
Response to Reviewer 2: Our comments are provided in blue. Text modifications are 
provided in green. 

The the Accelerated Pseudo-Transient (APT) method is a matrix-free approach for 
iteratively solving partial differential equations (PDEs) which is embarrassingly 
parallel, thus being highly suitable for GPUs. The main challenge of the APT is to 
fine-tune the numerical parameters it introduces in the PDEs to obtain the optimal 
convergence rates. 

In this paper the authors present a comprehensive analysis of the APT equations for 
quasi-static elastic and viscoelastic equations, and coupled hydro-mechanical 
problems, showcasing the derivation of the corresponding optimal numerical 
parameters. The manuscript highlights the accuracy and robustness of the APT to 
handle 2/3D highly-non linear coupled problems, as well as demonstrating the 
capability of the APT to reach extremely high resolutions. 

I believe the outcome of the manuscript is relevant and is worth of a GMD 
publication. However, the manuscript requires of some major improvements before 
publication to largely improve its clarity and readability. Below is a detailed list of 
major and minor comments. 

General comments 

- I feel like the manuscript is lacking of many details that are either missing or 
should be explained in more detail and in a clear way; line by line comments below. 
Some sections manuscript (e.g. introduction) would also largely benefit of some 
rewriting to improve the clarity and quality of the text. 

We would like to thank the reviewer for highlighting the need for improvements in clarity 
and readability. We agree that certain sections of the manuscript would benefit from further 
explanation. As such, we have rewritten parts of the article to ensure the content is more 
accessible and comprehensible to the readers.  

- Perhaps I am missing something, but I don't think it is obvious what is the 
numerical problem being solved in  
 
  - Section 2.3.4 / Figure 1 
 
  - Section 2.3.6 / Figure 2 
 
  - Figure 3 
 
  - Section 4.1 / Figure 4 
 
  - Section 4.1.5 / Figure 6 
 
  Some clarification may help. Furthermore, Figure 3 seems not to be referenced / 



discussed in the manuscript; and it also has two sub panels that are not described 
in the the caption neither. 

We agree with the reviewer that some more explanation is needed. In all the figures, a 
comparison between analytical and numerical solutions is presented. We added some 
explanation before figure 1. 

\paragraph{Problem statement: validation of the numerical parameters}\label{pr} 
 
To validate the numerical parameters, the following experiment is performed: in the 
numerical solver, we set all boundary conditions to zero and initialize the system with a 
sinusoidal wave. The numerical solution is then run over pseudo-time until it converges to a 
specified precision (i.e., $10^{-12}$). Simultaneously, the same equation is solved using 
the analytical method (amplification matrix) to achieve the same precision (i.e., $10^{-
12}$). The results are then compared as a function of $\mathrm{St}$. Ideally, the results 
should be identical or very close, which would validate the choice of numerical parameters 
and the applied numerical scheme. For the numerical solution, we use a classical 
conservative staggered space-time grid discretization \citep{virieux1986p} which is 
equivalent to a finite volume approach \citep{dormy1995numerical}. More details on the 
present discretization can be found in \cite{alkhimenkov2021resolving, 
alkhimenkov2021stability}. 

- I encourage the authors to use the colormaps available either in the 
_PerceptualColourMaps_ package or in Fabio Crameri's _Scientific Colour Maps_. 
Both set of colormaps are available in MATLAB. 

We agree with the reviewer there are other colormaps exists. We use standard colormap in 
Matlab “jet” as we have used in all our previous articles. There is no strict requirement on 
the colormap choice, therefore, we keep jet colormap. We may consider in the future to use 
other colormaps. 

- I would not consider MATLAB being truly open-sourced as a license needs to be 
purchased. It is true that most of the (at least European) universities have 
institutional licenses, but not all the readers interested in trying out the scripts 
provided here may have access to a license. For this reason I would also like to 
encourage the authors to consider using other free dynamic languages, such as 
Julia or Python, for future work/publications. 

We agree with the reviewer that Matlab is not open-access. However, there is an alternative 
--- Octave which is open access. The results presented in .m files can be reproduced using 
Octave. 

- Attached is a pdf with other comments and other typos/grammatical corrections. 

