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Abstract. 12 
The permafrost region contains a significant portion of the world’s soil organic carbon, and its thawing, 13 
driven by accelerated Arctic warming, could lead to the substantial release of greenhouse gases, 14 
potentially disrupting the global climate system. Accurate predictions of carbon cycling in permafrost 15 
ecosystems hinge on the robust calibration of model parameters. However, manually calibrating 16 
numerous parameters in complex process-based models is labor-intensive and further complicated by 17 
equifinality - the presence of multiple parameter sets that can equally fit the observed data. Incorrect 18 
calibration can lead to unrealistic ecological predictions. In this study, we employed the Model Analysis 19 
and Decision Support (MADS) software package to automate and enhance the accuracy of parameter 20 
calibration for carbon dynamics within the coupled Dynamic Vegetation Model, Dynamic Organic Soil 21 
Model, and Terrestrial Ecosystem Model (DVM-DOS-TEM), a process-based ecosystem model 22 
designed for high-latitude regions. The calibration process involved adjusting rate-limiting parameters 23 
to accurately replicate observed carbon and nitrogen fluxes and stocks in both soil and vegetation. Gross 24 
primary production, net primary production, vegetation carbon, vegetation nitrogen, and soil carbon and 25 
nitrogen pools served as synthetic observations for a black spruce boreal forest ecosystem. To validate 26 
the efficiency of this new calibration method, we utilized model-generated synthetic and actual 27 
observations. When matching model outputs to observed data, we encountered difficulties in 28 
maintaining mineral soil carbon stocks. Additionally, due to strong interdependencies between 29 
parameters and target values, the model consistently overestimated carbon and nitrogen allocation to the 30 
stem of evergreen tree. This study demonstrates the calibration workflow, offers an in-depth analysis of 31 
the relationships between parameters and observations (synthetic and actual), and evaluates the 32 
accuracy of the calibrated parameter values. 33 
 34 
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1 Introduction 35 

The permafrost region contains 1,440-1,600 petagrams of organic carbon in its soils, representing nearly 36 
half of the world's soil organic carbon pool (Hugelius et al., 2014; Schuur et al., 2022). Accelerated 37 
warming in the Arctic leads to permafrost thaw, resulting in the decomposition and potential release of a 38 
substantial portion of this stored carbon as greenhouse gases, significantly impacting the global climate 39 
system (Natali et al., 2021; Schuur et al., 2022; Treharne et al., 2022). The permafrost carbon-climate 40 
feedback remains one of the largest sources of model uncertainty for future climate predictions, as 41 
critical ecological and biogeochemical processes are poorly represented and constrained in ecosystem 42 
models, if included at all (McGuire et al., 2016, 2018; Schädel et al., 2024). A significant portion of this 43 
uncertainty stems from parameter uncertainty, particularly in rate-limiting factors that control 44 
biogeochemical cycles, which are challenging to measure directly and can vary considerably across 45 
spatial and temporal scales (Koven et al., 2015; Mishra et al., 2021). These uncertainties propagate 46 
through model simulations, contributing to a wide range of projected permafrost carbon emissions 47 
(Lawrence et al., 2015; McGuire et al., 2018). 48 
When compared to structural uncertainty (which arises from incomplete or simplified representations of 49 
ecological processes) and input data uncertainty (resulting from limited or biased forcing datasets), 50 
parameter uncertainty is particularly pervasive and difficult to constrain (Euskirchen et al., 2022; Fisher 51 
and Koven, 2020; Luo et al., 2016). While structural uncertainties limit a model’s ability to fully 52 
capture real-world processes, parameter uncertainties directly alter numerical outputs, often amplifying 53 
variations in projections (Fisher and Koven, 2020; Turetsky et al., 2020). Models are particularly 54 
sensitive to parameter uncertainties, given the complexity and variability of the processes they simulate, 55 
including soil thermal dynamics, vegetation feedbacks, and hydrological interactions (Andresen et al., 56 
2020; Harp et al., 2016; Koven et al., 2015). While structural improvements to model frameworks are 57 
ongoing, addressing parameter uncertainty through robust calibration methods remains an essential and 58 
complementary step for enhancing the accuracy and reliability of model outputs (Fisher and Koven, 59 
2020; Luo et al., 2016). Addressing these uncertainties through the development of effective calibration 60 
techniques is essential for refining predictions of permafrost dynamics and better constraining future 61 
permafrost carbon-climate feedbacks (McGuire et al., 2018; Mishra et al., 2021). 62 
Calibration involves estimating and adjusting model parameters to enhance the agreement between 63 
model outputs and observed data, with the model serving as a mathematical representation of ecological 64 
and physical processes (Rykiel, 1996). These parameters are often rate or transport constants that are 65 
onerous or impractical to empirically estimate, though model outputs can be highly sensitive to them. 66 
Since many model representations are grounded in physics, generalized physical laws are often used to 67 
describe ecological and cryohydrological processes. Typically, model outputs are validated against data 68 
from laboratory experiments, idealized mathematical models, or site-specific observations, also referred 69 
to as target data. During this validation, model parameters are adjusted so that model outputs match the 70 
target data. The validated model is then applied to broader geographic locations and/or different time 71 
periods, assuming that the validation data represent the environment or ecosystem for which the 72 
parameters were calibrated. 73 
 74 
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Parameter calibration for complex process-based models is often constrained by the significant labor 75 
required and the limited availability of sites with the necessary observations, especially in permafrost 76 
regions (Birch et al., 2021; Virkkala et al., 2019). Despite these challenges, process-based models 77 
remain essential because they encapsulate our current understanding of ecosystem functions and 78 
structures, serving as powerful tools for extrapolation. The assumption of representativeness is intrinsic 79 
to these models, as they are designed to simulate processes that reflect our best understanding of 80 
ecosystem dynamics, allowing for their application beyond the individual sites where they have been 81 
initially parameterized. The approach of extrapolating model parameterization for ecosystems of the 82 
same type, across wider regions is standard and widely used within ecosystem modeling communities 83 
(Matthes et al., 2025; McGuire et al., 2018). Additionally, the role of ecosystem diversity on the spatio-84 
temporal patterns of ecosystem carbon dynamics in the permafrost region has been characterized by 85 
numerous empirical studies (Euskirchen et al., 2014; Melvin et al., 2015) and evaluated by modeling 86 
investigations (Lara et al., 2016). Therefore, a critical step in improving model accuracy involves 87 
calibrating the model against a suite of data for a representative diversity of ecosystem types in the 88 
Arctic where observations are available. To prepare an ecosystem model for this extensive calibration 89 
task, it is essential to develop robust calibration tools and methods that can automate the process of 90 
efficiently optimizing model parameters. 91 

