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Abstract. Within the New Copernicus Capability for Trophic Ocean Networks (NECCTON) project, we aim to improve the
current data assimilation system by developing a method for accurately estimating marine optical constituents from satellite-
derived Remote Sensing Reflectance. We compared two frameworks based on the implicit inversion of a semi-analytical model
derived from the classical Radiative Transfer Equation. The first approach employed an iterative Bayesian inversion with a
Gaussian approximation, which provides Maximum A Posteriori (MAP) estimates of the optical constituents along with their
associated uncertainties. To improve the model performance, we optimized the model parameters using historical in-situ mea-
surements from the BOUSSOLE buoy and a Markov Chain Monte Carlo (MCMC) algorithm, which reduced the Root Mean
Square Error (RMSE) between the retrieved and observed values. The second approach employed the Stochastic Gradient
Variational Bayes (SGVB) estimator, which is designed to approximate the MAP estimates of the optical constituents while
simultaneously optimizing the model parameters through maximum likelihood. This method resulted in faster computations
than the iterative Bayesian inversion, while maintaining comparable RMSE values. While the iterative Bayesian inversion pro-
vided reliable uncertainty estimates, the SGVB estimator offered faster computations of the optical constituents. Moreover,
using a dataset of in-situ sea surface chlorophyll-a concentrations across a broad region of the Northwestern Mediterranean
Sea, we compared the inversion techniques with a state-of-the-art algorithm used within the Copernicus Marine Service, find-
ing comparable performances across methods. Notably, the SGVB estimator showed the highest correlation between in-situ
measurements and retrievals throughout the analyzed region. We conclude that both inversion methods achieve a performance
comparable to existing state-of-the-art algorithms. The Gaussian approximation offers robust uncertainty quantification, while

the SGVB estimator provides a reliable and computationally efficient alternative.

1 INTRODUCTION

Operational systems, like Copernicus, use satellite-derived data, combined with data assimilation techniques, to obtain esti-
mates of the marine ecosystem status. Traditionally, the assimilated variable is the chlorophyll retrieved data; nowadays, state
of the art biogeochemical models are progressively including refined bio-optical models able to simulate optical variables such

as Remote Sensing Reflectance, enabling the direct assimilation of multispectral reflectance measured by satellite sensors.
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In this work, we aim to derive a framework to estimate the ocean inherent optical properties (IOPs), such as absorption and
scattering coefficients, from measurements of satellite-derived apparent optical properties (AOPs), like irradiance and Remote
Sensing Reflectance. The IOPs are of interest in their own right, as they carry key information about ecosystem variables,
such as chlorophyll, which can be used as indicators of the trophic condition of large marine areas (Longhurst et al., 1996).
Most importantly, the framework is intended to be employed as a module in a data assimilation scheme (Bruggeman et al.,
2023), within operational model services, to perform Remote Sensing Reflectance assimilation in a coherent way, providing an
aligned forward and inverse procedure.

The retrieval of the IOPs of water bodies from measurements of the AOPs, is referred to as the inverse problem of ocean
optics. This is crucially important since directly measuring IOPs with an extended spatial coverage is very difficult (Gordon,
2002).

The first step to compute the IOPs is to establish the forward relationship between the AOPs and the IOPs. In this context,
the AOPs are described as a function of the IOPs using the Radiative Transfer Equation (RTE). Due to the complexity of
the RTE, this computation is carried out in simple scenarios, resulting in simplified equations that can be solved analytically.
Other approaches involve using semi-analytical equations or empirical relations, where the latter are combined with simplified
expressions of the RTE. The inverse problem is solved using these forward computations to estimate the IOPs either explicitly,
by analytically inverting the forward process (Zaneveld, 1989; Leathers et al., 1999; Tao et al., 1994; McCormick, 1996;
Stramska et al., 2000; Salama and Verhoef, 2015; Lazzari et al., 2024), or implicitly, by using an estimate of the IOPs in the
forward process and then iteratively adjusting the IOP values to match measurements of the AOPs (Gordon and Boynton, 1997,
Boynton and Gordon, 2000; Michalopoulou et al., 2009; Salama and Verhoef, 2015; Erickson et al., 2023; Lazzari et al., 2024).

In this work, we focused on an implicit inverse method following Lazzari et al. (2024), but giving the method a probabilistic
interpretation, allowing for the uncertainty estimation of the retrieved quantities. The forward model is the bio-optical model
presented in Dutkiewicz et al. (2015) and described in section 2.1, a three-stream semi-analytical irradiance model. The IOPs
from the bio-optical model are the absorption, scattering, and backward scattering coefficients of four optical constituents:
water, chlorophyll-ac (whose increase or decrease is associated with changes in the concentration of phytoplankton), Chro-
mophoric Dissolved Organic Matter, and Non Algal Particles. We focused on finding the sea surface concentration of these
optical constituents, since we estimated the former IOPs as linear combinations of the latter. The model also depends on ad
hoc parameters, originally computed as part of empirical relations from different studies (Morel, 1974; Aas, 1987; Dutkiewicz
etal., 2015; Mason et al., 2016; Alvarez et al., 2023). We also optimized these parameters such that the retrieved quantities are
accurate with respect to historical in-situ observations.

We compared two different frameworks. The first one is a Bayesian estimation, where we used a linearization of the for-
ward process for estimating the uncertainties of the optical constituents, and Markov Chain Monte Carlo (MCMC) (Chib and
Greenberg, 1995; Andrieu and Thoms, 2008) for the uncertainty of the parameters. This approach is described in section 4.

The second approach is based on Variational Bayes, by using the Stochastic Gradient Variational Bayes (SGVB) estimator,
introduced by Kingma and Welling (2013), and described in section 4.4. It allows for the estimation of parameters while

also learning an estimate of the posterior distribution of the optical constituents. The idea is to approximate the probability
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distribution of the optical constituents given the satellite-derived Remote Sensing Reflectance using a neural network. This is
the same framework used to train generative models known as Variational Auto Encoders (VAE), which have also been used
to solve inversion problems (Zhong et al., 2019, 2021; Zhao et al., 2023; Shmakov et al., 2024). Originally proposed to solve
inversion problems for cases when the posterior distribution is intractable (practically impossible to compute), this framework
provides a fast way of estimating optical constituents, which are consistent with the forward model and the in-situ observations.

We employed three data sources covering a period from 2005 to 2012: A dataset of historical satellite-derived Remote
Sensing Reflectance, a dataset from the Ocean—Atmosphere Spectral Irradiance Model (OASIM, used as boundary conditions
for the bio-optical model (Gregg and Casey, 2009)), and a set of in-situ measurements from the BOUSSOLE buoy, located in
the Ligurian basin of the northwestern Mediterranean Sea (coordinates 7.54°E, 43.22°N) (Antoine et al., 2008). The description

of the different datasets is presented in section 3.

2 BIO-OPTICAL MODEL

We now describe the Bio-optical model (Aas, 1987; Ackleson et al., 1994; Dutkiewicz et al., 2015; Alvarez et al., 2023), which
details the interaction of the radiance with different constituents in the sea, called optical constituents. In section 2.1 we present
the model of the water-leaving radiance, based on the classical Radiative Transfer Model (Dutkiewicz et al., 2015). In section
2.2, we use this model to compute the theoretical Remote Sensing Reflectance (RMOPEL) (Aas and Hgjerslev, 1999). The
inversion problem aims to use this model, named the forward model, and satellite measurements to retrieve optical constituents

that are consistent with future observations. For this end, we used historical in-situ observations described in section 2.3.
2.1 Radiative Transfer Model

To simulate the water-leaving radiance, we followed Dutkiewicz et al. (2015), using a one-dimensional, three-stream radiance
model, where the vertical component of the radiance over the water column is decomposed into three interacting components

(see Fig. 1) following the system of equations,

dEgic(h,\) a(X) +b(N)

dh T cost Ear(h: A),
dEdif(h, )\) - a()\) + T’Sbb(A) ) T’ubb()\) b()\) — Tdbb(A) )
dh a Vg Ear(h )+ Uy Eu(h )+ cosf Bar(h, A),
dEu(h7 /\) . stb()\) a()\) + ’I“ubb(/\) Tdbb(/\)
dh g Ear(h,A) + Uy EuhiA) = cosf) Eae(h, A). M

These three equations describe how the vertical direct irradiance Eg;(h,\) is attenuated by absorption, with a()) the total
absorption coefficient, and scattered into downward Egir(h, A), and upward irradiance E, (h, A), b(\) the total scattering coeffi-
cient, by () the total backward scattering coefficient, r4, 75 and r,, the effective scattering coefficients normalized with respect
to the backward scattering coefficients, cos (), vs and v,, the average cosines of the irradiance components, 6 the Sun zenith

angle, h the depth, and A the wavelength.
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Figure 1. Diagram illustrating the main components of Eq. 1, showing: (A) the incoming irradiance (modeled using the OASIM model; see
Sec. 3), and how it interacts with chlorophyll, non-algal particles, and colored dissolved organic matter (CDOM), leading to the attenuation

and scattering of: (B) the diffuse, (C) direct, and (D) upward component into upward and downward fluxes.

Following Dutkiewicz et al. (2015), the values for r4, 75, 7y, vs and v, are approximated as constants (see Tab. 2). See
Dutkiewicz et al. (2015), appendix B, for a derivation starting from the classical radiative transfer equation. For previous
studies where similar transfer models have been used, see Aas (1987); Ackleson et al. (1994); Salama and Verhoef (2015);
Alvarez et al. (2023) and Lazzari et al. (2024).

