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Abstract.

The permafrost region contains a significant portion of the world’s soil organic carbon, and its thawing, driven by accelerated
Arctic warming, could lead to the substantial release of greenhouse gases, potentially disrupting the global climate system.
Accurate predictions of carbon cycling in permafrost ecosystems hinge on the robust calibration of model parameters.
However, manually calibrating numerous parameters in complex process-based models is labor-intensive and further
complicated by equifinality - the presence of multiple parameter sets that can equally fit the observed data. Incorrect calibration
can lead to unrealistic ecological predictions. In this study, we employed the Model Analysis and Decision Support (MADS)
software package to automate and enhance the accuracy of parameter calibration for carbon dynamics within the coupled
Dynamic Vegetation Model, Dynamic Organic Soil Model, and Terrestrial Ecosystem Model (DVM-DOS-TEM), a process-
based ecosystem model designed for high-latitude regions. The calibration process involved adjusting rate-limiting parameters
to accurately replicate observed carbon and nitrogen fluxes and stocks in both soil and vegetation. Gross primary production,
net primary production, vegetation carbon, vegetation nitrogen, and soil carbon and nitrogen pools served as synthetic
observations for a black spruce boreal forest ecosystem. To validate the efficiency of this new calibration method, we utilized

model-generated synthetic and actual observations. When matching model outputs to observed data, we encountered

difficulties in maintaining mineral soil carbon stocks. Additionally, due to strong interdependencies between parameters and

target values, the model consistently overestimated carbon and nitrogen allocation to the stem of evergreen tree, This study

demonstrates the calibration workflow, offers an in-depth analysis of the relationships between parameters and pbservations

(synthetic and actual), and evaluates the accuracy of the calibrated parameter values.
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1 Introduction

The permafrost region contains 1,440-1,600 petagrams of organic carbon in its soils, representing nearly half of the world's
soil organic carbon pool (Hugelius et al., 2014; Schuur et al., 2022). Accelerated warming in the Arctic leads to permafrost
thaw, resulting in the decomposition and potential release of a substantial portion of this stored carbon as greenhouse gases,
significantly impacting the global climate system (Natali et al., 2021; Schuur et al., 2022; Treharne et al., 2022). The permafrost
carbon-climate feedback remains one of the largest sources of model uncertainty for future climate predictions, as critical
ecological and biogeochemical processes are poorly represented and constrained in ecosystem models, if included at all

(McGuire et al., 2016, 2018; Schidel et al., 2024). A significant portion of this uncertainty stems from parameter uncertainty.

articularly in rate-limiting factors that control biogeochemical cycles, which are challenging to measure directly and can vary

considerably across spatial and temporal scales (Koven et al., 2015; Mishra et al., 2021). These uncertainties propagate through

model simulations, contributing to a wide range of projected permafrost carbon emissions (Lawrence et al., 2015; McGuire et

al,, 2018),

When compared to structural uncertainty (which arises from incomplete or simplified representations of ecological processes)

and input data uncertainty (resulting from limited or biased forcing datasets), parameter uncertainty is particularly pervasive

and difficult to constrain (Euskirchen et al., 2022; Fisher and Koven, 2020; Luo et al., 2016). While structural uncertainties

limit a model’s ability to fully capture real-world processes, parameter uncertainties directly alter numerical outputs, often

amplifying variations in projections (Fisher and Koven, 2020; Turetsky et al., 2020). Models are particularly sensitive to

parameter uncertainties, given the complexity and variability of the processes they simulate, including soil thermal dynamics,

vegetation feedbacks, and hydrological interactions (Andresen et al., 2020; Harp et al., 2016; Koven et al., 2015). While

structural improvements to model frameworks are ongoing, addressing parameter uncertainty through robust calibration

methods remains an essential and complementary step for enhancing the accuracy and reliability of model outputs (Fisher and

Koven, 2020; Luo et al., 2016). Addressing these uncertainties through the development of effective calibration techniques is

essential for refining predictions of permafrost dynamics and better constraining future permafrost carbon-climate feedbacks

(McGuire et al., 2018; Mishra et al., 2021).

Calibration involves estimating and adjusting model parameters fo enhance the agreement between model outputs and observed

data, with the model serving as a mathematical representation of ecological and physical processes (Rykiel, 1996). These
parameters are often rate or transport constants that are onerous or impractical to empirically estimate, though model outputs
can be highly sensitive to them. Since many model representations are grounded in physics, generalized physical laws are
often used to describe ecological and cryohydrological processes. Typically, model outputs are validated against data from
laboratory experiments, idealized mathematical models, or site-specific observations, also referred to as target data. During
this validation, model parameters are adjusted so that model outputs match the target data. The validated model is then applied
to broader geographic locations and/or different time periods, assuming that the validation data represent the environment or

ecosystem for which the parameters were calibrated.

