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RC3) 

The authors apply FLAML v2.3.3---an automated machine‑learning toolkit---to 

predict gross primary productivity (GPP) across 20 eddy‑covariance sites, which is a 

less interesting and less novel endeavor. The manuscript would benefit from a more 

sharply defined research question and a deeper interrogation of the ecological 

processes underlying the model's performance. In particular, the authors should clarify 

what novel scientific insight they seek --- beyond demonstrating sensitivities --- and 

explore how specific feature groups/selections inform mechanistic understanding 

rather than merely reflecting data redundancy and uncertainty. Given these 

substantive concerns about framing and ecological interpretation, I respectfully 

decline to continue with further review, if that is the case. 

We sincerely appreciate your valuable time and insightful comments, which have 

significantly helped us improve the quality and clarity of our manuscript. In the 

revised version, we have carefully addressed all the issues you raised. Specifically, we 

have thoroughly revised the structure and content of the manuscript, resulting in 

substantial modifications—nearly a thousand changes were made throughout the 

document. 

We believe that these revisions have greatly strengthened the overall presentation and 

scientific value of our work. Below, we provide a detailed point-by-point response to 

each of your comments. 

General Comments 

Q1. The whole work reads more like a sensitivity report than an ecological modeling 

study. What specific scientific insight are the authors seeking by comparing FLAML 

to not scientifically different feature groups? 

Thank you for your thoughtful and constructive comment. We have further clarified 

the scientific rationale and objectives of our study in the Introduction section of the 

manuscript. Our study aims to bridge the gap between process-based ecological 

modeling and data-driven approaches by integrating domain-specific knowledge from 

LUE models with the automated and efficient learning capabilities of FLAML. The 

resulting FLAML-LUE framework is a knowledge-guided machine learning model 

designed to address key ecological questions related to the estimation of GPP. 

Specifically, our scientific insights are centered on the following (Line 122-131): 

➢ To evaluate the performance of models using different combinations of LUE-

related variables, such as absorbed PAR (fPAR) and water stress factors, 

across multiple vegetation types and time scales. 

➢ To investigate model robustness under extreme climatic conditions, including 

high temperatures, elevated vapor pressure deficits (VPD), and drought. By 

evaluating model stability under these stressors, we aim to assess the 

resilience and reliability of GPP estimation frameworks in the face of climate 

variability and change. 

The ultimate objective is to identify optimal input combinations for FLAML-LUE 
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models tailored to different vegetation types and climate zones across China. This 

helps enhance regional-scale GPP estimation accuracy, which is crucial for carbon 

budget assessments and ecosystem management. 

 

Q2. The main text suggests a "FLAML‑LUE model", yet none of the analyses 

explicitly implement light‑use‑efficiency (LUE) theory. Instead, all results derive 

from various tree‑based regressors. If the intent is to compare FLAML‑derived 

machine‑learning models against LUE theory, the authors should at least incorporate 

an explicit LUE model.  

Thank you for your thoughtful comment. We have further clarified the structural 

framework of the FLAML-LUE model in Section 2.3.3 of the manuscript (Lines 122 

and 272). In this study, the term "FLAML-LUE" does not refer to a direct 

implementation of a mechanistic light-use efficiency (LUE) model. Rather, it reflects 

a hybrid modeling strategy where we incorporate key explanatory variables that 

originate from LUE theory—such as absorbed photosynthetically active radiation 

(fPAR), light-use efficiency modifiers, and environmental stress indicators (e.g., VPD, 

temperature, and water stress indices) — into an automated machine learning 

framework (FLAML). These variables represent the core components influencing 

vegetation productivity in traditional LUE models. 

𝐺𝑃𝑃 = 𝑓 (𝑃𝐴𝑅, 𝑇, 𝑓𝑃𝐴𝑅, 𝑊𝑗 , 𝑉𝑇, 𝑆𝑒𝑎𝑠𝑜𝑛) (3) 

where, the 𝑓𝑃𝐴𝑅 include EVI, NDVI, and LAI; 𝑊𝑗 denotes moisture factors including 

LSWI, EF, SW, PDSI, Pre, RH; 𝑉𝑇 represents vegetation types, in which forest 

ecosystems include: EBF, DBF, NF, MF, and SAV; grassland ecosystems include 

GRA, MEA, and SHR, and farmland ecosystems include SC and DC; 𝑆𝑒𝑎𝑠𝑜𝑛 

represents the season in which the original data were acquired.  

