
Response to Anonymous Referee #1 (https://doi.org/10.5194/gmd-2024-169-

RC2) 

The study’s methods are sound and statistical analysis very well developed, such tests 

and choice of training and validation data. However, I have identified some points 

which could lead to a minor or major revision depending on the editor’s opinion. First, 

the choice of simple vegetation indices as dependent variables for the model seem to 

me dated, especially due to the current availability of Solar Induced Fluorescence (SIF) 

products, which are more suited as proxies of photosynthesis than EVI, NDVI, etc. 

Although the authors mention the possible future use of SIF, I would like to know 

further details to why it was not used in this study, or extra analysis where SIF is 

included. Second, the resolution of the remote sensing products used (500 meters) does 

not seem to be compatible with the eddy flux data. At this scale, microclimatic or 

topographic factors may cause significant divergences in relation to a 500 m size pixel, 

and lead to inconsistencies. I suggest that, if possible, data with higher resolution are 

used (LANDSAT or SENTINEL-2) or arguments are given for the use of the lower 

resolution product. Finally, I would be very interested in the production of a GPP map 

of China using the FLAML framework, and how it compares with other GPP maps. I 

think this would greatly increase the manuscripts appeal. 

We sincerely thank reviewer for their thorough and constructive feedback, which has 

significantly improved the quality and clarity of our manuscript. We have carefully 

considered each suggestion and have made corresponding revisions to the manuscript. 

Below, we provide detailed responses to all the comments raised by the reviewers. 

 

General Comments 

Q1. First, the choice of simple vegetation indices as dependent variables for the model 

seem to me dated, especially due to the current availability of Solar Induced 

Fluorescence (SIF) products, which are more suited as proxies of photosynthesis than 

EVI, NDVI, etc. Although the authors mention the possible future use of SIF, I would 

like to know further details to why it was not used in this study, or extra analysis where 

SIF is included.  

Thank you for your insightful comment. We acknowledge that Solar Induced 

Fluorescence (SIF) is a promising proxy for photosynthesis and has been increasingly 

used in recent studies. Compared to traditional vegetation indices (e.g., EVI, NDVI), 

SIF directly reflects chlorophyll fluorescence emissions, providing a more direct link 

to gross primary production (GPP). 

However, in this study, we did not incorporate SIF due to the following reasons: 

Data Availability: Solar-induced fluorescence (SIF) observations have significantly 

advanced in recent years, yet the availability of long-term, continuous SIF datasets with 

fine spatial resolution remains a challenge. In comparison to well-established 

vegetation indices such as the Enhanced Vegetation Index (EVI) and the Normalized 

Difference Vegetation Index (NDVI), which have been monitored for decades using 

sensors like MODIS, SIF datasets are relatively recent. The SIF data listed in Table 1 
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highlight various datasets with different temporal coverage, spatial resolutions, and 

geographic extents. While some datasets, such as GOME-2 and OCO-2, provide global 

coverage and span several years, none of the available datasets fully meet the temporal 

coverage requirements for all FLUX station periods. Additionally, combining SIF 

products from different sources could introduce inconsistencies, leading to potential 

errors. These inconsistencies pose a significant risk to the reliability and accuracy of 

analyses, which is why we chose not to use these SIF products for generating a long-

term time series. 

Table 1 Summary of Satellite Datasets for Solar-Induced Fluorescence (SIF) Observations. 

Dataset Temporal coverage Spatial resolutions Time resolutions Coverage 

GOME-2 2007 to present 40 km × 40 km 1-2 days Global 

OCO-2 2014 to present 1.3 km × 2.25 km 16 days Global 

TROPOMI 2018 to present 7 km × 7 km 1 day Global 

GOSAT 2009 to present 10 km × 10 km 3 days Global 

SCIAMACHY 2002–2012 30 km × 60 km 35 days Global 

TanSat 2016 to present 1 km × 2 km 16 days Global 

OCO-3 2019 to present 1.6 km × 2.2 km 16 days Global 

CFIS 2016–2018  30 m × 30 m Irregular Local 

TANSO-FTS 2009 to present 10 km × 10 km 3 days Global 

Resolution Limitations: The current global SIF products, such as those from OCO-

2 and TROPOMI, often have spatial resolutions that are relatively coarse, typically 

greater than 1 km. While suitable for large-scale or global studies, this level of 

resolution is insufficient for capturing fine-scale ecological variations, particularly in 

heterogeneous or fragmented landscapes. For instance, OCO-2’s spatial resolution of 

1.3 km × 2.25 km and TROPOMI’s 7 km × 7 km resolution may not be ideal for 

studies requiring detailed local information or the monitoring of small-scale ecosystem 

dynamics. Some datasets like CFIS, with a resolution of 30 m × 30 m, offer much 

finer spatial detail while their spatial coverage of datasets is usually incomplete, which 

cannot meet our continuous and full flux sites coverage needs in a large area. 

For these reasons, we did not incorporate SIF datasets in our current study. That 

being said, we acknowledge the potential benefits of incorporating SIF and are 

considering its integration in future research. We plan to explore whether SIF-based 

models can further improve GPP estimations, either as a standalone predictor or in 

combination with traditional vegetation indices. Once again, we appreciate your 

valuable suggestion and will take this into account in our future work. 