Another well-known and significant issue in optimizing model parameters through calibration, also 92 
referred to as parameter estimation or optimization, is the existence of equifinality (Jafarov et al., 2020; 93 
Nicolsky et al., 2007; Tran et al., 2017). Parameterization equifinality occurs when different sets of 94 
parameter values result in the same or similar model predictions, given that the model, forcing data, and 95 
observations used in calibration are the same (Beven and Freer, 2001). Model equifinality can 96 
subsequently lead to different outcomes in model projections. In an aim to address the issue of 97 
equifinality, we run the model using randomly varied parameter values within the given range. If the 98 
majority of calibration tests with different initial guesses yield a good fit with observations and result in 99 
optimal parameter sets that are similar or closely aligned, it increases confidence that the recovered 100 
parameter set is indeed optimal. This approach mitigates the risk of converging on a local minimum and 101 
ensures a more robust and reliable parameter estimation process (Hansen, 1998). 102 

Various methods have been employed to improve the calibration of model parameters across multiple 103 
scientific disciplines, utilizing sophisticated techniques and integrating diverse data sources such as 104 
remote sensing and field measurements, while accounting for model and data uncertainty (Dietze et al., 105 
2018; Efstratiadis and Koutsoyiannis, 2010; Luo et al., 2016). Optimization-based inverse methods have 106 
been successfully used to calibrate parameters in physical models, including snow properties and 107 
subsurface thermo-hydrological properties (Jafarov et al., 2014, 2020), as well as soil properties for 108 
permafrost modeling (Nicolsky et al., 2007, 2009). However, inverse modeling can become 109 
computationally intractable when applied to complex process-based models (Linde et al., 2015). 110 

Markov Chain Monte Carlo (MCMC) and data assimilation (DA) techniques have been employed to 111 
optimize model parameters by synchronizing model outputs with observed data, thereby enhancing 112 
model prediction accuracy (Brunetti et al., 2023; Fer et al., 2018; Xu et al., 2017). These methods often 113 
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leverage Bayesian inference to address structural uncertainties within models. Nonetheless, the 114 
computational demand required for conducting MCMC simulations can outweigh the gains in model 115 
accuracy, particularly when dealing with complex process-based models with slow turnover rates that 116 
necessitate long simulations to reach equilibrium. 117 

In recent years, DA techniques have been applied to optimize both model state variables (Fox et al., 118 
2018; Ling et al., 2019) and parameters (Bloom et al., 2016; Peylin et al., 2016; Scholze et al., 2016; 119 
Schürmann et al., 2016). However, DA also encounters challenges related to unbalanced outputs and the 120 
need for extended simulations to achieve equilibrium. Persistent issues include the incorrect 121 
characterization of the error covariance matrix, which can lead to inaccurate posterior parameter values 122 
due to unaccounted model structural errors and observation biases (MacBean et al., 2016; Wutzler and 123 
Carvalhais, 2014). 124 

Various surrogate-based optimization approaches have been proposed to alleviate the computational 125 
burden associated with parameter calibration (Koziel et al., 2011; Queipo et al., 2005). Surrogate 126 
models, also known as reduced-order models, simplify certain physical processes to approximate the 127 
underlying dynamics of the real model while being computationally less demanding (Forrester et al., 128 
2006). By simplifying specific aspects of the model, surrogate models retain essential characteristics of 129 
the original system, allowing for faster and more efficient calibration without significantly 130 
compromising accuracy (Razavi et al., 2012; Regis and Shoemaker, 2007). However, simplifying 131 
complex models presents significant challenges. It is often unclear which assumptions can be safely 132 
made and which should be avoided, potentially leading to a loss of model accuracy. Surrogate models 133 
must carefully balance the trade-off between simplification and the retention of critical model 134 
characteristics to ensure reliable performance. This complexity necessitates rigorous validation to 135 
confirm that the surrogate model provides an adequate approximation of the real system without 136 
introducing significant errors. 137 

In recent years, machine learning-based emulators, often referred to as "models of models," have 138 
emerged as a promising approach to reduce the computational burden associated with parameter 139 
calibration in complex ecosystem models (Castelletti et al., 2012; Fer et al., 2018; Reichstein et al., 140 
2019). These emulators aim to approximate the outputs of physical and process-based models by 141 
learning the relationships between model inputs and outputs through multi-dimensional matrices, 142 
significantly enhancing computational efficiency. Unlike traditional surrogate models, which simplify 143 
the physical processes within a model, emulators strive to mimic the full complexity of the original 144 
model while requiring less computational power. For instance, Dagon et al., (2020) utilized artificial 145 
neural networks to emulate the Community Land Model version 5 outputs, focusing on biophysical 146 
parameter estimation and global calibration. By integrating machine learning techniques, they were able 147 
to explore parameter spaces more efficiently and achieve better alignment with observed data. This 148 
method demonstrates the potential of machine learning emulators in improving the accuracy and 149 
efficiency of parameter calibration in ecosystem models, particularly when faced with the challenge of 150 
high computational demands. 151 
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To facilitate the automation of the calibration process while minimizing computational demand and 152 
avoiding the oversimplification of ecological processes and feedbacks, we employed a non-linear least 153 
squares approach for our calibration. We utilized the Model Analysis and Decision Support (MADS) 154 
software package (Barajas‐Solano et al., 2015; O’Malley and Vesselinov, 2015) for parameter 155 
calibration of a terrestrial ecosystem permafrost-enabled model. MADS has been actively developed 156 
since 2010, and its conversion to the Julia programming language has provided automatic 157 
differentiation capabilities suitable for calibration problems, improving computational efficiency 158 
(Vesselinov V.V., 2022). 159 

In this study, we developed an automated parameter calibration method for a process-based terrestrial 160 
ecosystem model developed for high-latitude regions and characterized by a high level of complexity. 161 
To demonstrate its efficacy, we utilized synthetic data and evaluated the capacity of the calibration 162 
method to recover the data after perturbing initial guesses (a given set of parameters) using random 163 
sampling. The model was run using known parameter values, and the resulting outputs were treated as 164 
observations. The primary objective was to illustrate that the parameter calibration method could 165 
recover the synthetic parameter set successfully. The secondary objective was to optimize and reduce 166 
the labor and time associated with manual parameter calibration. We developed and tested our 167 
calibration method for the coupled dynamic vegetation model, dynamic organic soil, and terrestrial 168 
ecosystem model (DVM-DOS-TEM) and tested our approach using synthetic and site observations at a 169 
black spruce forest site, a dominant community type in Interior Alaska. 170 

2 Methods  171 

2.1 Black Spruce Forest site 172 

Approximately 39% of Interior Alaska is covered by evergreen forest stands, dominated by white or 173 
black spruce and 24% by deciduous forest stands, dominated by Alaska paper birch or trembling aspen 174 
(Calef et al., 2005; Jean et al., 2020). In our study, we developed model calibration for a black spruce 175 
(Picea mariana) forest community type, using observations collected in a site located within the Tanana 176 
Valley State Forest, just outside Fairbanks, Alaska (64°53′N, 148°23′W). Carbon (C) and nitrogen (N) 177 
cycling and environmental monitoring in this forest stand were originally observed by Melvin et al., 178 
(2015). The stand resulted from a self-replacement succession trajectory following the 1958 Murphy 179 
Dome fire, which covered 8,930 hectares.  180 

