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 13 

Non-technical summary 14 

We developed a country-level fire emission model with updates in burned biomass 15 

calculation and emission factors in China. We found that agricultural fires make up 16 

most of the emissions while greenhouse gas emissions from forests and grasslands 17 

fires are decreasing significantly. Fire emissions peak in late spring, with hotspots in 18 

Northeast, Southwest, and East China. Our findings provide important estimates as a 19 

part of the budget for the national terrestrial ecosystems. 20 

 21 

Abstract 22 

During the past decades, wildfires have undergone rapid changes while both the 23 

extent of fire activities and the resulting greenhouse gas (GHG) emissions from 24 

wildfires in China remain inadequately quantified. We established a wildfire emission 25 

model to generate the China Wildfire Emission Dataset (ChinaWED) which can 26 

therefore be used to explore the recent dynamics at national scale. This dataset is 27 

constructed at monthly and kilometer scale under a consistent and quantifiable 28 

calculation framework, providing an average annual estimates of wildfire-induced GHG 29 

emissions of 78.13 ± 22.46 Tg CO2, 279.47 ± 82.01 Gg CH4, and 6.26 ± 1.67 Gg N2O 30 

for the past decade. We observed significant decreases in both wildfire occurrences 31 

and emissions within forests and grasslands. This trend, however, is counteracted by 32 

the variations of agricultural fires, which constitute the primary type accounting for at 33 

least half of the national total fire emissions. The seasonal cycle of wildfire GHG 34 

emissions show an evident apex occurring during the transition from mid-spring to 35 

early-summer. At the regional scale, Northeast, Southwest and East China emerge as 36 

hotspots for wildfire-induced emissions. Our study offers new insights into 37 

understanding China's wildfire dynamics and provides a detailed regional model for 38 

the wildfire greenhouse gas emissions over China.   39 



 

2 
 

1. Introduction 40 

Wildfires exert a substantial impact on landscape vegetation while influencing the 41 

biogeochemical cycle through the emissions of greenhouse gases (GHG) (Bauters et 42 

al., 2021; Guo et al., 2024; Rodríguez Vásquez et al., 2021). Approximately 2.1 × 1015 43 

grams (Petagrams, Pg) of carbon were emitted globally through biomass burning, 44 

representing about 22% of all fossil fuel emissions in 2021 (Friedlingstein et al., 2022; 45 

van Wees et al., 2022; van der Werf et al., 2017). It constitutes a crucial component of 46 

the global and regional GHG budget (carbon dioxide (CO2), methane (CH4) and nitrous 47 

oxide (N2O)), which is of particular concern giving 120 countries have pledged to 48 

achieve net zero GHG emissions. China, in particular, announced and initiated long-49 

term climate plans, aiming for carbon peaking by 2030 and carbon neutrality by 2060 50 

(Liu et al., 2022). Additionally, over the past decade in China, climate-driven fire 51 

weather, expanding vegetation-based fuel loadings, and anthropogenic activities have 52 

led to rapidly changing fire dynamics (Wang et al., 2023a; Wiedinmyer et al., 2023; 53 

Ying et al., 2018). To address the challenge and achieve the goals, one key step is to 54 

establish a national scale dataset that reflects the recent wildfire emission dynamics 55 

and contributes to the domestic GHG budget (Friedlingstein et al., 2022). 56 

Currently, there have been different studies working on the estimates of China 57 

wildfire emissions including contributions from some global products. One of the most 58 

widely-used approaches take the product of emission factors, fuel loadings, burned 59 

area and combustion efficiency as the estimate of emissions. It should be noted that 60 

the limitations stem from various aspects during the calculation steps. For example, 61 

these studies may use the universal parameters (e.g., land cover types, emission 62 

factors) that do not match with characteristics of local fuels and further estimates (van 63 

Wees et al., 2022; Wiedinmyer et al., 2023). Uncertainty also arises from estimates of 64 

burned area due to the remote sensing-based fire datasets with different emphasis 65 

(e.g., active fire product and burned area product) (Chen et al., 2020; Giglio et al., 2018; 66 

Schroeder et al., 2014). Some other research focused on agricultural fire emissions 67 

adopted traditional “crop-yield-based approaches” (CYBAs), primarily relying on 68 

provincial statistical data and field-reported measurements such as crop production 69 

and estimates of burned crop residues (Hong et al., 2023; Li et al., 2016). These parts 70 

are hard to verify and can only be measured within administrative boundaries. In 71 

addition, the estimates from CYBAs typically have relatively long updating cycles, often 72 

on a yearly scale. These approaches form the fundamental framework of emission 73 

estimates, yet various input parameters were incorporated and the emissions of GHGs 74 

may not be consistent even within products. 75 

Here, we present the China Wildfire Emission Dataset (ChinaWED v1) for the 76 

period from 2012 to 2022 at monthly and kilometer scale. We focused on the limitations 77 

existing in current studies and products and refined the estimates of calculation 78 

components. Emission factors that are specifically suited for evaluating wildfire 79 

emission in China retrieved from previous studies conducted domestically and in 80 

neighboring countries were collected. Previous studies have reported a majority of 81 

wildfire occurrences in croplands, highlighting the need for improved burned area 82 
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estimates that incorporate small-size fire activities (Ying et al., 2021; Zhang et al., 83 

