
General Comments 

Q1. First, the choice of simple vegetation indices as dependent variables for the model 

seem to me dated, especially due to the current availability of Solar Induced 

Fluorescence (SIF) products, which are more suited as proxies of photosynthesis than 

EVI, NDVI, etc. Although the authors mention the possible future use of SIF, I would 

like to know further details to why it was not used in this study, or extra analysis 

where SIF is included.  

Thank you for your insightful comment. We acknowledge that Solar Induced 

Fluorescence (SIF) is a promising proxy for photosynthesis and has been increasingly 

used in recent studies. Compared to traditional vegetation indices (e.g., EVI, NDVI), 

SIF directly reflects chlorophyll fluorescence emissions, providing a more direct link 

to gross primary production (GPP). 

However, in this study, we did not incorporate SIF due to the following reasons: 

Data Availability: Solar-induced fluorescence (SIF) observations have 

significantly advanced in recent years, yet the availability of long-term, continuous 

SIF datasets with fine spatial resolution remains a challenge. In comparison to well-

established vegetation indices such as the Enhanced Vegetation Index (EVI) and the 

Normalized Difference Vegetation Index (NDVI), which have been monitored for 

decades using sensors like MODIS, SIF datasets are relatively recent. The SIF data 

listed in Table 1 highlight various datasets with different temporal coverage, spatial 

resolutions, and geographic extents. While some datasets, such as GOME-2 and 

OCO-2, provide global coverage and span several years, none of the available datasets 

fully meet the temporal coverage requirements for all FLUX station periods. 

Additionally, combining SIF products from different sources could introduce 

inconsistencies, leading to potential errors. These inconsistencies pose a significant 

risk to the reliability and accuracy of analyses, which is why we chose not to use these 

SIF products for generating a long-term time series. 

Table 1 Summary of Satellite Datasets for Solar-Induced Fluorescence (SIF) Observations. 

Dataset Temporal coverage Spatial resolutions Time resolutions Coverage 

GOME-2 2007 to present 40 km × 40 km 1-2 days Global 

OCO-2 2014 to present 1.3 km × 2.25 km 16 days Global 

TROPOMI 2018 to present 7 km × 7 km 1 day Global 

GOSAT 2009 to present 10 km × 10 km 3 days Global 

SCIAMACHY 2002–2012 30 km × 60 km 35 days Global 

TanSat 2016 to present 1 km × 2 km 16 days Global 

OCO-3 2019 to present 1.6 km × 2.2 km 16 days Global 

CFIS 2016–2018  30 m × 30 m Irregular Local 

TANSO-FTS 2009 to present 10 km × 10 km 3 days Global 

Resolution Limitations: The current global SIF products, such as those from 

OCO-2 and TROPOMI, often have spatial resolutions that are relatively coarse, 

typically greater than 1 km. While suitable for large-scale or global studies, this level 

of resolution is insufficient for capturing fine-scale ecological variations, particularly 



in heterogeneous or fragmented landscapes. For instance, OCO-2’s spatial resolution 

of 1.3 km × 2.25 km and TROPOMI’s 7 km × 7 km resolution may not be ideal for 

studies requiring detailed local information or the monitoring of small-scale 

ecosystem dynamics. Some datasets like CFIS, with a resolution of 30 m × 30 m, 

offer much finer spatial detail while their spatial coverage of datasets is usually 

incomplete, which cannot meet our continuous and full flux sites coverage needs in a 

large area. 

For these reasons, we did not incorporate SIF datasets in our current study. That 

being said, we acknowledge the potential benefits of incorporating SIF and are 

considering its integration in future research. We plan to explore whether SIF-based 

models can further improve GPP estimations, either as a standalone predictor or in 

combination with traditional vegetation indices. Once again, we appreciate your 

valuable suggestion and will take this into account in our future work. 

 

Q2. Second, the resolution of the remote sensing products used (500 meters) does not 

seem to be compatible with the eddy flux data. At this scale, microclimatic or 

topographic factors may cause significant divergences in relation to a 500 m size pixel, 

and lead to inconsistencies. I suggest that if possible data with higher resolution are 

used (LANDSAT or SENTINEL-2) or arguments are given for the use of the lower 

resolution product.  

Thank you for your thoughtful suggestion regarding the spatial resolution of the 

remote sensing products used in our study. 