2.2 DVM-DOS-TEM description  181 

DVM-DOS-TEM is a process-based biosphere model designed to simulate biophysical and 182 
biogeochemical processes between the soil, vegetation, and atmosphere. DVM-DOS-TEM has been 183 
applied extensively in Arctic and Boreal ecosystems in permafrost and non-permafrost regions (Briones 184 
et al., 2024; Euskirchen et al., 2022; Genet et al., 2013, 2018; Jafarov et al., 2013; Yi et al., 2009, 2010). 185 
This model focuses on representing C and N cycles in high-latitude ecosystems and how they are 186 
affected at seasonal (i.e., monthly) to centennial scales by climate, disturbances (Genet et al., 2013, 187 
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2018; Kelly et al., 2013), biophysical processes such as soil thermal and hydrological dynamics 188 
(McGuire et al., 2018; Yi et al., 2009; Zhuang et al., 2002), snow cover (Euskirchen et al., 2006), and 189 
plant canopy development (Euskirchen et al., 2014). Modeled vegetation is structured into multiple 190 
tiers: (1) the community type (CMT) represents the land cover class and characterizes vegetation 191 
composition and soil structure at the gridcell level (spatial unit, e.g. black spruce forest, tussock tundra, 192 
bog), (2) plant functional types (groups of species sharing similar functional traits) characterize the 193 
vegetation composition within every CMT (e.g. black spruce forest community would be composed of 194 
evergreen trees, deciduous shrubs and sphagnum and feather moss plant functional types), and (3) plant 195 
structural compartments (leaves, stems, roots). The soil column is split into multiple horizons (fibric, 196 
humic, mineral, and rock/parent material). Every horizon is split into multiple layers for which C, N, 197 
temperature, and water content are simulated individually. The biophysical processes represented in 198 
DVM-DOS-TEM include radiation and water fluxes between the atmosphere, vegetation, snow cover, 199 
and soil column. Soil moisture and temperature are updated at a pseudo-daily time step (from linear 200 
interpolation of monthly climate forcings). A two-directional Stefan Algorithm is used to predict the 201 
positions of freezing/thawing fronts in the soil. The Richards equation is used to calculate soil moisture 202 
changes in the unfrozen layers of soil. Both the thermal and hydraulic properties of soil layers are 203 
affected by their water content (Yi et al., 2009, 2010; Zhuang et al., 2002). The ecological processes 204 
represented in DVM-DOS-TEM include C and N dynamics for every plant functional type (PFT) of the 205 
vegetation community and every layer of the soil column. 𝐶 and 𝑁 dynamics are driven by climate, 206 
atmospheric CO2 content, soil and canopy environment, and wildfire occurrence and severity. 𝐶 and 𝑁 207 
cycles are coupled in the soil and the vegetation processes. The growth primary productivity (GPP) of 208 
each PFT  is limited by 𝑁 availability. When resources in N are limited, GPP is downregulated for all 209 
PFTs based on a comparison of 𝑁 demand (N required to build new tissues) and N supply in the 210 
ecosystem (Euskirchen et al., 2009). 𝐶 and 𝑁 from the litterfall are divided into aboveground and 211 
belowground. Aboveground litterfall is assigned only to the top layer of the soil column, while 212 
belowground litterfall (root mortality) is assigned to different layers of the three soil horizons based on 213 
the fractional distribution of fine roots with depth.  214 
 215 
2.3 Synthetic data 216 
We used GPP without N limitation (GPP*), Net Primary Productivity (NPP), Vegetation C, and 217 
Vegetation N stocks by compartments (i.e. roots, stems, and leaves) as synthetic observations shown in 218 
Table 1. Synthetic observations are model-generated data that simulate actual measurements using 219 
known parameter values, referred to as synthetic target values. To generate these target values, we used 220 
existing parameters and the setup described in Section 2.3. The target values shown in Table 1 represent 221 
the state of the ecosystem where vegetation and below-ground C stocks are in a steady state. Table 2 222 
includes the below-ground target values. The model was previously manually calibrated using 223 
observations from the site. The actual observations were collected and prepared from the measured data 224 
at the site and from existing literature and published datasets. Data pre-processing was required before 225 
the time series data could be analyzed. Pre-processing was performed to identify and resolve missing 226 
data, inconsistencies, and potential outliers. In addition, site observations were aggregated to a monthly 227 
resolution to match the temporal resolution of the model outputs, and unit transformations were applied 228 
when needed to standardize the units of each variable. Target values for the site were compiled from 229 



7 
 

various data literature sources containing information on C and N stocks, plant biomass, soil horizon 230 
depths, and productivity. However, following the initial calibration, the model outputs were similar but 231 
did not exactly match the target observations. As stated above, we choose synthetic targets because we 232 
know a set of parameters used to produce them and can compare how closely we can recover known 233 
parameter values. Therefore, we used the actual model output as our synthetic target values. 234 
Table 1: Synthetic vegetation target values for the black spruce forest site used in the parameter 235 
calibration process 236 

Above-ground Target Names Notation Units Plant Functional Types 

Evergree
n Tree 

Deciduous 
Shrub 

Deciduou
s Tree 

Moss 

Gross Primary Productivity 
without nitrogen limitation 

𝐺𝑃𝑃∗  
[gC/m²/ye
ar] 

307.17 24.53 46.53 54.23 

Net Primary Productivity  𝑁𝑃𝑃  
[gC/m²/ye
ar] 

113.08 11.3 24.02 32.41 

Vegetation Carbon Leaf 𝐶"#$%   [gC/m²] 572.36 8.35 6.14 136.5
4 

Vegetation Carbon Stem 𝐶&'#(   [gC/m²] 1894.03 98.90 477.80  

Vegetation Carbon Root 𝐶)**'   [gC/m²] 474.55 33.19 7.17  

Vegetation Nitrogen Leaf 𝑁"#$%   [gC/m²] 14.79 0.38 0.57 1.15 

Vegetation Nitrogen Stem 𝑁&'#(   [gC/m²] 30.26 2.6 12.53  

Vegetation Nitrogen Root 𝑁)**'   [gC/m²] 9.51 0.72 0.16  

 237 
 238 
Table 2: Synthetic below-ground target values for the black spruce forest site used in the parameter 239 
calibration process 240 

Below-ground Targets 
Names 

Notation Unit Value 

Carbon Shallow 𝐶&+$""*,  g/m2 888.91 
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Carbon Deep 𝐶-##.  g/m2 3174.53 