2015). The newly developed product is easily to update with only one-month to two-84 

months lag and provide consistent results for all three GHGs under same calculation 85 

framework. With the support of this ChinaWED product, we can also capture and 86 

explore the magnitude, patterns, trends and drivers of the wildfire occurrences and the 87 

wildfire-induced emissions in China within the past decade. 88 

 89 

2. Methods 90 

2.1 Emission estimation 91 

In this study, we adopted the wildfire emissions estimation method based on the 92 

combination of four components: burned area, fuel load, emission factor and 93 

combustion completeness, calculated by the following equation: 94 

𝐸𝑖,𝑥,𝑡 =∑𝐵𝐴𝑡,𝑥 × 𝐹𝐿𝑥 × 𝐸𝐹𝑖,𝑗 × 𝐶𝐶𝑥,𝑗

𝑛

𝑗

(1) 95 

where the subscript 𝑖 represents specific emission types, 𝑗 represents different 96 

vegetated cover types, 𝑥 and 𝑡 stand for spatial and temporal information; 𝐸𝑖,𝑥,𝑡 is 97 

hence the estimated amount of emission type 𝑖 in location 𝑥 and month 𝑡; 𝐵𝐴𝑡,𝑥 is 98 

the total aggregated burned area derived from multisource of satellite-based products 99 

in location 𝑥 and month 𝑡; 𝐹𝐿𝑥 is fuel load in location 𝑥; 𝐸𝐹𝑖,𝑗 is emission factor of 100 

specific emission type 𝑖 for vegetated cover type 𝑗; 𝐶𝐶𝑥,𝑗 is defined as combustion 101 

completeness in location 𝑥 for vegetated cover type 𝑗. 102 

 103 

2.2 Burned area calculation 104 

Satellite-based thermal anomalies include burned area and active fire products, 105 

equipping researchers with the capability to observe these distinctive signatures 106 

across extensive spatial and temporal ranges. Burned areas are determined by 107 

analyzing the disparities in visible and near-infrared channels between pre- and post-108 

fire satellite images. One of the most common limitations in burned area products is 109 

the exclusion of small-sized or smoldering fires. In contrast, active fire detection is 110 

capable of sensing these fires benefitting from the use of the thermal-sensitive mid-111 

infrared channel. Here we use MODIS burned area product and achieved FIRMS 112 

VIIRS S-NPP active fire records as the main input datasets (Giglio et al., 2018; 113 

Schroeder et al., 2014). 114 

MCD64A1 provides burned area classification at 500 m spatial resolution and 115 

monthly temporal resolution. VIIRS S-NPP provides daily active fire detection at 375 116 

m spatial resolution. Given active fire detection's capability to identify fires occupying 117 

5% or less of a pixel, the S-NPP active fire records can provide more detailed 118 

information, particularly in regions like China where numerous crop residue burnings 119 

occur. Current models and studies counted the active fire points located outside 120 

existed burned area directly as the supplementary sources for the fire activities. To 121 

avoid the potential excessive measurement, a reanalysis system combining both 122 
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burned area and active fire was designed and demonstrated in Fig S1. We 123 

reconstructed the external burned area derived with circular kernels centered at those 124 

active fire records. The aggregated burned area is calculated as below: 125 

𝐵𝐴𝑡,𝑥 = 𝐵𝐴𝑚𝑎𝑖𝑛(𝑡,𝑥) +∑𝐴𝐹𝑠𝑓(𝑡,𝑥,𝑚)

𝑛

𝑚

(2) 126 

where the subscript and left part of the equation is same with that in equation (1); 127 

𝐵𝐴𝑚𝑎𝑖𝑛(𝑡,𝑥) represents the burned area cells in location 𝑥 and month 𝑡; the sum of 128 

𝐴𝐹𝑠𝑓(𝑡,𝑥,𝑚)  represents potential burned area determined through the counting of 129 

decomposed small pixels from circular kernels centered at those active fire records 130 

(Fig. S1 and Fig. S2).   131 

Additionally, we incorporated an independent inventory of fixed-location heat 132 

sources. This inventory is featured by continuously operating heat-source objects and 133 

spatiotemporal-aggregation characteristics in thermal anomalies. It encompasses 134 

heat-source objects including active volcanos, industrial heat sources (e.g., coal-135 

related plants, nonmental mineral producing, ferrous metal related plants) (Liu et al., 136 

2018). We utilized this inventory as a filter to exclude false active fire detection pixels 137 

that are not caused by wildfires. Finally, the processed burned area results were 138 

resampled to 1 km spatial resolution to match the fuel load and land cover mapping. 139 