 

Q2. Second, the resolution of the remote sensing products used (500 meters) does not 

seem to be compatible with the eddy flux data. At this scale, microclimatic or 

topographic factors may cause significant divergences in relation to a 500 m size pixel, 

and lead to inconsistencies. I suggest that if possible data with higher resolution are 

used (LANDSAT or SENTINEL-2) or arguments are given for the use of the lower 

resolution product.  

Thank you for your thoughtful suggestion regarding the spatial resolution of the 



remote sensing products used in our study. 

First, we understand your concern that the 500 m spatial resolution of MODIS data 

might not be ideal for capturing fine-scale variations relevant to eddy covariance 

measurements. However, it is important to note, as described by Schmid (2002), that 

the footprint of an eddy covariance tower is not fixed but varies with meteorological 

conditions, typically ranging from 100 m to 1 km. Additionally, Zhang et al. (2021) 

found that different footprints, such as 500, 1000, and 1500 meters, showed almost no 

difference in the study area. Given this, we believe that the 500 m resolution of MODIS 

is appropriate for representing the footprint of the flux tower and is well-suited for our 

study. 

We did consider the use of higher-resolution products, such as LANDSAT and 

SENTINEL-2, but there are a few important limitations associated with these datasets. 

Regarding LANDSAT data, although it offers finer spatial resolution, there are 

known issues with data quality. Several Landsat satellites, including Landsat 7, suffered 

from technical failures that resulted in data gaps and missing information. These issues 

compromise the consistency and reliability of the dataset, particularly for long-term 

monitoring studies. As a result, the data quality and temporal consistency of LANDSAT 

may not be suitable for this study. 

As for SENTINEL-2, although it provides high-resolution imagery (10 m), its 

temporal coverage is limited compared to MODIS. SENTINEL-2 data is available since 

2015, which means it doesn't fully cover the historical periods needed for our analysis, 

especially for longer-term studies. Furthermore, while SENTINEL-2 offers good spatial 

resolution, it may not always be available due to cloud cover and other environmental 

factors, further complicating its use for continuous monitoring. 

Considering these limitations, we chose to use MODIS data with 500 m resolution 

because it offers a good balance between spatial resolution, temporal coverage, and 

global availability, making it more suitable for our study's long-term monitoring needs. 

We hope this clarifies our choice of data and addresses your concerns. Thank you 

again for your valuable input, which will help us refine our approach. 

 

Q3. Finally, I would be very interested in the production of a GPP map of China using 

the FLAML framework, and how it compares with other GPP maps. I think this would 

greatly increase the manuscript’s appeal. 

Thank you for your valuable suggestion. Your input has provided us with very 

useful inspiration. Using the FLAML framework to create a GPP (Gross Primary 

Productivity) map for China is indeed a meaningful and interesting task. As we have 

mentioned in the text, the FLAML-LUE models have “the potential to be applied in 

predicting GPP for different vegetation types at a regional scale”. However, these 

models are only driven from data of 20 stations, which is not enough to cover the entire 

ecosystem types in China. Therefore, using them for the production of a China GPP 

map is still not competent enough. This is not related to the limitations of the method, 

it's just that we need more site data support. 

We plan to further develop this aspect in our future research and will provide a 

detailed discussion of it in the manuscript. We will consider using the FLAML 



framework to build a GPP prediction model for China and compare it with existing GPP 

maps to assess its accuracy and applicability. This will not only help us better 

understand the spatial distribution of GPP in China but also provide valuable insights 

for global GPP research. 

Once again, thank you for your insightful feedback. Your suggestion will 

undoubtedly enrich the depth and scope of our research. We will continue to explore 

this direction in our future work and present the results more comprehensively in the 

manuscript.  

 

Specific comments 

Q1. L90 - I would not say ML is "fundamentally different" from regression models, but 

that they offer advantages in relation to. 

 Thank you for your insightful comment. You are absolutely right that machine 

learning is not fundamentally different from regression models but rather offers 

advantages in certain aspects. We have revised the text accordingly to better reflect this 

distinction. The revised sentence now reads: “ML is a modeling approach that differs 

from simple regression models and complex simulation models in its methodology.” 

 

Q2. L94 - I would also point out limitations on ML techniques, such as dependence on 

large training datasets and not being able to link results to real-world processes. 

Q3. L96 - ...Which is an advantage when the focus is solely on spatial predictions 

Response to Q2 (L94) and Q3 (L96): Thank you for your valuable comments. We 

acknowledge that machine learning techniques have certain limitations, including their 

dependence on large training datasets and the challenge of directly linking results to 

real-world processes. These constraints are important considerations when applying 

ML models. However, as you pointed out, when the primary focus is on spatial 

predictions, the ability of ML models to capture complex patterns without requiring 

explicit process-based formulations can be an advantage. We have revised the 

manuscript to reflect these points more clearly. 