First, we understand your concern that the 500 m spatial resolution of MODIS 

data might not be ideal for capturing fine-scale variations relevant to eddy covariance 

measurements. However, it is important to note, as described by Schmid (2002), that 

the footprint of an eddy covariance tower is not fixed but varies with meteorological 

conditions, typically ranging from 100 m to 1 km. Additionally, Zhang et al. (2021) 

found that different footprints, such as 500, 1000, and 1500 meters, showed almost no 

difference in the study area. Given this, we believe that the 500 m resolution of 

MODIS is appropriate for representing the footprint of the flux tower and is well-

suited for our study. 

We did consider the use of higher-resolution products, such as LANDSAT and 

SENTINEL-2, but there are a few important limitations associated with these datasets. 

Regarding LANDSAT data, although it offers finer spatial resolution, there are 

known issues with data quality. Several Landsat satellites, including Landsat 7, 

suffered from technical failures that resulted in data gaps and missing information. 

These issues compromise the consistency and reliability of the dataset, particularly for 

long-term monitoring studies. As a result, the data quality and temporal consistency of 

LANDSAT may not be suitable for this study. 

As for SENTINEL-2, although it provides high-resolution imagery (10 m), its 

temporal coverage is limited compared to MODIS. SENTINEL-2 data is available 

since 2015, which means it doesn't fully cover the historical periods needed for our 

analysis, especially for longer-term studies. Furthermore, while SENTINEL-2 offers 

good spatial resolution, it may not always be available due to cloud cover and other 



environmental factors, further complicating its use for continuous monitoring. 

Considering these limitations, we chose to use MODIS data with 500 m 

resolution because it offers a good balance between spatial resolution, temporal 

coverage, and global availability, making it more suitable for our study's long-term 

monitoring needs. 

We hope this clarifies our choice of data and addresses your concerns. Thank you 

again for your valuable input, which will help us refine our approach. 

 

Q3. Finally, I would be very interested in the production of a GPP map of China using 

the FLAML framework, and how it compares with other GPP maps. I think this would 

greatly increase the manuscript’s appeal. 

Thank you for your valuable suggestion. Your input has provided us with very 

useful inspiration. Using the FLAML framework to create a GPP (Gross Primary 

Productivity) map for China is indeed a meaningful and interesting task. As we have 

mentioned in the text, the FLAML-LUE models have “the potential to be applied in 

predicting GPP for different vegetation types at a regional scale”. However, these 

models are only driven from data of 20 stations, which is not enough to cover the 

entire ecosystem types in China. Therefore, using them for the production of a China 

GPP map is still not competent enough. This is not related to the limitations of the 

method, it's just that we need more site data support. 

We plan to further develop this aspect in our future research and will provide a 

detailed discussion of it in the manuscript. We will consider using the FLAML 

framework to build a GPP prediction model for China and compare it with existing 

GPP maps to assess its accuracy and applicability. This will not only help us better 

understand the spatial distribution of GPP in China but also provide valuable insights 

for global GPP research. 

Once again, thank you for your insightful feedback. Your suggestion will 

undoubtedly enrich the depth and scope of our research. We will continue to explore 

this direction in our future work and present the results more comprehensively in the 

manuscript.  

 

Specific comments 

Q1. L90 - I would not say ML is "fundamentally different" from regression models, 

but that they offer advantages in relation to. 

 Thank you for your insightful comment. You are absolutely right that machine 

learning is not fundamentally different from regression models but rather offers 

advantages in certain aspects. We have revised the text accordingly to better reflect 

this distinction. The revised sentence now reads: “ML is a modeling approach that 

differs from simple regression models and complex simulation models in its 

methodology.” 

 

Q2. L94 - I would also point out limitations on ML techniques, such as dependence on 

large training datasets and not being able to link results to real-world processes. 



Q3. L96 - ...Which is an advantage when the focus is solely on spatial predictions 

Response to Q2 (L94) and Q3 (L96): Thank you for your valuable comments. We 

acknowledge that machine learning techniques have certain limitations, including 

their dependence on large training datasets and the challenge of directly linking 

results to real-world processes. These constraints are important considerations when 

applying ML models. However, as you pointed out, when the primary focus is on 

spatial predictions, the ability of ML models to capture complex patterns without 

requiring explicit process-based formulations can be an advantage. We have revised 

the manuscript to reflect these points more clearly. 