In general, nearly three quarters (76.2%) of the total burned area is derived directly 140 

from the MCD64 burned area product, while 24.5% is supplemented by information 141 

from VIIRS S-NPP 375 m active fire records Through the incorporation of an 142 

independent fixed heat source dataset, we were able to filter out 0.7% of the burned 143 

area. 144 

 145 

2.3 Calculation of other components 146 

Prior studies integrated upscaled systematic field investigations and regional or 147 

national censuses to map the fuel load. Recent results showed that AGB can serve as 148 

a proxy observation, enabling indirect estimations of dry matter. Remotely sensed 149 

biomass carbon density maps aiming at limited vegetation types have been widely 150 

used. Here we used the newly developed 300 m spatial resolution dataset from Spawn 151 

et al. that incorporates multisource previously presented biomass map and harmonizes 152 

AGB from different vegetation types (Noon et al., 2022; Spawn et al., 2020).  153 

We used land cover product from the ESA Climate Change Initiative to describe 154 

the different vegetation types (Li et al., 2018). This product has identical spatial 155 

resolution to this harmonized AGB dataset. We further aggerated the initial 37 classes 156 

into three major vegetated categories, namely forests, herbaceous and cropland. To 157 

refine the estimation of crop residue burning, several independent datasets of high-158 

resolution crop type mapping are utilized as well. These dataset contain spatial 159 

distribution of double season paddy rice (Pan et al., 2021), single season rice (Shen 160 

et al., 2023), maize (Shen et al., 2022), winter wheat (Dong et al., 2020) and sugarcane 161 

(Zheng et al., 2022) with 10 m or 20 m spatial resolution.  162 

It should be noted that the resolution of all these above datasets were downscaled 163 

to 1 km. AGB was calculated by summing all pixels, land cover was determined based 164 
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on the mode value of vegetated categories, and detailed crop types were identified by 165 

counting classified pixels. AGB provided consistent and seamless estimations of 166 

biomass carbon density globally for the fixed year 2010. Land cover data were 167 

computed from 2001 to 2020, while crop type mapping was primarily calculated 168 

between 2017 and 2020. We utilize annual land cover data associated with the burned 169 

area for the corresponding year (mapping the burned area in 2020 for the period from 170 

2020 to 2022). For distinct crop types, we specifically employ the results obtained 171 

during their respective growing seasons, coupled with the monthly burned area data. 172 

The averaged multiyear crop type mapping was harmonized into land cover data where 173 

agricultural land use pixels were present. 174 

Different previous studies applied constant thresholds which is considered a major 175 

bias in emission estimation (Zhang et al., 2008). We adopted a method based on the 176 

combination of land cover types and fraction of burned (FB) assigned as a function of 177 

tree cover (Wiedinmyer et al., 2023; Wu et al., 2018; Zhang et al., 2011). Agricultural 178 

land use was set to fixed combustion completeness value to 0.93. Herbaceous had 179 

similar high CC values defined by the fraction of tree coverage while forests had much 180 

lower CC values. The detail values are listed in Table S.1 . 181 

Emission factors for different vegetation and emission types were summarized in 182 

Table S.2. Apart from the studies that introducing global fire emissions, we selected 183 

publications that focused on affected burned areas in China and neighboring countries. 184 

Detailed emission factors of different crop types were one of the primary objectives 185 

and used in this study to help improve our burned area-based emission estimation. 186 

Forests were divided into tropical, temperate and boreal types, identified by the 187 

updated digital Köppen–Geiger world map of climatic classification (Beck et al., 2018).  188 

 189 

 190 

3. Results 191 

3.1 Characteristics of China wildfires and emissions 192 

ChinaWED was calculated based on a burned area-based approach. We 193 

integrated different remotely sensed datasets that map regions affected by wildfires 194 

and detect active fire spots to reconstruct the burned area. From 2012 to 2022, the 195 

total burned area in China amounted to 5.31 ± 1.70 million hectares per year (Mha yr-196 
1) (Fig. 1). More than four-fifths of the total burned area were located in croplands, 197 

equivalent to the land area of Switzerland. 11.0% of the burned area occurred in 198 

various types of forests, while less than 6% of the burned area took place in grasslands 199 

or other herbaceous-dominated regions. Based on this burned area estimates and 200 

calculation of other components (emission factors, fuel loads, etc. see methods), our 201 

results showed that annual wildfire-induced GHG emissions in China amounted to 202 

78.13 ± 22.46 Teragrams (Tg) CO2, 279.47 ± 82.01 Gigagrams (Gg) CH4, and 6.26 ± 203 

1.67 Gg N2O (Fig. 1). Although the majority of all wildfire-induced GHG emissions were 204 

still caused by cropland fires, the proportions were quite different from that in burned 205 

area. A fifth of CO2 (21.1%) and CH4 (19.9%) emissions were caused by forest fires, 206 

which was almost double the contribution of this type measured in area. This comes 207 
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from the differences in background fuel loads as measured in carbon pools between 208 

forests and cropland, reported by research on China’s terrestrial ecosystems (Tang et 209 

al., 2018). An even more substantial proportion of national N2O emissions came from 210 

forest fires, reaching 37.1% of the total(Fig. 1). Wildfire-induced N2O emissions are 211 

highly dependent on the ratio of carbon to nitrogen in vegetation fuels, which was 212 

higher in woody areas (Vernooij et al., 2021). In comparison to wildfires on other land 213 

cover types, grassland fires played a comparatively minor role in wildfire dynamics and 214 

emissions.  215 

 

Fig. 1. The time-series and trends of China burned area and wildfire-induced 

emissions (CO2, CH4, N2O).  