Our goal was to combine domain knowledge from LUE theory with the flexibility and 

efficiency of data-driven models. While we do not simulate GPP using a process-

based LUE equation, the LUE-related predictors guide the learning process of the 

machine learning models, enabling a knowledge-informed estimation of GPP across 

different vegetation types and environmental conditions. 

 

Q3. The model groups differ mainly in dryness index definition, data source or 

temporal averaging (e.g., PDSI vs. evaporative fraction, flux‐tower vs. ERA5-Land 

temperature, actually Ta_flux is typically gapfilled by ERA5). These inputs often 

carry overlapping information, so comparisons may reflect data uncertainty or scale 

mismatches rather than mechanistic differences. Exploring a truly critical predictor --- 

such as soil moisture --- could strengthen the ecological relevance and offer 

interesting insights. A basic clarification to mention here is that ERA5-Land is a 

reanalysis dataset rather than a remote sensing product, and it should not be confused 

with ERA5. ERA5Land provides hourly rather than daily data. 

Thank you for your valuable suggestion. We have addressed both issues you raised 

with corresponding revisions. 

First, based on your comments, we have revised the selection of input variables used 



in the model construction process (see Table 1). Following this adjustment, we re-

train the models and re-evaluated the results accordingly. Specifically, to ensure 

consistency and reliability across all 18 variable combinations, we standardized the 

sources of temperature and PAR data by uniformly adopting ERA5-Land products. 

Additionally, we removed the PDSI dataset from our analysis because it is only 

available at a monthly temporal resolution, which is inconsistent with the finer time 

scales of other datasets used in this study. Instead, we carefully selected variables that 

more accurately capture vegetation moisture constraints from multiple ecological 

perspectives: atmospheric moisture stress (e.g., relative humidity and precipitation), 

vegetation-level moisture stress (e.g., LSWI and EF), and soil moisture limitations 

(e.g., SW). These choices are grounded in ecological theory and supported by 

previous research (Chang et al., 2023)。 

Table 1 

Input variable combinations of fPAR and water stress indicators. 

Group Input variables Group Input variables Group Input variables 

FLAML00 NDVI, LSWI FLAML10 EVI, LSWI  FLAML20 LAI, LSWI  

FLAML01 NDVI, EF FLAML11 EVI, EF FLAML21 LAI, EF 

FLAML02 NDVI, SW FLAML12 EVI, SW FLAML22 LAI, SW 

FLAML03 NDVI, VPD FLAML13 EVI, VPD FLAML23 LAI, VPD 

FLAML04 NDVI, Pre FLAML14 EVI, Pre FLAML24 LAI, Pre 

FLAML05 NDVI, RH FLAML15 EVI, RH FLAML25 LAI, RH 

 

Regarding the second issue you mentioned about the description of the ERA5-Land 

dataset, we have made corresponding revisions in the updated manuscript. 

Specifically, Section 2.2.3 now reads as follows: "ERA5-Land (Hersbach et al., 2020) 

is a global high-resolution reanalysis dataset produced by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) under the Copernicus Climate Change 

Service (C3S). It provides hourly land surface variables at a spatial resolution of 0.1°, 

generated using a dedicated land surface model driven by the ERA5 climate 

reanalysis. The dataset integrates advanced land surface modeling and data 

assimilation techniques, offering a wide range of variables such as air temperature, 

soil moisture, precipitation, and snow depth. In this study, site-specific variables 

including air temperature (T), soil water content (SW), precipitation (Pre), and leaf 

area index (LAI) were extracted from ERA5-Land. In addition, photosynthetically 

active radiation (PAR), evapotranspiration fraction (EF), VPD and relative humidity 

(RH) were calculated and derived from available ERA5-Land variables using GEE." 

