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Dear Editors,

Please find attached a revised version of the manuscript entitled “Data-Informed Inversion Model
(DIIM): a framework to retrieve marine optical constituents in the BOUSSOLE site using a three-stream
irradiance model ”, submitted for consideration as a regular Article (DOI: https://doi.org/10.5194/gmd-
2024-174).

We have amended the manuscript according to the comments of the reviewers. We also added a
version of the revised manuscript with the main differences in blue and a point-by-point response to
their comments, together with a description of the changes made to the manuscript.

Yours sincerely,

Carlos Enmanuel Soto Lopez
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Point by point reply to the Executive Editor

Executive Editor comment:

Dear authors,

Unfortunately, after checking your manuscript, it has come to our attention that it does not comply
with our “Code and Data Policy” .

https://www.geoscientific-model-development.net/policies/code and data policy.html

In your Code and Data Availability section you provide a handful of links for sites containing
information related to your manuscript. However, such sites are not acceptable for scientific publication.
They include a GitHub site and Google drives. You have included the DOI for a Zenodo repository
containing part of the information, after an initial request from the Topical Editor; however, the Zenodo
repository that you provide does not contain the necessary information to replicate the work that you
present in your manuscript. For example, when trying to run the Python notebook on model availability,
it tries to connect to the external GitHub site (moreover under certain circumstances/configurations it
fails to do it).

I have to be clear here. All the models, code and data necessary to replicate your work must be
contained in the Zenodo repository and must be standalone, that is, work without need for additional
download of software or data from third party sites (excluding common libraries such as pandas, numpy,
etc. that should be listed with their versions). Also, the Code and Data Availability section in your
manuscript contains several references to sites that do not comply with our policy. This section is not
there to advertise the ”last version” of a software or the work of the authors, but to provide the specific
information that assures the compliance with the principle of scientific reproducibility. Including
such unuseful information only introduces unnecessary noise and complexity in the assessment of
the compliance of your submitted manuscript. Therefore, please, remove from this section all the
information about sites that do no comply with the policy for permanent archival of code and data.

Therefore, the current situation with your manuscript is irregular. Please, publish your code in one
of the appropriate repositories and reply to this comment with the relevant information (link and
a permanent identifier for it (e.g. DOI)) as soon as possible, as we can not accept manuscripts in
Discussions that do not comply with our policy. Also, please include the relevant primary input/output
data. Also, you must include a modified “Code and Data Availability” section in a potentially reviewed
manuscript, containing the DOI of the new repositories. I note that if you do not fix this problem, we
will have to reject your manuscript for publication in our journal.

Juan A. Añel

Geosci. Model Dev. Executive Editor

Author reply: After careful review ing of the code and data availability, we have uploaded in Zenodo
a standalone version of the code used to reproduce the results from the article, as well as the data
needed to reproduce it [7]. In this new upload, we make no mention of other sites, except the standard
python3 libraries.

We have also prepared a README with instructions on how to install the required external packages
with a Makefile. We also included a Python script (reproduce.py). By launching reproduce.py, the
user is guided to reproduce the calculations and figures in the manuscript, with the option to run
all calculations (-a), only the Bayesian computations (-b), only the sensitivity analysis and MCMC
analysis (-m), or only the calculations related to training the neural network (-n).

DOI from the new code and data availability: 10.5281/zenodo.14609747.

Link to the code and data availability: https://doi.org/10.5281/zenodo.14609747.
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Changes made to the original manuscript:
○ In the section Code and data availability, we have added in the first paragraph a description of the

Zenodo availability, as well as the corresponding DOI.
○ As a consequence of the additional review, we have added the citation for the literature value of

some parameters used, citations missed during the first upload, as well as the correction of a typo
for the index of one of the parameters.

○ Finally, for clarity at the moment of reading, we have changed the wording of some parts in section
Results.

Point by point reply to Reviewer 1

Reviewer comment: Section 1. The authors refer to inversions of semi-analytical expressions
of the RTE (l33-l34). As the term is mentioned in the abstract but not used afterwards, the reader
could have doubts as to whether this is actually the case in the paper. If the complete RTE model
(i.e. discretized on the vertical) is not used afterwards, this should be explained in the introduction.
Similarly, it should also be stated from the beginning if the aim of the paper is to estimate IOPs at the
sea surface only (assuming vertical homogeneity of marine optical components), and not throughout
the water column.