The bottom pie charts demonstrate the annual averages (standard deviation within the 

brackets) and the proportions of different land cover types during the study period. Note that 

significant trends are denoted by asterisks (*P < 0.1 and **P < 0.05).  

During this period, the dataset recorded a decline trend of -0.31 ± 0.15 Mha yr-2 216 

(P<0.1) (Fig. 1). All vegetation wildfires decreased at different magnitudes, resulting in 217 

pervasive and slightly different declines in the three greenhouse gases. Agricultural 218 

fires had been gradually limited and demonstrated a decline in burned area at -0.26 ± 219 

0.14 Mha yr-2. Affected by the variations of agricultural fires, our dataset exhibited a 220 

statistically insignificant decline during the study period, with rates of -2.41 ± 1.81 Tg 221 

CO2 yr-2, -8.97 ± 6.96 Gg CH4 yr-2 and -0.15 ± 0.11 Gg N2O yr-2 during the study period. 222 

Compared with cropland, burned area and all three types of wildfire-induced 223 

greenhouse gases in forests and grasslands dropped significantly and rapidly. The 224 

decline in forest fires contributed to nearly a third (CO2 at -1.22 ± 0.36 Tg yr-2, P<0.01 225 

and CH4 at -3.93 ± 1.21 Gg yr-2, P<0.05) and a half (N2O at -0.15 ± 0.05 Gg yr-2, P<0.05) 226 

in the total trends of emissions (Fig. S3). The grassland contributed to smaller in all 227 

these GHGs (CO2 at -0.34 ± 0.08 Tg yr-2, P<0.01, CH4 at -0.51 ± 0.13 Gg yr-2, P<0.01, 228 

and N2O at -0.03 ± 0.01 Gg yr-2, P<0.01) within the past decade. 229 
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Fig. 2. Seasonal cycle of national and regional wildfire-induced CO2 emissions. 

(a) Monthly emission patterns from various land cover types: grassland (green), forest (dark 

green), and cropland (yellow). The data points connected by lines for different land cover 

types indicate the peak emission month for each year. The heatmap illustrates emission 

intensity (unit: arbitrary scale), with brighter colors denoting higher emission levels. 

(b) Average monthly CO2 emissions across six regions of China: Northeast China, North 

China, East China, Northwest China, South China, and Southwest China. Each region 

is plotted on distinct Y-axes to highlight seasonal variations. Four sets of colors represent 

the four seasons. Detailed regional divisions are introduced in Fig. S4 and their patterns 

in Fig. 3. Seasonal and interannual patterns for wildfire-induced CH4 and N2O emissions 

are illustrated in Fig. S5 and Fig. S6. 

The outcomes derived from diverse regions and land cover types underscored 230 

those fires originating within cropland significantly dominated the overarching 231 

dynamics of national wildfires and emissions. A spatiotemporal association was 232 

assumed to exist between agricultural activities, particularly those related to planting 233 

and harvesting preparations, and the incidence of wildfires. Throughout our study 234 

period, the majority of all three types of GHG were concentrated in the first half of the 235 

year. More than half of the annual CO2 emissions from wildfires were observed from 236 

late winter to middle spring (February to April), along with nearly the identical relative 237 

proportions of CH4 and N2O. A secondary seasonal peak of wildfire-induced emissions 238 

occurred in the harvest seasons in autumn (September to November), accounting for 239 

nearly 20% of the annual total (Fig. 2a). We divided six specific wildfire-induced 240 

emissions regions dependent on geographical location and environmental 241 

characteristics (Fig. S4 and Table S3). The patterns of double peaks in agricultural fire 242 

emissions in Northeast China had a significant impact on national emission levels. 243 

During the major emission season, three quarters of the region's total annual amount 244 

was emitted. It is important to note that the temporal patterns are closely associated 245 

with the local sowing and harvesting seasons (Fig. 2b) (Cheng et al., 2022; WANG et 246 

al., 2020). Similarly in North China, the major peak occurred in early summer (May and 247 

June) while the secondary peak in mid-autumn (September and October). A total of 248 

2.75 Tg and 1.65 Tg of annual CO2 emissions induced by agricultural fires were 249 

concentrated during these respective time periods. East China displayed disparate 250 
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seasonal patterns, with the majority of agricultural fires occurring during the summer 251 

when the planting and harvest were made in double-season paddy rice fields in this 252 

area (Fig. 2b) (Pan et al., 2021; Wu et al., 2023). Approximately one-third of the annual 253 

regional emissions induced by wildfires were concentrated in June. Consequently, this 254 

correlation is validated through the examination of seasonal cycles in wildfire 255 

occurrences, which becomes a prominent temporal feature that drive the dynamics of 256 

national-scale wildfire-induced emissions (Zhang et al., 2015).   257 

 258 

3.2 Spatiotemporal pattern of wildfire and its GHG emissions  259 

To further explore the fire emission dynamics, we calculated the provincial and 260 

monthly burned areas and emissions, which were then aggregated to obtain regional 261 

and seasonal statistics. The results showed that the national wildfire-induced 262 

emissions shared similar patterns of all three GHG types in spite of their large 263 

disparities at both spatial and temporal scales. More than four-fifths of the total of 264 

domestic wildfire-induced GHG emissions (82.8% for CO2, 83.2% for CH4, and 83.6% 265 