The total absorption and scattering coefficients are modeled as,
a()\) = aw()\) + aphy()\)chla =+ aCDOM()\)CDOM + G,NAP(A)NAP,
b(A) = bw(A) + bphy (A)C + bnap(A)NAP,
by(A) = by, (A) + by, phy (A)C' + by nap(A)NAP, ()

with chla, NAP and CDOM the concentration of the optical constituents Chlorophyll-cr, Non Algal Particles and Chro-
mophoric Dissolved Organic Matter respectively; ay () is the water-specific absorption coefficient, by (A) and by, () the
water-specific scattering and backward scattering coefficients, apny (A) the chlorophyll-specific absorption coefficient of phyto-
plankton, byny () and by, pny () the carbon-specific scattering coefficients of phytoplankton (see Tab. 1), C' the carbon concen-
tration, which is derived as a function of chlorophyll and irradiance (Geider et al., 1997), with the chla:C ratio represented as

a sigmoid curve dependent on Photosynthetic Available Radiation (PAR), as

. e (AR-B)/o
C=chla/ | © 3)

chlaf—‘r 2;1]121 ’
1+ e (PAR—B)/0



Table 1. Parameters dependent of \ used for the Radiative Transfer Model evaluation, with the water-specific absorption coefficient a ()
from Mason et al. (2016), the water-specific scattering and backward scattering coefficients by (\), bp,w(A) with values interpolated from
Morel (1974), the phytoplankton-specific absorption coefficient aphy(A) interpolated from the average values of different phytoplacton
functional types from (Alvarez et al., 2023), and the carbon-specific scattering and backward scattering coefficients bpny (X) by pry(A) from

(Dutkiewicz et al., 2015).

Amm]  aw(A) M by () M bpw(A) M1 ] aphy(A) [m?(mgChla) ] bpny(A) [m?(mgC) ™1 by phy(A) [m?(mgC) 1]

412.5 0.00271 0.00535 0.002674 0.03713 0.00318 3.25E-06
442.5 0.00574 0.00437 0.002184 0.04019 0.00311 3.30E-06
490.0 0.01460 0.00284 0.001421 0.02741 0.00335 3.41E-06
510.0 0.03300 0.00247 0.001234 0.01981 0.00347 3.42E-06
555.0 0.06098 0.00167 0.000836 0.00917 0.00353 3.39E-06

with ©% ., B, o, OB constant parameters (see Tab. 2), acpom(A), anap(A) and byap()\) the mass-specific absorption and

100 scattering coefficients for CDOM and NAP respectively (Alvarez et al., 2023), with the latter calculated as,

— Scpom(A—450
acpom(\) = depome ™ Seromt ),

anap(\) = dyapeSNr(A410)

550> fNAP

bNAP(A) = ENAP ( b\

4)
with Scpom, dcpoms SNAPs ANAP, ENAP» fNAP constant parameters (see Tab. 2), and bb,NAP = bT,NAPbNAPs with brA,NAP the
backscattering-to-scattering ratio of NAP.

PAR was computed following Lazzari et al. (2020), as,

106 700nm
105 PAR = / (Eqit(0,A) + Egir (0, X)) AdA (5)
NAhC
400nm

with V4 the Avogadro’s number, c the speed of light and h the plancks constant.

For the rest of this work, we assumed only one homogeneous layer with constant densities. For deep case 1 waters, like the
one studied in the present work, during winter, the chlorophyll concentration in the first layer is approximately constant due
to mixing (see Mignot et al. (2011), Fig. 1), while most of the downward irradiance comes from the first 10 to 20 meters (see

110 Simpson and Dickey (1981), Fig. 1 and Fig. 2). During summer, there is no mixing, but still there is a region of around 20 to

50 meters with constant chlorophyll concentrations, making the assumption justified.
2.2 Remote Sensing Reflectance

We used the system of equations in Eq. (1), subject to the boundary conditions

Egir(0,) = EgPS™(0,X), Eqie(0, ) = Ege>™(0,X), Eu(c0,A) =0, (6)



Table 2. Parameters independent of A used for the Radiative Transfer Model evaluation, 74, 7's, 7w, Vs, Yu, Scpom, dcpom from Dutkiewicz
et al. (2015) who took them from Aas (1987), ©%., ©% & 8 computed as an empirical model from data in the BOUSSOLE Site (Lazzari

et al., 2024), Snap, dnap, enap, fnap and by nap from Alvarez et al. (2023), Q. and Qp from Aas and Hgjerslev (1999), and, T and ~y from
Lee et al. (2002).

Parameter name Symbol  Value from literature Units
Normalized effective scattering coefficient for direct irradiation rq 1.0 -
Normalized effective scattering coefficient for downward radiation, Ts 1.5 -
Normalized effective scattering coefficient for backward radiation, T 3.0 -
Average cosine for downward scattered radiation Vs 0.83 -
Average cosine for upward scattered radiation Vuy 0.4 -
- % 0.03 mgChla(mgC)™*
- min 0.005 mgChla(mgC)~*
- o 20 (mmol)m~2?s™*
- Jé; 500 (mmol)m~?s™!
CDOM mass-specific absorption at 450 nm dcpom 0.015 m?(mgCDOM) !
CDOM mass-specific absorption spectral slope between 350 and 500 nm  Scpowm 0.017 nm
NAP mass-specific absorption at 440 nm dnap 0.0013 mQ(mgNAP) -1
NAP mass-specific absorption spectral slope between 350 and 500 nm SNAP 0.013 nm
NAP mass-specific scattering at 550 nm ENAP 0.02875 mz(mgNAPf1
- fnap 0.5 -
Backscattering-to-scattering ratio of NAP br NAP 0.005 -
- Qa 5.33 -
- Qv 0.45 -
- T 0.52 -
. ~y 1.7 -

115 with EQASM(0, \), EQ8S™(0, ), the direct and diffuse downward irradiance on the surface of the ocean. For this work, we
used the values from the OASIM model (Gregg and Casey, 2009). By assuming an infinitely deep and homogeneous column

of water (Ronald and Zaneveld, 1982), the system of equations can be solved analytically, with the final expression presented

in Appendix A.
The Remote Sensing Reflectance RMOPEL()) can be computed from the solution E,(0,\) (Aas and Hgjerslev, 1999) as
E..2(0)
120 RMODPEL()) = o (7)
" » Q(0) (Eair,x(0) + Eqir A (0))
with
Q(e) — Qaebesin(Tr/lfi()(QOf@))’ (8)

Q. and Q) constant parameters (see Tab. 2).
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Due to the interaction in the interface between the sea surface and the atmosphere, a correction has to be added to the RMOPEL

(Lee et al., 2002), with the relation,

Rreup(N)

Rrs own A= s
Aown ) = R ()

€))

where T and -y are constant parameters (see Tab. 2), R,s down () is the Remote Sensing Reflectance just under the sea surface,
and R, ,p(A) is the Remote Sensing Reflectance just up the sea surface.
Thus, the final expression for RMOPEL is a model that depends on the optical constituents and the boundary conditions.
Since the Satellite Remote Sensing Reflectance measures are a merged product of many satellite samples (see Sec 3) during
the day, the direct and diffuse downward irradiance on the surface of the ocean were computed as daily averages, only during

hours with sun. For this reason, the densities involved in the computation of Eq. 7 are also daily averages.
2.3 Model of the in-situ observations

We aim to model the chlorophyll-« as the retrieved quantity from the inversion problem. The particulate backward scattering

coefficient (by, () is modeled as the contribution to backward scattering from the phytoplankton and NAP,
B (X) = i phy (A C + by xap () NAP (10)
where the carbon C is calculated as Eq. (3). The downward light attenuation coefficient (k) is computed by the relation,

Egie(h, X) + Bair(h, A) = (Ege>™(0,A) + Eg ™ (0,A))e = ", (11)

3 DATA ACQUISITION
3.1 Ocean—-Atmosphere Spectral Irradiance Model (OASIM)

The OASIM model (Gregg and Casey, 2009) uses as input the claud, aerosol, and atmospheric conditions to simulate the
propagation of light in the atmosphere, and return the irradiance at the surface of the ocean. We used the validated outputs for the
BUOSSOLE site (Antoine et al., 2008) computed in Lazzari et al. (2020) as the boundary conditions in Eq. 6. The outputs are
the surface downward direct irradiance Fyg; and the surface downward scattered irradiance Fg;¢, from which the Photosynthetic
Available Radiation PAR can be computed (Lazzari et al., 2020). The output from the model is in 33 wavelengths from 200
nm to 4 pm. As described in Lazzari et al. (2020), these values are further interpolated at wavelengths 412.5 nm, 442.5 nm,

490 nm, 510 nm and 555 nm.
3.2 Satellite-derived Remote Sensing Reflectance

We used a Level 3 product provided by the E.U. Copernicus Marine Service Information (CMEMS). This is a merge of Level
2 Remote Sensing Reflectance from different satellite sources, as explained in Colella et al. (2023). This product provides pre-

processed Remote Sensing Reflectance with daily resolution, spacial resolution of one kilometer, at six different wavelengths:
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412 nm, 443 nm, 490 nm, 510 nm, 555 nm and 670 nm. Due to the fact that for oligotrophic and mesotrophic water, the
absorption of water for wavelengths higher than 555 nm is dominant over the other constituents (Lee et al., 2002), we focus
our attention on the data with wavelengths less than or equal to 555 nm. The values at the wavelengths 412 nm and 443 nm
were assumed to be the same as the values with wavelengths at 412.5 nm and 442.5 nm in order to match the values computed

with the OASIM model.
3.3 In-situ observations

We used three in-situ observations: chlorophyll-«, particulate backward scattering coefficient, and downward light attenuation
coefficient, with data from the BOUSSOLE buoy (Antoine et al., 2008) retrieved as explained in Lazzari et al. (2024).

The three sets of measurements had 15 15-minute resolution. We used only measurements between 10:00 and 14:00 GMT as
representative. First, we removed the data coming from the buoy if it reported an absolute tilt higher or lower than 10 degrees.
We also removed the ones reported at a depth more than 2 m below the nominal values (4 m and 9 m, depending on the
instrument of measurement). Next, the downward light attenuation coefficient data were filtered with a Butterworth high-pass
filter, using the package SciPy (Virtanen et al., 2020) from the programming language Python (Van Rossum and Drake, 2009),
filtering the noise with a frequency less than 4 hours. Finally, we proceeded to average the daily values.

Due to low vertical variability, the measurements of chlorophyll-o and particulate backward scattering coefficient were
considered as the values just below the water-air interface, even if the instruments were at 9 m deep. The former one had
measurements at wavelengths equal to 442 nm, 488 nm, 550 nm, and 620 nm.

On the contrary, due to the high vertical variability of the downward light attenuation coefficient, the measurements were
considered to be at a depth of 9 m, with values at the wavelengths 412 nm, 442 nm, 490 nm, 510 nm, 555 nm, 560 nm, 665
nm, 670 nm, 681 nm.

