
Response to Reviewer 1: Our comments are provided in blue. Text modifications are 
provided in green. 

This manuscript delves into the utilization of the Accelerated Pseudo-Transient 
(APT) method for tackling quasi-static elastic, viscoelastic, and coupled hydro-
mechanical problems. The study not only derives but also rigorously tests the 
numerical APT formulations tailored for these specific problem sets. Introducing 
novel dimensionless parameters (St and I1, I2) for the APT method in the context 
of elastic and coupled poroelastic equations marks a notable advancement. The 
manuscript showcases the efficacy and adaptability of the proposed APT method 
through high-resolution 2D and 3D nonlinear modeling results. These simulations 
vividly illustrate the method's flexibility and efficiency in handling complex 
geoscience scenarios. This contribution of the APT method to the modeling of 
realistic geoscience problems is significant and warrants publication in GMD. 

While recognizing the manuscript's importance, I acknowledge that certain sections 
suffer from unclear or confusing descriptions, likely stemming from the writing style 
and flow. Therefore, I recommend substantial revisions to enhance clarity and 
coherence throughout the manuscript. This includes addressing the major 
modifications outlined and attending to various smaller edits that may be necessary 
for improved readability and comprehension. 

  

Thank you for your thorough and constructive feedback on our manuscript. We are very 
grateful for your recognition of the significance of our work, especially the introduction of 
novel dimensionless parameters (St and I1, I2) in the context of elastic and coupled 
poroelastic equations, as well as the validation of the Accelerated Pseudo-Transient (APT) 
method for complex geoscience problems. 

We fully acknowledge your concerns regarding the clarity and flow of certain sections, and 
we take this feedback seriously. We are committed to revising the manuscript to enhance 
both clarity and coherence. We will carefully address the major modifications you’ve 
highlighted and ensure that the smaller edits necessary for improved readability are also 
attended to. 

Our revisions will focus on refining the descriptions and improving the overall writing style 
to ensure that the important concepts, methodologies, and results are communicated more 
effectively. Once completed, we are confident that the manuscript will better reflect the 
rigor and importance of the work, as well as meet the high standards of GMD. 

Thank you again for your valuable insights. 

Sincerely, 
Yury Alkhimenkov and Yury Podladchikov 

 

 



 

Below are the comments and edits  from my sides, with bold text for the major 
ones. 

  

Line 90-95. and 100-105   This description of 1st order and accelerated PT 
method is not clear or correct.     converges to 0, suggest vx to 0.  It does 
not make sense.   For APT,  you should involve 2nd derivative of Vx like  in 
Eq.6) and Eq.7) of Rass 2022, since you cite it.  But it is  not clearly 
stated.   Correct this! 

We appreciate the reviewer’s comments regarding the different versions of the pseudo-
transient method. This section is rewritten and corrected. Correct references were added.  

Line 225:    “Naïve” does not sound good here!    “ that there are minimal 
modifications to the original formulation of” is not a good description for 
this scheme.   I think “Elegant APT scheme ” has even smaller 
modifications (only refine G).   Clarify this! 

We agree with the reviewer’s suggestion and have revised the text accordingly. We have 
retained the phrase "APT scheme" in the main text while removing the word "elegant." 

In fact, I think “Naïve APT scheme”  part can be removed. It is just 
complicated but not naïve! It added only confusion to your description.  It 
is a natural transition from the scheme of elastic equation to the 
viscoelastic equation (Eq. 26).  

We have removed the title "Naïve scheme" and added further explanation regarding its 
potential applications to Appendix. Additionally, we have removed the term "Naïve" to 
maintain a more formal scientific tone. 

Line 340: As I wrote above, the formulation in 4.14 is needed in 
4.1.3.  Perhaps you can do some adjustment. 

We understand the reviewer’s concerns regarding Section 4.1.3. The reason we initially 
provided the formulation only in Section 4.1.4 is that the decoupled equations yield simpler 
roots that fit more neatly on the page. In contrast, the full equations for the roots are much 
more complex, with numerous additional cross terms, which is why we included Maple 
routines to validate this part. 

In response to the reviewer’s comments, we have moved Section 4.1.4 earlier, making it 
the new Section 4.1.3, and added more explanation to clarify the equations. Additionally, 
we have improved the Maple files to better address the reviewer’s concerns. As a result, 
Section 4.1 has been significantly improved in the current version of the manuscript. 



Line 482.  I am not convinced about the sensitivity of optimized numerical 
parameters on boundary conditions from your example. You need more 
tests to convince people. 

 We agree with the reviewer that additional examples are necessary to demonstrate that 
optimized numerical parameters depend on boundary conditions. After extensive 
investigation, we have updated our statement to: “There is only moderate sensitivity of 
optimal numerical parameters with respect to boundary conditions.” We found that the 
sensitivity to initial conditions and non-linearities is much more pronounced. We have 
improved the explanation in this section to reflect these findings. 

  

Line 6;  replace “manuscript”  with “study”. 

Done! 

study 

Line80-85    Eq. 4)     I recommend to write it to σxx- σxx _old//dt  to clarify.  The it 
is similar to the 1st ord PT method case in rass 2022.   Clarify that you aim to solve 
one transient step for this time-dependent problem. Otherwise, it is quite 
confusing! 

We have modified this section and emphasized in the manuscript that the PT method can be 
used to solve elasticity equations for calculating effective elastic properties. In this case, 
σxx _old  is zero, allowing us to solve the simplified equations. However, in response to the 
reviewer’s request, we have further improved the explanation in this section to provide 
greater clarity. We removed the reference to Rass et al since in our study we have elasticity 
(elliptic) equation and Rass et al did not present this. 

Line 90-95  100-105.  Eq.5) and 6) the same as Eq.4)!   Do it like in Eq.7): 
do  time (real physic) discretization of σxx. 

We have t with tilde (which correspond to the pseudo-time) and t without tilde (which 
correspond to the physical time). The way we present equations are the standard in 
geophysical (mechanical, math) literature for time partial derivatives. 