N2O) located in three primary peaks, the Northeast, Southwest and East China, 266 

respectively (Fig. 3), which will be introduced in detail in the upcoming sections. 267 

In all six regions, Northeast China (Heilongjiang, Jilin, Liaoning and Nei Mongol) 268 

affected by the highest wildfire emissions. Heilongjiang and Jilin were the top two 269 

provinces not only within the region but also nationwide. Many of the burned area and 270 

emissions located in vast plains (SongNen, Liaohe and Sanjiang plain) of Northeast 271 

China. The vegetation-sourced fire emissions from these two provinces contributed to 272 

nearly one-third and one-tenth of the total domestic emissions, individually. Moreover, 273 

they exhibited a mild increasing trend compared to the national pattern, registering at 274 

non-significant trends of 0.14 ± 0.15 Mha yr-2 for burned area and 1.92 ± 1.92 Tg yr-2, 275 

6.94 ± 7.34 Gg yr-2 and 0.11 ± 0.13 Gg yr-2 for CO2, CH4 and N2O, respectively (Fig. 4). 276 

According to data from the National Bureau of Statistics, these four provinces 277 

collectively accounted for a quarter of the sown area and grain production over the 278 

past decade. The extensive grain cultivation areas, coupled with the widespread 279 

practice of burning crop residues for land clearing, have significantly contributed to the 280 

high levels of wildfire-induced emissions associated with agricultural land use in 281 

Northeast China. CO2 emissions from crop residue burning accounted for 82.7% of the 282 

regional total wildfire-induced emissions and 62.5% of the domestic emissions for this 283 

type. The rising trends of agricultural fires constitute the majority of regional wildfire 284 

dynamics. 285 

Fires have been controlled to an average of 0.27 Mha of burned area per year 286 

through systematic fire and forest management in this area (Fig. 3 and Fig. 4). For 287 

comparison, a single fire event, namely the 1987 Great Black Dragon Fire, destroyed 288 

1.33 Mha of forests and resulted in nearly two hundred fatalities (Zhao et al., 2020; 289 

Zong et al., 2022). The boreal forest wildfires led to 5.28 Tg CO2, 19.44 Gg CH4 and 290 

0.94 Gg N2O, constituting 12.3% of the total wildfire-induced emissions of this region. 291 

This amount was also equivalent for nearly ninety percent of the boreal forest wildfire 292 

emissions nationwide. Grassland fires in Northeast China, specifically in the Hulun Buir 293 

and Xilingol grasslands, attracted national attention, accounting significantly for the 294 
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total amount at 67.2% for burned area and 46.7% for wildfire-induced emissions 295 

respectively.  296 

 

Fig. 3. Spatial distributions of the density and the trends of wildfire-induced emissions 

(CO2, CH4 and N2O).  

Subplots (a, c, e) show the density patterns and (b, d, f) for the trends. Their colors 

correspond to that in Fig. 1. To achieve better visual performance, the map demonstrated 

the density and trends in 1° grids where hatched area indicates significant trends (P<0.05). 

Locations of the provinces and regions are described in Fig. S4. 

Southwest China, covering five provincial administrative areas (Yunnan, Sichuan 297 

and Guizhou provinces, Chongqing and Xizang Autonomous Region), was the second-298 

largest regional scale emitter of fire-sourced greenhouse gases (Fig. 3). This region 299 

stands out as the only area where agricultural wildfires do not dominate; instead, 300 

temperate forest fires emitted more than all the other vegetation fires in this region (Fig. 301 

4) (Cui et al., 2022; Ying et al., 2021). Yunnan province, a pivotal player in shaping the 302 

wildfire dynamics of this region, contributed substantially, with an annual burned area 303 

of 0.16 Mha, emitting 7.57 Tg CO2, 23.13 Gg CH4, and 0.81 Gg N2O. These figures 304 

accounted for over 60% of the regional burned area and wildfire-induced emissions. 305 

From the perspective of recent trends, this province contributed to 82.4% of the 306 

regional decrease in burned area and an even larger share in the reduction of wildfire-307 

induced emissions. The border fires showed some shared similarities in fire spreading 308 
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mechanisms and environmental factors between this region and the adjoining Indo-309 

China Peninsula, a global wildfire hotspot. However, in comparison to the rapid land 310 

cover changes and massive relevant wildfires reported in Southeast Asian countries, 311 

involving activities such as slash-and-burn, commercial forest loss, and drainage in 312 

peatlands (Curtis et al., 2018; Page et al., 2022), Southwest China had fewer and 313 

weaker fire activities related with this type. The occurrences of forest fires usually arose 314 

from occasional personal activities or fire-related cultural traditions (Ying et al., 2021). 315 