Deleted: To predict future permafrost evolution, models rely on
various parameters that contribute to a wide uncertainty range in
predictions of permafrost warming (Andresen et al., 2020; Harp et
al., 2016; Schidel et al., 2024). Thus, the development of parameter
calibration methods is an essential step toward improving prediction
accuracy and deepening our understanding of permafrost dynamics
and future permafrost carbon-climate feedbacks.
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Parameter calibration for complex process-based models is often constrained by the significant labor required and the limited
availability of sites with the necessary observations, especially in permafrost regions (Birch et al., 2021; Virkkala et al., 2019).
Despite these challenges, process-based models remain essential because they encapsulate our current understanding of
ecosystem functions and structures, serving as powerful tools for extrapolation. The assumption of representativeness is
intrinsic to these models, as they are designed to simulate processes that reflect our best understanding of ecosystem dynamics,

allowing for their application beyond the jndividual sites where they have been initially parameterized. The approach of

extrapolating model parameterization for ecosystems of the same type, across wider regions is standard and widely used within
ecosystem modeling communities (Matthes et al., 2025; McGuire et al., 2018). Additionally, the role of ecosystem diversity
on the spatio-temporal patterns of ecosystem carbon dynamics in the permafrost region has been characterized by numerous
empirical studies (Euskirchen et al., 2014; Melvin et al., 2015) and evaluated by modeling investigations (Lara et al., 2016).
Therefore, a critical step in improving model accuracy involves calibrating the model against a suite of data for a representative
diversity of ecosystem types in the Arctic where observations are available. To prepare an ecosystem model for this extensive
calibration task, it is essential to develop robust calibration tools and methods that can automate the process of efficiently

optimizing model parameters.

Another well-known and significant issue in optimizing model parameters through calibration, also referred to as parameter
estimation or optimization, is the existence of equifinality (Jafarov et al., 2020; Nicolsky et al., 2007; Tran et al., 2017).
Parameterization equifinality occurs when different sets of parameter values result in the same or similar model predictions,
given that the model, forcing data, and observations used in calibration are the same (Beven and Freer, 2001). Model
uifinality,

equifinality can subsequently lead to different outcomes in model projections. In an aim to address the issue of e

we run the model using randomly varied parameter values within the given range. Jf the majority of calibration tests with

different initial guesses yield a good fit with observations and result in optimal parameter sets that are similar or closely aligned,
it increases confidence that the recovered parameter set is indeed optimal. This approach mitigates the risk of converging on a

local minimum and ensures a more robust and reliable parameter estimation process (Hansen, 1998).

Various methods have been employed to improve the calibration of model parameters across multiple scientific disciplines,
utilizing sophisticated techniques and integrating diverse data sources such as remote sensing and field measurements, while
accounting for model and data uncertainty (Dietze et al., 2018; Efstratiadis and Koutsoyiannis, 2010; Luo et al., 2016).
Optimization-based inverse methods have been successfully used to calibrate parameters in physical models, including snow
properties and subsurface thermo-hydrological properties (Jafarov et al., 2014, 2020), as well as soil properties for permafrost
modeling (Nicolsky et al., 2007, 2009). However, inverse modeling can become computationally intractable when applied to

complex process-based models (Linde et al., 2015).
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Markov Chain Monte Carlo (MCMC) and data assimilation (DA) techniques have been employed to optimize model
parameters by synchronizing model outputs with observed data, thereby enhancing model prediction accuracy (Brunetti et al.,
2023; Fer et al., 2018; Xu et al., 2017). These methods often leverage Bayesian inference to address structural uncertainties
within models. Nonetheless, the computational demand required for conducting MCMC simulations can outweigh the gains
in model accuracy, particularly when dealing with complex process-based models with slow turnover rates that necessitate

long simulations to reach equilibrium.

In recent years, DA techniques have been applied to optimize both model state variables (Fox et al., 2018; Ling et al., 2019)
and parameters (Bloom et al., 2016; Peylin et al., 2016; Scholze et al., 2016; Schiirmann et al., 2016). However, DA also
encounters challenges related to unbalanced outputs and the need for extended simulations to achieve equilibrium. Persistent
issues include the incorrect characterization of the error covariance matrix, which can lead to inaccurate posterior parameter
values due to unaccounted model structural errors and observation biases (MacBean et al., 2016; Wutzler and Carvalhais,

2014).

Various surrogate-based optimization approaches have been proposed to alleviate the computational burden associated with
parameter calibration (Koziel et al., 2011; Queipo et al., 2005). Surrogate models, also known as reduced-order models,
simplify certain physical processes to approximate the underlying dynamics of the real model while being computationally
less demanding (Forrester et al., 2006). By simplifying specific aspects of the model, surrogate models retain essential
characteristics of the original system, allowing for faster and more efficient calibration without significantly compromising
accuracy (Razavi et al.,, 2012; Regis and Shoemaker, 2007). However, simplifying complex models presents significant
challenges. It is often unclear which assumptions can be safely made and which should be avoided, potentially leading to a
loss of model accuracy. Surrogate models must carefully balance the trade-off between simplification and the retention of
critical model characteristics to ensure reliable performance. This complexity necessitates rigorous validation to confirm that

the surrogate model provides an adequate approximation of the real system without introducing significant errors.