Author reply: We have added information in the Introduction about the type of model used. The
model is based on an expression derived from the Radiative Transfer Equation (RTE), with some
terms—such as the chlorophyll-to-carbon ratio (see manuscript, Eq. 3)—estimated empirically. This
makes it a semi-analytical expression. We have also clarified that the inversion is intended solely to
approximate the inherent optical properties (IOPs) at the sea surface.

Reviewer comment: Section 2. I suggest moving this section after section 3 and explain more
clearly how the different data are related to the RTE model variables, surface boundary conditions,
etc. In addition, I would suggest introducing a schematic diagram of the water column, including the
different fluxes, irradiances, and variables of interest, data collected, etc, to improve readability.

Author reply: As suggested, we have moved this section to follow the model description and
expanded on the relationship between the OASIM data and the boundary conditions. We also
provided more detail on the origin of the data, noting that it was previously used to assess the validity
of the OASIM model in the Mediterranean Sea [4]. Finally, we also included a diagram describing the
different fluxes involved in the RTE.

Reviewer comment: Section 3. It looks that the marine optical constituents are assumed to be
constant on the vertical. It should be clarified if vertical homogeneity is assumed, as this is far from a
trivial assumption. It could significantly limit the applicability of the framework to locations where
such an assumption is not verified, e.g. when shallow sub-surface chlorophyll maximum concentration
occurs. A discussion should be added explaining how the scheme could be extended for inhomogeneous
water columns. As for vertical homogeneity of optical constituents, it seems that temporal persistence
is assumed over the daily cycle. Please confirm and provide some justification.

Author reply: The equations assume a homogeneous, infinitely deep layer. By making this
assumption, the system of equations becomes linear and can be solved analytically. The assumption
is justified for deep case 1 waters (dominated by phytoplankton), like the one studied in the present
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work. During winter, the chlorophyll concentration in the first layer is approximately constant due to
mixing (see [5], Fig. 1), while most of the downward irradiance comes from the first 10 to 20 meters
(see [6], Fig. 1 and Fig. 2). During summer, there is no mixing, but still there is a region, around 20
to 50 meters, with constant chlorophyll concentrations, making the assumption justified. For coastal
areas, we are considering extending the model to include the process of light reflection at the sea floor,
which will be the matter for future work. Concerning the temporal persistence, we are computing
daily averages of the different concentrations (averaging over hours with light), making it coherent
with satellite data retrievals. We added all this information to the modified manuscript.

Reviewer comment: Section 4. Section 4.4.2 in particular, is very difficult to understand and
needs to be clarified. More generally, the sequence of algorithmic operations in the Bayesian inversion
framework and associated partitioning of the training data set need to be better explained, so that the
reader understands the order in which the latent variables and the model parameters to be optimized
are calculated. This clarification is necessary to fully understand the applicability of the method and
the results in section 5. The algorithmic complexity of the sequence also needs to be quantified and
explained more transparently. The list of optimized parameters is confusing in places. Please clarify
the actual list of optimized parameters, referring to the list displayed in Table 1 and 2.

Author reply: We substantially re-wrote and re-organized section 4 to make the explanation of how
the algorithm works clearer, including tables of step by step explanations for the Bayesian inversion
and Monte Carlo algorithms (Alg. 1, Alg. 2, and Alg. 3). Concerning the algorithm complexity, the
aim is to understand how the computational time increases as a function of the dimensionality of the
problem. The general consensus is that under certain conditions, the computational time increases
polynomially, but in general, the increase could be exponential [1]. Indeed, the complexity estimation
for this kind of algorithms is an active area of research, and could be in itself the subject of another
work.

Reviewer comment: As presented, the overall convergence of the method does not seem very robust
and is subject to numerous adjustments depending on the dataset and DYFAMED site considered.
Section 4.4.2: The sentence “we choose to perturb our parameters in such a way that we end up with
a fourteen-parameter space” is not understandable. What does the hyperparameter alpha q (line 283)
represent? The parameter perturbation method needs to be better explained (also related to Table 5).
The last sentence of section 4.4 “... and sampled only uncorrelated values,” is rather cryptic.