We have revised our manuscript as follows: 

“These data-driven models are particularly suited for capturing nonlinear 

ecosystem dynamics but often require large training datasets and may lack explicit links 

to real-world processes. However, their ability to uncover spatial patterns without 

process-based constraints makes them valuable for spatial predictions. Consequently, 

ML-based approaches have gained popularity in recent years. For example, Kong et al. 

(2023) developed a hybrid model that combines ML and LUE model to estimate GPP. 

This hybrid model improves the LUE model by integrating a machine learning 

approach (MLP, multi-layer perceptron), and estimates GPP using the MLP-based LUE 

framework along with additional required inputs.” 

 

Q4. Fig. 1 - The mini-map on the bottom right corner does not include any sites, or any 

extra information, maybe remove it? Otherwise, I believe the editors should label these 

areas in the South China Sea as “under dispute”, as stated in the “maps and aerials” 



section of the submission guidelines. 

We sincerely thank the reviewers for their valuable suggestions regarding the mini-

map in Figure 1. However, we would like to clarify that the map reflects the distribution 

of flux sites within China's territory. As required, we have ensured that the map 

accurately represents China’s territorial boundaries. This representation is consistent 

with the practices in previous publications in Geoscientific Model Development 

(GMD). For example, in the article by Ren et al. (Ren et al., 2024), Figure 1, and in 

Figure 1 of the article by Wang et al. (Wang et al., 2022) and Figure 2 of the article by 

Wu et al. (Wu et al., 2021) , the South China Sea is similarly depicted as part of China’

s territory without any additional labels indicating disputes. 

We understand the sensitivity of territorial issues and the importance of adhering 

to journal guidelines. However, given the scientific context of our study and the 

precedent set by other publications in GMD, we believe that the current representation 

of the map is appropriate. We hope this explanation addresses the reviewer’s concern. 

 

Q5. Table 2 – In contrast to other vegetation indexes, LAI satellite data is based on 

empirical models, such as previous GPP estimating methods. It would be interesting to 

check if field LAI data from the sites are available to see if direct LAI measurements 

improve the ML model. 

Thank you for your insightful comment. You are absolutely right that LAI satellite 

data, unlike other vegetation indices, is often derived from empirical models, similar to 

GPP estimation methods. We appreciate your suggestion to explore the availability of 

field LAI data from the study sites. We also believe that incorporating direct field LAI 

measurements could potentially enhance the performance of the ML model by 

providing more accurate and site-specific information. Unfortunately, at this stage, field 

LAI data in most of the 20 sites were not available. However, we plan to explore this 

avenue in future research and will certainly consider integrating field measurements of 

LAI if they become available, as they may provide valuable improvements to the model. 

 

Q6. L686 - I would argue then that in the future hyperspectral data + ML would provide 

much better estimates too, this could be discussed with references. 

Thank you for your valuable suggestion. We agree that hyperspectral data, when 

combined with machine learning (ML) techniques, could provide more accurate and 

robust estimates in the future. Hyperspectral data offer a rich spectrum of information 

across many wavelengths, which can capture subtle variations in vegetation properties 

that other remote sensing datasets might miss. This could indeed improve model 

predictions by providing more detailed spectral features. 

We have revised our manuscript as follows: 

“Recent research indicates that satellite observations of solar-induced chlorophyll 

fluorescence (SIF) provide a more accurate picture of plant photosynthesis dynamics 

and serve as a more effective indicator for modeling subtropical evergreen vegetation 

(Sun et al., 2017; Frankenberg et al., 2011). In the future, integrating hyperspectral data 

with machine learning could lead to more accurate GPP estimates, as hyperspectral data 

offer finer spectral resolution, enabling better capture of vegetation traits and 



environmental conditions (Gessner et al., 2015; Zarco-Tejada et al., 2013). This 

integration could further enhance model performance, particularly for evergreen forests. 

For example, Zhang et al. (2021) used hyperspectral data (EO-1 Hyperion) to estimate 

GPP in the temperate forests of Changbai Mountain. Future research should consider 

incorporating both hyperspectral data and SIF into models to assess their potential for 

improving GPP estimations across various ecosystems.” 

We appreciate your input and will explore the literature on this topic to strengthen 

our discussion. 
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Response to Anonymous Referee #2 (https://doi.org/10.5194/gmd-2024-169-

RC3) 

The authors apply FLAML v2.3.3---an automated machine‑learning toolkit---to predict 

gross primary productivity (GPP) across 20 eddy‑covariance sites, which is a less 

interesting and less novel endeavor. The manuscript would benefit from a more sharply 

defined research question and a deeper interrogation of the ecological processes 

underlying the model's performance. In particular, the authors should clarify what novel 

scientific insight they seek --- beyond demonstrating sensitivities --- and explore how 

specific feature groups/selections inform mechanistic understanding rather than merely 

reflecting data redundancy and uncertainty. Given these substantive concerns about 

framing and ecological interpretation, I respectfully decline to continue with further 

review, if that is the case. 

We sincerely appreciate your valuable time and insightful comments, which have 

significantly helped us improve the quality and clarity of our manuscript. In the revised 

version, we have carefully addressed all the issues you raised. Specifically, we have 

thoroughly revised the structure and content of the manuscript, resulting in substantial 

modifications—nearly a thousand changes were made throughout the document. 