In recent years, machine learning-based emulators, often referred to as "models of models," have emerged as a promising
approach to reduce the computational burden associated with parameter calibration in complex ecosystem models (Castelletti
etal., 2012; Fer et al., 2018; Reichstein et al., 2019). These emulators aim to approximate the outputs of physical and process-
based models by learning the relationships between model inputs and outputs through multi-dimensional matrices, significantly
enhancing computational efficiency. Unlike traditional surrogate models, which simplify the physical processes within a
model, emulators strive to mimic the full complexity of the original model while requiring less computational power. For
instance, Dagon et al., (2020) utilized artificial neural networks to emulate the Community Land Model version 5 outputs,
focusing on biophysical parameter estimation and global calibration. By integrating machine learning techniques, they were

able to explore parameter spaces more efficiently and achieve better alignment with observed data. This method demonstrates
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the potential of machine learning emulators in improving the accuracy and efficiency of parameter calibration in ecosystem

models, particularly when faced with the challenge of high computational demands.

To facilitate the automation of the calibration process while minimizing computational demand and avoiding the
oversimplification of ecological processes and feedbacks, we employed a non-linear least squares approach for our calibration.
We utilized the Model Analysis and Decision Support (MADS) software package (Barajas-Solano et al., 2015; O’Malley and
Vesselinov, 2015) for parameter calibration of a terrestrial ecosystem permafrost-enabled model. MADS has been actively
developed since 2010, and its conversion to the Julia programming language has provided automatic differentiation capabilities

suitable for calibration problems, improving computational efficiency (Vesselinov V.V., 2022).

In this study, we developed an automated parameter calibration method for a process-based terrestrial ecosystem model
developed for high-latitude regions and characterized by a high level of complexity. To demonstrate its efficacy, we utilized
synthetic data and evaluated the capacity of the calibration method to recover the data after perturbing initial guesses (a given
set of parameters) using random sampling. The model was run using known parameter values, and the resulting outputs were
treated as observations. The primary objective was to illustrate that the parameter calibration method could recover the
synthetic parameter set successfully. The secondary objective was to optimize and reduce the labor and time associated with
manual parameter calibration. We developed and tested our calibration method for the coupled dynamic vegetation model,

dynamic organic soil, and terrestrial ecosystem model (DVM-DOS-TEM) and tested our approach using synthetic and site

observations at a black spruce forest site, a dominant community type in Interior Alaska.

2 Methods

2.1 Black Spruce Forest site

Approximately 39% of Interior Alaska is covered by evergreen forest stands, dominated by white or black spruce and 24% by

deciduous forest stands, dominated by Alaska paper birch or trembling aspen (Calef et al., 2005; Jean et al., 2020). In our

study, we developed model calibration for a black spruce (Picea mariana) forest community type, using observations collected

in a site located within the Tanana Valley State Forest, just outside Fairbanks, Alaska (64°53'N, 148°23'W). Carbon (C) and
nitrogen (N) cycling and environmental monitoring in this forest stand were originally observed by Melvin et al., (2015). The

stand resulted from a self-replacement succession trajectory following the 1958 Murphy Dome fire, which covered 8,930

hectares,

2,2 DYM-DOS-TEM descripti

DVM-DOS-TEM is a process-based biosphere model designed to simulate biophysical and biogeochemical processes between
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permafrost and non-permafrost regions (Briones et al., 2024; Euskirchen et al., 2022; Genet et al., 2013, 2018; Jafarov et al.

2013; Yi et al., 2009, 2010). This model focuses on representing C and N cycles in high-latitude ecosystems and how they are

affected at seasonal (i.e., monthly) to centennial scales by climate, disturbances (Genet et al., 2013, 2018; Kelly et al., 2013),
biophysical processes such as soil thermal and hydrological dynamics (McGuire et al., 2018; Yi et al., 2009; Zhuang et al.,

2002), snow cover (Euskirchen et al., 2006), and plant canopy development (Euskirchen et al., 2014). Modeled vegetation is

structured into multiple tiers: (1) the community type (CMT) represents the land cover class and characterizes vegetation

composition and soil structure at the gridcell level (spatial unit, e.g. black spruce forest, tussock tundra, bo. 2) plant

functional types (groups of species sharing similar functional traits) characterize the vegetation composition within every CMT

(e.g. black spruce forest community would be composed of evergreen trees, deciduous shrubs and sphagnum and feather moss

plant functional types), and (3) plant structural compartments (leaves, stems, roots). The soil column is split into multiple

temperature, and water content are simulated individually. The biophysical processes represented in DVM-DOS-TEM include
radiation and water fluxes between the atmosphere, vegetation, snow cover, and soil column. Soil moisture and temperature

are updated at a pseudo-daily time step (from linear interpolation of monthly climate forcings). A two-directional Stefan
Algorithm is used to predict the positions of freezing/thawing fronts in the soil. The Richards equation is used to calculate soil
moisture changes in the unfrozen layers of soil. Both the thermal and hydraulic properties of soil layers are affected by their

water content (Yi et al., 2009, 2010; Zhuang et al., 2002). The ecological processes represented in DVM-DOS-TEM include
C and N dynamics for every plant functional type (PFT) of the vegetation community and every layer of the soil column. C

and N_dynamics are driven by climate, atmospheric LOp content, soil and canopy .
severity. C_and N _cycles are coupled in the soil and the vegetation processes. The growth primary productivity (GPP) of each

PFT is limited by N availability. When resources in N are limited, GPP is downregulated for all PFTs,based on a comparison .-

of N_demand (N required to build new tissues) and N supply in the ecosystem (Euskirchen et al., 2009). C_and N_from the

litterfall are divided into aboveground and belowground. Aboveground litterfall is assigned only to the top layer of the soil

column, while belowground litterfall (root mortality) is assigned to different layers of the three soil horizons based on the

fractional distribution of fine roots with depth.