Line 104.  To avoid confusion: “ Propagating waves in pseudo physical space.”  

We improved the wording in the manuscript.  

 (i) Inertial terms are added into the constitutive relations, (ii) Inertial terms are responsible 
for wave propagation in pseudo physical time and space (i.e., hyperbolic) and viscous terms 
(treated as a Maxwell rheology) are the physical quantities. 

 

Line 109:   “into the equation stress”  is not clear!   Remove “stress”? 



We improved the explanation. 

  Inertial terms are added into the constitutive relations 

Better description is need for “(ii) these terms are treated as a Maxwell rheology (a 
viscous  damper)”.  As I understand,  Eq.7a) use a maxwell model of rheology , the 
item σ_xx/∆t as a viscous part; while the pseudo item is the elastic part. 

The reviewer is completely correct and we improved the explanation.  

Here we report a modification of the APT method. The solution of the quasi-static elasticity 
equations can be achieved in two steps. (i) Inertial terms are added into the equations 
constitutive relations, (ii) Inertial terms are responsible for wave propagation in pseudo 
physical time and space (i.e., hyperbolic) and viscous terms (treated as a Maxwell rheology) 
ate the physical quantities. 

Line 112:      What is the reason to choose =H? Is there a better choice?  You 
said   is to be determined.  Perhaps would also has an optimal choice. 

The reason for our approach is simplicity. This equation involves only one numerical 
parameter, \(St\), while the other parameters are dependent. If we used a different value 
for \(\tilde{H}\) instead of \(H\), we would need to modify the entire numerical scheme and 
adjust the \(St\) value, without any improvement in convergence, as we are constrained by 
the CFL condition and the single numerical parameter \(St\). There is only one degree pf 
freedom = one parameter. 

Line 115:     It is not good to say Eq.7) can be simplified to Eq.8), which could 
change the equation.  But  I know σ_xx_old as a constant can be ignore for  the 
derivation process.  Please write better description for it. 

 The reviewer is completely correct and we improved the explanation.  

For the analysis of the system of equations \eqref{dve_14} we can omit $\hat{ \sigma}$ 
since the stress $\hat{ \sigma}$ does not change inside the loop over ``pseudo" time 
$\widetilde{t}$: 

Line 142:   How about “Instead, the following combinations are needed  for the 
numerical implementation of the APT algorithm.”? 

The reviewer is completely correct and we improved the explanation.  

Instead, the following combinations are needed for the numerical implementation of the APT 
algorithm 

Line 145-146. Notice “f” is already use as the function name before you  write “f is 
the frequency” 

 The reviewer is completely correct and we modified the variable name.  



\begin{equation}\label{eq_111111} 
F(\widetilde{t}, x) = \exp{ \left[  \dfrac{( \gamma \, \widetilde{V}_p\,  \widetilde{t} + \pi 
\,\omega \,x \,i)}{L_x}  \right]}, 
\end{equation} 

Line 157.    Is   “minimum”  suitable here ? Line 158  “This minimum reaches 
maximal value” is confusing… 

The reviewer is completely correct and we improved the explanation.  

The real parts of the roots $\gamma_1$ and $\gamma_2$ control the exponential decay 
rate of the solution \citep{rass2022assessing}, therefore, we are interested in the minimum 
of these values. This minimum reaches its value when the discriminant is zero: 
 
Line 186.   Fig. 1 show that damping scheme 2 generate different stress with 
scheme 1.    Why? You did not talk about it in section 2.3.4 

 In response to the reviewer’s request, we updated the explanation of this section and 
removed scheme 1 from the main text. The reason for different stress was that scheme 1 
(in the previous notation) was not fully correct. 

Fig3.  There are two subplots, but there is no description of it, neither in the caption 
or in the main text. 

 The reviewer is completely correct and we added the explanation and reference in the main 
text. 

It can be seen that the analytical and numerical results are in excellent agreement (Figure 
\ref{FigVS1}) that validates the proposed approach. 

Line 290.   It would be nice to clairfy the (pseudo ) physical meaning of I2. 

We improved the explanation of I2. It actually has physical meaning in the framework of 
poroelasticity. 

The physical meaning of $I_2$ is the following: $I_2$ controls the behavior of the Biot's 
slow wave, if $I_2 \ggg 1$ the slow wave behaves as a propagating wave, if $I_2 \lll 1$ the 
slow wave behaves as a diffusive mode. 

Line 300.  Need a bit explanation on the choice of numerical parameter 
K1=K_u  G1=Gu. 

The reason for our approach is simplicity as in the previous section. We added some 
explanation into the manuscript.  

The reason for setting $\widetilde{K}_1={K}_u$ and $\widetilde{G}_1={G}$ is simplicity, 
since the 4-th order equation has only two degrees of freedom, a different choice of these 
parameters would simply re-scale the two final optimal parameters. 



Line 299 and 335.   How come the optimized St value is  St=2*pi and 
St=2.9?  formulation?   From Fig.5, I can see you do have a formulation.  It would 
be nice to write it down in the main text or appendix. 

 The values came from analytical derivations using the Maple file. The resulting values are 
the roots of the equations. We improved the explanation in the corresponding section. The 
full equations are very cumbersome and we advise to consult the Maple file for an interested 
reader. 

Fig. 6. The caption is too cumbersome with a lot of repetition. Simplify it! 

The reviewer is completely correct and we shortened and improved the explanation. 

\caption{Convergence rate in a homogeneous poroelastic medium for different $I_2$: 
numerical result as a function of the dimensionless parameter ${\mathrm{St}}$. Panel (a): 
$I_2 =  100$. Panel (b): $I_2 = 0.01$. Panel (c):  $I_2 = 100$. Panel (d) $I_2 = 0.01$.   
} 

Fig. 6. For the 3D case, the optimized St are 28 for both I2=100 and I2=0.01, 
while they are different for 1D and 2D. Explain it! 