We believe that these revisions have greatly strengthened the overall presentation and 

scientific value of our work. Below, we provide a detailed point-by-point response to 

each of your comments. 

General Comments 

Q1. The whole work reads more like a sensitivity report than an ecological modeling 

study. What specific scientific insight are the authors seeking by comparing FLAML to 

not scientifically different feature groups? 

Thank you for your thoughtful and constructive comment. We have further clarified the 

scientific rationale and objectives of our study in the Introduction section of the 

manuscript. Our study aims to bridge the gap between process-based ecological 

modeling and data-driven approaches by integrating domain-specific knowledge from 

LUE models with the automated and efficient learning capabilities of FLAML. The 

resulting FLAML-LUE framework is a knowledge-guided machine learning model 

designed to address key ecological questions related to the estimation of GPP. 

Specifically, our scientific insights are centered on the following (Line 122-131): 

➢ To evaluate the performance of models using different combinations of LUE-

related variables, such as absorbed PAR (fPAR) and water stress factors, across 

multiple vegetation types and time scales. 

➢ To investigate model robustness under extreme climatic conditions, including 

high temperatures, elevated vapor pressure deficits (VPD), and drought. By 

evaluating model stability under these stressors, we aim to assess the resilience 

and reliability of GPP estimation frameworks in the face of climate variability 

and change. 

The ultimate objective is to identify optimal input combinations for FLAML-LUE 

models tailored to different vegetation types and climate zones across China. This helps 
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enhance regional-scale GPP estimation accuracy, which is crucial for carbon budget 

assessments and ecosystem management. 

 

Q2. The main text suggests a "FLAML‑LUE model", yet none of the analyses explicitly 

implement light‑use‑efficiency (LUE) theory. Instead, all results derive from various 

tree‑based regressors. If the intent is to compare FLAML‑derived machine‑learning 

models against LUE theory, the authors should at least incorporate an explicit LUE 

model.  

Thank you for your thoughtful comment. We have further clarified the structural 

framework of the FLAML-LUE model in Section 2.3.3 of the manuscript (Lines 122 

and 272). In this study, the term "FLAML-LUE" does not refer to a direct 

implementation of a mechanistic light-use efficiency (LUE) model. Rather, it reflects a 

hybrid modeling strategy where we incorporate key explanatory variables that originate 

from LUE theory—such as absorbed photosynthetically active radiation (fPAR), light-

use efficiency modifiers, and environmental stress indicators (e.g., VPD, temperature, 

and water stress indices)—into an automated machine learning framework (FLAML). 

These variables represent the core components influencing vegetation productivity in 

traditional LUE models. 

𝐺𝑃𝑃 = 𝑓 (𝑃𝐴𝑅, 𝑇, 𝑓𝑃𝐴𝑅, 𝑊𝑗 , 𝑉𝑇, 𝑆𝑒𝑎𝑠𝑜𝑛) (3) 

where, the 𝑓𝑃𝐴𝑅 include EVI, NDVI, and LAI; 𝑊𝑗 denotes moisture factors 

including LSWI, EF, SW, PDSI, Pre, RH; 𝑉𝑇 represents vegetation types, in which 

forest ecosystems include: EBF, DBF, NF, MF, and SAV; grassland ecosystems 

include GRA, MEA, and SHR, and farmland ecosystems include SC and DC; 

𝑆𝑒𝑎𝑠𝑜𝑛 represents the season in which the original data were acquired.  

Our goal was to combine domain knowledge from LUE theory with the flexibility and 

efficiency of data-driven models. While we do not simulate GPP using a process-based 

LUE equation, the LUE-related predictors guide the learning process of the machine 

learning models, enabling a knowledge-informed estimation of GPP across different 

vegetation types and environmental conditions. 

 

Q3. The model groups differ mainly in dryness index definition, data source or temporal 

averaging (e.g., PDSI vs. evaporative fraction, flux ‐ tower vs. ERA5-Land 

temperature, actually Ta_flux is typically gapfilled by ERA5). These inputs often carry 

overlapping information, so comparisons may reflect data uncertainty or scale 

mismatches rather than mechanistic differences. Exploring a truly critical predictor --- 

such as soil moisture --- could strengthen the ecological relevance and offer interesting 

insights. A basic clarification to mention here is that ERA5-Land is a reanalysis dataset 

rather than a remote sensing product, and it should not be confused with ERA5. 

ERA5Land provides hourly rather than daily data. 

Thank you for your valuable suggestion. We have addressed both issues you raised with 

corresponding revisions. 

First, based on your comments, we have revised the selection of input variables used in 

the model construction process (see Table 1). Following this adjustment, we re-train 



the models and re-evaluated the results accordingly. Specifically, to ensure consistency 

and reliability across all 18 variable combinations, we standardized the sources of 

temperature and PAR data by uniformly adopting ERA5-Land products. Additionally, 

we removed the PDSI dataset from our analysis because it is only available at a monthly 

temporal resolution, which is inconsistent with the finer time scales of other datasets 

used in this study. Instead, we carefully selected variables that more accurately capture 

vegetation moisture constraints from multiple ecological perspectives: atmospheric 

moisture stress (e.g., relative humidity and precipitation), vegetation-level moisture 

stress (e.g., LSWI and EF), and soil moisture limitations (e.g., SW). These choices are 

grounded in ecological theory and supported by previous research (Chang et al., 2023)。 

Table 1 

Input variable combinations of fPAR and water stress indicators. 