2.3 Synthetic data

We used GPP, without N limitation (GPP*), Net Primary Productivity (NPP), Vegetation C, and Vegetation N stocks by

environment, and wildfire occurrence and
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compartments (i.e. roots, stems, and leaves) as synthetic observations shown in Table 1. Synthetic observations are model-
generated data that simulate actual measurements using known parameter values, referred to as synthetic target values. To
generate these target values, we used existing parameters and the setup described in Section 2.3. The target values shown in

Table 1 represent the state of the ecosystem where vegetation and below-ground C stocks are in a steady state. Table 2 includes

the below-ground target values. ,The model was previously manually calibrated using observations from the site. The actual

observations were collected and prepared from the measured data at the site and from existing literature and published datasets.
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Data pre-processing was required before the time series data could be analyzed. Pre-processing was performed to identify and
resolve missing data, inconsistencies, and potential outliers. In addition, site observations were aggregated to a monthly
resolution to match the temporal resolution of the model outputs, and unit transformations were applied when needed to
standardize the units of each variable. Target values for the site were compiled from various data literature sources containing
information on C and N stocks, plant biomass, soil horizon depths, and productivity. However, following the initial calibration,
the model outputs were similar but did not exactly match the target observations. As stated above, we choose synthetic targets
because we know a set of parameters used to produce them and can compare how closely we can recover known parameter
values. Therefore, we used the actual model output as our synthetic target values.

Table 1: Synthetic vegetation target values for the black spruce forest site used in the parameter calibration process

Above-ground Target Names Notation Units Plant Functional Types
Evergreen | Deciduous Deciduous | Moss
Tree Shrub Tree
Gross ~ Primary  Productivity GPP* 307.17 24.53 46.53 54.23
without nitrogen limitation [gC/m?/year]
Net Primary Productivity NPP 113.08 11.3 24.02 32.41
[gC/m?/year]
Vegetation Carbon Leaf Ciear [gC/m?] 572.36 8.35 6.14 136.54
Vegetation Carbon Stem Cstem [gC/m?] 1894.03 98.90 477.80
Vegetation Carbon Root Croot [gC/m?] 474.55 33.19 7.17
Vegetation Nitrogen Leaf Nicas [eC/m?] 14.79 0.38 0.57 1.15
Vegetation Nitrogen Stem Ngtem [gC/m?] 30.26 2.6 12.53
Vegetation Nitrogen Root Nyoot [gC/m?] 9.51 0.72 0.16

Table 2: Synthetic below-ground target values for the black spruce forest site used in the parameter calibration process

Below-ground Targets Notation Unit Value
Names

Carbon Shallow Cshatiow g/m2 888.91
Carbon Deep Caeep g/m2 3174.53
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2Chninerat g/m2

Available Nitrogen Sum Y Novair g/m2 0.76

24 Input data used for equilibrium run

|
The driving inputs for the DVM-DOS-TEM model comprise spatial distribution of CMTs, landform, and mineral soil texture. “‘1
These initialization data were forced to field observations at the study site (Melvin et al., 2015). The spatiotemporal dynamics \
of the model are driven by an annual time series of atmospheric CO2 concentration (not spatially explicit), annual time series
of spatially explicit distribution of fire scars and dates, and a spatially explicit monthly time series of climate, including mean
air temperature, total precipitation, net incoming shortwave radiation, and vapor pressure (Genet et al., 2018). For the present
study, we use historical climate data from 1901 to 2015, sourced from the Climatic Research Unit time series version 4.0 (CRU
TS4.0; Harris et al., 2014) and downscaled at a 1-km resolution using the delta method (Pastick et al., 2017). For the
equilibrium run, the model was driven using the averaged climate forcings from the 1901-1930 period for the study site

location, repeated continuously for a sufficient period so equilibrium of vegetation and below-ground C and N fluxes and