Carbon Mineral Sum ∑𝐶(/0#)$"  g/m2 19821.50 

Available Nitrogen 
Sum 

∑𝑁$1$/"  g/m2 0.76 

 241 

2.4 Input data used for equilibrium run 242 

The driving inputs for the DVM-DOS-TEM model comprise spatial distribution of CMTs, landform, 243 
and mineral soil texture. These initialization data were forced to field observations at the study site 244 
(Melvin et al., 2015). The spatiotemporal dynamics of the model are driven by an annual time series of 245 
atmospheric CO2 concentration (not spatially explicit), annual time series of spatially explicit 246 
distribution of fire scars and dates, and a spatially explicit monthly time series of climate, including 247 
mean air temperature, total precipitation, net incoming shortwave radiation, and vapor pressure (Genet 248 
et al., 2018). For the present study, we use historical climate data from 1901 to 2015, sourced from the 249 
Climatic Research Unit time series version 4.0 (CRU TS4.0; Harris et al., 2014) and downscaled at a 1-250 
km resolution using the delta method (Pastick et al., 2017). For the equilibrium run, the model was 251 
driven using the averaged climate forcings from the 1901-1930 period for the study site location, 252 
repeated continuously for a sufficient period so equilibrium of vegetation and below-ground C and N 253 
fluxes and stocks was achieved. The resulting modeled ecosystem state for each site is then used to 254 
initialize historical simulations. However, the calibration process described here only utilized outputs 255 
from the equilibrium.  256 

2.5 MADS parameter calibration  257 

We employed the MADS software package for parameter calibration of DVM-DOS-TEM, aiming to 258 
minimize the discrepancy between synthetic target and modeled data at the selected site (Barajas‐Solano 259 
et al., 2015; O’Malley and Vesselinov, 2015). Since its inception in 2010, MADS has undergone active 260 
development, including a transition to the Julia programming language, which supports automatic 261 
differentiation suitable for calibration problems(Vesselinov V.V., 2022).  262 
The MADS package utilizes the Levenberg-Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 263 
1963; Pujol, 2007) to minimize the difference (the sum of squared residuals) between observations and 264 
modeled predictions. In SI1, we provide more details on the LM algorithm. The LM optimization 265 
method designed to solve non-linear least squares optimization/minimization problems, which are 266 
common in the field of history matching, model inversion, curve fitting, and parameter estimation. It 267 
combines two approaches: the first-order steepest-descent gradient method and the second-order Gauss-268 
Newton method. This steepest-descent gradient method updates parameter values in the direction 269 
opposite to the gradient, thereby it is generally efficient in finding local minima. The Gauss-Newton 270 
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method assumes that in a region close to the solution, the solved objective function behaves 271 
quadratically.  272 
The algorithm begins by selecting an initial estimate for the parameters that need to be optimized (Fig 273 
S1). This initial guess is important as it sets the starting point for the optimization process. In our 274 
experiment, the initial guess is randomly generated from within the provided range near `true` 275 
parameter values. Alternatively, users can provide the initial guess. However, exploring a set of random 276 
initial guesses provides an efficient approach to exploring the parameter space and discrimination 277 
between local and global minima. In LM, we set the damping parameter (the Marquardt lambda) to 278 
0.01. This parameter helps in adjusting the steps taken during the optimization process, balancing 279 
between the two optimization strategies (the first- and the second order techniques discussed above). 280 
The main advantages of the LM method are its robustness and minimal computational demand. It 281 
effectively handles ill-conditioned problems where other optimization methods might fail (Lin et al., 282 
2016; Pujol, 2007). Additionally, for problems well-suited to the Gauss-Newton method, LM often 283 
converges faster than gradient descent, making it an efficient choice for many non-linear least squares 284 
problems. 285 
The disadvantage of the LM method is its sensitivity to the initial parameter guesses, potentially 286 
affecting its efficiency and convergence (Transtrum and Sethna, 2012). In these cases, MADS provides 287 
alternative efficient approaches to address these computational challenges, such as (1) initializing the 288 
calibration with random initial guesses, (2) multiple restarts of the LM algorithms throughout the 289 
minimization process, and (3) exploration of a series of alternative values for various parameters 290 
controlling LM performance (Lin et al., 2016). In addition, the compute speed deteriorates with the 291 
higher number of parameters used in calibration. It requires the computation of the Jacobian matrix and 292 
its pseudo-inverse, which can be computationally expensive for large-scale problems.  293 
 294 

2.6 Calibration Process, Parameters and Targets  295 

The calibration process in DVM-DOS-TEM is currently focused on the 𝐶 and 𝑁 annual cycles. Thus, 296 
calibrated parameters are associated with and adjusted to the major 𝐶 and 𝑁 fluxes and stocks in the 297 
vegetation and the soil. The calibration process follows a hierarchical approach (Figure 1), in which 298 
parameters to be calibrated are organized in hierarchical levels associated with (1) model complexity 299 
and feedback and (2) turnover of the processes the parameters are associated with. Therefore, 300 
parameters related to vegetation dynamics are calibrated first, followed by the slowest soil-related 301 
parameters. 302 
The first step of the calibration relates to the simplest, fastest, first-order process in DVM-DOS-TEM, 303 
and consists of adjusting the rate limiting parameter of maximum C assimilation of the vegetation 304 
(𝑐($2) driving vegetation GPP. Under baseline climate, the main limiting parameter of vegetation 305 
productivity in the Arctic is N availability (Chapin and Kedrowski, 1983). Therefore, 𝑐($2 is calibrated 306 
to reproduce estimates of GPP from fertilization experiments where N limitation is ignored (GPP*). 307 
When fertilization experiments are not available for the community/region of interest, GPP* is estimated 308 
by applying a multiplicative factor to observed GPP under natural conditions. This multiplicative factor 309 
is estimated from published fertilization experiments in similar communities and computed as the ratio 310 
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between GPP estimated in fertilized plots and GPP estimated in control plots. Based on the literature, 311 
this fertilization factor can vary from 1.25 to 1.5 (Ruess et al., 1996; Shaver and Chapin, 1995).  312 
The second step of the calibration process consists of turning on the representation of 𝑁 limitation on 313 
vegetation productivity in the model (Euskirchen et al., 2009) and calibrating the rest of the vegetation-314 
related parameters. In the current workflow, it consists of three substeps. These substeps could follow a 315 
different order based on the preference of the user and the specifics of a given site.  These are rate-316 
limiting parameters for maintenance respiration (𝐾𝑟3), maximum plant N uptake (𝑛($2), C and N 317 
litterfall (𝑐%$"" and 𝑛%$"" respectively). These parameters are adjusted until DVM-DOS-TEM outputs 318 
match observations of GPP and NPP, plant N uptake (Nup), and vegetation C and N pools, 319 
respectively). Target values of these variables are listed in Table 1. It is important to note that the 320 
parameters 𝐾𝑟3, 𝑐%$"", and 𝑛%$"", as well as the variables for vegetation 𝐶 and 𝑁, are specified per PFT 321 
and per compartment (leaf, stem, root).  322 
In the third step, the rate-limiting parameters of soil heterotrophic respiration (𝑘𝑑𝑐) and rate of 323 
microbial 𝑁 uptake (𝑛(/43