For the same reasoning described in section 3.2, we only used the values less than or equal to 555 nm. The values at the
wavelengths 412 nm, 442 nm, 488 nm and 550 nm were assumed to be the same as the values with wavelengths at 412.5 nm,
442.5 nm, 490 nm and 555 nm in order to match the values computed with the OASIM model.

In other words, taking into account the previously said assumptions and data availability, the in-situ observations considered
are sea surface chlorophyll, 9 meters deep downward light attenuation coefficient in 5 wavelengths, (412.5,442.5,490,510,555)

nm, and sea surface particulate backward scattering coefficient at 3 wavelengths (442,490,510)nm.

4 BAYESIAN INVERSE PROBLEM

The model for the Remote Sensing Reflectance (RMOPEL) depends on the concentration of the optical constituents chla, NAP
and CDOM. The inverse problem consists of retrieving these constituents from the forward model and the satellite observations
(R9BS). In Sec. 4.1 we formalize the problem and introduce the nomenclature that is going to be used in the next sections, then
in Sec. 4.2 and 4.3 we introduce the Bayesian approach to solve the problem (Rodgers, 2000), as well as the approach used to

optimize the model.
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4.1 Formal statement of the problem

We proceed to call y € Y the set of wavelength-dependent satellite measurements, modeled with a forward model plus noise,
y(N) = REOPEE(2,2(0), M A) +e(N), (12)
where

z(X) = (Bgr>™(0, ), Egr>™(0,1), 0, PAR)

are available simulated quantities, x € X, gathered from the OASIM model,

A :(TS, TusTdy Vs, Vu,s aW()\)7aphy(>\)7bW(A)7 bphy()‘)7 bb,W()\)7bb,phy()\)v

dcpom, Scoom; ANAP, SNAP; ENAP, SNAP; brNAP, Ohia; Ot 3,0, Qa, Qu, T,7),
is the set of parameters listed together with their literature values in Tab. 1 and Tab. 2, and
z = (chla, NAP,CDOM) (13)

is the set of unknown or latent quantities z € Z, which are the optical constituents.

By performing the inversion, we compute an estimate of the unknown daily quantity z¢, which only depends on the mea-
surements and OASIM data from the same day. Each day, minimization is independent of the others, like screenshots of the
state of the ocean, from which we aim to estimate the average concentrations of the active optical constituents.

Since we have measurements for a discrete set of wavelengths (at a depth & = 0 m, except ky, at a depth h = 9 m), the input
of the forward model is discretized as a five-dimensional vector, with each component representing values at different wave-
lengths. To distinguish between continuous functions and their respective discretization, X is used as a subscript, e.g. Eg;, » r€p-
resents a component of the five dimensional vector E ;,-, with magnitudes Eg;,-(0,)), were A = (412.5,442.5,490,510, 555)
nm. In similar fashion, z ) = (Eqit, x, Euir,x, 0, PAR) is a component of the 4 x 5 tensor . Using this notation, the measurements
and OASIM-data of the day d are written as (y<,z%).

The noise € is added to the model to account for the different sources of uncertainty. In this work, we assumed that € is a
random Gaussian variable with mean zero, and covariance ..

As a consequence, the model of the measurement is a random variable with a Gaussian probability distribution
prA(y|va) :N(R%ODEL(Zam;A)vze)' (14)
4.2 Bayesian approach to retrieve the latent variable

Under the Bayesian framework (Rodgers, 2000), the probability of the unknown quantity z, p(z|y,x), given the true probability

distribution of the measurement p(y|z,x), can be retrieved using the Bayes theorem,

_ plylz2)p(z|z)

y L) = 15
PED) = =
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Table 3. Root Mean Square Difference (RMSD) between in-situ measurements and the satellite measurements of R, in the Mediterranean

Sea, obtained from a validation of the Copernicus Dataset (Colella et al., 2023).

Rys»  RMSD(R,s,»)
Rysaizs  1.5x1073 sr
Rys 4425 1.2x10 3sr

Rys,490 1x1073 sr
Ryss510  8.6x107%sr
Ryssss  5.7x107%sr

The probability distribution p(z|y,x) is called the posterior probability distribution, or just the posterior, p(y|z,x) the likeli-
hood, and p(z|x) the prior probability distribution, or just the prior.

Since we are dealing with random variables, computing the posterior is equivalent to retrieving z. In the case when this
computation is not possible, common approaches attempt to estimate the value of z that maximizes the posterior, named
Maximum A Posteriori (MAP) estimate.

In the case of little knowledge of the value of z, it is common practice to use an improper prior, p(z|x), as an uninformative
prior, where each value of z is equally probable. With this choice of prior, the MAP is equivalent to finding the Maximum
Likelihood Estimate (MLE).

In this work, we used a log-normal distribution prior (Campbell, 1995) for the latent variable z, with parameters i, . This
is equivalent to making the change of variable Z = log(z) with a Gaussian prior with mean p, and covariance ¥,. With this

prior, and the Gaussian likelihood which can be derived from the forward model RM©PEL ' we can define the loss function

£y a2 2 A) = —2log(pa (24[y?, x?))

sd y =d ~ 1
_ (yd_R%ODEL(ez ,:Ed;A))Tzﬁ_l(yd—R%ODEL(ez ,CBd;A))-F(Zd—/Lz)TEZ I(Zd—uz)-i-Co (16)

with ¢ a constant. It can be shown that minimizing the loss function in Eq. (16), is the same as maximizing the posterior
(Rodgers, 2000). In other words, We are interested in finding the %4 that minimizes this loss function, as an estimate of the true
value for the optical constituents (under the log-normal assumptions).

As an estimate of ., we used a diagonal matrix, with elements equal to the square of the Root Mean Square Difference
(RMSD) between in-situ measurements and the satellite measurements of R, in the Mediterranean Sea, shown in Tab. 3,
obtained from a validation of the Copernicus Dataset (Colella et al., 2023). This choice for Y. is equivalent to assuming
independence between measurements yf\i with different wavelengths.

For the prior parameters, we used jt, = 0 and 2, = 1, with 1 a diagonal matrix of dimension 3 X 3, and o a hyperparameter
to be determined. This choice of 3, is equivalent to a {5 regularization. In Appendix B we explain the criteria used to tune a.

To retrieve Z* = {39 }2_,, the MAP estimate of the latent variable Z for each day d, we want to minimize £* with respect

of 24 for every day d. We can perform this retrieval for all the historical data by minimizing the loss function, i.e., we aim to

10



235

240

245

250

255

find:

7k io P2
Z* =argmin; L
D

=argming Y L7 (y%,x?, 2% A). a7
d=0

4.2.1 Estimation of the latent variable posterior

We performed the minimization of £? using the Adam algorithm, with a learning rate v = 0.03, and 5, = 0.9, 2 = 0.999,
which are the default momentum parameters from the library PyTorch (Paszke et al., 2019) version 2.4.1. We used 90% of all
the historical data per iteration, selected randomly across the entire period. The remaining 10% was used as the test set. A copy
of the code availability for every algorithm described in this work is in Soto (2025).

After Z *, the set of latent variables for the entire training set, has been retrieved, in order to estimate the uncertainty, we

. . zd ~
linearized RMODPEL (" x: A) around 2%, as

~d
R%ODEL(EZ ,SC,A)
=Y R%ODEL(eEd*,zc;A) + V2dR%ODEL(e£d,$;A)|(2d:§d*)(2d — 74

— RMODEL(" o py | R(50 — 5%, (18)

Where K is the Jacobian of R%OD EL (ef’d* ,x; \) with respect of 34, Then, as shown in (Rodgers, 2000), the covariance

matrix of the approximate posterior can be written as
Yoo = (KTSTK +371) 7L (19)

In this way, the standard deviation is computed as the root square of the diagonal elements oz of X za-.

Then, since the resulting retrieved values Z* are normally distributed, Z* = exp(Z *) has a log-normal distribution and
thus, the uncertainty can be computed with the 68% confidence interval (here we match the convention of using the standard
deviation as uncertainty for variables with normal distribution).

The uncertainty for derived variables like £d and by, is computed with standard error propagation (Arras, 1998), i.e.
AF(z)? =V, F(x)2*V,F(x)T, where AF(z) is the error of a function F(z), V,F(x) is the Jacobian, and ¥? is the
covariance matrix of x, in our case, ¥>* = Xz4.. These equations assume that each component of x is not correlated with the
others, and is only an approximation for nonlinear functions.

The previous procedure is equivalent to estimating the latent variable posterior with a log-normal distribution. A comparison
of the true posterior and the estimated posterior can be appreciated in Figure 7, where the true posterior was computed by
sampling using the Metropolis-Hasting Algorithm (see Algorithm 2). The discrepancy between the mean and standard deviation

is due to the linearization step in Eq. 18. Algorithm 1 summarizes the steps used for the posterior estimate.
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Algorithm 1 Algorithm for estimating the daily posterior estimate of the unknown latent variable z¢, and the derived quantities
kd? and bbpd:

Input: ¢, y.

1. Find 2% = argmin,, £L>%(y%, 2%, 2%; A) using a minimization algorithm (For example, Adam).

2. Compute K, the Jacobian of RﬁgODEL(eEd* ,x; A) with respect of 2.

3. Compute the covariance matrix of the approximate posterior as ¥;a. = (K7L K 4+ 27171

4. The MAP estimate of the latent variable is equal to z%* = eid*. The uncertainty can be found by computing the 68% confidence interval
of the log normal distribution. For this work, only the diagonal elements of > ;4. were used, assuming independence between the latent
variables.

5. Use Eq. 10 and Eq. 11 to compute bgp and kd respectively, and use standard error propagation for their uncertainties.

4.3 Model optimisation scheme

We retrieved the latent variable posterior in order to accurately estimate the daily average of chlorophyll, Non-Algal particles,
and Colored Dissolved Organic Matter concentrations. To asses the accuracy of the inversion, we used the in-situ observations
HOPBS = {(kd®°" by, chla®)} 2 where D is the number of days with observations available, kd®°™ is a vector of

d.0bs i5 a vector of dimen-

dimension five containing daily in-situ observations of the downward light attenuation coefficient, by,
sion three with observations of particulate backward scattering coefficient, only for the wavelengths A\ = (442.5,490,555)nm,
and chla®° is a scalar observation of sea surface chlorophyll concentration.