Author reply: Motivated by the reviewer’s comment on the non-robustness of the method, we
analyzed the two proposed algorithms separately, looking for the underlying reasons explaining their
different estimates.

The mean value of the retrieved optical constituents for both methods where consistent with each
other, in the sense that the Variational Bayes method gives values within the uncertainty of the
Bayesian approach. The robustness of the method is confirmed by the statistics on the test data, which
were not used for hyperparameter tuning or neural network training, as both approaches produce
values close to the observations. Additional evidence of robustness comes from the comparison with a
state-of-the-art algorithm for chlorophyll estimation from satellite observations, presented at the end
of the Results section.

On the other hand, the forward model optimization presented differences between the MCMC mean
values and those obtained with the SGVB estimator. Upon analyzing the results, we identified
what we believe to be the main reasons behind these discrepancies. On one hand, the loss functions
used in the two methods are different due to the regularization term used for the neural network
training. On the other hand, the algorithm used to train the neural network relies on standardized
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data and minibatch minimization, two common practices in neural network training that help improve
generalization and prevent overfitting by approximating the full dataset gradient with that of smaller
subsets. For this resubmission, we therefore also applied the standardization to the data used in the
MCMC algorithm to ensure a fairer comparison. This change made the final parameters estimated
by both methods closer to each other with respect to the previous experiments, in a way that 22 of
the 24 perturbed parameters were within the uncertainty of the MCMC estimates; Nonetheless, the
parameters obtained through simultaneous training of the neural network using the SGVB estimator
demonstrated better generalization properties.

In the author’s view, the fact that both methods give slightly different results in finding the optimal
parameters is not an indicator of the incompatibility or non-robustness of the methods. Indeed,
MCMC estimates the probability density of the parameters given the training data, i.e. the posterior.
This distribution reflects the region of parameter space where the optimal parameters are likely to lie,
while its mean provides a point estimate of those parameters. Instead, the SGVB estimator exploits
minibatch minimization and the training of a Neural Network to estimate the MLE of the parameters,
a different estimator with slightly different assumptions (we never linearized the Forward function,
for example). Both algorithms succeed in finding a satisfactory estimator of the optimal parameters,
minimizing the RMSE on the test data. While MCMC methods are more commonly used, our goal
was to demonstrate the validity and efficiency of the SGVB estimator in marine inversion problems.

Reviewer comment: There are no objective elements in the paper to guide the choice between the
MCMC vs. SGVB methods. The GMD framework calls for guidelines to direct the user towards the
most suitable method (Bayesian approach or neural network) instead of experimenting (as seems to be
proposed) until a satisfactory converged solution is found.

Author reply: We added a few comments in the Conclusion section detailing about the advantages
and disadvantages of both methods. In summary, we recommend the MCMC and traditional Bayesian
approaches for their theoretical simplicity and interpretability, and their ability to estimate the
uncertainty of the results. The Variational Bayes approach is more effective for intractable problems,
where the posterior is costly to compute, returning good estimates of the MLE. At the moment,
our findings are that the method doesn’t return reliable uncertainty quantification, but still offers a
good alternative for the latent variable estimation (estimation of the optical constituents), as well as
for the model optimization. In the paper, we compared the results of both methods, showing their
equivalence, since the dimensionality of the problem allows it, but in most of the state-of-the-art
forward models, the latent space, as well as the parameter space, is usually much larger, and the
standard methods are not any more computationally feasible.

Reviewer comment: Section 5. The presentation of the results (section 5) is confusing. It is
not clear what the purpose of the sensitivity study introduced at the beginning of the section is, since
its main conclusion (the use of a single set of parameters over one year is sub-optimal) is not used
thereafter anyway. This part should be removed, or better justified. What does the new bphy,Int
parameter introduced here (Figure 3 and Table 5)? A new structuring of this section into three parts
(results of the MCMC method, results of the SGVB method, comparison of the 2 methods) should be
considered, including a more in-depth evaluation and interpretation of the results. For example, the
reason why the IOP values found with SGVB differ very slightly from the original values compared
with MCMC requires substantiated explanations.

Author reply: We re-structured the results of the section into four parts: the first one focuses on
the Bayesian retrieval of the optically active constituents on the surface of the sea and the uncertainty
estimation; the second on the parameter optimization; the third on the comparison between the
Bayesian outputs and the Variational Bayes approach; the last one compares our results with a state
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of the art algorithm for satellite sea surface chlorophyll a estimation. We expect this rewriting to
make the content of the section more clear.