We revised this section and deleted 3D results. We analyze 3D results in the discussion 
section. 

 \subsubsection{2D numerical simulations: poroelasticity} 
 
The accuracy of the proposed ${\mathrm{St}}_\text{opt}$ is illustrated numerically in 2D 
(Figure~\ref{Fig_2Dv1}a-b). It can be seen that the results presented here for 1D need 
some calibration to be applied to 2D simulations. Note that the numerical parameters are 
sensitive to boundary and initial conditions, which is explored below. Therefore, some test 
must be performed for each numerical setup. 

Line 400.   Without comparison of low resolution, I can not see the thickness of 
shear band is mesh-independent. 

 The reviewer is correct and to prove it, we would need even higher resolution for 
comparison. However, without regularization the localization of shear bands is 1 grid cell. In 
our implementation we have several grid cells (more than 10) which already proves the 
mesh-independency of our simulation according to the study by  

Resolving strain localization in frictional and time-dependent plasticity: Two-and three-
dimensional numerical modeling study using graphical processing units Y Alkhimenkov, L 
Khakimova, I Utkin, Y Podladchikov 

We added the references. 

Figure~\ref{Press_2D_HR1} shows the results of the 2D simulation with an ultra-high 
resolution of $N=10,239^2$ grid cells. The finite thickness of the shear bands confirms that 
the simulation is mesh-independent as it has been shown by 
\cite{https://doi.org/10.1029/2023JB028566}. 



Line 450.    Here you say St_opt=2*pi*sqrt(3).     It is different with Fig. 6 (28).   A 
lot is missing.  Perhaps you should provide 2D and 3D derivation process. I could 
not find it in the maple file. 

We did not make available the rigorous derivation process in 2D and 3D in Maple for a 
public. We agree that the values are different from Fig 6 and we modified this section. 
Indeed, as a first guess St_opt=2*pi*sqrt(3) but his value should be adjusted with respect 
to boundary and initial conditions and nonlinearities involved. See new discussion section. 

Fig.11.   Please put boundary conditions information on the subtitle of b and c.  it 
would made the figure more readable! 

Done. 

Line 469.  “highly sensitive”?      The change is only from 4.63 to 6.0142.  It is not 
very sensitive. You need another example to say it is highly sensitive! 

The reviewer is completely correct, and as we mentioned earlier, we have revised this 
conclusion. The sensitivity is only minor.                                

Lawrence H.Wang 

We would like to thank the reviewer again for valuable comments, which helped us improve 
the quality of the manuscript. 

Sincerely, 
Yury Alkhimenkov and Yury Podladchikov 

 

 

 

 

 

 

 

 

 

 

 



Response to Reviewer 2: Our comments are provided in blue. Text modifications are 
provided in green. 

The the Accelerated Pseudo-Transient (APT) method is a matrix-free approach for 
iteratively solving partial differential equations (PDEs) which is embarrassingly 
parallel, thus being highly suitable for GPUs. The main challenge of the APT is to 
fine-tune the numerical parameters it introduces in the PDEs to obtain the optimal 
convergence rates. 

In this paper the authors present a comprehensive analysis of the APT equations for 
quasi-static elastic and viscoelastic equations, and coupled hydro-mechanical 
problems, showcasing the derivation of the corresponding optimal numerical 
parameters. The manuscript highlights the accuracy and robustness of the APT to 
handle 2/3D highly-non linear coupled problems, as well as demonstrating the 
capability of the APT to reach extremely high resolutions. 

I believe the outcome of the manuscript is relevant and is worth of a GMD 
publication. However, the manuscript requires of some major improvements before 
publication to largely improve its clarity and readability. Below is a detailed list of 
major and minor comments. 

General comments 

- I feel like the manuscript is lacking of many details that are either missing or 
should be explained in more detail and in a clear way; line by line comments below. 
Some sections manuscript (e.g. introduction) would also largely benefit of some 
rewriting to improve the clarity and quality of the text. 

We would like to thank the reviewer for highlighting the need for improvements in clarity 
and readability. We agree that certain sections of the manuscript would benefit from further 
explanation. As such, we have rewritten parts of the article to ensure the content is more 
accessible and comprehensible to the readers.  

- Perhaps I am missing something, but I don't think it is obvious what is the 
numerical problem being solved in  
 
  - Section 2.3.4 / Figure 1 
 
  - Section 2.3.6 / Figure 2 
 
  - Figure 3 
 
  - Section 4.1 / Figure 4 
 
  - Section 4.1.5 / Figure 6 
 
  Some clarification may help. Furthermore, Figure 3 seems not to be referenced / 



discussed in the manuscript; and it also has two sub panels that are not described 
in the the caption neither. 

We agree with the reviewer that some more explanation is needed. In all the figures, a 
comparison between analytical and numerical solutions is presented. We added some 
explanation before figure 1. 

\paragraph{Problem statement: validation of the numerical parameters}\label{pr} 
 
To validate the numerical parameters, the following experiment is performed: in the 
numerical solver, we set all boundary conditions to zero and initialize the system with a 
sinusoidal wave. The numerical solution is then run over pseudo-time until it converges to a 
specified precision (i.e., $10^{-12}$). Simultaneously, the same equation is solved using 
the analytical method (amplification matrix) to achieve the same precision (i.e., $10^{-
12}$). The results are then compared as a function of $\mathrm{St}$. Ideally, the results 
should be identical or very close, which would validate the choice of numerical parameters 
and the applied numerical scheme. For the numerical solution, we use a classical 
conservative staggered space-time grid discretization \citep{virieux1986p} which is 
equivalent to a finite volume approach \citep{dormy1995numerical}. More details on the 
present discretization can be found in \cite{alkhimenkov2021resolving, 
alkhimenkov2021stability}. 

- I encourage the authors to use the colormaps available either in the 
_PerceptualColourMaps_ package or in Fabio Crameri's _Scientific Colour Maps_. 
Both set of colormaps are available in MATLAB. 