Moved up [1]: .2 DVM-DOS-TEM description
DVM-DOS-TEM is a pr based biosphere model d dto
simulate biophysical and biogeochemical processes between the
soil, vegetation, and atmosphere. DVM-DOS-TEM has been
applied extensively in Arctic and Boreal ecosystems in
permafrost and non-permafrost regions (Briones et al., 2024;
Euskirchen et al., 2022; Genet et al., 2013, 2018; Jafarov et al.,
2013; Yi et al., 2009, 2010). This model focuses on representing
C and N cycles in high-latitude ecosystems and how they are
affected at seasonal (i.e., monthly) to centennial scales by
climate, disturbances (Genet et al., 2013, 2018; Kelly et al.,
2013), biophysical processes such as soil thermal and
hydrological dynamics (McGuire et al., 2018; Yi et al., 2009;
Zhuang et al., 2002), snow cover (Euskirchen et al., 2006), and
plant canopy development (Euskirchen et al., 2014). Modeled
vegetation is structured into multiple tiers: (1) the CMT
represents the land cover class and characterizes vegetation
composition and soil structure at the gridcell level (spatial unit,
e.g. black spruce forest, tussock tundra, bog), (2) plant
functional types (groups of species sharing similar ecological
traits) characterize the vegetation composition within every
CMT (e.g. black spruce forest ity would be posed of
evergreen trees, deciduous shrubs and sphagnum and feather
moss plant functional types), and (3) plant structural
compartments (leaves, stems, roots). The soil column is split into
multiple horizons (fibric, humic, mineral, and rock/parent
material). Every horizon is split into multiple layers for which C,
N, temperature, and water content are simulated individually.
The biophysical processes represented in DVM-DOS-TEM
include radiation and water fluxes between the atmosphere,

stocks was achieved. The resulting modeled ecosystem state for each site is then used to jnitialize historical simulations,,

Hpwever, the calibration process described here only utilized outputs from the equilibrium.

2.5 MADS parameter calibration

‘We employed the MADS, software package for parameter calibration of DVM-DOS-TEM, aiming to minimize the discrepanc

between synthetic target and modeled data at the selected site (Barajas-Solano et al., 2015; O’Malley and Vesselinov, 2015).
Since its inception in 2010, MADS has undergone active development, including a transition to the Julia programming
language, which supports automatic differentiation suitable for calibration problems(Vesselinov V.V., 2022).

JThe MADS package utilizes the Levenberg-Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 1963; Pujol, 2007) to

minimize the difference (the sum of squared residuals) between observations and modeled predictions. In SI1, we provide
more details on the LM algorithm. The LM optimization method designed to solve non-linear least squares
optimization/minimization problems, which are common in the field of history matching, model inversion, curve fitting, and
parameter estimation. It combines two approaches: the first-order steepest-descent gradient method and the second-order
Gauss-Newton method. This steepest-descent gradient method updates parameter values in the direction opposite to the
gradient, thereby it is generally efficient in finding local minima. The Gauss-Newton method assumes that in a region close to
the solution, the solved objective function behaves quadratically.

The algorithm begins by selecting an initial estimate for the parameters that need to be optimized (Fig S1). This initial guess

is important as it sets the starting point for the optimization process. In our experiment, the initial guess is randomly generated

8

canopy, snow, and soil. Soil moisture and
temperature are updated at a pseudo-daily time step (from
linear interpolation of monthly climate forcings). A two-
directional Stefan Algorithm is used to predict the positions of
freezing/thawing fronts in the soil. The Richards equation is
used to calculate soil moisture changes in the unfrozen layers of
soil. Both the thermal and hydraulic properties of soil layers are
affected by their water content (Yi et al., 2009, 2010; Zhuang et
al., 2002). The ecological processes represented in DVM-DOS-
TEM include C and N dynamics for every plant functional type
of the vegetation community and every layer of the soil column.
C and N dynamics are driven by climate, atmospheric chemistry,
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from within the provided range near ‘true’ parameter values. Alternatively, users can provide the initial guess. However,
exploring a set of random initial guesses provides an efficient approach to exploring the parameter space and discrimination
between local and global minima. In LM, we set the damping parameter (the Marquardt lambda) to 0.01. This parameter helps
in adjusting the steps taken during the optimization process, balancing between the two optimization strategies (the first- and
the second order techniques discussed above).

The main advantages of the LM method are its robustness and minimal computational demand. It effectively handles ill-
conditioned problems where other optimization methods might fail (Lin et al., 2016; Pujol, 2007). Additionally, for problems
well-suited to the Gauss-Newton method, LM often converges faster than gradient descent, making it an efficient choice for
many non-linear least squares problems.

The disadvantage of the LM, method is its sensitivity to the initial parameter guesses, potentially affecti

convergence (Transtrum and Sethna, 2012). In these cases, MADS provides alternative efficient approaches to address these

computational challenges, such as (1) initializing the calibration with random initial guesses, (2) multiple restarts of the LM

algorithms throughout the minimization process, and (3) exploration of a series of alternative values for various parameters
controlling LM performance (Lin et al., 2016).. In addition, the compute speed deteriorates with the higher number of

parameters used in calibration. It requires the computation of the Jacobian matrix and its pseudo-inverse, which can be

computationally expensive for large-scale problems. .

2.6 Calibration Process, Parameters and Targets

The calibration process in DVM-DOS-TEM is currently focused on the C and N annual cycles. Thus, calibrated parameters
are associated with and adjusted to the major C and N fluxes and stocks in the vegetation and the soil. The calibration process

follows a hierarchical approach (Figure 1), in which parameters to be calibrated are organized in hierarchical levels associated

with (1) model complexity and feedback and (2) turnover of the processes the parameters are associated with. Therefore,
parameters related to vegetation dynamics are calibrated first, followed by the slowest soil-related parameters.