5. 	) are calibrated as soil processes and takes longer to run in comparison to the 324 
first two steps. These parameters are adjusted until DVM-DOS-TEM outputs match observations of soil 325 
organic 𝐶 and available 𝑁 stocks. Target values of these variables are listed in Table 2. In a final state, 326 
vegetation-related parameters are checked for a final adjustment after soil calibration, as soil processes 327 
can feedback to vegetation dynamics. 328 
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2.7 Calibrations setup and evaluation metric  329 

Table 3 shows the parameter values used to calculate synthetic target values. We established four cases 330 
by perturbing the parameters by 10%, 20%, 50%, and 90% from their original values. For each case, the 331 
MADS calibration function randomly sampled ten sets of parameters within the specified ranges. These 332 
ten sets of randomly perturbed parameters were then optimized using the MADS algorithm. For each set 333 
of calibrated parameters and targets, we computed the root mean square error (RMSE) and relative error 334 
(RE) metrics. RMSE is employed to measure the magnitude of varying quantities, while RE gauges the 335 
absolute difference relative to the actual values. Given that some parameters are small (less than 10-³), 336 
the relative error provides more informative insights. The following equations were used to compute 337 
these metrics: 338 

Figure 1. Schematics of the DVM-DOS-TEM model parameters and targets participated in the 
calibration process.  
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𝑅𝑀𝑆𝐸 = 2(𝑥 	− 𝑥)6 ,     (1) 339 
𝑅𝐸	 = | 272

2
| ⋅ 100%,      (2) 340 

where 𝑥 is the mean of the best five out of ten computed target/parameter matches and 𝑥 is a synthetic 341 
target value.  342 
To ensure the selection of the best-fitting parameters, we sorted error values from the lowest to the 343 
highest. Then, we selected the top five parameter sets, calculated their mean values, and compared these 344 
averaged parameters with the synthetic target values and known parameters.  345 
 346 
Table 3: Synthetic parameter values for the black spruce forest site used in the parameter calibration 347 
process. 348 

Name Parameters Units Plant Functional Types 

Evergree
n Tree 

Deciduo
us Shrub 

Deciduou
s Tree 

Moss 

Maximum rate of atmospheric CO2 
assimilation 

	𝑐($2 gC/m2
/month 

381.19 113.93 210.48 93.31 

Maximum rate of plant N uptake 	𝑛($2 gN/m2/
month 

3.38 1.55 1.0 3.55 

rate limiting factor for C litterfall 
for leaf  

𝑐%$""
"#$%	  month-

1 
0.0011 0.05 0.025 0.02 

… for stem  𝑐%$""&'#(	 month-

1 
0.0034 0.0048 0.0036  

… for root 𝑐%$"")**'	  month-

1 
0.0052 0.0012 0.026  

Rate limiting factor for N litterfall 
for leaf  

𝑛%$""
"#$%  month-

1 
0.0102 0.045 0.018 0.007 

… for stem  𝑛%$""&'#(
  month-

1 
0.001 0.001 0.005  

… for root 𝑛%$"")**'
  month-

1 
0.003 0.007 0.008  

Rate limiting factor for 
maintenance respiration for leaf 

𝐾𝑟3
"#$%

 month-

1 
-6.0 -3.45 -2.95 -4.65 
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… for stem  𝐾𝑟3&'#(  month-

1 
-4.88 -5.15 -6.65  

… for root 𝐾𝑟3)**' month-

1 
-8.2 -6.2 -3.2  

 349 

Table 4: Synthetic below-ground target values for the black spruce forest site used in the parameter 350 
calibration process 351 

Name Parameters Unit Value 

Rate of microbial N uptake 𝑛(/43
5. 	  𝑔𝑔78 0.4495 

Rate limiting factor of litter decomposition 	𝑘𝑑𝑐)$,9   𝑚𝑜𝑛𝑡ℎ78 0.634 

Rate limiting factor of active pool decomposition 𝑘𝑑𝑐&*($  𝑚𝑜𝑛𝑡ℎ78 0.54 

Rate limiting factor of physically resistant pool 
decomposition 

𝑘𝑑𝑐&*(.)  𝑚𝑜𝑛𝑡ℎ78 0.002 

Rate limiting factor of chemically resistant pool 
decomposition 

𝑘𝑑𝑐&*(4)  𝑚𝑜𝑛𝑡ℎ78 0.00007 

 352 
2.8 Application of the calibration method to observed target values 353 
After validating our calibration method with synthetic data, we applied it to observed at the Black 354 
Spruce site. The observational dataset was compiled using a combination of in-situ measurements and 355 
values from existing literature (Tables 5 and 6). Unlike synthetic targets, observed values inherently 356 
carry uncertainty, which must be accounted for in the calibration process. The uncertainty range in the 357 
observed targets varied from 27% to 40% (maximum coefficient of variation estimated from 358 
observations reported in Melvin et al., 2015) influencing the final calibrated parameter estimates. After 359 
calibrating parameters using observed means as targets, we sampled one thousand parameter sets 360 
around the calibrated parameter set with a ±5% variation for all parameters excluding 𝑐($2. This 361 
approach was implemented to increase the probability of achieving an optimal match with observations, 362 
thereby allowing for a higher set of optimal parameter estimates. Additionally, this process enabled us 363 
to evaluate the impact of calibrated soil parameters on vegetation-related target values, which were 364 
calibrated over shorter time intervals. 365 
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Table 5: Observed vegetation target values at the black spruce forest site used in the parameter 366 
calibration process. Standard deviations are indicated in parenthesis and estimated from field 367 
measurements (n=15, Melvin et al., 2015). 368 

Above-ground Target 
Names 

Notation Units Plant Functional Types 

Evergreen 
Tree 

Deciduous 
Shrub 

Deciduous 
Tree 

Moss 

Gross Primary 
Productivity without 
nitrogen limitation 

GPP*  
[gC/m²/year] 

306.07 
(±106) 

24.53 
(±8.4) 

46.53 
(±15.9) 

54.23 
(±18.5) 

Net Primary 
Productivity  

NPP  
[gC/m²/year] 

153.04 
(±39) 

12.27 
(±3.9) 

17.36 
(±8.2) 

27.10 
(±11.1) 

Vegetation Carbon 
Leaf 

𝐶"#$%   [gC/m²] 293.76 
(±100) 

15.13 
(±5.4) 

9.06 (±2.4) 180.85 
(±93.3) 

Vegetation Carbon 
Stem 

𝐶&'#( [gC/m²] 1796.32 
(±706) 

100.16 
(±37) 

333.75 
(±185) 

 

Vegetation Carbon 
Root 

𝐶)**' [gC/m²] 404.48 
(±177) 

15.07 
(±6.4) 

44.8 
(±15.9) 

 

Vegetation Nitrogen 
Leaf 

𝑁"#$%   [gC/m²] 6.35 
(±3.5) 