Regarding the sensitivity study, we provided additional motivation by framing it as a measure of the
seasonal variability of the parameters. Moreover, it allowed us to analyze the differences between
the two optimization methods. In particular, it revealed that among the two parameters showing
the greatest discrepancy between methods, only one played a significant role in optimizing the
particulate backscattering coefficient. Since these measurements were the noisiest ones, we speculate
that overfitting could have misled the MCMC algorithm.

Reviewer comment: Figure D1 does not include a comparison with the chlorophyll a concentration
estimated using conventional ocean colour (OC) algorithms available in the CMEMS catalogue. It is
strongly recommended to add these figures in the plot and provide comments about their consistency,
as one of the potentially key advantages of the proposed method is to be used in operational setups.

Author reply: To compare our inversion results with a conventional ocean color algorithm for
estimating chlorophyll-a concentration, we added a dedicated subsection in the Results. In this
analysis, we performed a comparison over an extended region near the BOUSSOLE buoy, using the
MedOC4.2020 algorithm [2]. The reference dataset consists of measurements obtained via High-
Performance Liquid Chromatography (HPLC) [3]. The comparison showed the consistency between
both methods (See manuscript, Fig. 11).

Reviewer comment: Section 6. The question of the reproducibility of the inversions in other sites
needs to be addressed explicitly in a more convincing manner. The discussion refers to some generic
aspects (e.g. use of neural networks in earth sciences) but does not address how useful the proposed
tools will be for other sites.

Author reply: We plan to asses the validity of the inversion on the rest of the Mediterranean in a
future work. At the moment, we presented a validation only on a region close to the BOUSSOLE buoy
of 4o × 4o, in the North West Mediterranean Sea, where conditions are similar to the assumptions
made for this work.

Reviewer comment: Specific comments and questions: Abstract, ≪ we conclude that both
methods are consistent with the Radiative Transfer Equation ≫ : what is really meant by this sentence
?

Author reply: We changed this sentence; what we meant was that the SGVB estimator was
estimating an inversion of the RTE more than just adjusting a NN to data. We agreed that our results
were not primarily focused on that aspect and therefore replaced it with the comparison between our
inversion method and the state-of-the-art algorithm for chlorophyll-a concentration, as we believe this
comparison is more relevant and deserves to be highlighted in the abstract.

Reviewer comment: MCMC = Markov Chain Monte Carlo (abstract, ) or Markov State Monte
Carlo (section 4) : please unify the nomenclature or explain nuances

Author reply: The correct name is Markov Chain Monte Carlo.

Reviewer comment: Line 43-l44 and elsewhere: replace ≪ density ≫ of optical constituents by
≪ concentration ≫ ?

Author reply: Thank you for pointing that out.

Reviewer comment: Line 55 : It allows for . . .

Author reply: Thank you for bringing that to my attention.

Reviewer comment: Line 85 ≪ After filtering . . . ≫ : please revise and clarify this sentence
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Author reply: First, we removed any data coming from the buoy reporting an absolute tilt higher
or lower than 10 degrees. We also removed the data recorded at a depth more than 2 m below the
nominal values (4 m and 9 m, depending on the instrument of measurement). Also, the downward
light attenuation coefficient data were filtered with an analog high-pass filter, using the package SciPy
from the programming language Python, filtering the noise with a frequency less than 4 hours. Finally,
we proceeded to average the daily values.

Reviewer comment: Line 90 : below instead of above ?

Author reply: Thank you, we meant below.

Reviewer comment: Line 93-94 : what is the ≪ heigh vertical variability ≫ ? Please revise the
sentence and better explain the rationale behind the choice of measurements at a depth of 9m

Author reply: We made it clearer now. The measurements were taken at 9 meters deep. Because
there is low variability, the chlorophyll measurements were considered as sea surface measurements.
However, the downward light attenuation coefficient has a high variability, so we can not consider it
as a measure at the sea surface.

Reviewer comment: Equation (1) : d/dh missing in second and third equations

Author reply: I really appreciate all these comments—thank you. Yes, I’ve made the corrections.