The first step of the calibration relates to the simplest, fastest, first-order process in DVM-DOS-TEM, and consists of adjusting
the rate limiting parameter of maximum C assimilation of the vegetation (C,,q,) driving vegetation GPP. Under baseline
climate, the main limiting parameter of vegetation productivity in the Arctic is N availability (Chapin and Kedrowski, 1983) .
Therefore, ¢4, is calibrated to reproduce estimates of GPP from fertilization experiments where N limitation is jgnored

(GPP,). When fertilization experiments are not available for the community/region of interest, GPP, is estimated by applying

a multiplicative factor to observed GPP under natural conditions. This multiplicative factor is estimated from published
fertilization experiments in similar communities and computed as the ratio between GPP estimated in fertilized plots and GPP
estimated in control plots. Based on the literature, this fertilization factor can vary from 1.25 to 1.5 (Ruess et al., 1996; Shaver

and Chapin, 1995).
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The second step of the calibration process consists of turning on the representation of N limitation on vegetation productivity
in the model (Euskirchen et al., 2009) and calibrating the rest of the vegetation-related parameters. In the current workflow, it
consists of three substeps. These substeps could follow a different order based on the preference of the user and the specifics
of a given site. These are rate-limiting parameters for maintenance respiration (K7;,), maximum plant N uptake (1,,,4,), C and
N litterfall (¢fqy and ngqy respectively). These parameters are adjusted until DVM-DOS-TEM outputs match observations of
GPP and NPP, plant N uptake (Nup), and vegetation C and N pools, respectively). Target values of these variables are listed
in Table 1. It is important to note that the parameters K73, Crqy;, and ngqy, as well as the variables for vegetation € and N, are
specified per PFT and per compartment (leaf, stem, root).

up
‘mich

In the third step, the rate-limiting parameters of soil heterotrophic respiration (kdc) and rate of microbial N uptake (n
are calibrated as soil processes and takes longer to run in comparison to the first two steps. These parameters are adjusted until
DVM-DOS-TEM outputs match observations of soil organic C and available N stocks. Target values of these variables are
listed in Table 2. In a final state, vegetation-related parameters are checked for a final adjustment after soil calibration, as soil

processes can feedback to vegetation dynamics.
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Figure 2. Schematics of the DVM-DOS-TEM model parameters and targets participated in the
calibration process.

2.7,Calibrations setup and evaluation metric

Table 3 shows the parameter values used to calculate synthetic target values. We established four cases by perturbing the

parameters by 10%, 20%, 50%, and 90% from their original values. For each case, the MADS calibration function randomly

sampled ten sets of parameters within the specified ranges, These ten sets of randomly perturbed parameters were then

optimized using the MADS algorithm, For each set of calibrated parameters and targets, we computed the root mean square

error (RMSE) and relative error (RE) metrics. RMSE is employed to measure the magnitude of varying quantities, while RE
gauges the absolute difference relative to the actual values. Given that some parameters are small (less than 10), the relative

error provides more informative insights. The following equations were used to compute these metrics:
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where X is the mean of the best five out of ten computed target/parameter matches and x is a synthetic target value.
To ensure the selection of the best-fitting parameters, we sorted error values from the lowest to the highest. Then, we selected

the top five parameter sets, calculated their mean values, and compared these averaged parameters with the synthetic target

values and known parameters.

RMSE =[G —x)? .,

RE =|Z2]-100%,

Table 3: Synthetic parameter values for the black spruce forest site used in the parameter calibration process.

1
2]

Name Parameters Units Plant Functional Types
Evergreen | Deciduous | Deciduous | Moss
Tree Shrub Tree
Maximum rate of atmospheric CO2 Crmax gC/m2/ | 381.19 113.93 210.48 9331
assimilation month
Maximum rate of plant N uptake Nnax gN/m? | 3.38 1.55 1.0 3.55
month
rate limiting factor for C litterfall for leaf C;Z‘lllf month! | 0.0011 0.05 0.025 0.02
... for stem ciur month™! | 0.0034 0.0048 0.0036
... for root c;[‘l’l"lt month™! | 0.0052 0.0012 0.026
Rate limiting factor for N litterfall for leaf n}fﬁ{ month™! | 0.0102 0.045 0.018 0.007
... for stem nia month™ | 0.001 0.001 0.005
... for root nfopt month” [ 0.003 0.007 0.008
Rate limiting factor for maintenance Krbleaf month! | -6.0 -3.45 -2.95 -4.65
respiration for leaf
... for stem Krgtem month™ [ -4.88 -5.15 -6.65
... for root Krjoot month™ | -8.2 -6.2 32

Table 4: Synthetic below-ground target values for the black spruce forest site used in the parameter calibration process

12
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Name Parameters Unit Value
Rate of microbial N uptake nr ., 997" 0.4495
Rate limiting factor of litter decomposition kdc,quwe month™! 0.634
Rate limiting factor of active pool decomposition kdcsoma month™! 0.54
Rate limiting factor of physically resistant pool kdcsompr month™! 0.002
decomposition