By comparing the modeled observation operator HMOPEL = (kd(2%; 2, A), by (242, A),chla) with the daily observa-
tions, we aimed to optimize the forward model RMOPFEL(z g A) by adjusting the parameters A. We looked for A* such
that ZdD:1 || IMOPEL (zd*. xd A*) — HOBS|| is minimized, for some suitable choice of distance. Since not every day has ob-
servations available, and also occur that the observations corresponding to some of the wavelengths are missing, we worked
with daily vectors with dimension equal to the total number observations available, e.g. days with all observations available
correspond with vectors of dimension nine (five for kd?, three for by, and one for chla), while days with less observations
correspond to lower dimensional vectors.

Since we also want to estimate the uncertainty of the retrieved parameters, we used the standard deviation over all the training
data as a measure of the spread of each observation, and defined the loss function,
D (HMODEL,d(Z*;X’A) . HOBS,d)2

H _
=3 p
=0 OBS

(20)

where oops is the standard deviation of the observations computed only with the train data. We want to minimize this loss
function and get an estimate for the uncertainty of the retrieved parameters. For this aim, we proceed to use a Markov Chain

Monte Carlo algorithm, described in the next section.
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4.3.1 Markov Chain Monte Carlo algorithm for optimizing the model parameters

In order to estimate the posterior distribution of the parameters, p(A|H9BS, Z ,X ), we used the Metropolis-Hasting Algorithm
(Chib and Greenberg, 1995; Andrieu and Thoms, 2008).

The algorithm returns samples from a probability density function 7(z) by defining a Markov process with transition prob-
ability p(x,y) of moving from state x to state y. It can be shown that by a suitable definition of this transition probability, the
Markov Chain process can converge asymptotically to the target distribution 7 (). The Metropolis-Hasting Algorithm uses the

transition probability

m(y)q(y,x) 1} 1)

ple) =alep)a(es). aley)=min| TUIAT,

where ¢(x,y) is the proposal transition probability, and «(z, y) is the acceptance probability. With this definition, samples from

7(x) can be drawn by following Algorithm 2.

Algorithm 2 Metropolis-Hasting Algorithm (Chib and Greenberg, 1995; Andrieu and Thoms, 2008). It consists in defining a
Markov process. It is useful to sample from a target distribution 7 () without knowing the normalization constant.

Define: Proposal transition probability ¢(z,y).

Input: Length Lcpain.

Initialize: z.

1. x = array of length Lchain.
2. X[0] = zo.
3. Fori=Otoi=L,, —1do

1. Sample a proposed new point y ~ g(x[i], y).
2. Compute a(x[i],y) as stated in Eq. 21.

3. Sample a random number from a uniform distribution between 0 and 1. If the output is smaller than a(x[i],y) x[i+1] = y else x[i+1]

=x[i].

4. Discard the first samples (reaching the asymptotical behaviour) and the correlated ones.

Some drawbacks are known, for example, the iterations have to be performed multiple times before the algorithm converges
to its asymptotical behaviour, or that successive iterations tend to be strongly correlated, so many iterations have to be per-
formed in order to obtain uncorrelated samples. These difficulties increase as the dimensionality of the sampling space gets
higher. In our case, to mitigate some of these effects, we didn’t perturb all the parameters, leaving those that are more precisely
measured in the literature unperturbed, like the water-specific absorption and scattering coefficients.

A further complication is that the probability density that we want to sample depends on Z*, the latent variable. This means
that, each time we want to do an iteration of the Metropolis-Hasting Algorithm, we would need to find the MAP estimate of
Z, increasing the computational time. To mitigate this problem, we use an estimate Z, consisting of a few iterations towards

the MAP estimate.
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Our model for the negative log-likelihood is the loss function £ described in 4.3, which give us the expression for the
Likelihood

p(HOBS|A, 7, X) ox e~ 2L HOPZ2.X.0) 22)

The density function, 7(z), that we want to sample from is the posterior probability for the parameters. By using a uniform
prior, and ¢(A;,A;) = N(A;, aq1), where o is a hyperparameter equal to the standard deviation of the distance between steps.

We compute the acceptance probability as
a(Ai,A;) = min [e*%(ﬁ”<HOBS’Z‘!X’AJ‘>*‘1H<HOBS’ZVX’A1'>)71] . (23)

Regarding the perturbed parameters, we consider the literature values A° as close estimates of the optimal ones. For this
reason, we perturbed them as A* = 0% AY, where d, is a vector of small perturbations from unity, referred to as perturbation
factors.

The values of the A dependent vector of dimension five representing the phytoplacton-specific absorption coefficients @ppy

*

phy
the shape of the function ayny () unperturbed.

were perturbed as: a’,, = d, by aghy with J,, . alearnable scalar, and aghy the literature values. We chose it like this to maintain

Gphy

For the carbon-specific scattering and backscattering coefficients byny(A) and by, pny (), we first linearly interpolated them
with the literature values, and perturbed the tangent and the intercept of the linear interpolations, bypy (A)* = b, . bghy,im +
Obgnyr bghy’T A

The parameters dcpowm, br NAP, ScDOMs @L‘Eﬁ, @Bhla, B, o, Q, and @, perturbations consisted in per parameter scalar multi-
plications. All the other parameters were left unperturbed.

In this way, we perturbed 24 parameters, 9 of them by multiplying them for a scalar §;, ¢ equal to each of the perturbed
parameters, the five components of ay by multiplying them by the same scalar d,,, , and finally, byny(A) and by pny (A) by
linearly interpolating them, and perturbing the tangent and the intercept of each of them, making a total of 14 perturbation
factors.

In this manner, the perturbations §, were initialized with ones, then using alternate minimization (AM), alternating between
finding the MAP estimate of Z* and the MLE of the parameters. Finally, we used the Metropolis-Hasting Algorithm to estimate

the posterior, as described in Algorithm 3.
4.4 Data Informed Inversion Method (DIIM): A Variational Bayes approach

As the dimension of the posterior increases, MCMC methods become increasingly more challenging, and even point-wise
estimates, like the one obtained with Alternate Minimization, could not converge, due to the nonconvexity of our models.
As an alternative approach, we present a framework based on the Stochastic Gradient Variational Bayes (SGVB) estimator
(Kingma and Welling, 2013).

The SGVB based framework considers a random latent variable z € Z sampled from an unknown distribution pa~«(z), and
a random variable y € ) sampled from a distribution py+(y|z) conditional on the latent variable z. For example, y could be

measurements from a known physical process, conditional on unknown physical hidden processes.
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Algorithm 3 Metropolis-Hasting Algorithm with alternate minimization. Here we expand the Metropolis-Hasting Algorithm
in combination with the alternate minimization to sample from the posterior probability of the parameter space

Define: Transition probability ¢(A;,A;) = N (A;, o 1).

Input: Lcp,in (Length of MCMC chains), Nyeps (Number of AM steps), IV, _geps (Steps towards the min of 2*).

Initialize: A as the literature values.

1. Alternate minimization to estimate the MLE of the parameters.
1. For i=0 to i=Ngeps do
— Find an estimate of all the latent variables Z* ~ argmin; L£* (y,x, Z; Ao) by performing NN, _geps iterations towards the mini-
mum of the loss function.

— Perform one step towards the minimization of £ (y,z, Z* ;Ao), and set Ag to the new value.

2. Define an empty array A of length Lcnyin-
3. A[0] = Ao.
4. Fori=0t0 i = Lchain — 1 do

1. Sample a proposed new point A; ~ N (A[i],aq1).

2. Find an estimate of all the latent variables Z* ~ argmin; £* (y,x, Z; A;) by performing a finite amount of iterations towards the

minimum of the loss function.
2. Compute (A, A;) as stated in Eq. 23 using the estimate Z* instead of the true minimum Z*.

3. Sample a random number from a uniform distribution between 0 and 1. If the output is smaller than ar(A;, A;), make Ali 4+ 1] = A;

else A[i 4 1] = Af4].

5. Discard the first samples (reaching the asymptotical behaviour) and the correlated ones.

The aim is to efficiently approximate the Maximum Marginal Likelihood estimate of the parameters A,

A" = argmax , (pa(y))- (24)

For this end, the posterior probability distribution py (z|y) is estimated as a parameterized function g4 (z|y). It can be shown

that finding A* and ¢* such that

A", ¢" = argmax, LrLBO,

Lprro = —DrL(4s(2Y)[IPA(2)) + Eq, (1) [log (pa(y]2))] (25)
where D, (+||-) is the Kullback-Leibler divergence (DKL divergence), an asymmetric, positively defined measure of the
proximity between two probability distributions (Shlens, 2014), pa(z) is the prior distribution of the latent variable z, and

[, (z1y)[] stands for the expected value over the probability distribution g, (z|y), is approximately equal to finding the Maxi-

mum Likelihood estimate.
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Figure 2. Diagram of the Variational Bayes framework, adapted for the inversion problem, where the estimated 7 is retrieved using a param-
eterized probabilistic function g4 (z|y, x), which for our case, is a feed forward neural network (diagram in Fig. 3) and who’s parameters ¢

are learned simultaneously as the parameters A, the parameters from the Forward model.

This is because Lg;po, where ELBO stands for “Evidence Lower Bound”, is a lower bound of the data log-likelihood
logpa (y) (see appendix C).
Kingma and Welling (2013) presented the SGVB estimator for the expected value (in the case where the D1 can not be

computed analytically, it can also be estimated) as,

L
Lprpo ~ —Dr1(qs(21y)|Ipa(z Z g (pa(ylz)), 2~ 4y (2ly, ). (26)

If the SGVB is used with a neural network as the approximate probability distributions g4 (z|y), then the neural network
architecture and minimization scheme is known as Variational Auto-Encoders (Kingma and Welling, 2013), where the model
g4 (=|y) is usually called the “Encoder”, and py (y|z) the “Decoder”.