 

 

 



Line by line 

 
 
*L15/62* Voxels do not exist in 2D, they are called pixels, which are 2D bitmaps. 
Either way, the domain of a 2/3D simulation is discretised in cells or elements. 
Please replace "voxels" with "cells", "elements" or similar throughout the 
manuscript.  

We agree with the reviewer. This depends on the community. In computational mechanics, 
scientist call grid cells and elements as voxels. We replaced voxels into grid cells as 
suggested. 

grid cells 

*L25/26* The APT actually relies quite a bit on storage of data on matrices, as the 
iterative solver needs to be split into several kernels to avoid race conditions. The 
actual advantage of matrix-free methods is that they avoid assembling a global 
sparse matrix and either expensive direct solves or other iterative methods that 
rely on not-so-cheap sparse matrix-vector multiplications. 

We agree with the reviewer. The APT method is local and matrix-free in a sense that we do 
not need a global matrix as in direct solvers. APT is free from global scalar products that 
involve information from full arrays (as in conjugate method). 

The Accelerated Pseudo-Transient (APT) method is designed to iteratively solve a modified 
version of the original partial differential equation (PDE) by introducing inertial and 
relaxation terms. This modified PDE is repeatedly solved until the added pseudo-physical 
terms vanish, providing an accurate approximation of the solution to the original equation. 
The APT method becomes increasingly efficient when implemented with exclusively spatially 
local operations, eliminating the need to access global storage for evolving fields. Unlike the 
conjugate gradient method, which requires two global scalar products per iteration, the APT 
method advances without global memory operations, enhancing computational performance 
by utilizing fast cache memory. 

*L30* effectively => efficiently 

Corrected! 

efficiently 

*L35* This whole paragraph would largely benefit of some rewriting, it reads as a 
collection of facts without any flow. I would also say that the first sentence can be 
easily removed as it does not bring anything to the topic of APT.  

We agree with the reviewer that this paragraph may benefit from some rewriting. We think 
that this paragraph provides a general overview of the development of PT methods in 
chronological order. Also, the first sentence is importance since it reference one of the first 
iterative methods to solve PDEs which we describe on the paper. 



 

One of the first pseudo-transient (PT) iterative methods to solve elliptic PDEs was presented 
by \cite{richardson1911ix}. An improved PT method for elliptic problems, which can be 
referred to as the Accelerated Pseudo-Transient (APT) method, was proposed in the 1950s 
by \cite{frankel1950convergence} and further investigated by \cite{riley1954iteration} and 
\cite{young1972second}. The pseudo-transient method is also known as a dynamic-
relaxation (DR) method that was used by \cite{otter1965computations, 
otter1966dynamic}… 

 

*L70* I don't think $nabla dot$ is an operator itself, it just means the dot product 
of the nabla operator and something else. The authors should also remove the 
references regarding the nabla operator, as this notation has been introduced and 
widely much earlier (by Hamilton in the 1800s) than in those references and it is a 
widely known, accepted, and used notation. If you want to keep the mathematical 
definition of nabla, define it when you introduce the symbol.  

We agree with the reviewer that there are different interpretations. Some scientists refer to 
the $\nabla \cdot$ (divergence) as an operator. Regardless, the statement is clear and not 
open to misinterpretation. 

*Eq2* Since tensor notation is being used, I suggested the authors to denote the 
rates using the dot notation instead, i.e. $dot(epsilon)$ 

We agree with the reviewer that there are other ways to denote rates. The derivative of a 
tensor (via \dot) may reflect partial derivative, full derivative of material derivative or 
objective (e.g., Jaumann derivative). To make our statement clear we keep partial 
derivative to separate from other possible choices. 

*Eq3* The tensor products should be dropped, it is $dot(epsilon) = 1/2(nabla 
bold(v) + (nabla bold(v))^T)$ 

We agree with the reviewer that there are other ways to write this equation. Eq3 is correct 
with and without tensor products. The gradient of a vector field is the same as the dyadic 
product of the del operator and the vector. 

We refer to the standard terminology in micromechanics, see  

“Micromechanics: overall properties of heterogeneous materials. S Nemat-Nasser, M Hori” 
or “Introduction to micromechanics and nanomechanics. S Li, G Wang” 

 

*L79* superscript T  

Corrected. 