Group Input variables Group Input variables Group Input variables 

FLAML00 NDVI, LSWI FLAML10 EVI, LSWI  FLAML20 LAI, LSWI  

FLAML01 NDVI, EF FLAML11 EVI, EF FLAML21 LAI, EF 

FLAML02 NDVI, SW FLAML12 EVI, SW FLAML22 LAI, SW 

FLAML03 NDVI, VPD FLAML13 EVI, VPD FLAML23 LAI, VPD 

FLAML04 NDVI, Pre FLAML14 EVI, Pre FLAML24 LAI, Pre 

FLAML05 NDVI, RH FLAML15 EVI, RH FLAML25 LAI, RH 

 

Regarding the second issue you mentioned about the description of the ERA5-Land 

dataset, we have made corresponding revisions in the updated manuscript. Specifically, 

Section 2.2.3 now reads as follows: "ERA5-Land (Hersbach et al., 2020) is a global 

high-resolution reanalysis dataset produced by the European Centre for Medium-Range 

Weather Forecasts (ECMWF) under the Copernicus Climate Change Service (C3S). It 

provides hourly land surface variables at a spatial resolution of 0.1°, generated using a 

dedicated land surface model driven by the ERA5 climate reanalysis. The dataset 

integrates advanced land surface modeling and data assimilation techniques, offering a 

wide range of variables such as air temperature, soil moisture, precipitation, and snow 

depth. In this study, site-specific variables including air temperature (T), soil water 

content (SW), precipitation (Pre), and leaf area index (LAI) were extracted from ERA5-

Land. In addition, photosynthetically active radiation (PAR), evapotranspiration 

fraction (EF), VPD and relative humidity (RH) were calculated and derived from 

available ERA5-Land variables using GEE." 

 

Once again, thank you for your insightful feedback. Your suggestions have significantly 

contributed to improving the depth and rigor of our study. We will continue to build on 

this work and aim to present our findings more comprehensively in future research.  

 

Q4. The rationale for analyzing 8-day, 16-day vs. monthly statistics is not fully 

developed. Because GPP seasonality dominates many signals, the differences in model 



performance may simply reflect sample size (it is unsurprising that monthly R2 exceed 

those at the 8‑day scale, and this comparison offers no insight). 

Thank you for your insightful comment. We agree that the seasonal dynamics of GPP 

and the differences in sample sizes across temporal scales (e.g., 8-day, 16-day, monthly) 

can inherently influence model performance metrics such as R². However, our rationale 

for analyzing multiple temporal resolutions goes beyond statistical comparisons. 

The primary objective of incorporating different temporal scales is to evaluate the 

robustness and generalizability of the FLAML-LUE model across varying degrees of 

temporal aggregation. As indicated in the revised manuscript (Line 464 - 467), 

compared to the daily scale, the nuRMSE decreases by 12.97%, 16.52%, and 25.92% 

at the 8-day, 16-day, and monthly scales, respectively. This highlights that the 

uncertainty of the FLAML-LUE model is significantly reduced at coarser temporal 

resolutions. 

Furthermore, from an application perspective, transitioning from site-level to regional-

scale GPP estimation across China requires temporal resolutions that align with 

commonly used satellite products. In this context, 8-day or monthly models are more 

practical, as they not only reduce noise through temporal aggregation but also ensure 

greater consistency with large-scale remote sensing data. These coarser time scales 

offer a more effective trade-off between capturing ecological dynamics and enabling 

broader spatial applicability. 

 

Q5. Presenting each PFT group in separate sections can make cross‐comparison 

cumbersome. I suggest grouping figures by PFT (forest, grassland, cropland) with sub-

panels for each site or model variant. 

Thank you for your helpful suggestion. 

We agree that organizing the figures by plant functional type (PFT)—such as forest, 

grassland, and cropland—can improve clarity and facilitate more effective cross-

comparisons. In response to your comment, we have revised the relevant figures 

accordingly, grouping them by PFT with sub-panels representing individual sites or 

model variants. This required a substantial amount of work, as it involved reprocessing 

the results and essentially rewriting this section of the manuscript. Nonetheless, we 

believe this reorganization enhances both the readability and interpretability of the 

results. We sincerely appreciate your constructive feedback. 

 

Q6. The manuscript contains kind of repeated descriptions across all sessions. I 

recommend restructuring the whole manuscript thoroughly to avoid duplication. 

Meanwhile, the authors claim that all results are from validation, but without describing 

the split strategies. 

Thank you for your valuable comment. In response, we have thoroughly restructured 

the manuscript to reduce redundancy and improve overall clarity. Repetitive 

descriptions across sections have been removed or streamlined to avoid duplication and 

enhance readability. 