Sohn et al. (2015) generalized this framework for what they called, Conditional Variational Auto-Encoders (CVAE), where
the likelihood and posterior probabilities are allowed to be conditional distributions on a third set of random variables x €
X,y ~pa(ylz,z), and z ~ g4(z|y,x). This is the final configuration we used, but instead of training a generative model as
CVAE are usually used to, we used it to solve the inversion problem while simultaneously finding approximate values for the

parameters A*, as explained in Sec. 4.4.1.
4.4.1 Variational Bayes approach to solve the Inversion Problem with the SGVB estimator

CVAEs are commonly used to train a generative model pa (y|z,x) from a probability distribution p(z|x) that is easy to sample,
in order to generate samples that well approximate the target probability distribution (Doersch, 2021). They have been used to

solve inverse problems, like image recovery (Zhong et al., 2019, 2021; Zhao et al., 2023), unfolding in high energy physics
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(Shmakov et al., 2024), among other applications. In contrast to previous applications of VAEs and CVAEs to inverse methods,
in this work, instead of first training a CVAE with latent variables that lack a physical interpretation, we directly used the SGVB
estimator for the inverse method. Here, pa (y|z, ) is the likelihood described in Eq. (14), where A represents the parameters
of the forward function that we aim to optimize, and the latent variable z is the vector that we want to retrieve.

To do so, we used a neural network ¢, (z|y, ) (diagram shown in Fig. 3) as an approximation of the posterior p(z|y, ).

Our model for the Likelihood was,

th

L
1 ~d _ , 5d
pA y‘zl 772 RQZODEL(BZ ,.’Bd;A))TEE 1(yd _ Rf}gODEL(G ,ZCd;A))
=0
+ (MU X5 A) - HOPSHTS R (e X A) — HOPS) @7

where ¥ ! was the equivalent to the covariance matrix introduce in Sec. 4.2, Zl_il was chosen in order to have the equivalent
to £ from Eq. (20) and L is the number of samples used per iteration to approximate the expected value. We performed
experiments with L =1, L = 10, and L = 100. The performance of using higher values for L was not significantly higher, for
which we decided to use L = 10.

We used a neural network composed of two parts, one having as output the mean f,,, and the other one the covariance
matrix Y, , of a Gaussian probability distribution. Since the prior for z is a multivariate Gaussian, the D, divergence in Eq.
261s,

2|
‘EQz‘

D1 (q(2|y)|lpa(2)) = FTe(S, 1 50) + (pg. — p=) " Sy (g, — p12) — dim, (28)

where |, | stands for the determinant of the scaled covariance matrix used for the prior introduced in 4.2, Tr(A) stands for the
trace of a matrix A, and dim, = 3, the dimension of z.

Finally, we added a {5 regularization for the parameters A, since it helped for the convergence of the Neural Network. With
all the components at hand, the inversion task plus the inference on the parameters is equivalent to approximate the posterior

with a parametrized function g4(z|x,y), and find the parameters {¢, A}* that minimize the loss function,

Lyn = Drr(qs(2|y)llpa(z ——Zlog pa(ylz1)) — aal[A =12 (29)

where ax (A —1)? is the regularization term, with s a hyperparameter tuned as explained in the next section, together with

all the other hyperparameters of the method.
4.5 Architecture and Training of the Neural Network

As illustrated in Fig. 3, the Neural Network (NN) is composed of three sections. The first part has two hidden layers, whose
function is to reduce the dimensionality of the input layer by projecting it into the space of the in-situ observations. To achieve
it, this part was trained separately from the rest of the NN with in situ observations corresponding to the training data. This

preprocessing was done to facilitate the convergence of the final output to physically plausible values. The second and third
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Figure 3. Diagram of the Neural Network (Soto, 2025) used as the parameterized probabilistic function ¢4 (z|x,¥y). It is composed of three
sections, the first two hidden layers reduce the dimensionality of the input layer by projecting it into the space of the in-situ observations. The
output of the second layer is the input of the layers that learn the mean value of the latent variable 1, and those that learn the components
of the square root of the covariance matrix >4, = L:{z L, . The dimension of the hidden layers and the number of hidden layers are tuned

using Ray Tune (Liaw et al., 2018).

parts are the predicted mean of the latent variable 114, and the square root of the covariance matrix ¥, = Lg; L, . In addition,
experiments showed that a residual layer at the end of the second part of the NN (adding the first component of the output of
the first part) improved the generalization error.

To decide the best hyperparameters of the neural network, we used the library Ray Tune (Liaw et al., 2018), a Python library
designed for parameter tuning, together with the Bayesian Optimization HyperBand algorithm (Falkner et al., 2018) to search
in the hyperparameter space. These include the number of hidden layers, the size of the hidden layers, the learning rate, the
different moments for the Adam Algorithm used to train the neural network, and the size of the mini-batches.

In the same manner as with the MCMC algorithm, we used the same 90% of the data for training, from which we select
randomly five percent of it as validation for each iteration of the hyperparameter search.

Also, we did an exploration within the activation functions, finding the CELU activation function as the one that returned the
best results. The CELU function is similar to the Rectified Linear Unit (ReLU) function, where instead of being the identity

for positive inputs and truncating to zero for negative inputs, it truncates to minus one for negative values and makes a smooth
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transition between the identity part and the truncation part (Barron, 2017),
CELU (x) = max(0,z) + min(0, cee® e —1). (30)

With «., a hyperparameter also tuned with Ray Tune.

A diagram of the neural network g4(z|y,x) is presented in Fig. 3, which is part of the framework described in Fig. 2.
To train the neural network, first the measurements and OASIM-data (X ,Y") are passed to it, returning an estimate for the
mean and the covariance matrix of the latent variable Z. From these estimates, a random sample is computed, 7= Wy + 2.6,
e. ~N(0,T), and subsequently used as an estimate in the forward model RMOPEL (¢ xd: \) and with the observation
function H(Z, X; A).

5 RESULTS

The results are divided into four parts: the first one focuses on the Bayesian retrieval of the optically active constituents on
the surface of the sea and the uncertainty estimation, the second on the parameter optimization, the third part talks about the
comparison between the Bayesian outputs and the Variational Bayes approach, and the last one talks about a comparison with

a state of the art algorithm for satellite sea surface chlorophyll a estimation.
5.1 Bayesian Inversion

We performed the Bayesian inversion from 2005 to 2013. As shown in Fig. 4, the retrieved sea surface chlorophyll manages to
reproduce the interannual variability, including the spring algal blooms. The reported uncertainty serves as an estimate of the
average expected discrepancy between retrieved data and in-situ measurements, not restricted to chlorophyll observations, but
also to the downward light attenuation coefficient and particulate backward scattering coefficient observations. We tested the
performance of the inversion with a random sample consisting of 10% of the days with observations. The Root Mean Square
Error between the observations and the inverted data was computed (see Tab. D1), as well as the Spearman rank correlation
coefficient p (Tab. D2), and the relative Median Absolute Deviation rMAD (Tab. D3).

Figure 7 shows a comparison between the true posterior distribution, sampled using the Metropolis-Hasting Algorithm, and
the estimated one using the linear approximation, for the inversion of the Remote Sensing Reflectance of February 18, 2005.
The true posterior means and standard deviations are closely approximated by the linearization, even if the Forward function
is highly nonlinear. This result is closely related to the choice of the prior al = 1.31 computed as explained in Sec. C, since it
is a strongly informative prior. We can study the effect of the prior by computing the inverse of the Fisher information matrix,

since the Cramér—Rao bound states that the variance of the MLE is always higher than or equal to this quantity:

- 1
Var[y)] > — 31
(¥)
where z/; is an unbias estimator of a random parameter v, and I(¢)) is the Fisher information matrix, defined as
d>L(X ;)
I(y)=-E| ——" 32
=8| 255 (2
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Figure 4. Time series for the chlorophyll-a (a), Non-Algal Particles (b), and Chromophoric Dissolved Organic Matter (c). For all the
timelines, the black points are the in-situ observations from the BOUSSOLE buoy, the blue points are the MAP output with uncertainty (blue
shadow), using the optimal parameters from the SGVB based framework algorithm, and the red points are the output of the SGVB based

framework.

where £(X ;) is the likelihood of a random variable X with parameters ) (Cramér, 1999). For our case, the Fisher information

matrix is equal to
IN =K'y 'K (33)

which is equal to the inverse of Eq. 19 without the effect of the prior. To quantify the effect of the prior, we divided the
average Frobenius norm of the inverse of the Fisher information matrix ||1/I(A)||22 and the retrieved covariance matrix
[|X54]|2,2, obtaining the value of 42.9, which means that the prior is reducing the uncertainty of the MLE by a factor of 42.
On the other hand, this highly informative prior is a reasonable prior, since it states that most of the chlorophyll concentration
should be within values lower than exp(j, +20z) = exp(2.6) = 13.46mgm 2 and higher than exp(j, —20;) = exp(—2.6) =
0.07mgm 3.
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Figure 5. Time series for downward light attenuation coefficient (kq(\)), wavelengths A = 412.5 (a), A = 442.5 (b), A =490 (c), A =510
(d) and A = 555 (e). For all the timelines, the black points are the in-situ observations from the BOUSSOLE buoy, the blue points are the
MAP output with uncertainty (blue shadow), using the optimal parameters from the SGVB based framework algorithm, and the red points

are the observation operator computed using the output of the SGVB based framework.

5.2 Optimization of the forward model parameters

As described in Sec. 4.3.1, we tuned twenty-four parameters, multiplying them by fourteen perturbation factors, to minimize
the distance between retrieved quantities and observation data. We are interested in the optimized parameter values, as well
as the uncertainties. If any of our final parameterizations are going to be used in future works, it is important to note that we
are finding optimal parameters that are representative of data from different seasons. For this reason, we present a sensitivity
analysis, where we can appreciate the annual variability of the sensitivity. Parameters with high variability may need special
considerations for models that use different parameterizations for different seasons.