0.72 
(±0.14) 

0.7 (±0.2) 1.61 
(±0.8) 

Vegetation Nitrogen 
Stem 

𝑁&'#(   [gC/m²] 24.34 
(±11.3) 

2.48 (±1) 9.45 (±4.9) 
 

Vegetation Nitrogen 
Root 

𝑁)**' [gC/m²] 0.17 
(±0.04) 

0.01 0.03 (±0.1) 
 

 369 

Table 6: Observed below-ground target values at the black spruce forest site used in the parameter 370 
calibration process. Standard deviations are indicated in parenthesis and estimated from field 371 
measurements (n=15, Melvin et al., 2015). 372 

Below-ground Targets Names Notation Unit Value 

Carbon Shallow 𝐶&+$""*,  g/m2 782.73 (±216.7) 
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Carbon Deep 𝐶-##.  g/m2 3448.46 (±955) 

Carbon Mineral Sum ∑𝐶(/0#)$"  g/m2 41665.0 (±10580) 

Available Nitrogen Sum ∑𝑁$1$/"  g/m2 0.76 (±0.24) 

 373 

3 Results  374 

3.1 Vegetation Targets  375 

Depending on the range of parameter variance, our analysis revealed varying levels of accuracy 376 
between known synthetic parameters and those determined using the MADS search approach. In 377 
general, the variance between calibrated and synthetic values grew higher with a higher degree of 378 
parameter perturbation. The averaged RMSE values for all four PFTs showed similar increases (Figure 379 
2) with an exception for 𝐶&'#((𝑐%$"") deciduous shrubs, which made the RMSE score for the 10% 380 
variance higher than the 20% variance (Figure 2a and 2b). That is why we introduced the RE metric, 381 
which shows that the departure between synthetic and calibrated parameters increases with increasing 382 
perturbation and is the smallest for the 10% variance (Figure 3a). Additional analyses to explore the 383 
detailed relationship between parameter variance and RMSE for specific cases are presented in the 384 
supplementary materials (Figures S2-S5). 385 

3.2 Vegetation Parameters  386 

The RMSE for parameters was highest for 𝐾𝑟3)**' in the evergreen tree PFT (Figure 3). Overall, 𝐾𝑟3 387 
and 	𝑛($2 parameters exhibited the worst recovery compared to other parameters based on the RMSE 388 
metric. Conversely, REs were highest for 𝑐%$"" deciduous shrubs and less for 𝐾𝑟3	paramters. The RE 389 
indicated that smaller parameter values, such as 𝑛%$"", deviated more significantly from their synthetic 390 
values. Interestingly the RE score showed the same error range for 10% and 20% variance ranges, 391 
whereas RMSE showed that 10% variance has the smallest error.   392 

3.3 Soil parameters  393 

In general, the RMSE values for the sub-surface target parameters were relatively small but increased 394 
with a higher variance range (Figure 4). Notably, 𝐶-##. and ∑𝐶(/0#)$" exhibited high RMSE values of 395 
3.34 and 9.12, respectively, for the 10% variance range (Figure 4a). Despite this, the soil parameters for 396 
10% variance showed the best match, with RMSE values less than 0.01. The RE for targets revealed 397 
increasing deviations from the synthetic parameter values for ∑𝑁$1$/". The RE for parameters indicated 398 
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that 𝑛(/43
5. , 𝑘𝑑𝑐)$,9  and 𝑘𝑑𝑐&*($ had higher deviations from their respective synthetic values for the 399 

50% and 90% variance range, respectively. 400 

3.4 Comparison with Observations 401 

Figure 5 shows a comparison between observed and modeled target values after calibration. Both 402 
observed and modeled values were normalized by dividing by the highest value within their respective 403 
groups (e.g., GPP, NPP). The highest difference (exceeding 20% uncertainty) was observed for 404 
Evergreen Trees (Black Spruce). Notably, we encountered challenges in accurately matching the values 405 
of the 𝐶&'#(   target and the values of 𝑁&'#(   (Figure 5a). Additionally, while the calibration method 406 
struggled to align the carbon in the soil mineral pool, it captured other soil target values (Figure 5a). 407 
Overall, the results demonstrate that the calibration approach is effective and reliable for optimizing 408 
DVM-DOS-TEM model parameters. 409 
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 411 

 

Figure 3. a), b), c), and d) are root mean square error (RMSE) metric and e), f), g), and h) are relative 
error (RE) metric for 10%, 20%, 50%, and 90% variance in the parameter range, correspondingly. 
DVM-DOS-TEM parameters shown on y-axis, and plant functional types are on x-axis. The colorbar 
represents the RMSE and RE scores. 

a) b) d) 

e) f) h) 

c) 

g) 
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 412 
 413 

  

a) b) 

c) d) 

Figure 4. Comparison between calibrated and synthetic sub-surface target 
values (a) root mean square error (RMSE) and (b) relative error (RE) scores. 
Comparison between calibrated and synthetic sub-surface parameter values 
(a) root mean square error (RMSE) and (b) relative error (RE) scores for all 
range variances. The colorbar represents the RMSE and RE score. 

Figure 5.The comparison between observed and 
calibrated target values. The target values shown on y-
axis, and plant functional types (a) and soil targets (b) on 
the x-axis. The colorbar represents the difference between 
normalized modeled and observed target values. 

b) 