Additionally, we have now clearly described the dataset split strategy in Section 2.3.1 

of the revised manuscript. Specifically, the pre-processed dataset was divided into 



training and testing sets using the Blocked Time Series Split strategy. Given the 

temporal dependency of the data, standard cross-validation is not suitable for time series 

analysis (Reichstein et al., 2019). Instead, a block-based and non-continuous split is 

applied to preserve the temporal structure. In this approach, the time series is partitioned 

into several non-overlapping continuous training blocks (e.g., 2003-2005, 2007-2009, 

2011-2013, 2015-2017, 2019-2021), with independent years reserved as the validation 

set following each training block (e.g., 2006, 2010, 2014, 2018, 2022). This strategy 

ensures that the temporal order is maintained, preventing future data from leaking into 

the training process and thus avoiding invalid predictions. Additionally, the method 

incorporates validation over multiple periods, enabling the assessment of model 

generalization across different climate conditions, which is crucial for evaluating the 

model's robustness under varying environmental scenarios. 
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Response to Anonymous Referee #3 (https://doi.org/10.5194/gmd-2024-169-

RC4) 

This is the review report for "FLAML version 2.3.3 model-based assessment of gross 

primary productivity at forest, grassland, and cropland ecosystem sites". The authors 

developed a FLAML modeling framework to predict vegetation gross primary 

productivity using hydro-meteorological variables and variables related to vegetation 

types and elevation. They focus on sites in China and provide detailed model 

performance in reproducing forest, grass, and crop sites. While the manuscript is 

structured, the authors need to check throughout the manuscript to ensure readability, 

e.g., the abbreviations. More importantly, I have some concerns about the modeling 

data input, cross-validation, and the selection of hydro-meteorological variables. Also, 

the evaluation of the absolute values of GPP can smooth out potentially poor 

performance during extreme situations. Therefore, a specific test for stress conditions 

and an evaluation of GPP anomalies are both highly recommended. 

We are very grateful for your thoughtful and constructive comments, which have been 

instrumental in improving our manuscript. In response, we have carefully revised the 

manuscript by addressing each of the issues you pointed out. This process involved a 

substantial reorganization of the manuscript's structure and a comprehensive update of 

its content, resulting in extensive modifications throughout the text. 

These revisions, we believe, have significantly enhanced both the clarity and scientific 

rigor of our work. Below, we provide detailed responses to each of your comments, 

explaining the corresponding changes made. 

 

Methodology 

Q1. GPP and RECO Partitioning: The manuscript should provide a clear description of 

the method used to partition GPP and RECO from NEE. Additionally, it is 

recommended to test different partitioning algorithms to assess their impact on the 

results. 

Thank you for your insightful comment. Due to data upload inconsistencies, ER data 

were missing at several sites (DLG, LCA, XLG). To address this issue and ensure data 

consistency across all sites, we estimated ecosystem respiration (ER) using the Lloyd 

& Taylor equation (Reichstein et al., 2005; Lloyd and Taylor, 1994), which is a widely 

adopted method in flux data processing. 

This approach distinguishes daytime and nighttime periods using shortwave radiation 

(Rg), with a threshold of 10 W/m². The temperature–response function derived from 

nighttime ER observations was then extrapolated to estimate daytime ER. This method 

is commonly used across many flux tower networks for separating Reco into GPP and 

ER components, and thus was adopted in our study to maintain methodological 

consistency. This has been clarified in Section 2.2.1 of the revised manuscript. 

We fully agree with your point that evaluating the impact of different partitioning 

algorithms on GPP estimation is valuable. However, in the context of this study, flux 

partitioning serves as a preprocessing step rather than a primary research focus. A 
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detailed comparison of flux partitioning methods would be more appropriate for a 

dedicated study, and we will consider exploring this direction in future work. 

 

Q2. Train-Test Split Strategy: The procedure for splitting the dataset into training and 

validation sets needs to be described in greater detail. It is important to test whether the 

model maintains robustness during stress periods (e.g., droughts or heatwaves). 

Moreover, model performance should be evaluated not only in terms of seasonal GPP 

dynamics but also in reproducing GPP anomalies, which are crucial for capturing 

ecosystem responses beyond typical seasonal cycles.  

Thank you for your valuable comments. We have addressed both of the concerns you 

raised through revisions and clarifications in the manuscript. 

First, regarding the dataset split strategy, we have clearly described the methodology in 

Section 2.3.1 of the revised manuscript. Specifically, the pre-processed dataset was 

divided into training and testing sets using the Blocked Time Series Split strategy. 

Given the temporal dependency of the data, standard cross-validation is not suitable for 

time series analysis (Reichstein et al., 2019). Instead, a block-based and non-continuous 

split is applied to preserve the temporal structure. In this approach, the time series is 

partitioned into several non-overlapping continuous training blocks (e.g., 2003-2005, 

2007-2009, 2011-2013, 2015-2017, 2019-2021), with independent years reserved as the 

validation set following each training block (e.g., 2006, 2010, 2014, 2018, 2022). This 

strategy ensures that the temporal order is maintained, preventing future data from 

leaking into the training process and thus avoiding invalid predictions. Additionally, the 

method incorporates validation over multiple periods, enabling the assessment of model 

generalization across different climate conditions, which is crucial for evaluating the 

model’s robustness under varying environmental scenarios. 