*Section 2.3* Perhaps it is a good idea to expand a bit on the pseudo transient 
method, rather than directly writing down the equations. It may not be obvious for 
the general reader to know what's going on. You could for example explain that the 
equations are written in their residual form and the pseudo time derivatives are 
added to the left hand side (or wherever you write down the zero), which should 
vanish upon convergence, thus recovering the original equations; or similar.  

We agree with the reviewer that some more explanation might help. The original text 
contains the sentence: The main idea is that the solution of a quasi-static equation 
(stationary process), usually described by an elliptic PDE, is represented by an attractor of a 
transient process described by parabolic or hyperbolic PDEs. We added more explanation 
into the introduction and corresponding section: 

The Accelerated Pseudo-Transient (APT) method is designed to iteratively solve a modified 
version of the original partial differential equation (PDE) by introducing inertial and 
relaxation terms. This modified PDE is repeatedly solved until the added pseudo-physical 
terms vanish, providing an accurate approximation of the solution to the original equation. 
The APT method becomes increasingly efficient when implemented with exclusively spatially 
local operations, eliminating the need to access global storage for evolving fields. Unlike the 
conjugate gradient method, which requires two global scalar products per iteration, the APT 
method advances without global memory operations, enhancing computational performance 
by utilizing fast cache memory. This method is versatile, applicable to both linear and 
nonlinear equations, and distinguishes itself with several key attributes. (i) APT is a matrix-
free method, enabling the solution of large-scale 3D problems without the overhead of 
matrix storage. (ii) leveraging only local operations, APT naturally lends itself to 
parallelization, making it well-suited for modern computing architectures. (iii) its structure 
facilitates efficient implementation on Graphical Processing Units (GPUs), capitalizing on 
their ability to handle parallel tasks efficiently. (iv), APT method aligns closely with the 
physics of wave phenomena, offering a robust theoretical framework for rigorous 
understanding and application. 

Simply put, the equations are written in their residual form, and pseudo-time derivatives 
are added to the left-hand side. The solution is achieved once the pseudo-time derivatives 
attenuate to a certain precision (e.g., $10^{-12}$). 

*L87* system of equations; in plural, this mistake is repeated several times, please 
correct it everywhere.  

Corrected! 

system of equations 

*L102* Please define $tilde(rho)$ as well 

Corrected. 

where $\mu$ and $\widetilde{\rho}$ are the damping parameters. 

*L104* compare =>compared 



Corrected 

compared 

*L109* equation stress => constitutive equation  

Corrected 

constitutive equation  

*L112* Is $tilde(H)$ really equal to $H$? How did you reach to this conclusion? 

The reason for our approach is simplicity. This equation involves only one numerical 
parameter, \(St\), while the other parameters are dependent. If we were to use a different 
value for \(\tilde{H}\) instead of \(H\), we would need to modify the entire numerical 
scheme and adjust the \(St\) value, without any improvement in convergence, as we are 
constrained by the CFL condition and the single numerical parameter \(St\). 

*L115/120* When the reader reaches line 115, it is not obvious why the stress 
from the previous time step suddenly vanishes. The authors should explain here 
why this happens, rather than doing it later on. 

We added a general description saying that there are two for loops – one is physical time 
(related to loading) and inner loop is in “pseudo-time”. 

For the analysis of the system of equations \eqref{dve_14} we can omit $\hat{ \sigma}$ 
since the stress $\hat{ \sigma}$ does not change inside the loop over ``pseudo" time 
$\widetilde{t}$: 

… 

\subsubsection{Problem statement} 
 
The system of equations \eqref{eq:1}-\eqref{eq:2} can be applied to solve many problems 
in solid mechanics. Particularly, as an example in this study, we use these equations to 
solve two applied problems: (i) - loading/unloading of an elastic body and (ii) - calculation 
of effective elastic properties.  
  