Following Carmichael et al. (1997), the sensitivity of the Remote Sensing Reflectances, downward light attenuation coef-
ficient and backward scattering coefficient can be computed by calculating the partial derivative with respect of the different
parameters (ORgrg/06;, Okd/0d;, Oby ,/00d;), named the local sensitivity coefficients, and normalized with respect to the

sensitivity coefficient (Rrs/d;, kd/d;, by ,/9;) to obtained adimensional quantities. The results can be observed in Fig. 8.
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Figure 6. Time series for particulate backward scattering coefficient for the wavelengths A = 442.5 (a), A = 490 (b) and A\ = 555 (c). For all

the timelines, the black points are the in-situ observations from the BOUSSOLE buoy, the blue points are the MAP output with uncertainty

(blue shadow), using the optimal parameters from the SGVB based framework algorithm, and the red points are the observation operator

computed using the output of the SGVB based framework.

We noticed that Rrg and b, ;, share a strong variability in the sensitivity with respect to the backward scattering coefficient

0

chia» 350, which

of phytoplankton by, ,ny and backscattering-to-scattering ratio of NAP, b, nap, as well as the parameters @gl‘ff;, C)
form part of the chla:C ratio relation described in Eq. (3). This agrees with the seasonal variability in the abundance of the
different phytoplankton functional types (Lazzari et al., 2012), as well as the variability in concentrations of pollution (Bodin
et al., 2004). With this observation, we expect that using only one set of parameters for the full year would result in suboptimal
predictions. Nevertheless, we proceed to find the optimal parameters that describe the full historical data set.

To do so, we performed an MCMC algorithm as described in Sec. 4.3.1. An example of the distribution obtained for each
parameter can be observed in Fig. 9. The original values as well as the mean and standard deviation for the A-dependent
parameters can be appreciated in Fig. 10. Finally, the original values as well as the statistics obtained using the MCMC
algorithm for the A-independent parameters can be appreciated in Tab. 4.

For completeness, we also computed the covariance matrix between the perturbation factors d;, which can be appreciated in
Tab. 5.
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Figure 7. Comparison between the true posterior distribution (Eq. 16) and the approximate posterior by following the algorithm in Algorithm
1 for the log-posterior distribution of (a) chlorophyll-c, (b) Non Algal particles and (c) Colored Dissolved Organic Matter, for the first day
of the train data (February 18, 2005). The true posterior (in blue) was sampled using the Metropolis-Hasting Algorithm (see Algorithm 2),

while the normal approximation (dashed line) was derived by linearization of the forward model around the MAP estimate.

Table 4. Original values, final values obtained using the SGVB estimator, as well as the mean, standard deviation, and Kolmogorov-Smirnov

test coefficient for the sampling with the Metropolis-Hasting Algorithm for the A-independent parameters.

Original SGVB result ~ MCMC result KS test for KS p-value
value normality for normality
dcpoMm 0.0150 0.0156 0.0101 £ 0.0028 0.0536 7.259E-01
[m?(mgCDOM) ']
Scpowm [nm] 0.0170 0.0111 0.0099 +£ 0.0005 0.0553 6.907E-01
Qa 5.3300 4.4960 5.3861 £ 0.2899 0.0495 8.087E-01
Qb 0.4500 0.4283 0.4441 £ 0.0463 0.0742 3.250E-01
i [mgChla(mgC) '] 0.0050 0.0049 0.0048 £ 0.0006 0.0708 3.810E-01
0%, [mgChla(mgC) '] 0.0300 0.0251 0.0296 £ 0.0027 0.0637 5.135E-01
B [mmolm~2s71] 500.0000 589.2924 558.5273 £ 33.5500 0.1090 4.129E-02
o [mmolm™2s™'] 20.0000 20.3714 18.8886 £ 2.2417 0.0732 3.420E-01
by NAP 0.0050 0.0024 0.0041 +£ 0.0008 0.0545 7.077E-01
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Figure 9. Result of the Metropolis-Hasting Algorithm for the parameter @51 [mgChla(mgC)_l], using the transition probability shown
in Eq. (23), with initial conditions close to the value obtained after performing Alternate Minimization. (a) Evolution of the parameter after

each iteration of the algorithm, (b) final probability density estimated as a Gaussian distribution.

The main result of the new parametrization is a decrease in the Root Mean Square Error RMSE between the test data of sea

460 surface chlorophyll observations and inverted values. A key aspect to note is that the MLE computed using the train data can
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bphy (A) and (c) backward scattering coefficient of phytoplankton by phy (N).

Table 5. Correlation matrix between the perturbation factors d;, computed using the samples from the Metropolis-Hasting Algorithm.

5iyi =

min

9E:)hla ﬂ

apa  bpnhyr  bphynt  bbphy T bbphyine  dopom  ScpoMm  Qa Qb chla o
apPH 1.00
bowr 004 1.00
bowine 017 012 1.00
bopw.r 005 001 001  1.00
by phy, it~ 0.06 -0.08 -0.07 0.09 1.00
dcpoMm 0.47 -0.05 0.02 -0.04 0.03 1.00
Scoom  0.19 0.09 0.08 -0.04 -0.05 0.61 1.00
Qa -0.52 0.10 -0.04 -0.02 -0.03 -0.05 0.38 1.00
Qb 0.28 -0.10 -0.08 -0.01 0.08 0.06 -0.16 -0.28  1.00
mno002 <002 007 -011 013 011 004 001 019 1.00
0%. 007 025 008 010  -007 005 008 011 -000 -0.01 1.00
B8 -044  -0.23 -0.23 0.28 0.16 -0.30 -0.32 0.34  -0.18 0.02 0.12 1.00
o -0.02 0.07 0.23 -0.16 -0.05 0.02 0.20 0.19 -0.13 -0.19 -0.02 -0.07 1.00
br.NAP 0.24 -0.13 -0.00 -0.19 -0.04 0.42 0.41 -0.01  0.11 0.08 028 -044 0.15

present overfitting; for this reason, we had to use early stopping during the Alternate Minimization step, and then we proceeded
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to use the mean value of the estimated posterior estimated with the MCMC samples. Since for the test data, we observed a

decrease in the RMSE (see Tab. D1), we can say that the posterior mean is good for generalization.
5.3 Comparison between Bayesian retrievals and the Variational Bayes approach

As described in Sec. 4.4, we used the SGVB estimator to find an optimal parametrization. The results can be appreciated in
Tab. 4 and Fig. 10. Taking into account the uncertainty of the MCMC results, and using the 95% confidence interval, 22 of
the 24 parameters perturbed with the SGVB estimator agree with the MCMC estimation, in the sense that the SGVB output
is within the uncertainty of the MCMC estimate. The two parameters with high discrepancy between the two frameworks are:
Q.. in average, the most sensitive parameter concerning Remote Sensing Reflectance, and b, nap, one of the most sensitive
parameters concerning particulate backward scattering.

To assess the performance of each set of parameters, we evaluated the MAP estimates of the optical constituents z given each
set of parameters (MAP estimate obtained with the MCMC algorithm and the MLE obtained with the SGVB estimator) for the
test dataset. I recall that this data set was not used for any parameter tuning before, so these results serve as a confirmation of
the robustness of the methods.

The main indicator will be the sea surface chlorophyll observations, as it is the least noisy and scattered observation data.
Based on the Root Mean Square Error (RMSE) and relative Median Absolute Deviation (rMAD) between measurements and
retrieved estimates (Tab. D1 and Tab. D3), both parameter sets improved the inversion results. However, the parameter set
optimized using the SGVB estimator yielded the best performance.

The observations of the downward light attenuation coefficient and the particulate backward scattering coefficient are much
more scattered and noisy than the chlorophyll, yet the SGVB parameters optimized all the model output matching observations,
while the MCMC favors better outputs only for the k4 values. We speculate that this is due to overfitting, as the measurements of
particulate backward scattering are highly scattered, and as particulate backward scattering is sensitive to b, nap, the estimated
value from the MCMC could be affected by the noise. In the case of NN training, we used minibatch minimization, which may
have helped to find a parameter value that is better for generalization.

The SGVB estimator also provides an efficient way of computing estimates of the optical constituents z, which, by con-
struction, are also consistent with the forward model, with optimal RMSE between measurements and estimates. Since they
are computed with a neural network, the computational time outperforms the standard implicit inversion methods, required
in cases where the expression of the RTE is too complicated to invert it analytically. For comparison, the estimated optical
constituents Z using the SGVB estimator are shown in Fig. 4, Fig. 5 and Fig. 6, and the statistics for the observation operator
using these estimates are shown in Tab. D1, Tab. D3 and Tab. D2.

We observe that the standard Bayesian estimate and those using the SGVB estimator are close to each other (Fig. 4), since
the SGVB estimator outputs are within the uncertainty of the Bayesian estimate. Differences between both could be due to
model errors, since the SGVB estimator requires approximating the posterior with a parameterized probability distribution, in

our case, a Neural Network, or differences between the training algorithms. The Variational Bayes method also estimates the
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covariance matrix between the latent variables Z, nevertheless, since the uncertainty was underestimated, we only plotted the

mean values.
5.4 Comparison with satellite products

To asses the validity of the results with respect of state of the art algorithms, we compared the capability of the DIIM system
in a wider region in the North West Mediterranean Sea characterized by high dynamics regimes of vertical mixing during
the spring period and stratification during summer. The comparison is carried out using additional in-situ data (not used in the
calibration of DIIM) based on High-Performance Liquid Chromatography (HPLC, Di Biagio et al., 2025) and a standard Ocean
Color retrieval approach used with Copernicus Marine Service, the MedOC4.2020 (Colella et al., 2025). The latter approach is
based on a calibrated nonlinear regression of the maximum Rrs in the wavelengths at 443, 490, and 510 nm, normalized over
Rrs at 555 nm:

chlorophyll

XtasX24asX3+as X4 max(Rys 443, Rrs,490, Rrs 510)
satellile:10((10—‘“11 a2 tas taa ), X:].Ogl()

R, 555

ap = 0.327,a1 = —2.994,a = 2.722, a3 = —1.226, a4 = —0.568. (34)

To do so, we computed the surface downward direct and scattered irradiance as described in Lazzari et al. (2020) for the days
and places where in-situ measurements were taken (see Fig. 11, (A)). We chose a square of 4° x 4° close to the BOUSSOLE
buoy for the samples, and selected those with a bathymetry lower than 200 m, and samples performed at less than 10 meters
deep. For the Remote Sensing Reflectance (CMEMS), we used an average of 5 days, ~5 km window around the points. Finally,
we used the SGVB estimator to invert the Remote Sensing Reflectance and estimate the Chlorophyll concentration. The outputs
can be observed in Fig. 11.