Second, regarding the evaluation of model performance under extreme environmental 

conditions, we have added corresponding analyses in Section 3.2 of the revised 

manuscript. Numerous studies have shown that climate extremes—such as heatwaves, 

droughts, and high atmospheric vapor pressure deficit (VPD)—can significantly alter 

ecosystem functioning and reduce carbon uptake capacity (Frank et al., 2015; 

Reichstein et al., 2013). These events can suppress photosynthetic activity, increase 

respiration rates, and disrupt the carbon exchange balance between vegetation and the 

atmosphere. To evaluate the robustness and reliability of the FLAML-LUE model under 

such stress conditions, we examined model performance in simulating GPP during three 

types of climate extremes: high temperature, high VPD, and drought. By analyzing 

model accuracy and bias under these extreme scenarios, we aim to assess its 

applicability and limitations in challenging environmental settings. 

Additionally, we acknowledge that the impacts of other extreme weather events and the 

ability of the model to reproduce GPP anomalies deserve further exploration, which we 

plan to address in future studies. 

Thank you once again for your constructive feedback, which has helped us to improve 

the rigor and comprehensiveness of our study. 

 

Q3. Choice of Environmental Drivers: The exclusion of key hydrometeorological 



drivers such as precipitation, vapor pressure deficit (VPD), and soil moisture raise 

concerns. While LSWI and PDSI are included, they are indirect proxies and not 

physically direct controls of vegetation water uptake and stomatal regulation. The 

authors should justify this choice or consider incorporating more directly linked 

variables. 

Thank you for your valuable suggestion. We fully agree that accurately representing 

hydrometeorological drivers is critical for modeling GPP and that variables such as 

precipitation, vapor pressure deficit (VPD), and soil moisture play important roles in 

regulating vegetation water uptake and stomatal conductance.  

In our revised analysis, we have removed the PDSI dataset due to its coarse temporal 

resolution (monthly), which is inconsistent with the finer-scale (8-day or daily) datasets 

used in this study. Instead, we incorporated new variables that more directly and 

comprehensively capture vegetation moisture limitations from multiple ecological 

dimensions, based on both theoretical considerations and prior research (Chang et al., 

2023)： 

➢ Atmospheric moisture limitation: Relative humidity and precipitation 

➢ Vegetation-level moisture stress: LSWI and evaporative fraction (EF) 

➢ Soil moisture limitation: Soil water content (SW) 

We have updated the manuscript accordingly to clarify our variable selection rationale 

and better align with your suggestion. 

 

Specific points 

Q1. Line 101: The abbreviation "RFR" should be defined upon its first use for clarity. 

Thank you for your comment. We have revised the manuscript to define "RFR" 

(Random Forest Regressor) upon its first appearance to ensure clarity for the readers. 

Additionally, we have carefully reviewed the entire manuscript to identify and address 

any similar issues, and have made the necessary changes throughout the text. 

 

Q2. Line 134: To promote transparency and reproducibility, the authors should provide 

a persistent identifier (e.g., DOI) for the datasets used, rather than referencing a general 

data repository that hosts multiple sources. 

Thank you for your helpful suggestion. We have uploaded all datasets used in this study 

to Zenodo and provided a persistent identifier (DOI) for transparency and 

reproducibility. The data and code availability statement at the end of the manuscript 

has been updated accordingly: https://doi.org/10.5281/zenodo.14542880 (Laijie, 2024). 

 

Q3. Line 178: ERA5-Land should not be categorized as remote sensing data. It is a 

reanalysis product based on assimilation of observations into a numerical model. 

Thank you for your valuable comments.  

We have made corresponding revisions in the updated manuscript. Specifically, Section 

2.2.3 (Line 181 - 192) now reads as follows: "ERA5-Land (Hersbach et al., 2020) is a 

global high-resolution reanalysis dataset produced by the European Centre for Medium-

Range Weather Forecasts (ECMWF) under the Copernicus Climate Change Service 



(C3S). It provides hourly land surface variables at a spatial resolution of 0.1°, generated 

using a dedicated land surface model driven by the ERA5 climate reanalysis. The 

dataset integrates advanced land surface modeling and data assimilation techniques, 

offering a wide range of variables such as air temperature, soil moisture, precipitation, 

and snow depth. In this study, site-specific variables including air temperature (T), soil 

water content (SW), precipitation (Pre), and leaf area index (LAI) were extracted from 

ERA5-Land. In addition, photosynthetically active radiation (PAR), evapotranspiration 

fraction (EF), VPD and relative humidity (RH) were calculated and derived from 

available ERA5-Land variables using GEE. " 

 

Q4. Line 195: The acronym “LSWI” should be spelled out in full the first time it 

appears. 

Thank you for your valuable comments. We have revised our manuscript as follows: 

Vegetation and water indices derived from MODIS data included the enhanced 

vegetation index (EVI), normalized difference vegetation index (NDVI), and land 

surface water index (LSWI), which were calculated using the formulas presented in 

Table 2 (Line 178). 