For the analysis of loading/unloading processes in an elastic body, the system of equations 
\eqref{dve_1} is discretized with a physical time step $\Delta t$, which is intrinsically linked 
to specific strain increments.  
The loading/unloading process is simulated through a series of time increments, 
cumulatively spanning the total time of interest.  
This total time corresponds to the overall strain accumulation within the elastic body. In 
contrast, when computing effective elastic properties (task ii), the system of equations 
\eqref{dve_1} is utilized with a single loading increment, characterized by a physical time 
step $\Delta t$.  
This solitary increment corresponds to a single strain loading step.  
Subsequently, the stress and strain fields are spatially averaged across the model domain. 
The division of these averaged quantities yields the effective elastic moduli. 



 

*L122* provided in Appendix A. A discrete => is provided in Appendix A, and a 
discrete...  

Corrected 

The APT version of expression \eqref{dve_14} (or \eqref{dve_141}) where the stress tenor 
is decomposed into pressure and deviatoric stress tensor is provided in Appendix 
\ref{Ap00}, and a discrete version of the system \eqref{dve_141} is provided in Appendix 
\ref{Ap1}. 
 
*L136* calculated => defined 

Corrected 

defined 

*eq11* why not using normal brackets for the exponential instead of straight 
brackets? should be clear enough 

We agree with the reviewer that there are several options possible. This is a notation 
choice. We keep the present notation. 

*L146* $exp$ is standard notation and needs no definition, please remove from the 
manuscript. It is also written later on in the manuscript.  

We agree with the reviewer that there are several options possible. This is a notation 
choice. We keep the present notation. We removed this from the manuscript (second time) 
which is written two times. 

*L147* I am not familiar with the concept of amplification matrix. Could the 
authors briefly comment on it?  

We have added a reference book dealing with stability of discrete numerical schemes and 
using this terminology. 

This is a standard procedure used for example in determining the correct CFL condition. It is 
well explained in many text books, for example, in Hirsch (1988). 

See also Stability of discrete schemes of Biot’s poroelastic equations 

Y. Alkhimenkov ,1,2,3 L. Khakimova 3,4 and Y.Y. Podladchikov  

\citep{hirsch1988numerical, alkhimenkov2021stability} 

*Section 2.3.4* I am afraid I am bit lost here. Could the authors please elaborate 
and provide some more details of what is actually being solved here, and what 
exactly are the numerical and analytical solutions?  



We added some explanation into this section. 

\paragraph{Problem statement: validation of the numerical parameters}\label{pr} 
 
To validate the numerical parameters, the following experiment is performed: in the 
numerical solver, we set all boundary conditions to zero and initialize the system with a 
sinusoidal wave. The numerical solution is then run over pseudo-time until it converges to a 
specified precision (i.e., $10^{-12}$). Simultaneously, the same equation is solved using 
the analytical method (amplification matrix) to achieve the same precision (i.e., $10^{-
12}$). The results are then compared as a function of $\mathrm{St}$. Ideally, the results 
should be identical or very close, which would validate the choice of numerical parameters 
and the applied nimerical scheme. 

*Section 2.3.5* The authors should briefly explain (here or elsewhere in the main 
body of the manuscript) that the equations are discretised with a staggered grid 
and finite difference scheme. This is only mentioned in the appendix. 

We added some explanation into this section. 

For the numerical solution, we use a classical conservative staggered space-time grid 
discretization \citep{virieux1986p} which is equivalent to a finite volume approach 
\citep{dormy1995numerical}. More details on the present discretization can be found in 
\cite{alkhimenkov2021resolving, alkhimenkov2021stability}. 

*Figure 1* I'm guessing (-) means that there are no units. This symbol could be 
removed from the axis labels if you state in the caption that everything is 
dimensionless. I also suggest the authors to put the name of the field (e.g. Vx) in 
the y-axis of the plots, instead of putting it in the title and writing Amplitude. These 
comments apply to all the plots.  

We agree with the reviewer that there are several representations can be chosen. In our 
opinion the present representation is clear.  

 
Why the stress is about 4 orders of magnitude different between scheme 1 and 2?  

In response to the reviewer’s request, we updated the explanation of this section and 
removed scheme 1 from the main text. The reason for different stress was that scheme 1 
(in the previous notation) was not fully correct. 
 