We agree with the reviewer there are other colormaps exists. We use standard colormap in 
Matlab “jet” as we have used in all our previous articles. There is no strict requirement on 
the colormap choice, therefore, we keep jet colormap. We may consider in the future to use 
other colormaps. 

- I would not consider MATLAB being truly open-sourced as a license needs to be 
purchased. It is true that most of the (at least European) universities have 
institutional licenses, but not all the readers interested in trying out the scripts 
provided here may have access to a license. For this reason I would also like to 
encourage the authors to consider using other free dynamic languages, such as 
Julia or Python, for future work/publications. 

We agree with the reviewer that Matlab is not open-access. However, there is an alternative 
--- Octave which is open access. The results presented in .m files can be reproduced using 
Octave. 

- Attached is a pdf with other comments and other typos/grammatical corrections. 

 

 

 



Line by line 

 
 
*L15/62* Voxels do not exist in 2D, they are called pixels, which are 2D bitmaps. 
Either way, the domain of a 2/3D simulation is discretised in cells or elements. 
Please replace "voxels" with "cells", "elements" or similar throughout the 
manuscript.  

We agree with the reviewer. This depends on the community. In computational mechanics, 
scientist call grid cells and elements as voxels. We replaced voxels into grid cells as 
suggested. 

grid cells 

*L25/26* The APT actually relies quite a bit on storage of data on matrices, as the 
iterative solver needs to be split into several kernels to avoid race conditions. The 
actual advantage of matrix-free methods is that they avoid assembling a global 
sparse matrix and either expensive direct solves or other iterative methods that 
rely on not-so-cheap sparse matrix-vector multiplications. 

We agree with the reviewer. The APT method is local and matrix-free in a sense that we do 
not need a global matrix as in direct solvers. APT is free from global scalar products that 
involve information from full arrays (as in conjugate method). 

The Accelerated Pseudo-Transient (APT) method is designed to iteratively solve a modified 
version of the original partial differential equation (PDE) by introducing inertial and 
relaxation terms. This modified PDE is repeatedly solved until the added pseudo-physical 
terms vanish, providing an accurate approximation of the solution to the original equation. 
The APT method becomes increasingly efficient when implemented with exclusively spatially 
local operations, eliminating the need to access global storage for evolving fields. Unlike the 
conjugate gradient method, which requires two global scalar products per iteration, the APT 
method advances without global memory operations, enhancing computational performance 
by utilizing fast cache memory. 

*L30* effectively => efficiently 

Corrected! 

efficiently 

*L35* This whole paragraph would largely benefit of some rewriting, it reads as a 
collection of facts without any flow. I would also say that the first sentence can be 
easily removed as it does not bring anything to the topic of APT.  

We agree with the reviewer that this paragraph may benefit from some rewriting. We think 
that this paragraph provides a general overview of the development of PT methods in 
chronological order. Also, the first sentence is importance since it reference one of the first 
iterative methods to solve PDEs which we describe on the paper. 



 

One of the first pseudo-transient (PT) iterative methods to solve elliptic PDEs was presented 
by \cite{richardson1911ix}. An improved PT method for elliptic problems, which can be 
referred to as the Accelerated Pseudo-Transient (APT) method, was proposed in the 1950s 
by \cite{frankel1950convergence} and further investigated by \cite{riley1954iteration} and 
\cite{young1972second}. The pseudo-transient method is also known as a dynamic-
relaxation (DR) method that was used by \cite{otter1965computations, 
otter1966dynamic}… 

 

*L70* I don't think $nabla dot$ is an operator itself, it just means the dot product 
of the nabla operator and something else. The authors should also remove the 
references regarding the nabla operator, as this notation has been introduced and 
widely much earlier (by Hamilton in the 1800s) than in those references and it is a 
widely known, accepted, and used notation. If you want to keep the mathematical 
definition of nabla, define it when you introduce the symbol.  

We agree with the reviewer that there are different interpretations. Some scientists refer to 
the $\nabla \cdot$ (divergence) as an operator. Regardless, the statement is clear and not 
open to misinterpretation. 

*Eq2* Since tensor notation is being used, I suggested the authors to denote the 
rates using the dot notation instead, i.e. $dot(epsilon)$ 

We agree with the reviewer that there are other ways to denote rates. The derivative of a 
tensor (via \dot) may reflect partial derivative, full derivative of material derivative or 
objective (e.g., Jaumann derivative). To make our statement clear we keep partial 
derivative to separate from other possible choices. 

*Eq3* The tensor products should be dropped, it is $dot(epsilon) = 1/2(nabla 
bold(v) + (nabla bold(v))^T)$ 

We agree with the reviewer that there are other ways to write this equation. Eq3 is correct 
with and without tensor products. The gradient of a vector field is the same as the dyadic 
product of the del operator and the vector. 

We refer to the standard terminology in micromechanics, see  

“Micromechanics: overall properties of heterogeneous materials. S Nemat-Nasser, M Hori” 
or “Introduction to micromechanics and nanomechanics. S Li, G Wang” 

 

*L79* superscript T  

Corrected. 



*Section 2.3* Perhaps it is a good idea to expand a bit on the pseudo transient 
method, rather than directly writing down the equations. It may not be obvious for 
the general reader to know what's going on. You could for example explain that the 
equations are written in their residual form and the pseudo time derivatives are 
added to the left hand side (or wherever you write down the zero), which should 
vanish upon convergence, thus recovering the original equations; or similar.  