Rate limiting factor of chemically resistant pool kdcsomer month™! 0.00007
decomposition

2.8 Application of the calibration method to observed target values

After validating our calibration method with synthetic data, we applied it to observed at the Black Spruce site. The

observational dataset was compiled using a combination of in-situ measurements and values from existing literature (Tables 5

and 6). Unlike synthetic targets, observed values inherently carry uncertainty, which must be accounted for in the calibration

process. The uncertainty range in the observed targets varied from 27% to 40% (maximum coefficient of variation estimated

from observations reported in Melvin et al., 2015)_influencing the final calibrated parameter estimates. After calibrating

parameters using observed means as targets, we sampled one thousand parameter sets around the calibrated parameter set with

a £5% variation for all parameters excluding c,,,,. This approach was implemented to increase the probability of achieving

an optimal match with observations, thereby allowing for a higher set of optimal parameter estimates. Additionally, this process

enabled us to evaluate the impact of calibrated soil parameters on vegetation-related target values, which were calibrated over

shorter time intervals.

Table 5: Observed vegetation target values at the black spruce forest site used in the parameter calibration process. Standard
deviations are indicated in parenthesis and estimated from field measurements (n=15, Melvin et al., 2015),

Above-ground Target Names Notation Units Plant Functional Types
Evergreen Deciduous Deciduous Moss
Tree Shrub Tree
Gross  Primary  Productivity GPP* 306.07 24.53 (+8.4) | 46.53 54.23
without nitrogen limitation gC/m?/year] | (£106) (£15.9) (£18.5)
Net Primary Productivit PP 153.04 12.27 (+3.9) | 17.36 (+8.2) | 27.10

gC/m?/year] | (£39) (£11.1)
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03

04

06

07

08

09
10
11
12

Vegetation Carbon Leaf Cieas [gC/m?] 293.76 15.13 (£5.4) | 9.06 (+2.4) | 180.85
(+100 (+93.3)
Vegetation Carbon Stem Cstem | [gC/m?] 1796.32 100.16 (+37) | 333.75
(£706) (+185)
Vegetation Carbon Root Croot [gC/m?] 404.48 15.07 (£6.4) | 44.8 (£15.9)
(£177
Vegetation Nitrogen Leaf Nieas oC/m? 6.35 (+3.5) |0.72(+0.14) | 0.7 (+0.2) 1.61 (£0.8)
Vegetation Nitrogen Stem Nstem gC/m* 24.34 2.48 (+1) 9.45 (+4.9)
(+11.3)
Vegetation Nitrogen Root Nyoor gC/m? 0.17 0.01 0.03 (+0.1)
(+0.04)

Table 6: Observed below-ground target values at the black spruce forest site used in the parameter calibration process. Standard

deviations are indicated in parenthesis and estimated from field measurements (n=15, Melvin et al., 2015),
Below-ground Targets Names | Notation | Unit | Value
Carbon Shallow Cshatiow | &/m2 | 782.73 (+216.7)
Carbon Deep Cacep y/m2 | 3448.46 (+955)
Carbon Mineral Sum Y Coinerar | /M2 | 41665.0 (+10580)
Available Nitrogen Sum S Nypair | g/m2 | 0.76 (+£0.24)
3 Results

3.1 Vegetation Targets

Depending on the range of parameter variance, our analysis revealed varying levels of accuracy between known synthetic
parameters and those determined using the MADS search approach. In general, the variance between calibrated and synthetic

values grew higher with a higher degree of parameter perturbation, The averaged RMSE values for all four PFTs showed

similar increases (Figure 2) with an exception for Cgyem (Crqu) deciduous shrubs, which made the RMSE score for the 10%
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variance higher than the 20% variance (Figure 2a and 2b). That is why we introduced the RE metric, which shows that the
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departure between synthetic and calibrated parameters increases with increasing perturbation and is the smallest for the 10% (Deleted: 3
variance (Figure 3a). Additional analyses to explore the detailed relationship between parameter variance and RMSE for (Deleted: 4

ific cases are presented in the supplementary materials (Figures S2-S5).

CcC.

3.2 Vegetation Parameters

The RMSE for parameters was highest for Kr7°°¢ in the evergreen tree PFT (Figure 3). Overall, K1y, and n,,,, parameters

(oset

exhibited the worst recovery compared to other parameters based on the RMSE metric. Conversely, REs were highest for ¢¢q
deciduous shrubs and less for K7, paramters. The RE indicated that smaller parameter values, such as 1z, deviated more
significantly from their synthetic values. Interestingly the RE score showed the same error range for 10% and 20% variance

ranges, whereas RMSE showed that 10% variance has the smallest error.

3.3 Soil parameters

In general, the RMSE values for the sub-surface target parameters were relatively small but increased with a higher variance

range (Figure 4). Notably, Cyepp, and 3.,y inerai, €Xhibited high RMSE values of 3.34 and 9.12, respectively, for the 10%

variance range (Figure 4a). Despite this, the soil parameters for 10% variance showed the best match, with RMSE values less
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than 0.01. The RE for targets revealed increasing deviations from the synthetic parameter values for )N,,,;. The RE for
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parameters indicated that n,;; ., kdc.qyc and kdcgop, had higher deviations from their respective synthetic values for the
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50% and 90% variance range, respectively.