*L190* The boundary conditions could be expressed as function of the spatial 
coordinate ($v_x (x=0)=1$ and $v_x (x=L_x)=0$) instead of nodal numbering. In 
this way they have a physical meaning and would simplify this sentence in the 
manuscript. 

We agree with the reviewer that there are several representations can be chosen. In our 
opinion the present representation is clear.  

*L199* I think it is more clear if the accuracy is expressed as residuals instead of 
pseudo time derivatives 



We agree with the reviewer. We express now in resudials.  

After $5 \, n_x$ iterations in ``pseudo-time" we can report the accuracy (in residuals) $d 
v_x  = 10^{-13}$. This result correspond to the difference between the numerical value for 
$H^*$ and the analytical value for  $H^*_{an}=7/3$ via $(H^*_{an}-
H^*_{num})/H^*_{an}\times 100\% $ to as $10^{-12}\%$. 

*Section 2.3.6* As in Section 2.3.4, please add more details of what is being 
solved.  

We added some explanation in the beginning of the paper.   

\subsubsection{Problem statement} 
 
The system of equations \eqref{eq:1}-\eqref{eq:2} can be applied to solve many problems 
in solid mechanics. Particularly, as an example in this study, we use these equations to 
solve two applied problems: (i) - loading/unloading of an elastic body and (ii) - calculation 
of effective elastic properties.  
  
For the analysis of loading/unloading processes in an elastic body, the system of equations 
\eqref{dve_1} is discretized with a physical time step $\Delta t$, which is intrinsically linked 
to specific strain increments.  
The loading/unloading process is simulated through a series of time increments, 
cumulatively spanning the total time of interest.  
This total time corresponds to the overall strain accumulation within the elastic body. In 
contrast, when computing effective elastic properties (task ii), the system of equations 
\eqref{dve_1} is utilized with a single loading increment, characterized by a physical time 
step $\Delta t$.  
This solitary increment corresponds to a single strain loading step.  
Subsequently, the stress and strain fields are spatially averaged across the model domain. 
The division of these averaged quantities yields the effective elastic moduli. 
 
 
\paragraph{Problem statement: validation of the numerical parameters}\label{pr} 
 
To validate the numerical parameters, the following experiment is performed: in the 
numerical solver, we set all boundary conditions to zero and initialize the system with a 
sinusoidal wave. The numerical solution is then run over pseudo-time until it converges to a 
specified precision (i.e., $10^{-12}$). Simultaneously, the same equation is solved using 
the analytical method (amplification matrix) to achieve the same precision (i.e., $10^{-
12}$). The results are then compared as a function of $\mathrm{St}$. Ideally, the results 
should be identical or very close, which would validate the choice of numerical parameters 
and the applied numerical scheme. For the numerical solution, we use a classical 
conservative staggered space-time grid discretization \citep{virieux1986p} which is 
equivalent to a finite volume approach \citep{dormy1995numerical}. More details on the 
present discretization can be found in \cite{alkhimenkov2021resolving, 
alkhimenkov2021stability}. 

 



*Section 2.3.7* I assume the boundary conditions and resolution are as in 2.3.5, 
but please clarify it in the text. 

We added some explanation into this section. 

Let us again consider a 1D numerical domain with $ L_x=1$, which is discretized into 
$n_x=1000$ grid cells. The boundary conditions are the same as in the previous section 
2.4.2. (Numerical experiment 2). Now, we consider a heterogeneous medium in 1D 
represented by layers of different elastic properties. 

*L207* We perform *the* numerical 

Corrected. 

We perform the numerical experiment 

*L211* I assume $phi$ is the volume fraction of the weakest phase? please clarify 
in the text   

Corrected. 

where $A$ is a minimum of the elastic moduli of the softest material divided by volume 
fraction of the weakest phase $\phi$: 

*eq 25* Were other setups tested? Dos this still work $K$ and $G$ are very 
different?  

In this study we did not explore all possible scenarios. In the text: Note that the definition 
of A in equation (25) is valid for the specific parameters of the medium considered here and 
is not universal. 

*L203* Figure Figure 2 => Figure 2 

Corrected. 

*L215* The authors should explain how is this accuracy defined, as now it appears 
as a percentage while in the previous sections it was the value of the residual. It 
would also help to understand why the value for scheme 1 is much larger than for 
the scheme 2. 