We agree with the reviewer that some more explanation might help. The original text 
contains the sentence: The main idea is that the solution of a quasi-static equation 
(stationary process), usually described by an elliptic PDE, is represented by an attractor of a 
transient process described by parabolic or hyperbolic PDEs. We added more explanation 
into the introduction and corresponding section: 

The Accelerated Pseudo-Transient (APT) method is designed to iteratively solve a modified 
version of the original partial differential equation (PDE) by introducing inertial and 
relaxation terms. This modified PDE is repeatedly solved until the added pseudo-physical 
terms vanish, providing an accurate approximation of the solution to the original equation. 
The APT method becomes increasingly efficient when implemented with exclusively spatially 
local operations, eliminating the need to access global storage for evolving fields. Unlike the 
conjugate gradient method, which requires two global scalar products per iteration, the APT 
method advances without global memory operations, enhancing computational performance 
by utilizing fast cache memory. This method is versatile, applicable to both linear and 
nonlinear equations, and distinguishes itself with several key attributes. (i) APT is a matrix-
free method, enabling the solution of large-scale 3D problems without the overhead of 
matrix storage. (ii) leveraging only local operations, APT naturally lends itself to 
parallelization, making it well-suited for modern computing architectures. (iii) its structure 
facilitates efficient implementation on Graphical Processing Units (GPUs), capitalizing on 
their ability to handle parallel tasks efficiently. (iv), APT method aligns closely with the 
physics of wave phenomena, offering a robust theoretical framework for rigorous 
understanding and application. 

Simply put, the equations are written in their residual form, and pseudo-time derivatives 
are added to the left-hand side. The solution is achieved once the pseudo-time derivatives 
attenuate to a certain precision (e.g., $10^{-12}$). 

*L87* system of equations; in plural, this mistake is repeated several times, please 
correct it everywhere.  

Corrected! 

system of equations 

*L102* Please define $tilde(rho)$ as well 

Corrected. 

where $\mu$ and $\widetilde{\rho}$ are the damping parameters. 

*L104* compare =>compared 



Corrected 

compared 

*L109* equation stress => constitutive equation  

Corrected 

constitutive equation  

*L112* Is $tilde(H)$ really equal to $H$? How did you reach to this conclusion? 

The reason for our approach is simplicity. This equation involves only one numerical 
parameter, \(St\), while the other parameters are dependent. If we were to use a different 
value for \(\tilde{H}\) instead of \(H\), we would need to modify the entire numerical 
scheme and adjust the \(St\) value, without any improvement in convergence, as we are 
constrained by the CFL condition and the single numerical parameter \(St\). 

*L115/120* When the reader reaches line 115, it is not obvious why the stress 
from the previous time step suddenly vanishes. The authors should explain here 
why this happens, rather than doing it later on. 

We added a general description saying that there are two for loops – one is physical time 
(related to loading) and inner loop is in “pseudo-time”. 

For the analysis of the system of equations \eqref{dve_14} we can omit $\hat{ \sigma}$ 
since the stress $\hat{ \sigma}$ does not change inside the loop over ``pseudo" time 
$\widetilde{t}$: 

… 

\subsubsection{Problem statement} 
 
The system of equations \eqref{eq:1}-\eqref{eq:2} can be applied to solve many problems 
in solid mechanics. Particularly, as an example in this study, we use these equations to 
solve two applied problems: (i) - loading/unloading of an elastic body and (ii) - calculation 
of effective elastic properties.  
  
For the analysis of loading/unloading processes in an elastic body, the system of equations 
\eqref{dve_1} is discretized with a physical time step $\Delta t$, which is intrinsically linked 
to specific strain increments.  
The loading/unloading process is simulated through a series of time increments, 
cumulatively spanning the total time of interest.  
This total time corresponds to the overall strain accumulation within the elastic body. In 
contrast, when computing effective elastic properties (task ii), the system of equations 
\eqref{dve_1} is utilized with a single loading increment, characterized by a physical time 
step $\Delta t$.  
This solitary increment corresponds to a single strain loading step.  
Subsequently, the stress and strain fields are spatially averaged across the model domain. 
The division of these averaged quantities yields the effective elastic moduli. 



 

*L122* provided in Appendix A. A discrete => is provided in Appendix A, and a 
discrete...  

Corrected 

The APT version of expression \eqref{dve_14} (or \eqref{dve_141}) where the stress tenor 
is decomposed into pressure and deviatoric stress tensor is provided in Appendix 
\ref{Ap00}, and a discrete version of the system \eqref{dve_141} is provided in Appendix 
\ref{Ap1}. 
 
*L136* calculated => defined 

Corrected 

defined 

*eq11* why not using normal brackets for the exponential instead of straight 
brackets? should be clear enough 

We agree with the reviewer that there are several options possible. This is a notation 
choice. We keep the present notation. 

*L146* $exp$ is standard notation and needs no definition, please remove from the 
manuscript. It is also written later on in the manuscript.  

We agree with the reviewer that there are several options possible. This is a notation 
choice. We keep the present notation. We removed this from the manuscript (second time) 
which is written two times. 

*L147* I am not familiar with the concept of amplification matrix. Could the 
authors briefly comment on it?  

We have added a reference book dealing with stability of discrete numerical schemes and 
using this terminology. 

This is a standard procedure used for example in determining the correct CFL condition. It is 
well explained in many text books, for example, in Hirsch (1988). 

See also Stability of discrete schemes of Biot’s poroelastic equations 

Y. Alkhimenkov ,1,2,3 L. Khakimova 3,4 and Y.Y. Podladchikov  

\citep{hirsch1988numerical, alkhimenkov2021stability} 

*Section 2.3.4* I am afraid I am bit lost here. Could the authors please elaborate 
and provide some more details of what is actually being solved here, and what 
exactly are the numerical and analytical solutions?  



We added some explanation into this section. 

\paragraph{Problem statement: validation of the numerical parameters}\label{pr} 
 
To validate the numerical parameters, the following experiment is performed: in the 
numerical solver, we set all boundary conditions to zero and initialize the system with a 
sinusoidal wave. The numerical solution is then run over pseudo-time until it converges to a 
specified precision (i.e., $10^{-12}$). Simultaneously, the same equation is solved using 
the analytical method (amplification matrix) to achieve the same precision (i.e., $10^{-
12}$). The results are then compared as a function of $\mathrm{St}$. Ideally, the results 
should be identical or very close, which would validate the choice of numerical parameters 
and the applied nimerical scheme. 