Reviewer comment: Section 3.1 : an equation is missing to describe how PAR is related to the
direct, scattered and upward irradiances.

Author reply: Thank you for pointing this out. You are right—an equation describing how PAR
relates to the direct, scattered, and upward irradiances was missing. We have now included it in
Section 3.1.

Reviewer comment: Section 4.2. It is not clear if the process to adjust the alpha hyperparameter
defining the model error is dependent on the accuracy of the surface boundary conditions (OASIM).
Please provide comments and clarification.

Author reply: Alpha is a hyperparameter. In linear regression problems, it typically represents the
inverse of a regularization term and is often set to a small value so as to not affect the maximum
likelihood estimate (MLE). In this resubmission, we discussed in the Results section about the
prior. Since it is an informative prior, without it, the estimated uncertainty increases by one order
of magnitude (see manuscript, Results section). Therefore, the choice of alpha must balance two
objectives: First, it must ensure robustness (i.e., small variations in alpha do not significantly affect
the results) and second, it has to yield realistic uncertainty estimates, meaning that the reported
uncertainty should, on average, match the observed discrepancies between model predictions and
actual data. We have revised the Appendix to clarify this point.

Reviewer comment: Line 180 : x(lambda) is a 5-component vector (including Eu) while it is a 4
component vector in eq(11). Please explain.

Author reply: The correct number is 4 components.

Reviewer comment: Line 217: I don’t understand why in situ observations are available for 3
wavelengths only. This is not consistent with what is said in section 2.3. Please update section 2.3
accordingly.

Author reply: My apologies if it was not clear. I added a small clarification at the end of the data
acquisition section. Taking into account the assumptions and data availability, the in-situ observations
considered are sea surface chlorophyll, 9 meters deep downward light attenuation coefficient in 5
wavelengths, (412.5,442.5,490,510,555) nm, and sea surface particulate backward scattering coefficient
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at 3 wavelengths (442,490,510) nm.

Reviewer comment: Line 238: his -¿ the

Author reply: This section was re-worked.

Reviewer comment: Line 256: Please explain the “standard error propagation scheme” used to
compute the uncertainties.

Author reply: I expanded on the equations. I was referring to the error propagation equations:
∆F (x⃗)2 = ∇xF (x⃗)Σx∇xF (x⃗)T , where ∆F (x⃗) is the error of a function F (x⃗) ∇xF (x⃗) is the Jacobian,
and Σx is the covariance matrix of x. In our case, Σx = Σz̃d∗ . These equations assume that each
component of x⃗ is not correlated with the others, and, in this respect, is only an approximation for
nonlinear functions.

Reviewer comment: Figure 1: the Estimate of the optimal parameters (“Lambda tilde”) is not
shown in the diagram.

Author reply: They are the parameters from pΛ̂(y⃗,H|x⃗, ẑ) which is the likelihood given the estimated
latent variable ẑ and the boundary conditions x⃗. In other words it is the probability of observing the
Remote Sensing Reflectance, and observations, as a function of the estimated parameters Λ̂, given the
boundary conditions and the state of the estimated state of the ocean.

Reviewer comment: Table 4: why only 9 parameters are shown here ?

Author reply: We perturbed 15 lambda dependent parameters, and 9 non lambda dependent. The
table shows the 9 that were not dependent on lambda, and Fig. 10 (in the new manuscript) has
the final values for the lambda dependent ones. On the other hand, on other tables, we report the
perturbation factors δi. We rewrote the section where we explain how the parameters were perturbed.
More specifically:

The values of the λ dependent vector of dimension five representing the phytoplacton-specific absorption
coefficients a⃗phy were perturbed as: a⃗∗phy = δaphy a⃗

0
phy with δaphy a learnable scalar, and a⃗0phy the

literature values. We chose it like this to maintain the shape of the function aphy(λ) unperturbed.

For the carbon-specific scattering and backscattering coefficients bphy(λ) and bb,phy(λ), we first linearly
interpolated them with the literature values, and perturbed the tangent and the intercept of the linear
interpolations, bphy(λ)

∗ = δbphy,intb
0
phy,int + δbphy,Tb

0
phy,Tλ.

The parameters dCDOM, br,NAP, SCDOM, Θmin
chla, Θ

0
chla, β, σ, Qa and Qb perturbations consisted in per

parameter scalar multiplications. All the other parameters were left unperturbed.