Additionally, we have carefully reviewed the entire manuscript to identify and address 

any similar issues, and have made the necessary changes throughout the text. 

 

Q5. Table 2: All abbreviations should be clearly defined either in the table caption or as 

a footnote to enhance readability. 

Thank you for your valuable suggestion. We have revised Table 2 (Line 248) to include 

clear definitions of all abbreviations, which are now provided as footnotes to enhance 

clarity and readability. 

 

 

Q6. Figure 3 (III): In model evaluation scatter plots, it is more intuitive to place 

observations on the x-axis and simulations on the y-axis, as this mirrors standard 

regression analysis practice. 

Thank you for your valuable suggestion. We agree that placing observations on the x-

axis and simulations on the y-axis provides a more intuitive interpretation and aligns 

with standard regression analysis practices. Following your recommendation, we have 

revised the scatter plot accordingly. In the updated version (now presented as Figure 

4), we have also combined the three ecosystem types into a single figure to facilitate 

direct comparison across ecosystems. 



 

Figure 4. Scatterplot of observed GPP vs. simulated GPP. Different colored dots represent different 

sites. Note: The simulated GPP values represent the mean of FLAML00 to FLAML25. 

 

Q6. Figures 5/9/13: Do the reported biases account for seasonal differences in GPP 

variability (i.e., high variability in summer vs. low variability in winter)? Clarifying 

this would improve interpretation of model performance across seasons. 

Thank you for your insightful comment. In our analysis, Figures 5/9/13 show the actual 

biases between the GPP simulations and observations across different sites and months. 

We acknowledge that the manuscript does not explicitly consider the seasonal 

variability in GPP. GPP tends to exhibit higher variability in summer and lower 

variability in winter, which may lead to higher GPP in summer and lower GPP in winter. 

In the revised manuscript, although we have included model evaluations under extreme 

climatic conditions, we have not specifically addressed the seasonal biases in the GPP 

simulations. Instead, we chose to use the PBias metric to provide an overall assessment 

of the model’s performance across different land surface types. The PBias metric 

reflects the magnitude of simulation biases between sites, offering a more 

comprehensive evaluation of the model (Line 311 and Line 455). 

 

Q7. Figure 7: There is a noticeable underestimation of GPP in DLG (typical grasslands) 

and overestimation in DXG (alpine meadows). Can the authors explain potential causes 

for these systematic biases? 

Thank you for your valuable comment. In the revised manuscript (Line 441- 453), we 

used the PBias (%) metric to evaluate the simulation biases of different vegetation types. 

As shown in Figure 5, there is an underestimation of GPP at DLG (typical grasslands) 

and an overestimation at DXG (alpine meadows). These systematic biases can be 

attributed to differences in the biophysical characteristics and climatic conditions of the 



two ecosystems. 

For DLG, the grassland ecosystem typically exhibits high productivity under sufficient 

water availability, especially during the spring and summer growing seasons. If the 

model does not accurately represent the seasonal dynamics of water supply and demand, 

or the interaction between water availability and temperature, it may underestimate the 

actual GPP. 

In contrast, GPP in alpine meadows like DXG is primarily constrained by low 

temperature and a short growing season. If the model does not fully capture these 

limitations—particularly under relatively cold conditions—it may overestimate the 

photosynthetic potential, resulting in an overestimation of GPP. 

 

Q8.  Figure 14: Are the farm ecosystems considered in the analysis purely rainfed, or 

do they include irrigated systems? This distinction is important for interpreting model 

results under water-limited conditions. 

We sincerely thank the reviewer for the insightful comment regarding irrigation regimes 

at the cropland flux sites. Based on previous studies (Liu et al., 2023; Zhou et al., 2023; 

Zhang et al., 2023; Zhao et al., 2021), , the cropland ecosystems included in this study 

encompass both rainfed and irrigated systems. Specifically, SYA and JZA are rainfed 

single-cropping systems, where agricultural production primarily depends on natural 

precipitation. In contrast, GCA, LCA, and YCA are high-input, double-cropping 

systems located in intensively managed irrigated regions, where supplemental watering 

is essential during critical crop growth stages. 

As stated in Section 4.1 of the revised manuscript (Lines 681–686), the current version 

of our model does not explicitly differentiate between the irrigation regimes of each 

site. Although we have identified the irrigation type for each location, this distinction 

has not yet been incorporated into the modeling framework. We fully recognize the 

pivotal role that irrigation plays in regulating GPP dynamics, particularly under water-

limited conditions, and acknowledge that its exclusion may influence model 

performance and the scientific interpretation of results. 

To address this limitation, we plan to integrate satellite-derived irrigation indicators in 

future studies—specifically, soil moisture anomalies from the Soil Moisture Active 

Passive (SMAP) mission and temporal patterns of the Normalized Difference Water 

Index (NDWI). Incorporating these indicators will enhance the model's ability to 

represent irrigation effects and more accurately capture the dynamic variability of 

carbon fluxes in agricultural ecosystems. 
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