*Section 2.3.5* The authors should briefly explain (here or elsewhere in the main 
body of the manuscript) that the equations are discretised with a staggered grid 
and finite difference scheme. This is only mentioned in the appendix. 

We added some explanation into this section. 

For the numerical solution, we use a classical conservative staggered space-time grid 
discretization \citep{virieux1986p} which is equivalent to a finite volume approach 
\citep{dormy1995numerical}. More details on the present discretization can be found in 
\cite{alkhimenkov2021resolving, alkhimenkov2021stability}. 

*Figure 1* I'm guessing (-) means that there are no units. This symbol could be 
removed from the axis labels if you state in the caption that everything is 
dimensionless. I also suggest the authors to put the name of the field (e.g. Vx) in 
the y-axis of the plots, instead of putting it in the title and writing Amplitude. These 
comments apply to all the plots.  

We agree with the reviewer that there are several representations can be chosen. In our 
opinion the present representation is clear.  

 
Why the stress is about 4 orders of magnitude different between scheme 1 and 2?  

In response to the reviewer’s request, we updated the explanation of this section and 
removed scheme 1 from the main text. The reason for different stress was that scheme 1 
(in the previous notation) was not fully correct. 
 
*L190* The boundary conditions could be expressed as function of the spatial 
coordinate ($v_x (x=0)=1$ and $v_x (x=L_x)=0$) instead of nodal numbering. In 
this way they have a physical meaning and would simplify this sentence in the 
manuscript. 

We agree with the reviewer that there are several representations can be chosen. In our 
opinion the present representation is clear.  

*L199* I think it is more clear if the accuracy is expressed as residuals instead of 
pseudo time derivatives 



We agree with the reviewer. We express now in resudials.  

After $5 \, n_x$ iterations in ``pseudo-time" we can report the accuracy (in residuals) $d 
v_x  = 10^{-13}$. This result correspond to the difference between the numerical value for 
$H^*$ and the analytical value for  $H^*_{an}=7/3$ via $(H^*_{an}-
H^*_{num})/H^*_{an}\times 100\% $ to as $10^{-12}\%$. 

*Section 2.3.6* As in Section 2.3.4, please add more details of what is being 
solved.  

We added some explanation in the beginning of the paper.   

\subsubsection{Problem statement} 
 
The system of equations \eqref{eq:1}-\eqref{eq:2} can be applied to solve many problems 
in solid mechanics. Particularly, as an example in this study, we use these equations to 
solve two applied problems: (i) - loading/unloading of an elastic body and (ii) - calculation 
of effective elastic properties.  
  
For the analysis of loading/unloading processes in an elastic body, the system of equations 
\eqref{dve_1} is discretized with a physical time step $\Delta t$, which is intrinsically linked 
to specific strain increments.  
The loading/unloading process is simulated through a series of time increments, 
cumulatively spanning the total time of interest.  
This total time corresponds to the overall strain accumulation within the elastic body. In 
contrast, when computing effective elastic properties (task ii), the system of equations 
\eqref{dve_1} is utilized with a single loading increment, characterized by a physical time 
step $\Delta t$.  
This solitary increment corresponds to a single strain loading step.  
Subsequently, the stress and strain fields are spatially averaged across the model domain. 
The division of these averaged quantities yields the effective elastic moduli. 
 
 
\paragraph{Problem statement: validation of the numerical parameters}\label{pr} 
 
To validate the numerical parameters, the following experiment is performed: in the 
numerical solver, we set all boundary conditions to zero and initialize the system with a 
sinusoidal wave. The numerical solution is then run over pseudo-time until it converges to a 
specified precision (i.e., $10^{-12}$). Simultaneously, the same equation is solved using 
the analytical method (amplification matrix) to achieve the same precision (i.e., $10^{-
12}$). The results are then compared as a function of $\mathrm{St}$. Ideally, the results 
should be identical or very close, which would validate the choice of numerical parameters 
and the applied numerical scheme. For the numerical solution, we use a classical 
conservative staggered space-time grid discretization \citep{virieux1986p} which is 
equivalent to a finite volume approach \citep{dormy1995numerical}. More details on the 
present discretization can be found in \cite{alkhimenkov2021resolving, 
alkhimenkov2021stability}. 

 



*Section 2.3.7* I assume the boundary conditions and resolution are as in 2.3.5, 
but please clarify it in the text. 

We added some explanation into this section. 

Let us again consider a 1D numerical domain with $ L_x=1$, which is discretized into 
$n_x=1000$ grid cells. The boundary conditions are the same as in the previous section 
2.4.2. (Numerical experiment 2). Now, we consider a heterogeneous medium in 1D 
represented by layers of different elastic properties. 

*L207* We perform *the* numerical 

Corrected. 

We perform the numerical experiment 

*L211* I assume $phi$ is the volume fraction of the weakest phase? please clarify 
in the text   

Corrected. 

where $A$ is a minimum of the elastic moduli of the softest material divided by volume 
fraction of the weakest phase $\phi$: 

*eq 25* Were other setups tested? Dos this still work $K$ and $G$ are very 
different?  

In this study we did not explore all possible scenarios. In the text: Note that the definition 
of A in equation (25) is valid for the specific parameters of the medium considered here and 
is not universal. 

*L203* Figure Figure 2 => Figure 2 

Corrected. 

*L215* The authors should explain how is this accuracy defined, as now it appears 
as a percentage while in the previous sections it was the value of the residual. It 
would also help to understand why the value for scheme 1 is much larger than for 
the scheme 2. 

We added some explanation on the accuracy definition. We removed scheme 1 from the 
main text and added it into appendix (a corrected version). 

 After $5 \, n_x$ iterations in ``pseudo-time" we can report the accuracy (in residuals) $d 
v_x  = 10^{-13}$. This result correspond to the difference between the numerical value for 
$H^*$ and the analytical value for  $H^*_{an}=7/3$ via $(H^*_{an}-
H^*_{num})/H^*_{an}\times 100\% $ to as $10^{-12}\%$. 