Results are consistent between in-situ data and inversion models, suggesting that the present approach is applicable over

spatially heterogeneous conditions.

6 Discussion

In the last years, there has been an increasing number of applications of neural networks in earth sciences, like forecasts of the
El Nifio-Southern Oscillation (ENSO) by using historical simulations and a convolutional neural network (Ham et al., 2019),
fusion of satellite data (Chapman and Charantonis, 2017; Denvil-Sommer et al., 2019; Bocquet et al., 2020), classification of
regions on the ocean (Richardson et al., 2003; Saraceno et al., 2006), finding drivers of net primary productivity using self or-
ganizing maps (Lachkar and Gruber, 2012), reconstruction of oceanographic variables (Martinez et al., 2020; Pietropolli et al.,
2022), classification of the anomalies of water leaving radiance (Mustapha et al., 2014), data reconstruction (Manucharyan
et al., 2021; George et al., 2021), inversion of oceanographic variables (Brajard et al., 2006; Irrgang et al., 2019; Dessailly,
2012), pattern recognition (Maze et al., 2017; Jones et al., 2019; Jones and Ito, 2019; Boehme and Rosso, 2021; Desbruyeres
et al., 2021), forecast imposing physical constrains (De Bézenac et al., 2019; Erichson et al., 2019), increase of the resolution

of modeling (Barthélémy et al., 2022), among others.
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Figure 11. (A) Region in red and place with in-situ measurements (x) for the comparison between (B) the inverted values of chlorophyll a

using the SGVB estimator, and (C) a standard Ocean Color retrieval approach used with Copernicus Marine Service (Colella et al., 2025).

Our work makes use of a neural network to approximate the posterior probability distribution of optical constituents in the
sea by employing the SGVB estimator. As described in Sec. 4.4.1, we maximise the ELBO loss function, which simultaneously
optimizes the forward model by finding the MLE of the parameters, deriving in situ biogeochemical parameters for reflectance
observations, linking the neural network procedure to an interpretable model. As stated by Kingma and Welling (2013), this
approach is especially useful to do inference of intractable posteriors and to find the MLE of the forward model parameters,
a situation commonly encountered in data assimilation problems, where the number of parameters to optimize makes the
problem intractable. This work serves as a test bed, comparing the more traditional Bayesian Inference approach with the results
obtained with the SGVB estimator, as well as presenting a pointwise observation operator for the active optical constituents
chlorophyll, NAP and CDOM.

Our results with the SGVB estimator under-estimated the uncertainty of the optical constituents, computation that is of cru-
cial importance for multiple applications, like objective comparison of simulations against observations, efficient assimilation
of data with methods like the Kalman Filters, among others (Brankart et al., 2012). A further analysis of the effect that each
term of the loss function has on the NN covariance matrix would be needed, as well as whether the inclusion of a regularization
term is affecting the uncertainty estimation. For the moment, the requirement of reliable uncertainty estimations leads us to
use only the point-ways estimate of the neural network. Furthermore, we explored the Bayesian approach, approximating the
final posterior distribution of the optical constituents, py (z|y,x), with a Gaussian probability distribution. This method returns

estimates with reliable uncertainty estimations that can be used in real operational systems.
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In particular, in addition to the optical constituents, we aimed to find the optimal model with respect to all the in-situ
observations for the entire period. This ambitious goal made the final results suboptimal for some individual measurements.
For example, Salama and Verhoef (2015) used a similar forward model to estimate the downward light attenuation coefficient
at a wavelength of 490 nm, kd(490), at different depths, obtaining a rMAD of 11.84%, while our result using the MCMC
parameters presented a rMAD value of 21%. We noticed that by optimizing only one in-situ measurement, we could find
a set of parameters that made that measurement more precise. Nevertheless, we decided to use the parameters presented to
balance the global accuracy. For example, in terms of the tMAD of the Remote Sensing Reflectance at a wavelength of 490
nm, R,.5(490), we obtained a value of IMAD of 1.8%, outperforming previous works.

Our approach also differs from other works on Bayesian estimation of optical constituents (Gordon and Boynton, 1997;
Boynton and Gordon, 2000; Michalopoulou et al., 2009; Erickson et al., 2023), since we are employing a three steam model,
derived from the Radiative Transfer Model (Dutkiewicz et al., 2015), and using it to derived the in-situ observations for all
the wave-lengths available. This feature allows scientists to understand the automatic learning process in terms of meaningful
physical parameters.

The approach can be extended in different directions, in particular, the addition of more optical constituents, which will be
facilitated once the information of the new satellite missions PRISMA (Hyperspectral Precursor of the Application Mission),
with 12 nm spectra resolution ranging from 400 to 2500 nm, and PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) with a
5 nm resolution ranging from 350 to 890 nm, is used as input of the system, or the addition in the Forward model of terms that

take into account the interaction with the sea floor, crucial for the analysis of shallow waters.

7 CONCLUSIONS

By utilizing the Bayes theorem and linearizing the forward function, we achieved the inversion of the optical constituents, with
an estimate of the uncertainty. The latter is fundamental for the assimilation of Remote Sensing Reflectance.

By using an MCMC algorithm, we computed a set of parameters that optimized the forward model and showed that the
method was robust by obtaining coherent values with the SGVB estimator. Moreover, the Variational Bayes framework can be
used as an alternative to find point-wise estimates of optimal parameters, and also as an efficient way of computing point-wise
estimates of the optical constituents.

Regarding the computational advantages of the SGVB estimator, as long as the uncertainty is not required, it is the best
option to estimate the optical constituents in operational systems, since, after training, the evaluation of the neural network is
much faster than the iterative minimization (effect known as amortization). Nevertheless, the posterior probability learned by
the neural network underestimates the uncertainty of the result, which makes the MAP algorithm preferred when the uncertainty
is a requirement. Since the computational time for the MAP estimate depends on the initial conditions, we proposed to use the
SGVB estimates as initial conditions for the MAP algorithm, which, by making experiments with our current implementation,

we found to be capable of reducing the number of steps by more than 50%.
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For future work, it would be important to apply and verify the accuracy of the approach with more optical constituents and

to test Remote Sensing Reflectance assimilation in a biogeochemical model.

Code and data availability. The version used to produce the results is archived on Zenodo, as are the input data and scripts to run the model
and produce the plots for all the simulations presented in this paper, under the DOI 10.5281/zenodo.14609747 (Soto, 2025).

We used the MedBGCins data set for in-situ data based on High-Performance Liquid Chromatography. Data set available in Zenodo under
the DOI https://doi.org/10.5281/zenodo.15489967 (Di Biagio et al., 2025).

Appendix A

In this section, we expand the solution of Eq. (1) subject to the boundary conditions (6), under the homogeneity assumption.

First, for simplicity, we re-write Eq. (1) as,

dFEg:(h, A
# = —ca(A) Egir(h, M),
dEgis(h,\
% = —Cs(N) Egit(h, A) + By (N Ey (hy A) + F4(A) Egie(hy A,
dBa(h,\
% = —B,(N)Eat(h,\) + Cyu (N Ey(hy A) — Ba(A) Egie(h, A,
subject to,
Edil'(ov)‘) = E((i)i?SIM(OvA)aEdif(Oa)‘) = Eglf\SIM(Ov)‘)aEu(OoaA) = 07 (Al)
were,
_a(A)+b(N)

Cd()\) - COSG 5
Ca(N) = a(\) + 70, ON

S ’Us bl
B, () = ),

Uy
b)) —rabp(N)
Fd()‘) - COSH )
B,y = =Y,
Vs

C ()\) _ CL()\) + Tubb(A)

u ’l}u bl

7qbp (A

B =" Obs( A ). (A2)

Equation (A1) is a linear system of Ordinary Differential Equations, which can be solved by, first solving the equation for

Eqir(h,\), followed by solving the system of equations for Egi¢(h,A) and E,(h,\), taking the solution of Eg,(h,\) as the
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in-homogeneous part of the system of equations. The final expression is,
Egie(h,\) = EQA™(0, \)e "ot
Eait(h,A) = ¢ e ™ 4 e B (b, M),

Eu(h,\) =ctrte ¥ 4y Bge(h,N), (A3)
where,
¢t =Eg¥™(0,)) — zE@M™(0, ),
kT =D-C,,
B
+_Ds
" =D
1
2(0 10, +\/C +C,)° 4BsBu>,

_ (_(Cu+cd)Fd_Bqu)
(cqg—Cs)(cqa+Cy)+ BsBy’
(=BsFq+ (=Cs +cq)Ba)

Y= (ca—Co)(ca+ Cu) + BBy (Ad)

In the case when the expression (cq — C)(cqg + Cy) + BsB,, = 0, then the expression for ¢ has to be exchange to ¢™ =
EQSM(QX).

Appendix B: Tuning of the hyperparameter o

As seen in Sec. 4, the final covariance matrix for the retrieve Z* depends on the hyperparameter « by the equation X, = a/.
We selected the value of « to fulfill two criteria: The retrieved Z* should be robust on ¢, meaning, small changes on « should
not change the retrieved quantity, and the estimated uncertainty has to be close to the discrepancy between retrieved data and
in-situ observations.

For this end, we defined the error of the forward model e, _(«) as the Root Mean Square Difference between the satellite
Remote Sensing Reflectance and that predicted by the model. The aim is to make this quantity robust on a.

We also defined the error between the predicted uncertainty and the actual discrepancy between model and data €5, (@),

where the predicted uncertainty is estimated as the mean value of the standard deviation of the predicted chla™ ODEL

OBS

, and the

discrepancy between model and data is estimated as the Root Mean Square Difference between chla MODEL

and chla
We computed e, («) and €5, (o) for different values of « until the curve e, _(«) flattens. With the errors computed, we
re-scaled the error functions ep, _ («) and €5, () between zero and one in order to minimize both functions simultaneously by

minimizing the loss function

L0 = ep. (@) + e (@), B

where the line over the errors stands for the rescaling. Figure B1 shows the final value of « selected, as a function of e, _ (@),

€5, () and L%
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Figure B1. Illustration of how the hyper-parameter o was chosen. Using a higher o decreases the Root Mean Square Difference between

the Remote Sensing Reflectance observed by satellite, and the one obtained with the model (a), but increases the error between the predicted

uncertainty and the actual discrepancy between model and data (b). The value chosen was the one that minimized the £ loss function (c).