We added some explanation on the accuracy definition. We removed scheme 1 from the 
main text and added it into appendix (a corrected version). 

 After $5 \, n_x$ iterations in ``pseudo-time" we can report the accuracy (in residuals) $d 
v_x  = 10^{-13}$. This result correspond to the difference between the numerical value for 
$H^*$ and the analytical value for  $H^*_{an}=7/3$ via $(H^*_{an}-
H^*_{num})/H^*_{an}\times 100\% $ to as $10^{-12}\%$. 



*Section 3* In the previous sections the authors were using tensor notation to 
describe the system of equations. For consistency, it would be great if all the 
systems of equations presented here were using the same notation.  

We modified the previous sections and added component notations as well. In the present 
section 3, we added the full set of viscoelastic equations. 

Now, let us consider viscoelastic equations. The general form is the following:  
\renewcommand*{\arraystretch}{2} 
\begin{equation}\label{dve_12VE0} 
\left\{ 
\begin{array}{ll} 
    \dfrac{1}{K} \dfrac{ \partial p }{\partial t} = - \nabla \cdot \mathbf{v} \\     
    \dfrac{1}{2G} \dfrac{\partial \boldsymbol{\tau}}{\partial t} + 
\dfrac{\boldsymbol{\tau}}{2 \mu_s} = \boldsymbol{\varepsilon} - \dfrac{1}{3} (\nabla 
\cdot \mathbf{v}) \mathbf{I}_2\\ 
     {0} = \nabla \cdot (-p \mathbf{I}_2 + \boldsymbol{\tau}) , 
\end{array} 
\right. 
\end{equation} 
where $\mu_s$ is the shear viscosity of the solid material, $p$ is the pressure, 
$\boldsymbol{\tau}$ is the deviatoric stress tensor ($\sigma = - p \mathbf{I}_2 + 
\boldsymbol{\tau}$. 

*L223* (physical) viscosity => shear viscosity 

Corrected. 

=> shear viscosity 

*Figure 3* If I am not mistaken, this figure is not referenced or discussed in the 
manuscript.  

We agree with the reviewer. Yes, indeed. We added references and explanations to Fig. 3. 

It can be seen that the analytical and numerical results are in excellent agreement (Figure 
\ref{FigVS1}) that validates the proposed approach. 

*Section 3.2* I do not find the name of the section appropriate, as "elegant" is a 
rather subjective and arbitrary term and there are only some minor changes w.r.t 
the previous subsection  

We agree with the reviewer. Yes, indeed. This section is revised reflecting the present 
comments and the comments from the reviewer 1. 

*eq 46* The left hand side can be simplified 
 
$mat( 
 
  tilde(rho)_t (partial v_i ^s) / (partial tilde(t)); 



 
  -tilde(rho)_a (partial q_i ^D) / (partial tilde(t)); 
 
)$ 

The purpose of having the full matrices is to highlight that there are no added mass 
coefficients in off-diagonal components as in Biot’s equation (see eq 8 in 

Resolving wave propagation in anisotropic poroelastic media using graphical processing 
units (GPUs). Y Alkhimenkov, L Räss, L Khakimova, B Quintal, Y Podladchikov 
 
*L319* These coefficients have already been defined. And please remove the 
definition of $exp$. 

We removed repetitions and definition of exp. 

*Sections 4.1.2 / 4.1.3* As before, explain what is being solved  

We added some explanation into the text. 

(see explanation in section~\ref{pr}) 

*Figure 6* If I didn't miss anything, the $"St"_("opt")$  for the 3D case is much 
larger than any of the values described in the text. Does this mean that the only 
way to tune this parameter in the 3D case is trial and error? 

This is a good point and we spend some time on further defining the correct St for 3D. Still, 
analytical estimation of St gives a reasonable estimation. We new explanation into the 
discussion section. 

*Section 5* I assume that the simulations presented in this section have been run 
on some Nvidia GPU card since the authors previously mentioned some CUDA files. 
However, this should be stated again here, as well as mentioning what exact GPU 
card was used and how many of them were needed to run the high resolution 
models. 

This is a good point and we added this information. 