 

Once again, thank you for your insightful feedback. Your suggestions have 

significantly contributed to improving the depth and rigor of our study. We will 

continue to build on this work and aim to present our findings more comprehensively 

in future research.  

 

Q4. The rationale for analyzing 8-day, 16-day vs. monthly statistics is not fully 



developed. Because GPP seasonality dominates many signals, the differences in 

model performance may simply reflect sample size (it is unsurprising that monthly R2 

exceed those at the 8‑day scale, and this comparison offers no insight). 

Thank you for your insightful comment. We agree that the seasonal dynamics of GPP 

and the differences in sample sizes across temporal scales (e.g., 8-day, 16-day, 

monthly) can inherently influence model performance metrics such as R². However, 

our rationale for analyzing multiple temporal resolutions goes beyond statistical 

comparisons. 

The primary objective of incorporating different temporal scales is to evaluate the 

robustness and generalizability of the FLAML-LUE model across varying degrees of 

temporal aggregation. As indicated in the revised manuscript (Line 464 - 467), 

compared to the daily scale, the nuRMSE decreases by 12.97%, 16.52%, and 25.92% 

at the 8-day, 16-day, and monthly scales, respectively. This highlights that the 

uncertainty of the FLAML-LUE model is significantly reduced at coarser temporal 

resolutions. 

Furthermore, from an application perspective, transitioning from site-level to 

regional-scale GPP estimation across China requires temporal resolutions that align 

with commonly used satellite products. In this context, 8-day or monthly models are 

more practical, as they not only reduce noise through temporal aggregation but also 

ensure greater consistency with large-scale remote sensing data. These coarser time 

scales offer a more effective trade-off between capturing ecological dynamics and 

enabling broader spatial applicability. 

 

Q5. Presenting each PFT group in separate sections can make cross‐comparison 

cumbersome. I suggest grouping figures by PFT (forest, grassland, cropland) with 

sub-panels for each site or model variant. 

Thank you for your helpful suggestion. 

We agree that organizing the figures by plant functional type (PFT)—such as forest, 

grassland, and cropland—can improve clarity and facilitate more effective cross-

comparisons. In response to your comment, we have revised the relevant figures 

accordingly, grouping them by PFT with sub-panels representing individual sites or 

model variants. This required a substantial amount of work, as it involved 

reprocessing the results and essentially rewriting this section of the manuscript. 

Nonetheless, we believe this reorganization enhances both the readability and 

interpretability of the results. We sincerely appreciate your constructive feedback. 

 

Q6. The manuscript contains kind of repeated descriptions across all sessions. I 

recommend restructuring the whole manuscript thoroughly to avoid duplication. 

Meanwhile, the authors claim that all results are from validation, but without 

describing the split strategies. 

Thank you for your valuable comment. In response, we have thoroughly restructured 

the manuscript to reduce redundancy and improve overall clarity. Repetitive 

descriptions across sections have been removed or streamlined to avoid duplication 

and enhance readability. 



Additionally, we have now clearly described the dataset split strategy in Section 2.3.1 

of the revised manuscript. Specifically, the pre-processed dataset was divided into 

training and testing sets using the Blocked Time Series Split strategy. Given the 

temporal dependency of the data, standard cross-validation is not suitable for time 

series analysis (Reichstein et al., 2019). Instead, a block-based and non-continuous 

split is applied to preserve the temporal structure. In this approach, the time series is 

partitioned into several non-overlapping continuous training blocks (e.g., 2003-2005, 

2007-2009, 2011-2013, 2015-2017, 2019-2021), with independent years reserved as 

the validation set following each training block (e.g., 2006, 2010, 2014, 2018, 2022). 

This strategy ensures that the temporal order is maintained, preventing future data 

from leaking into the training process and thus avoiding invalid predictions. 

Additionally, the method incorporates validation over multiple periods, enabling the 

assessment of model generalization across different climate conditions, which is 

crucial for evaluating the model's robustness under varying environmental scenarios. 
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