610 Appendix C

This section shows that L, go is a lower bound of the data log-likelihood. First, we write the expression for the log-likelihood

by marginalizing over all possible values of the latent variable z

log (pa(y)) = log / pa(wl2)p(2)dz |

next we introduce the parameterized probability distribution g4 (z|y)

o ABozlY)
615 =log !m(yl )7Q¢(Z|y)p( )dz |,

Finally, we use Jensen’s inequality to find a lower bound for the log-likelihood,

> (e

_ o p(zi) z o) z z z
- ! g (0 aotelw) + Z/ o5 (pa (31206 =19

= —Drr(qs(21y)[Ip(2)) + Eq, (z1y) [l0g (pa (y]2)]

=LELBO-
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The inequality is an equality for the case g4 (z|y) = p(2|y), the true posterior distribution, in which case L1, 5o = log (pa(y)).

In other words, maximising the £, po equals maximising the marginal log-likelihood.

Appendix D

In this section, we include the Root Mean Square Error (RMSE), Pearson correlation coefficients (p), and relative Median
Absolute Deviation (rMAD) for all the measurements and observations, using the MAP estimates with unperturbed parameters,
MAP estimate with parameters from the MCMC algorithm, MAP estimate with parameters from the SGVB estimator, and
outputs from the SGVB estimator. All the quantities are computed using only the test data, which is 10% of the data, not used
in the MCMC algorithm or in the training of the neural network. Finally, we include tables with the symbols used across this

work.

Table D1. Root Mean Square Error between satellite and in-situ observations, and the modeled data using the Maximum A-posterior (MAP)
estimate with unperturbed parameters, optimized parameters with the MCMC algorithm, optimized parameters with the SGVB based frame-

work, and modeled data purely with the SGVB based framework. Notice that a log transform was performed before the computations.

Root Mean Square Error, RMSE(OBS,MOD) = \/MEAN ((OBS — MOD)?2)
MAP with unper- MAP with MCMC pa- MAP with SGVB pa-

SGVB output

turbed parameters rameters rameters

RRs,a12.5 0.039998 0.040920 0.042113 0.128636
RRs,442.5 0.019901 0.022441 0.019984 0.117474
RRrs 490 0.033773 0.023230 0.029305 0.071944
Rrs 510 0.033258 0.038340 0.039021 0.059382
RRrs 555 0.019328 0.031546 0.033822 0.091312
kd,a12.5 0.395717 0.419141 0.378790 0.429363
kd,a42.5 0.327759 0.322888 0.303636 0.365043
kd,a90 0.324604 0.300414 0.299151 0.339610
ka,510 0.221749 0.210633 0.213028 0.214196
ka,555 0.135205 0.130366 0.133158 0.137648
by, p,442.5 0.457789 0.334198 0.512618 0.787984
by, p,490 0.446384 0.506215 0.405386 0.549156
by.p,555 0.439231 0.521719 0.423929 0.550503
chla 0.603652 0.587130 0.502672 0.447947
Total 3.49835 3.48918 3.33661 4.29020
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Table D2. Pearson correlation coefficient r between satellite and in-situ observations, and the modeled data using the Maximum A-posterior
(MAP) estimate with unperturbed parameters, optimized parameters with the MCMC algorithm, optimized parameters with the SGVB

framework, and modeled data purely with the SGVB framework.

Spearman rank-order correlation coefficient p

MAP with unper- MAP with MCMC pa- MAP with SGVB pa-

SGVB output

turbed parameters rameters rameters
Rps,a12.5 0.99304 0.98841 0.99041 0.98306
RRs,142.5 0.99851 0.99747 0.99801 0.99192
RRs,190 0.99715 0.99622 0.99479 0.98670
Rrs,510 0.99201 0.99105 0.97962 0.94380
RrRs,555 0.99378 0.99142 0.97987 0.92020
ka,a12.5 0.80801 0.81693 0.81097 0.81300
kd,442.5 0.88324 0.88525 0.88408 0.87611
kd,a90 0.84371 0.85139 0.85001 0.84049
ka,510 0.85792 0.86398 0.86020 0.85466
ka,555 0.71051 0.69352 0.68246 0.68541
bp,p,442.5 0.65502 0.67547 0.68759 0.68896
bb,p,490 0.52632 0.57810 0.61910 0.61431
bp,p,555 0.65197 0.67520 0.68754 0.68674
chla 0.85199 0.86955 0.87259 0.87400
Total 11.76319 11.87396 11.89723 11.75935
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Table D3. relative Median Absolute Deviation (rMAD) between satellite and in-situ observations, and the modeled data using the Maximum
A-posterior (MAP) estimate with unperturbed parameters, optimized parameters with the MCMC algorithm, optimized parameters with the

SGVB framework, and modeled data purely with the SGVB framework.

rMAD = MEAN(|OBS — MOD|/OBS)
MAP with unper- MAP with MCMC pa- MAP with SGVB pa-

SGVB output

turbed parameters rameters rameters

Rps,a12.5 0.029481 0.031956 0.032869 0.122038
RRs,142.5 0.014825 0.016953 0.014725 0.110805
RRs,190 0.028941 0.018827 0.024378 0.066319
Rrs,510 0.029412 0.034112 0.031342 0.046536
RRs,555 0.015851 0.025844 0.022127 0.071504
ka,a12.5 0.267226 0.284409 0.262888 0.270284
kd,442.5 0.226699 0.224069 0.219680 0.245279
kd,a90 0.222441 0.212747 0.214475 0.228192
ka,510 0.168964 0.167468 0.169385 0.159414
ka,555 0.101646 0.100650 0.101680 0.101663
bp,p,442.5 0.316195 0.256815 0.350178 0.509545
bb,p,490 0.376320 0.556826 0.311682 0.317715
bp,p,555 0.384337 0.568183 0.365311 0.379714
chla 0.725247 0.694534 0.488889 0.305717
Total 2.90758 3.19339 2.60961 2.93472
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Table D4. Table of Symbols used for the Radiative Transfer Model.

Symbol Meaning

FEair Vertical Direct irradiance

Far Vertical scattered downward irradiance

E, Vertical scattered upward irradiance

0 Sun zenith angle

h depth at which a measurement is assumed to be taken.

A Wavelength at which a measurement is assumed to be taken.
a(N) Total absorption coefficient

b(\) Total scattering coefficient

by () Total backward scattering coefficient

w Water

phy Phytoplankton

chla Chlorophyll-o

CDOM Chromophoric Dissolved Organic Matter

NAP Non Algal Particles

aw(A) Water-specific absorption coefficient

Aphy (N) Chlorophyll-specific absorption coefficient of phytoplankton
acpom () Mass-specific absorption coefficient of CDOM

anap(A) Mass-specific absorption coefficient of NAP

bw(A) Water-specific scattering coefficient

bphy (A) Carbon-specific scattering coefficient of phytoplankton
bnap(A) Mass-specific scattering coefficient of NAP

bo,w(A) Water-specific backward scattering coefficient

bb,phy (A) Carbon-specific backward scattering coefficient of phytoplankton
by Nap(A) Mass-specific backward scattering coefficient of NAP

PAR Photosynthetic Available Radiation

Eg>™M(0,))
Egr>™(0,))
Ey(00,A)
R,

by.p
ka

Direct downward irradiance on the surface of the ocean, from the OASIM model
Scattered downward irradiance on the surface of the ocean, from the OASIM model
Scattered upward irradiance on the floor of the ocean

Remote Sensing Reflectance

Particulate backward scattering coefficient

Downward light attenuation coefficient
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Table DS. Table of symbols and notation used for the Bayes formalism.

Symbol Meaning

Yy Vector, discretization of a continuous function in discrete values of A

Y Component of a vector with magnitude y(\)

z* Optimal value of a retrieved quantity z, solution of a minimization problem
Z Estimation of the optimal value of a quantity z

argmin, £(z)  Quantity z that minimized the loss function £

argmax,,p(y|z)

Z

pa(ylz,x)
N, %)
HOBS
HMODEL

H

Id

cH

z

Lo

Quantity z that maximises the likelihood p(y|z)

Remote Sensing Reflectance data from day d

OASIM data from day d

Optical constituents from day d

Set of parameters from the forward model

Set of many days with Remote Sensing Reflectance data, which represents the train set whenit is
used for training, and the test set when it is used for testing

Set of many days with OASIM data, which represents the train set when it is used for training, and
the test set when it is used for testing

Set of many days with retrieved optical constituents, which represents the train set when it is used
for training, and the test set when it is used for testing

Probability distribution of the variable y conditional on z, and @, as a function of A

Gaussian probability distribution with mean p and covariance matrix X

in-situ observations

Model of the in-situ observations

Observation operator, equal to H OBS when there were observations, and zero otherwise
Presence-absence nine dimension indicator function

Loss function used to minimize the distance between in-situ observations and predicted observa-
tions

Loss function used to maximize the posterior probability pa (2"l|y"l7 :cd) for every day d

optical constituents with the change of variable zZ = log (2)

Covariance matrix of the Remote Sensing Reflectance

Noise of the Remote Sensing Reflectance

Perturbations on the parameters

Gradient over every component of ¢

Covariance of the prior term associated to the optical constituents 3, = a1, 1 the identity matrix
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Table D6. Table of Symbols and notations used for the Variational Bayes formalism.

Symbol Meaning

zZ Latent variable sampled from an unknown distribution pa= (z)

y Random variable sampled from a known conditional distribution pa« (y|z)
pa(y) data-Likelihood of the parameter A

pa(zly) Posterior probability of the latent variable z

g6 (z|y) Estimate of the posterior probability of the latent variable z

LELBO ELBO loss function, where ELBO stands for “Evidence Lower Bound”

Drr(gs(2|y)llpa(2))

Eq, (2w [log(pa(y|2))]

Kullback-Leibler divergence between the two probability distributions g4 (z|y) and

pa(2)
Expected value of log(pa (y|z)) with respect to the probability distribution g¢(z|y)
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