*Section 3* In the previous sections the authors were using tensor notation to 
describe the system of equations. For consistency, it would be great if all the 
systems of equations presented here were using the same notation.  

We modified the previous sections and added component notations as well. In the present 
section 3, we added the full set of viscoelastic equations. 

Now, let us consider viscoelastic equations. The general form is the following:  
\renewcommand*{\arraystretch}{2} 
\begin{equation}\label{dve_12VE0} 
\left\{ 
\begin{array}{ll} 
    \dfrac{1}{K} \dfrac{ \partial p }{\partial t} = - \nabla \cdot \mathbf{v} \\     
    \dfrac{1}{2G} \dfrac{\partial \boldsymbol{\tau}}{\partial t} + 
\dfrac{\boldsymbol{\tau}}{2 \mu_s} = \boldsymbol{\varepsilon} - \dfrac{1}{3} (\nabla 
\cdot \mathbf{v}) \mathbf{I}_2\\ 
     {0} = \nabla \cdot (-p \mathbf{I}_2 + \boldsymbol{\tau}) , 
\end{array} 
\right. 
\end{equation} 
where $\mu_s$ is the shear viscosity of the solid material, $p$ is the pressure, 
$\boldsymbol{\tau}$ is the deviatoric stress tensor ($\sigma = - p \mathbf{I}_2 + 
\boldsymbol{\tau}$. 

*L223* (physical) viscosity => shear viscosity 

Corrected. 

=> shear viscosity 

*Figure 3* If I am not mistaken, this figure is not referenced or discussed in the 
manuscript.  

We agree with the reviewer. Yes, indeed. We added references and explanations to Fig. 3. 

It can be seen that the analytical and numerical results are in excellent agreement (Figure 
\ref{FigVS1}) that validates the proposed approach. 

*Section 3.2* I do not find the name of the section appropriate, as "elegant" is a 
rather subjective and arbitrary term and there are only some minor changes w.r.t 
the previous subsection  

We agree with the reviewer. Yes, indeed. This section is revised reflecting the present 
comments and the comments from the reviewer 1. 

*eq 46* The left hand side can be simplified 
 
$mat( 
 
  tilde(rho)_t (partial v_i ^s) / (partial tilde(t)); 



 
  -tilde(rho)_a (partial q_i ^D) / (partial tilde(t)); 
 
)$ 

The purpose of having the full matrices is to highlight that there are no added mass 
coefficients in off-diagonal components as in Biot’s equation (see eq 8 in 

Resolving wave propagation in anisotropic poroelastic media using graphical processing 
units (GPUs). Y Alkhimenkov, L Räss, L Khakimova, B Quintal, Y Podladchikov 
 
*L319* These coefficients have already been defined. And please remove the 
definition of $exp$. 

We removed repetitions and definition of exp. 

*Sections 4.1.2 / 4.1.3* As before, explain what is being solved  

We added some explanation into the text. 

(see explanation in section~\ref{pr}) 

*Figure 6* If I didn't miss anything, the $"St"_("opt")$  for the 3D case is much 
larger than any of the values described in the text. Does this mean that the only 
way to tune this parameter in the 3D case is trial and error? 

This is a good point and we spend some time on further defining the correct St for 3D. Still, 
analytical estimation of St gives a reasonable estimation. We new explanation into the 
discussion section. 

*Section 5* I assume that the simulations presented in this section have been run 
on some Nvidia GPU card since the authors previously mentioned some CUDA files. 
However, this should be stated again here, as well as mentioning what exact GPU 
card was used and how many of them were needed to run the high resolution 
models. 

This is a good point and we added this information. 

\subsection{Implementation using Graphical Processing Units (GPUs)} 
 
The initial code prototyping was conducted on a laptop equipped with a 13th Gen Intel Core 
i9-13900HX CPU (64GB RAM) and an NVIDIA GeForce RTX 4090 (16 GB) laptop GPU. For 
large-scale 3D simulations, the computations were carried out on an NVIDIA DGX-1-like 
node, featuring 4 NVIDIA Ampere A100 GPUs (each with 80 GB of memory) and an AMD 
EPYC 7742 server processor with 512 GB of RAM. 

*Section 5.1* Before jumping into eq. 65, I believe it's a good idea to briefly 
introduce the plastic model of Duretz et al 2019, perhaps even adding a small 
sketch with the elastic springs, dampers and whatnot. This would also help readers 



unfamiliar with this plastic model understand why theres a viscous damper in the 
yield function.  

We agree with the reviewer that some explanation might be needed. That’s why we refer to 
Duretz et al 2019.  We added more references for an interested reader. 

Resolving strain localization in frictional and time-dependent plasticity: Two-
and three-dimensional numerical modeling study using graphical processing 
units … 
Y Alkhimenkov, L Khakimova, I Utkin, Y Podladchikov 
 
An interested reader may refer to \cite{alkhimenkov2024shear, 
https://doi.org/10.1029/2023JB028566} for more details on the implementation of 
plasticity. 
 
Shear bands triggered by solitary porosity waves in deforming fluid-saturated porous media 
Y Alkhimenkov, L Khakimova, Y Podladchikov 
Geophysical Research Letters  
 
 

The constants A, B, C are merely some trigonometric functions. I don't think there 
is any need of re-binding them with new names; they only appear in two equations, 
and since these equations are usually well-known for a wide spectrum of the 
potential readers, the new names  just make the equations more confusing.  

We agree with the reviewer that some explanation is needed. There are different definitions 
of A, B and C in plasticity and we used only a particular one. Keeping the same notation in 
Eq 65-66 make these equations more universal. 

*L385* Perhaps not every reader know under what conditions a material is within 
the plastic regime. It would be helpful to add that this happens when $F^("trial") > 
0 $ 

We agree with the reviewer that some explanation might be needed. This study is about 
APT methos and not about plasticity. That’s why we refer to Duretz et al 2019. We added 
more references for an interested reader and a sentence with explanation to fulfill the 
reviewer request. 