On the other hand, due to recent implementations of fire policies and long-standing 316 

efforts from firefighting teams, Southwest China has experienced a significant decline 317 

in forest fires, with a decrease of -0.02 ± 0.00 Mha yr-2 (P<0.01) for burned area and -318 

0.74 ± 0.23 Tg yr-2 (P<0.05), -2.38 ± 0.74 Gg yr-2 (P<0.05) and 0.09 ± 0.02 Gg yr-2 319 

(P<0.05) for CO2, CH4 and N2O, respectively. This reduction accounts for more than 320 

65% of national declines in forest fires. 321 

 

Fig. 4. Regional amounts and trends of wildfire occurrences and GHG emissions.  

The Y-axis of these subplots represents the four wildfire-related metrics calculated in our 

study: burned area, CO2, CH4, and N2O emissions. The colored bars indicate the relative 

contributions from different land cover types within this region. The dark gray bars represent 

the proportions relative to the national total, with the corresponding values labeled to the left 

of the bars. Error bars in the right panel of each subplot depict the trends over the period 

from 2012 to 2022. Significant trends are denoted by asterisks (*P < 0.1, **P < 0.05, 

***P<0.01; NS indicates non-significant trends). 

East China is another peak region of fire activities both in terms of burned area 322 

and wildfire-induced emissions in our study. This region contains six provinces or 323 

municipalities: Anhui, Jiangsu, Zhejiang, Hunan, Hubei and Shanghai where more than 324 
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70% CO2 wildfire emissions came from crop residue burning except for Zhejiang 325 

province. Similar to North China (Hebei, Henan, Shandong, Beijing and Tianjin), 326 

wildfire patterns in East China are featured by high intensity in agricultural-sourced fire 327 

emissions, with a total amount of more than 10 Tg wildfire emitted CO2 and especially 328 

concentrated in the Huanghuai Plain, namely the connection area of Shandong, Henan, 329 

Jiangsu and Anhui. Altogether, these two regions have a half of the national sown area 330 

and grain production and account for 30.8% in cropland burned area, 25.4% in wildfire-331 

induced CO2 emissions (Fig. 4). During our study period, both of these two regions had 332 

significant declines in agricultural fires at more than -0.22 ± 0.06 Mha yr-2 (P<0.01) and 333 

-0.17 ± 0.02 Mha yr-2 (P<0.01) for East and North China, respectively. The decreasing 334 

burned area in cropland led to -2.52 ± 0.64 Tg CO2 yr-2 (P<0.01), -9.17 ± 2.28 Gg CH4 335 

yr-2 (P<0.01) and 0.15 ± 0.04 Gg N2O yr-2 (P<0.01) in East China. By contrast, there 336 

were an average of 0.59 Mha yr-1 in forest fires in the East China, three times higher 337 

than that in North China. This further contributed to significantly more wildfire-induced 338 

emission reduction, reaching 1.57 Tg CO2, 5.03 Gg CH4 and 0.19 Gg N2O per year.  339 

 340 

3.3 Comparison with other results 341 

To assess the outcomes of this dataset, we conducted a comparative analysis by 342 

juxtaposing our estimations with those from different studies or products. Our overall 343 

emissions estimates demonstrate moderate values where the amount attributed to 344 

agricultural fires was notably lower compared to former estimates. On average, the 345 

quantities reported in regional to national scale studies were at least three times higher 346 

than our results (Hong et al., 2023; Li et al., 2022; Wu et al., 2018). These studies 347 

employed CYBA as aforementioned that the estimates of burned crop residues is 348 

calculated by the multiplying the crop production derived from statistical data, the grain-349 

to-straw ratio from field-based analysis, and the proportion of crop residues burned in 350 

the field using empirical summaries. Previous studies had found that the use of very 351 

high residue burning ratios could be the reason for overestimates when compared with 352 

results based on categorized cropland maps (Zhang et al., 2020). Directly utilizing 353 

active fire pixels as proxies for the effects of fire activities can lead to higher values, 354 

thereby contributing to an increase in emission estimates. To address this, we 355 

employed an advanced satellite active fire dataset as a crucial supplementary 356 

observation. This dataset allowed us to refine burned area estimates by reconstructing 357 

external burned regions outside the original burned area data. We achieved this by 358 

using circular kernels centered at active fire records, aligning with the national wildfire 359 

dynamics, which are dominated by agricultural or small-sized fires. Two independent 360 

active fire products and MCD64 burned area products were incorporated as baseline 361 

to make intercomparison (Fig. 5). The sum of pixel area from MOD14 and VIIRS S-362 

NPP active fire products was translated to 6.77 ± 1.60 Mha and 8.20 ± 2.07 Mha per 363 

year (Giglio et al., 2018, p.6; Schroeder et al., 2014). As a result, the burned area 364 

calculation by directly counting all active fire pixels was at least 27.5% higher than our 365 

results.  366 

Expanding to a broader scope, various global fire emission inventories have been 367 

developed using different model settings. We selected four widely used products: (1) 368 
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Global Fire Emissions Database (GFED version 4.1s with small fire boosting) (van der 369 