a) 
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4 Discussion 414 

Our findings highlight the challenges associated with calibrating carbon and nitrogen dynamics in high 415 
latitude permafrost ecosystems, particularly in accurately estimating carbon pools with slow turnover 416 
deep mineral soil carbon and allocation of partitioning carbon and nitrogen resources among within 417 
vegetation compartments to match in-situ observations closely. The strong interdependencies among 418 
parameters and state variables target values underscore the complexities of process-based modeling, 419 
reinforcing the need for automated calibration approaches like MADS to improve predictive accuracy. 420 
 421 
4.1 Importance of the initial parameter guess 422 
The initial parameter values, or initial guess, had minimal impact on the synthetic experiment, as the 423 
perturbed parameters were sufficiently close to the true values. However, for non-synthetic calibrations, 424 
the initial state is crucial, as starting with parameter values far from the true state can lead to non-425 
convergence and significantly increase computation time(Nocedal and Wright, 2006). To address this, 426 
we developed parameter sensitivity methods to improve initial estimates (Briones et al., 2024). This 427 
approach utilized ensemble model simulations executed in parallel, systematically exploring parameter 428 
ranges through Latin hypercube sampling or uniform random sampling. By employing parallel 429 
processing before integrating parameters into the MADS calibration framework, we effectively refined 430 
initial estimates, minimized deviations from target values, and improved overall calibration efficiency. 431 
 432 
4.2 Analysis of the recovery metrics 433 
The mean parameter values calculated from the five best-matched MADS value predictions align 434 
closely with the synthetic parameter values, demonstrating the method's efficacy. The calculated REs 435 
for parameters indicate that the relative distance between the calibrated and the synthetic values 436 
increases with a higher parameter variance range, except RE for soil targets (Figure 4b, case 20%). For 437 
the soil targets, the RMSE for ∑𝑁$1$/" for 10% variance range were higher than 20% variance range. 438 
The higher RMSE for 10% variance than 20% variance range for vegetation-related targets as well as 439 
soil targets could be attributed to the limited number of cases (n=10) participated in each variance case. 440 
It is highly probable that increasing the total number of searches (higher than 10) would yield a more 441 
consistent pattern of decreasing accuracy with increasing variance. 442 
 443 
4.3 Parameter-target relationship and small parameter values 444 
The method demonstrated robust recovery of 𝑐($2 values, indicating that it performs best when there is 445 
a linear relationship between parameters and target values (Eq. S1). For parameters, which do not 446 
exhibit a linear relationship with their target values (e.g. 𝐾𝑟3, Eq. S4), the calibrated parameters showed 447 
wider variance. Additionally, small parameter values, such as 𝑛%$"", corresponded to small range of 448 
sampled values, leading to insensitivity between 𝑛%$"" and vegetation 𝑁. To address this, we applied a 449 
logarithmic transformation to these and to some other small values for soil C rates. 450 
 451 
4.4 The impact of 𝑛($2 on N uptake and NPP 452 
Sensitivity between model parameters and targets is crucial for effective parameter calibration. We 453 
observed that the sensitivity between 𝑛($2 and 𝑁𝑃𝑃 was not strong (Eq. S2, Eq. S5), which led us to 454 
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combine its calibration with the 𝐾𝑟3 parameter. Based on (Eq. S2), 𝑛($2 directly influences 𝑁5.'$:#. 455 
An increase in 𝑛($2 enhances 𝑁5.'$:#, thereby increasing the total 𝑁 supply. Since 𝑁𝑃𝑃 is 456 
proportional to 𝑁&5.."; and inversely proportional to 𝑁)#<5/)#-, a higher 𝑁 supply can lead to a higher 457 
𝑁𝑃𝑃, provided that other factors remain constant. Therefore, despite the initial observation of weak 458 
sensitivity, 𝑛($2 could have a considerable impact on 𝑁𝑃𝑃 due to its role in 𝑁5.'$:# and the overall 459 
𝑁&5..";. However, our target values for plant 𝑁 uptake are poorly constrained due to a lack of sufficient 460 
observations. This underestimation of plant 𝑁 uptake could account for the observed lack of sensitivity 461 
of NPP to 𝑛($2. This issue requires further investigation and currently underscores the importance of 462 
accurately calibrating 𝑛($2 to ensure better simulation of ecosystem productivity. 463 
 464 
4.5 The Calibration Workflow 465 
Our findings indicate that calibrating one or two parameter sets at a time, while keeping other 466 
parameters constant, is more effective than calibrating all parameters simultaneously. In the current 467 
workflow, we combined 𝑛($2 and 𝐾𝑟3 (Figure 1 Step a), which was based on the low sensitivity of 468 
𝑛($2 to 𝑁𝑃𝑃. Combining multiple variables in one calibration step increases the compute time and 469 
could result in low match accuracy. On the other hand, sequential parameter calibration carries the risk 470 
of losing accuracy for parameters calibrated in previous steps. To mitigate this risk, we include targets 471 
from previous calibration steps in the current calibration step. For example, when optimizing for 𝑛%$"", 472 
we include targets for 𝑁𝑃𝑃, vegetation 𝐶, and vegetation 𝑁. 473 
 474 
Sequentially calibrating individual parameter sets is advantageous not only computationally but also in 475 
preventing the occurrence of an underdetermined problem, which arise when the number of parameters 476 
exceeds the number of targets. Undetermined problems exhibit a lower rate of convergence due to the 477 
correlation between parameters and the sensitivity of multiple parameters to one or a few similar target 478 
values. The study by Jafarov et al., (2020) showed that overdetermined problems with higher and 479 
diverse number of target values, are more effective in recovering accurate parameter values. 480 
 481 
4.6 Sensitivity of the 𝐾𝑟3 parameter to NPP and vegetation C 482 
The 𝐾𝑟3 parameter exhibited higher sensitivity to both 𝑁𝑃𝑃 and vegetation 𝐶 compared to other 483 
parameters. Despite the overall good model fitness, the deviation from the synthetic values for 𝐾𝑟3 was 484 
higher. This was primarily due to 𝐾𝑟3)**' parameter for evergreen trees (Figure S3C) persistently 485 
showed higher discrepancy. Its sensitivity can be explained by examining its role in the equations 486 
governing maintenance respiration (𝑅( Eq. S3). The relationship between biomass and maintenance 487 
respiration is non-linear; 𝑅(  increases as biomass increases, where 𝐾𝑟3 controls the intercept of this 488 
relationship (Tian et al., 1999). Since 𝑁𝑃𝑃 is computed as a resultant of 𝐺𝑃𝑃 and autotrophic 489 
respiration, including 𝑅(, any alteration in 𝐾𝑟3 impacts 𝑁𝑃𝑃 directly (Eq. S9). This sensitivity 490 
underscores the importance of accurately calibrating 𝐾𝑟3 to ensure the correct simulation of ecosystem 491 
productivity and C dynamics in the DVM-DOS-TEM. 492 
 493 
4.7 Vegetation and Below-Ground C stocks equilibrium time 494 
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Due faster turnover, vegetation C and N stocks and fluxes equilibrate faster than soil C and N stocks 495 
and fluxes. Thus we used a two-phase equilibration approach: 200 years for the vegetation and 2000 496 
years for the soil. However, the C stocks achieved after 200 years of equilibration for vegetation might 497 
shift when the model is run for an additional 1800 years to equilibrate soil. To mitigate this issue, we 498 
developed equilibrium checks to ensure that the vegetation stocks remain stable and close to their 499 
equilibrium values throughout the extended simulation period required for soil stocks equilibration. 500 
These checks help identify significant departures from the initial equilibrium values of vegetation C and 501 
N while allowing the model to run for a longer duration to achieve below-ground equilibrium. This 502 
approach ensures the accuracy and stability of both vegetation and below-ground C and N stocks in 503 
long-term model simulations. 504 
Reversing the calibration sequence and starting from soil parameters is not only impractical in the 505 
context of our model, but also computationally inefficient. Vegetation-related parameters are calibrated 506 
first because vegetation carbon pools reach equilibrium significantly faster than soil carbon pools 507 
whereas soil pools require longer timescales to stabilize. Beginning with soil parameters would thus 508 
introduce unnecessary complexity and substantially increase the total computational cost of the 509 
calibration process. In addition, while the choice of calibration sequence may lead to slight variations in 510 
the final parameter estimates, our results demonstrate that the proposed “hierarchical approach” 511 
(breaking the parameter sets into smaller subsets) effectively recovers parameter values, even when for 512 
90% parameter range variance. As we showed in this study, well-calibrated parameters exhibit a narrow 513 
range of uncertainty, reinforcing the robustness of the method. 514 
 515 
4.8 Observed target values 516 
The results of parameter calibration using site-specific observations indicate challenges in accurately 517 
matching 𝐶&'#( and 𝑁&'#( target values for the evergreen plant functional type. This discrepancy could 518 
be related to the allocation scheme of the model, attributing NPP resources to the various compartments 519 
of the plant (Fox et al., 2018). Additionally, the model struggled to maintain the assigned carbon value 520 
for ∑𝐶(/0#)$". The difficulty in calibrating 𝐶&'#((>) and 𝐶)**'(>) for evergreen trees can be partially 521 
attributed to strong parameter interdependencies (see Figures SI7–SI10). For instance, 𝐾𝑟3