An interested reader may refer to \cite{alkhimenkov2024shear, 
https://doi.org/10.1029/2023JB028566} for more details on the implementation of 
plasticity. 
 
Shear bands triggered by solitary porosity waves in deforming fluid-saturated porous media 
Y Alkhimenkov, L Khakimova, Y Podladchikov 
Geophysical Research Letters  
 



*Section 5.2* I assume the domain of the model is $Omega in [0,1] times [0,1]$; 
however, this should be explicitly stated in the text.  

This is a good point and we added this information. 

Let us consider a 2D numerical domain with $ L_x=L_y=1$. 

Is a resolution of $10000^2$ really necessary? Did the authors run systematic tests 
to explore whether one can get a way with lower resolutions? 

Yes, the resolution 10,000^2 is necessary to show the robustness of the APT method. We 
add a reference where systematic tests were performed with different resolutions. 

Resolving strain localization in frictional and time-dependent plasticity: Two-and three-
dimensional numerical modeling study using graphical processing units (GPUs). Y 
Alkhimenkov, L Khakimova, I Utkin, Y Podladchikov 

 

How does the convergence of this highly-nonlinear setup behave? Is every single 
time step fully converged? Would be interesting to plot also (number of iterations / 
nx) vs time step, I suspect the number of PT iterations increases when plasticity 
kicks in. How much time does it take to run a model with this resolution? Same 
comments apply to Section 5.3 

Yes, every iteration converged. The plot requested by the reviewer already exists in Figure 
D1 (in the present simulation is similar). In  

Resolving strain localization in frictional and time-dependent plasticity: Two-and three-
dimensional numerical modeling study using graphical processing units (GPUs). Y 
Alkhimenkov, L Khakimova, I Utkin, Y Podladchikov 

The present convergence is fully analogous to Fig D1 in the article above. Adding such a 
technical detail (plot) is not possible because it will require re-running the HR simulation.  

The simulation time takes about a few hours. 
 
*Figure 7* Put the spatial coordinates in the labels of the x and y axes instead of 
the grid cell numbers. Also, this figure alone does not bring much, it could probably 
be merged as a fourth panel in Fig 8.  

We put cells numbers in Fig 7,8,9 to show the resolutions employed, this was done on 
purpose. We have separate Fig 7 and 8 because we would like to have full size of Fig 8 to 
show fine details of the strain localization. 

*L400* It would be nice if the authors could add a few more snapshots of models at 
much lower resolution to make stronger the argument that the strain localisation is 
mesh-independent. 



We refer to our resent study, where more models were investigated using the same 
regularization method: 

Resolving strain localization in frictional and time-dependent plasticity: Two-and three-
dimensional numerical modeling study using graphical processing units (GPUs). Y 
Alkhimenkov, L Khakimova, I Utkin, Y Podladchikov 

*Figure 8* I may be wrong, but the colour scale of panel B seems to have slightly 
different min/max values with respect to panels A and C 

Yes, there is a slight difference, we made it on purpose to better visualization. As long as 
the color bar attached – any scales should be accepted. 

*Figure 9* As Fig 7, it could be merged with Fig. 10  

We combined Fig 9 and 10 as suggested by the reviewer. 

*Section 5.3* I am not so sure I would call this "ultra-high" resolution. This 
resolution fits without many problems in a single modern GPU card, and given that 
only 15 time steps are performed, it should run in just a few hours if it converges 
fast enough.  

Yes, the reviewer is correct, it fits into a single GPU card that has 80 GB of DRAM memory. 
The term Ultra-high is chosen because as far as we know, there are no simulations with 
such a resolution yet in the literature.  

*Section 6* One could add here a brief intro of this section.  

We added some introduction into this section. 

In this section, we analyze the implications of the numerical results presented in the 
previous sections and establish connections with relevant works in the field. We explore the 
behavior of the numerical parameters, such as the Strouhal number ($\mathrm{St}$), and 
their optimal values for different physical models including elastic, viscoelastic, and 
poroelastic media. Additionally, we assess the influence of dimensionality, initial and 
boundary conditions, and non-linearities such as plasticity on the convergence and accuracy 
of the simulations. This analysis serves as a foundation for further extending these methods 
to more complex and realistic scenarios. 

*Section 6.3* It is not very clear whether these simulations were run for the paper 
here referenced, or they are some other simulations not described in this 
manuscript. If these are simulations from a previous paper, why not use the ones 
here presented? If they are actually new simulations, please describe these models 
in detail. 

We performed these simulation in section 6.3 only for the present study. The purpose of this 
section it to show how St differs with respect to boundary conditions. We rely on the recent 
paper by Rass et al 2022, where no detailed explanation of all simulations is performed. 
Since it will not add something new into the article, we keep the present brevity as Rass et 



al 2022. However, we added some more explanations for reproducibility. Also note that full 
results can be reproduced since all the codes are shared via zenodo. 

Räss, L., Utkin, I., Duretz, T., Omlin, S., and Podladchikov, Y. Y.: Assessing the robustness 
and scalability of the accelerated pseudo-transient method, Geoscientific Model 
Development, 15, 5757–5786, 2022. 

To what time step (or point in the stress-strain curve) do these plots correspond to? 
is plasticity kicking in already from the first time step? How do these plots vary for 
simulations along different points of the stress-strain curve? 

First several time steps are purely elastic. In the middle of the simulation, stress reaches 
yield and the plots we are showing in the discussion section correspond to the condition 
when plastic flow is activated. 

These simulations correspond to the loading scale where plastic flow is activated. 

*L511* I don't think this is a conclusion related to the work here presented.  

To reflect this comment we improved the conclusion, made it more concise and more 
related to the article. 

  

Albert de Montserrat 

 

We thank the reviewer for the in-depth comments and for correcting typos, which helped us 
improve the quality of the manuscript. 

Sincerely, 
Yury Alkhimenkov and Yury Podladchikov 

 

 

 