\subsection{Implementation using Graphical Processing Units (GPUs)} 
 
The initial code prototyping was conducted on a laptop equipped with a 13th Gen Intel Core 
i9-13900HX CPU (64GB RAM) and an NVIDIA GeForce RTX 4090 (16 GB) laptop GPU. For 
large-scale 3D simulations, the computations were carried out on an NVIDIA DGX-1-like 
node, featuring 4 NVIDIA Ampere A100 GPUs (each with 80 GB of memory) and an AMD 
EPYC 7742 server processor with 512 GB of RAM. 

*Section 5.1* Before jumping into eq. 65, I believe it's a good idea to briefly 
introduce the plastic model of Duretz et al 2019, perhaps even adding a small 
sketch with the elastic springs, dampers and whatnot. This would also help readers 



unfamiliar with this plastic model understand why theres a viscous damper in the 
yield function.  

We agree with the reviewer that some explanation might be needed. That’s why we refer to 
Duretz et al 2019.  We added more references for an interested reader. 

Resolving strain localization in frictional and time-dependent plasticity: Two-
and three-dimensional numerical modeling study using graphical processing 
units … 
Y Alkhimenkov, L Khakimova, I Utkin, Y Podladchikov 
 
An interested reader may refer to \cite{alkhimenkov2024shear, 
https://doi.org/10.1029/2023JB028566} for more details on the implementation of 
plasticity. 
 
Shear bands triggered by solitary porosity waves in deforming fluid-saturated porous media 
Y Alkhimenkov, L Khakimova, Y Podladchikov 
Geophysical Research Letters  
 
 

The constants A, B, C are merely some trigonometric functions. I don't think there 
is any need of re-binding them with new names; they only appear in two equations, 
and since these equations are usually well-known for a wide spectrum of the 
potential readers, the new names  just make the equations more confusing.  

We agree with the reviewer that some explanation is needed. There are different definitions 
of A, B and C in plasticity and we used only a particular one. Keeping the same notation in 
Eq 65-66 make these equations more universal. 

*L385* Perhaps not every reader know under what conditions a material is within 
the plastic regime. It would be helpful to add that this happens when $F^("trial") > 
0 $ 

We agree with the reviewer that some explanation might be needed. This study is about 
APT methos and not about plasticity. That’s why we refer to Duretz et al 2019. We added 
more references for an interested reader and a sentence with explanation to fulfill the 
reviewer request. 

An interested reader may refer to \cite{alkhimenkov2024shear, 
https://doi.org/10.1029/2023JB028566} for more details on the implementation of 
plasticity. 
 
Shear bands triggered by solitary porosity waves in deforming fluid-saturated porous media 
Y Alkhimenkov, L Khakimova, Y Podladchikov 
Geophysical Research Letters  
 



*Section 5.2* I assume the domain of the model is $Omega in [0,1] times [0,1]$; 
however, this should be explicitly stated in the text.  

This is a good point and we added this information. 

Let us consider a 2D numerical domain with $ L_x=L_y=1$. 

Is a resolution of $10000^2$ really necessary? Did the authors run systematic tests 
to explore whether one can get a way with lower resolutions? 

Yes, the resolution 10,000^2 is necessary to show the robustness of the APT method. We 
add a reference where systematic tests were performed with different resolutions. 

Resolving strain localization in frictional and time-dependent plasticity: Two-and three-
dimensional numerical modeling study using graphical processing units (GPUs). Y 
Alkhimenkov, L Khakimova, I Utkin, Y Podladchikov 

 

How does the convergence of this highly-nonlinear setup behave? Is every single 
time step fully converged? Would be interesting to plot also (number of iterations / 
nx) vs time step, I suspect the number of PT iterations increases when plasticity 
kicks in. How much time does it take to run a model with this resolution? Same 
comments apply to Section 5.3 

Yes, every iteration converged. The plot requested by the reviewer already exists in Figure 
D1 (in the present simulation is similar). In  

Resolving strain localization in frictional and time-dependent plasticity: Two-and three-
dimensional numerical modeling study using graphical processing units (GPUs). Y 
Alkhimenkov, L Khakimova, I Utkin, Y Podladchikov 

The present convergence is fully analogous to Fig D1 in the article above. Adding such a 
technical detail (plot) is not possible because it will require re-running the HR simulation.  