In this way, we perturbed 24 parameters, 9 of them by multiplying them for a scalar δi, i equal to
each of the perturbed parameters, the five components of a⃗phy by multiplying them by the same scalar
δaphy , and finally, bphy(λ) and bb,phy(λ) by linearly interpolating them, and perturbing the tangent
and the intercept of each of them, making a total of 14 perturbation factors.

Reviewer comment: End of Appendix A: “For completeness, . . . has to be exchanged . . . ”

Author reply: We agree, thank you for pointing it out.

Reviewer comment: Line 518: “. . . these two errors”.

Author reply: We made some adjustments to Appendix B.

Reviewer comment: Figure D1. Why 2012 time series? Do you mean 2005-2013 time series ?
Author reply: Thank you for pointing it out, we fixed it as 2005-2013 time series.
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Point by point reply to Reviewer 2

Reviewer comment: Line 89, ”data filtered with an analog high pass filter, using the package
SciPy”. It cannot be an analog filter. Maybe the prototype is analog, but it must be a digital filter.
Please explain/correct this

Author reply: We substituted the word ’analog’ with the specific name of the filter. Now the text
say ”...were filtered with a Butterworth high-pass filter, using the package SciPy”.

Reviewer comment: Line 130, respectably =¿ respectively

Author reply: I fixed the typo. Thank you for pointing it out.

Reviewer comment: Line 249, in eq. 19 K is not defined.

Author reply: K is the Jacobian of R with respect to z. We added the information in the new
version of the manuscript.

Reviewer comment:
○ Line 313, DK divergence => DKL divergence.
○ Line 347, the DK divergence => the DKL divergence.
○ Line 357, Cholezky => Cholesky.
○ Line 371, q(z,y,x) => q(z|y, x)

Author reply: We corrected all the typos in the updated manuscript.

Reviewer comment: Fig. 1, What is exactly ”model of the measurements”. Maybe you can add
RMODEL

rs and Ĥ(Z,X; Λ).

Author reply: We changed the term to ”Forward Model”, as this is the name used throughout the
rest of the paper.

Reviewer comment: Fig. 2 caption: qϕ(z|z, y) should be qϕ(z|x, y), and ”dose that learn the
Cholezky” =¿ those? that learn the Cholesky.

Author reply: We changed the typos in the updated manuscript.

Reviewer comment: Fig 5. (Related to it) Please give more explanation on: Why MCMC sub or
over estimates? Why the SGVB does not have a confidence interval if the method provides it? And
why do you think is the cause the SGVB uncertainty fails?

Author reply: Regarding the confidence interval, the Variational Bayes method approximates the
posterior of the optical constituents, called Z, or latent variables in the text.To this end, the neural
network estimates both the mean and the covariance; however, since the covariance underestimates
the true discrepancy between predictions and observations, we relied only on the mean values. For
uncertainty estimation, linearizing the Forward Function around the estimated mean and applying
standard error propagation methods yielded better performance. On the other had, the Variational
Bayes estimates only the MLE of the parameters, as plotted in Fig. 5.

Regarding the different values obtained by the two methods: after standardizing the observations
(dividing by the standard deviation) used for the MCMC algorithm, the differences are minimal
(see Fig. 10 of the new manuscript). They could be due, e.g, to overfitting, changes in the loss
function (the NN loss function used a regularization), or model error, i.e. the error generated by the
approximation the posterior with a NN.

Regarding the underestimation of the covariance matrix, I speculate that it is due to training the neural
network to match observations directly. The original goal is to invert the Forward Model. If we were to
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use the Maximum Likelihood Estimate (MLE), computing the inverse of the Fisher Information Matrix
would result in extremely large uncertainty estimates. In contrast, the Maximum A Posteriori (MAP)
estimate yields lower uncertainty, as it incorporates prior information. The ’posterior’ represented by
the neural network includes not only a term for the observations but also a regularization term, which,
when viewed from a Bayesian perspective can be interpreted as an additional form of prior information.
This added prior information reduces the spread of the posterior, thereby underestimating the true
discrepancy between the modeled data and the observations. However, since this remains speculative,
in the paper we focused solely on reporting the result that the neural network underestimates the
uncertainty.
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