Werf et al., 2017), (2) Fire Inventory from NCAR (FINN version 2.5) (Wiedinmyer et al., 370 

2023), (3) Global Fire Assimilation System (GFAS version 1.2) (Kaiser et al., 2012) and 371 

(4) Quick Fire Emissions Dataset (QFED version 2.5) (Koster et al., 2015). They 372 

employ either burned area-based approaches (GFED and FINN) or fire energy-based 373 

approaches (QFED and GFAS). Our results maintain similar ranges with other global 374 

products (Fig. 5). The refined calculation for burned area estimates yielded higher 375 

values than the sole use of burned area products and lower values than those only 376 

consisting of active fire products (see details in Methods). Correspondingly, the GHGs 377 

emissions were different as well when active fire-dominated product FINN had higher 378 

estimates than ours. GFED demonstrated 64.3% to 90.3% of the results from 379 

ChinaWED in three GHGs emissions.  380 

 

Fig. 5. Comparisons with global fire emission products as well as the burned area baseline 

calculation with the direct use of satellite datasets. The categories and the products are 

marked in their titles and x-axis.  

 381 

4. Discussions 382 

4.1 Influencing factors of the changes in wildfire seasonal cycles  383 

In China, regulations and policies substantially impact anthropogenic activities 384 

and thus the spatiotemporal distribution of the occurrences of wildfires and emissions. 385 

In the agricultural department, the policies have addressed on the issues of straw 386 

burning due to its extensive aerosols and greenhouse gases emissions. In the early 387 

21st century, a specific law for prevention of air pollution was published, followed by the 388 

releases of regulations on comprehensive utilization of straw (Wu et al., 2018; Zhang 389 

et al., 2015). The national-scale “Air Pollution Prevention and Control Action Plan” was 390 

initiated in 2013, with regional amendment progressively pushing from “legitimate 391 

CH4 N2OCO2Burned area
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burning” policy to “strict prohibition” (Geng et al., 2021). Since the enactment of stricter 392 

regulations on straw burning under the framework of the second revision of the 393 

Atmospheric Pollution Prevention and Control Law in 2016, significant progress has 394 

been made in controlling agricultural fires. Comprehensive control measures, 395 

especially in the agricultural sector, have substantially contributed to a rapid decline in 396 

the estimated burned area at the national scale. Between 2012 and 2016, the annual 397 

burned area decreased dramatically from 6.46 Mha yr-1 before 2016 to 3.89 Mha yr-1 398 

after 2016. Another consequential effect of the implementation of these banning 399 

policies has been the shifts in burning seasons (Ding et al., 2019; Zhang et al., 2020). 400 

Despite Northeast China being the only region with trends contrary to the national 401 

declines, a shift in the primary burning season from autumn to spring was also 402 

observed in this area after 2013 due to the implementation of straw burning bans 403 

(Cheng et al., 2022; WANG et al., 2020).  404 

It has been reported that there has been a noticeable decline in the global burned 405 

area driven by the expansion and intensified capital management in agricultural land 406 

use (Andela et al., 2017). Since the beginning of the 21st century, there has also been 407 

a growing emphasis on fire management within both administrative bodies and 408 

scientific communities in China. This evolution has contributed to a more stringent 409 

implementation, particularly in controlling ignition sources in agricultural practices and 410 

forest and grassland areas. From local fire suppression measures to national ignition-411 

proof initiatives, efforts have been progressively employed to bring forest fires under 412 

control (Chen et al., 2019; Ying et al., 2018). In comparison with forest fire dynamics 413 

reported in previous studies focusing on the first decade of this century, the southern 414 

part of China experienced a significant decline in burned area as well as wildfire-415 

induced emissions (Wang et al., 2023b; Ying et al., 2018; Zong et al., 2022). Whilst the 416 

establishment and improvement of legal systems and infrastructure for forest and 417 

grassland fire prevention, dealing with uncontrolled transboundary fires remains 418 

challenging. Nationally, an area of 0.07 Mha yr-1 was affected within the 10 km buffer 419 

zone near the borders with neighboring countries. This accounted for 1.3% of domestic 420 

burned area and contributed to 1.03 Tg yr-1 of CO2, 3.35 Gg yr-1 of CH4, and 0.09 Gg 421 

yr-1 of N2O.  422 

 423 

 424 

4.2 Improvements of ChinaWED to previous studies 425 

As described in the aforementioned texts, we refined our estimates of emission 426 

factors, fuel loadings and burned area mainly with a set of more localized parameters 427 

and advanced satellite-based observations. Fuel loadings in these previous global 428 

products are mainly derived from biogeochemical models in these global products. 429 