We have revised our manuscript as follows: 

“These data-driven models are particularly suited for capturing nonlinear 

ecosystem dynamics but often require large training datasets and may lack explicit 

links to real-world processes. However, their ability to uncover spatial patterns 

without process-based constraints makes them valuable for spatial predictions. 

Consequently, ML-based approaches have gained popularity in recent years. For 

example, Kong et al. (2023) developed a hybrid model that combines ML and LUE 

model to estimate GPP. This hybrid model improves the LUE model by integrating a 

machine learning approach (MLP, multi-layer perceptron), and estimates GPP using 

the MLP-based LUE framework along with additional required inputs.” 

 

Q4. Fig. 1 - The mini-map on the bottom right corner does not include any sites, or 

any extra information, maybe remove it? Otherwise, I believe the editors should label 

these areas in the South China Sea as “under dispute”, as stated in the “maps and 

aerials” section of the submission guidelines. 

We sincerely thank the reviewers for their valuable suggestions regarding the 

mini-map in Figure 1. However, we would like to clarify that the map reflects the 

distribution of flux sites within China's territory. As required, we have ensured that the 

map accurately represents China’s territorial boundaries. This representation is 

consistent with the practices in previous publications in Geoscientific Model 

Development (GMD). For example, in the article by Ren et al. (Ren et al., 2024), 

Figure 1, and in Figure 1 of the article by Wang et al. (Wang et al., 2022) and Figure 2 

of the article by Wu et al. (Wu et al., 2021) , the South China Sea is similarly depicted 

as part of China’s territory without any additional labels indicating disputes. 

We understand the sensitivity of territorial issues and the importance of adhering 

to journal guidelines. However, given the scientific context of our study and the 

precedent set by other publications in GMD, we believe that the current representation 

of the map is appropriate. We hope this explanation addresses the reviewer’s concern. 

 

Q5. Table 2 – In contrast to other vegetation indexes, LAI satellite data is based on 

empirical models, such as previous GPP estimating methods. It would be interesting 

to check if field LAI data from the sites are available to see if direct LAI 

measurements improve the ML model. 

Thank you for your insightful comment. You are absolutely right that LAI 

satellite data, unlike other vegetation indices, is often derived from empirical models, 



similar to GPP estimation methods. We appreciate your suggestion to explore the 

availability of field LAI data from the study sites. We also believe that incorporating 

direct field LAI measurements could potentially enhance the performance of the ML 

model by providing more accurate and site-specific information. Unfortunately, at this 

stage, field LAI data in most of the 20 sites were not available. However, we plan to 

explore this avenue in future research and will certainly consider integrating field 

measurements of LAI if they become available, as they may provide valuable 

improvements to the model. 

 

Q6. L686 - I would argue then that in the future hyperspectral data + ML would 

provide much better estimates too, this could be discussed with references. 

Thank you for your valuable suggestion. We agree that hyperspectral data, when 

combined with machine learning (ML) techniques, could provide more accurate and 

robust estimates in the future. Hyperspectral data offer a rich spectrum of information 

across many wavelengths, which can capture subtle variations in vegetation properties 

that other remote sensing datasets might miss. This could indeed improve model 

predictions by providing more detailed spectral features. 

We have revised our manuscript as follows: 

“Recent research indicates that satellite observations of solar-induced chlorophyll 

fluorescence (SIF) provide a more accurate picture of plant photosynthesis dynamics 

and serve as a more effective indicator for modeling subtropical evergreen vegetation 

(Sun et al., 2017; Frankenberg et al., 2011). In the future, integrating hyperspectral 

data with machine learning could lead to more accurate GPP estimates, as 

hyperspectral data offer finer spectral resolution, enabling better capture of vegetation 

traits and environmental conditions (Gessner et al., 2015; Zarco-Tejada et al., 2013). 

This integration could further enhance model performance, particularly for evergreen 

forests. For example, Zhang et al. (2021) used hyperspectral data (EO-1 Hyperion) to 

estimate GPP in the temperate forests of Changbai Mountain. Future research should 

consider incorporating both hyperspectral data and SIF into models to assess their 

potential for improving GPP estimations across various ecosystems.” 

We appreciate your input and will explore the literature on this topic to strengthen 

our discussion. 
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