The simulation time takes about a few hours. 
 
*Figure 7* Put the spatial coordinates in the labels of the x and y axes instead of 
the grid cell numbers. Also, this figure alone does not bring much, it could probably 
be merged as a fourth panel in Fig 8.  

We put cells numbers in Fig 7,8,9 to show the resolutions employed, this was done on 
purpose. We have separate Fig 7 and 8 because we would like to have full size of Fig 8 to 
show fine details of the strain localization. 

*L400* It would be nice if the authors could add a few more snapshots of models at 
much lower resolution to make stronger the argument that the strain localisation is 
mesh-independent. 



We refer to our resent study, where more models were investigated using the same 
regularization method: 

Resolving strain localization in frictional and time-dependent plasticity: Two-and three-
dimensional numerical modeling study using graphical processing units (GPUs). Y 
Alkhimenkov, L Khakimova, I Utkin, Y Podladchikov 

*Figure 8* I may be wrong, but the colour scale of panel B seems to have slightly 
different min/max values with respect to panels A and C 

Yes, there is a slight difference, we made it on purpose to better visualization. As long as 
the color bar attached – any scales should be accepted. 

*Figure 9* As Fig 7, it could be merged with Fig. 10  

We combined Fig 9 and 10 as suggested by the reviewer. 

*Section 5.3* I am not so sure I would call this "ultra-high" resolution. This 
resolution fits without many problems in a single modern GPU card, and given that 
only 15 time steps are performed, it should run in just a few hours if it converges 
fast enough.  

Yes, the reviewer is correct, it fits into a single GPU card that has 80 GB of DRAM memory. 
The term Ultra-high is chosen because as far as we know, there are no simulations with 
such a resolution yet in the literature.  

*Section 6* One could add here a brief intro of this section.  

We added some introduction into this section. 

In this section, we analyze the implications of the numerical results presented in the 
previous sections and establish connections with relevant works in the field. We explore the 
behavior of the numerical parameters, such as the Strouhal number ($\mathrm{St}$), and 
their optimal values for different physical models including elastic, viscoelastic, and 
poroelastic media. Additionally, we assess the influence of dimensionality, initial and 
boundary conditions, and non-linearities such as plasticity on the convergence and accuracy 
of the simulations. This analysis serves as a foundation for further extending these methods 
to more complex and realistic scenarios. 

*Section 6.3* It is not very clear whether these simulations were run for the paper 
here referenced, or they are some other simulations not described in this 
manuscript. If these are simulations from a previous paper, why not use the ones 
here presented? If they are actually new simulations, please describe these models 
in detail. 

We performed these simulation in section 6.3 only for the present study. The purpose of this 
section it to show how St differs with respect to boundary conditions. We rely on the recent 
paper by Rass et al 2022, where no detailed explanation of all simulations is performed. 
Since it will not add something new into the article, we keep the present brevity as Rass et 



al 2022. However, we added some more explanations for reproducibility. Also note that full 
results can be reproduced since all the codes are shared via zenodo. 

Räss, L., Utkin, I., Duretz, T., Omlin, S., and Podladchikov, Y. Y.: Assessing the robustness 
and scalability of the accelerated pseudo-transient method, Geoscientific Model 
Development, 15, 5757–5786, 2022. 

To what time step (or point in the stress-strain curve) do these plots correspond to? 
is plasticity kicking in already from the first time step? How do these plots vary for 
simulations along different points of the stress-strain curve? 

First several time steps are purely elastic. In the middle of the simulation, stress reaches 
yield and the plots we are showing in the discussion section correspond to the condition 
when plastic flow is activated. 

These simulations correspond to the loading scale where plastic flow is activated. 

*L511* I don't think this is a conclusion related to the work here presented.  

To reflect this comment we improved the conclusion, made it more concise and more 
related to the article. 

  

Albert de Montserrat 

 

We thank the reviewer for the in-depth comments and for correcting typos, which helped us 
improve the quality of the manuscript. 

Sincerely, 
Yury Alkhimenkov and Yury Podladchikov 

 

 