According to the recent studies, the use of aboveground biomass (AGB) as a proxy of 430 

fuel loadings can enable indirect estimations of dry matter and improve fire emission 431 

estimates (Di Giuseppe et al., 2021). We thus used a high-resolution harmonized 432 

carbon density map that was consistently and seamlessly reported across a wide 433 

range of vegetation types based on the relative spatial extent of each type. Emission 434 

factor is a scalar that evaluate the ratio between emission and the total amount of dry 435 
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matter that was consumed during burning processes. In this study in addition to the 436 

previously summarized emission factors, we collected the field-based research in 437 

China and neighboring countries and recompiled the values into the new table of 438 

wildfire emission factors for different land cover types. A detailed selection of these 439 

components can be found in Table S2. Although the use of AGB as a fuel load proxy 440 

has demonstrated superior performance compared to vegetation models or FRP-441 

derived estimations (Di Giuseppe et al., 2021), it is crucial to highlight that our current 442 

model relies entirely on a static AGB dataset. This limitation creates a scenario where 443 

fuel loads have few impacts on the variability of emission estimates. Future 444 

improvements could be achieved by integrating dynamic input products and enhancing 445 

the precision of AGB estimations in croplands. 446 

Additionally in the estimates of burned area, ChinaWED leveraged the sensitivity 447 

of active fire products with higher spatial resolution and developed a new set of 448 

calculation methods that were suitable for smaller fires. The global products had 449 

different frameworks where FINN focuses on active fire detection clusters joined for 450 

the determination of extended burned areas and the burned area from GFED is mainly 451 

derived based on a linear combination of the distribution of active fire and original 452 

burned area data. QFED and GFAS utilize fire energy as the intermediate product to 453 

represent the effects of fires for estimating wildfire-induced emissions. These models 454 

employ empirical continuous functions to incorporate discrete observations and 455 

calculate the temporal integral of fire radiative power (FRP). Furthermore, ChinaWED 456 

is designed for the analysis of wildfire-induced GHG emissions. Most products reported 457 

wildfire-induced CO2 and CH4 emissions while only two of them provided N2O emission 458 

estimates (Fig. 5).  459 

 460 

 461 

5. Conclusions 462 

Wildfire is one of the most common land-surface disturbances to ecological and 463 

socioeconomical processes. It combusts vegetation and releases greenhouse gases 464 

and aerosols. Employing the burned area-based approach, we featured multisource 465 

fire locations, updated emission factors, and high-resolution fuel load maps to generate 466 

a new China wildfire emission dataset. The wildfire dynamics showed that during the 467 

past decade, an average of 5.31 ± 1.70 Mha burned area, 78.13 ± 22.46 Tg CO2, 468 

279.47 ± 82.01 Gg CH4, and 6.26 ± 1.67 Gg N2O per year was observed. At the national 469 

scale, the spatiotemporal characteristics of fire occurrences were markedly influenced 470 

by agricultural activities, which contributed to more than four-fifths in area and at least 471 

half in greenhouse gas emissions. The extensive agricultural fires played an important 472 

role in shaping the seasonal cycle of wildfire emissions (Hong et al., 2023; Xu et al., 473 

2023). Northeast, North, and East China emerged as hotspots for this type of fires, 474 

with the major peak of emissions occurring in mid-spring to early-summer. We 475 

observed rapid and significant decline of burned area and wildfire-induced emissions 476 

in vast areas in China that may be largely attributed to the implementation of fire 477 

prevention and bans on straw burning. Notably, the relative decline rate of burned, 478 
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translating to around 5.8% per year, was four times higher than the global average 479 

(Andela et al., 2017). Northeast China was the only region with an opposite trend, 480 

suggesting a situation that requires more adaptive policies rather than mandatory bans. 481 

Compared with estimations by other studies and global products, our results have 482 

moderate values where the mismatches in burned area and estimates of burned crop 483 

residues contributed largely. Overall, the calculation of burned area for small-sized fire 484 

activities and the recalibrated emission factors, tailored for wildfires in China, contribute 485 

to the findings of this study. These results offer new insights into the spatiotemporal 486 

patterns of China's wildfire-induced greenhouse gas emissions and provide important 487 

estimates as a part of the budget for the national terrestrial ecosystems. Future 488 

updates will focus on integrating additional field-based studies and refining the 489 

estimates of various burning processes. 490 

 491 

Code and data availability 492 

Python code for this model can be obtained from 493 

https://zenodo.org/records/13800556 (python version 3.11.6). Key packages used in 494 

the code include rasterio (version 1.3.9), numpy (version 1.25.2), pandas (version 495 

2.1.3) and scipy (version 1.10.1). Fire products include MCD64A1.061 496 

(doi.org/10.5067/MODIS/MCD64A1.061) and VIIRS S-NPP active fire 497 

(doi.org/10.1016/j.rse.2013.12.008). Aboveground biomass data is available from 498 

doi.org/10.1038/s41597-020-0444-4. Different crop types are available from double 499 

season paddy rice (doi.org/10.3390/rs13224609), single season rice 500 

(doi.org/10.57760/sciencedb.06963), maize (doi:10.6084/m9.figshare.17091653), 501 

winter wheat (doi.org/10.6084/m9.figshare.12003990) and sugarcane 502 

(doi.org/10.3390/rs14051274), respectively. 503 
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