"#$%(>) 522 
exhibits simultaneous correlations with both 𝐶&'#((>) and 𝐶)**'(>) (Figure S7), while 𝑐%$""

&'#((>) shows an 523 
inverse correlation with N leaf, stem, and root (Figure S8). These multi-target dependencies introduce 524 
additional complexity, making it challenging to achieve a precise match for individual target values. 525 
Similarly, the ∑𝐶(/0#)$" target value is strongly influenced by 𝑘𝑑𝑐&*($ and 𝑘𝑑𝑐&*(.), both of which 526 
exert substantial control over 𝐶-##. and ∑𝑁$1$/" target values. These interactions underscore the 527 
systemic constraints imposed by parameter interdependencies. Furthermore, this discrepancy could be 528 
related to the functions controlling vertical transfers of carbon between horizons and the vertical 529 
distribution of carbon quality (Harden et al., 2012). The model consistently showed that longer 530 
equilibration times lead to a reduction in the mineral soil carbon pool. This was also observed by 531 
Schaefer and Jafarov, (2016) in a different process-based ecosystem model, where they addressed the 532 
issue by incorporating substrate availability constraints to prevent long-term carbon loss. Given the 533 
complexity of these interdependencies, further investigation is needed, though it falls beyond the scope 534 
of this study. 535 
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The calibration of rate-limiting soil parameters that influence C and N stocks and turnover directly 536 
impacts vegetation productivity by modulating nitrogen availability. Figure S10 shows a significant 537 
correlation between microbial nitrogen uptake and 𝐶"#$%(@A) of deciduous shrub, highlighting the 538 
interaction between soil processes and vegetation-related parameters. While long-term soil parameter 539 
calibration inherently feedbacks into vegetation dynamics, the most substantial changes in vegetation-540 
related parameters typically occur during short-term model runs, resulting in minimal net changes over 541 
extended simulations. 542 
 543 
4.9 Limitations 544 
There are cases where the model fails to accurately match target values due to poor data quality or its 545 
inability to fully represent certain ecological processes (Dietze et al., 2018; Luo et al., 2016). Large 546 
discrepancies between observed and modeled targets can hinder the convergence of the LM method, 547 
requiring more iterations and leading to suboptimal agreement with observations. As previously 548 
mentioned, starting with well-constrained initial parameter estimates can mitigate this issue, which can 549 
be achieved by performing sensitivity analyses to identify the most influential parameters and refine 550 
their ranges prior to calibration (Efstratiadis and Koutsoyiannis, 2010). 551 
Additionally, calibrating soil-related parameters is computationally demanding, often resulting in a 552 
substantial slowdown of the overall calibration workflow. Machine learning (ML) models offer a 553 
promising solution by acting as surrogate models to approximate the equilibrium state, thereby reducing 554 
the computational burden (Fer et al., 2018; Reichstein et al., 2019). However, implementing such 555 
approaches necessitates large training datasets, often requiring thousands of model simulations to 556 
achieve reliable predictions. Future research should explore the integration of ML-based calibration 557 
techniques into the workflow, which could significantly enhance computational efficiency and further 558 
improve model accuracy (Castelletti et al., 2012; Dagon et al., 2020). 559 

5. Conclusion 560 

In this study, we showed that the developed MADS parameter calibration method for the DVM-DOS-561 
TEM can effectively recover the synthetic parameter set, optimizing labor and time, and enhancing 562 
reproducibility of the calibration process. By implementing a structured workflow that calibrates one or 563 
two parameters at a time and including equilibrium checks the method ensured accurate parameter 564 
estimation even for high variance parameter range. The primary advantage of the semi-automated 565 
MADS calibration approach is its significant enhancement of repeatability and clear quantification of 566 
calibration performance. In contrast, manual calibration processes are often difficult to reproduce as it is 567 
impractical if not impossible, to record users continuous adjustments to parameters values until 568 
improved results are achieved. Additionally, appreciation of model improvement by the user is often 569 
subjective as running a statistical evaluation at each parameter adjustment would be too time 570 
consuming. In the approach demonstrated in this study, we introduced a calibration metric that provides 571 
a quantifiable measure of the overall quality of the calibration. This metric enhances reproducibility by 572 
allowing future users working on the same site to follow the established workflow and reliably 573 
reproduce the calibrated parameter and target values. The RMSE quantifies the average differences 574 
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between calibrated and observed (synthetic) values, while the RE metric indicates deviations from the 575 
synthetic values.  576 
 577 
In all calibration experiments, we utilized only ten randomly perturbed initial parameter sets within a 578 
specified variance range. Our results indicated that perturbation ranges of 10%-20% were equally 579 
effective in achieving optimal target/parameter calibration. However, increasing the number of random 580 
perturbations could potentially shift the statistics, favoring a 10% variance range.  581 
 582 
While the choice of the initial guess is crucial, its impact was mitigated in our study due to the design 583 
involving variance around synthetic parameter values. The developed method significantly reduces the 584 
labor and time required for calibrating DVM-DOS-TEM model parameters. However, it does not 585 
entirely replace the need for human intervention. Users still need to understand the specifics of the 586 
model and the relationship between parameters and targets, as well as conduct post-processing 587 
assessments of the fit. In future work, we will apply this method to data processed at multiple study 588 
sites to validate further and refine the calibration approach. 589 
 590 
The application of the calibration method to site-specific observations revealed challenges in accurately 591 
matching 𝐶&'#(, 𝑁&'#(  and ∑𝐶(/0#)$" values, primarily due to parameter interdependencies and data 592 
uncertainties. Discrepancies between observed and modeled target values exceeded the known the 593 
measurement uncertainty, suggesting that structural uncertainty within the model may contribute to 594 
these deviations. This indicates a potential need for a more detailed representation of ecological 595 
processes to improve model accuracy. However, these challenges may be site-specific and may not 596 
necessarily apply to other ecosystem types. Despite these limitations, the study demonstrates the 597 
effectiveness and reliability of the calibration approach while identifying key areas for future model 598 
refinement. 599 
 600 
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