 23 

5. Line 212, “JSD” is used, where prior to this JS-D is used. The term should be consistent throughout. 

Answer 

Thank you for your comment. We have corrected JS-D to JSD. 

Comment 24 

6. Line 361, The sentence begins with “In this study, the daily precipitation in Africa was corrected 

using three QM methods.” This sort of recap appears at the beginning of many sub-sections, and is not 

needed. Search for “This study,” and rephrase. 

Answer 

Thank you for your comment. We have revised the text as follows in response to your comment. 

Daily precipitation in Africa was corrected using three QM methods, and performance is shown in 

Figures 4 and S3. 

Comment 25 

7. Line 438-439, ”adjusted by the biased bias correction methods” must be an error. 



Answer 

Thank you for your comment. This sentence has been removed in response to your comment. 