3.4 Comparison with Observations

Figure 5 shows a comparison between observed and modeled target values after calibration. Both observed and modeled values

were normalized by dividing by the highest value within their respective groups (e.g., GPP, NPP). The highest difference

(exceeding 20% uncertainty) was observed for Evergreen Trees (Black Spruce). Notably, we encountered challenges in

accurately matching the values of the Cg,,,, target and the values of N, (Figure 5a). Additionally, while the calibration

method struggled to align the carbon in the soil mineral pool, itgaptured other soil target values (Figure Sa). Overall, the results

demonstrate that the calibration approach is effective and reliable for optimizing DVM-DOS-TEM model parameters.
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Figure 2. a), b), c), and d) are root mean square error (RMSE) metric and e), f), g), and h) are relative

error (RE) metric for 10%, 20%, 50%, and 90% variance in the parameter range, correspondingly.

Targets shown on y-axis, and plant functional types are on x-axis. The colorbar represents the RMSE
51 and RE scores.
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4 Discussion

Our findings highlight the challenges associated with calibrating carbon and nitrogen dynamics in high latitude permafrost

ecosystems, particularly in accurately estimating carbon pools with slow turnover deep mineral soil carbon and allocation of

partitioning carbon and nitrogen resources among within vegetation compartments to match in-situ observations closely. The

strong interdependencies among parameters and state variables target values underscore the complexities of process-based

modeling, reinforcing the need for automated calibration approaches like MADS to improve predictive accuracy.

4.1 Importance of the initial parameter guess

The initial parameter values, or initial guess, had minimal impact on the synthetic experiment, as the perturbed parameters

were sufficiently close to the true values. However, for non-synthetic calibrations, the initial state is crucial, as starting with

parameter values far from the true state can lead to non-convergence and significantly increase computation time(Nocedal and

Wright, 2006). To address this, we developed parameter sensitivity methods to improve initial estimates (Briones et al., 2024).

This approach utilized ensemble model simulations executed in parallel, systematically exploring parameter ranges through

Latin hypercube sampling or uniform random sampling. By employing parallel processing before integrating parameters into

the MADS calibration framework, we effectively refined initial estimates, minimized deviations from target values, and

improved overall calibration efficiency.

v

.| Deleted: The importance of initial values, or the so-called initial

4.2 Analysis of the recovery metrics
The mean parameter values calculated from the five best-matched MADS value predictions align closely with the synthetic
parameter values, demonstrating the method's efficacy. The calculated REs for parameters indicate that the relative distance

between the calibrated and the synthetic values increases with a higher parameter variance range, except RE for soil targets

- (Deleted: 5

(Figure 4p, case 20%). For the soil targets, ghe RMSE, for }'N,,,.;;_for 10% variance range were higher than 20% yariance . :
range, The higher RMSE for 10% variance than,20% variance range for vegetation-related targets as well as soil targets,could

be attributed to the limited number of cases (n=10) participated in each variance case. [t is highly probable that increasing the
total number of searches (higher than 10) would yield a more consistent pattern of decreasing accuracy with increasing }

variance.

e
P

4.3 Par ter-target relati and small parameter values
The method demonstrated robust recovery of ¢,,,, values, indicating that it performs best when there is a linear relationship
between parameters and target values (Eq. S1). For parameters, which do not exhibit a linear relationship with their target

values (e.g. K1y, Eq. S4), the calibrated parameters showed wider variance. Additionally, small parameter values, such as
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Tyqu, corresponded to small range of sampled values, leading to insensitivity between n4;; and vegetation N. To address this,

we applied a logarithmic transformation to these and to some other small values for soil C rates.

4.4 The impact of n,,,, on N uptake and NPP

Sensitivity between model parameters and targets is crucial for effective parameter calibration. We observed that the sensitivity
between n,,,, and NPP was not strong (Eq. S2, Eq. S5), which led us to combine its calibration with the K;, parameter. Based
on (Eq. S2), Nyqy directly influences Nypiqre- An increase in npq, enhances Nyiqre, thereby increasing the total N supply.

Since NPP is proportional to Ngyppy

and inversely proportional to Nyeqyireq, @ higher N supply can lead to a higher NPP,
provided that other factors remain constant. Therefore, despite the initial observation of weak sensitivity, n,,,, could have a
considerable impact on NPP due to its role in Nypqke and the overall Ny, However, our target values for plant N uptake
are poorly constrained due to a lack of sufficient observations. This underestimation of plant N uptake could account for the
observed lack of sensitivity of NPP to n,,,,. This issue requires further investigation and currently underscores the importance

of accurately calibrating n,,,, to ensure better simulation of ecosystem productivity.

4.5 The Calibration Workflow

Our findings indicate that calibrating one or two parameter sets at a time, while keeping other parameters constant, is more

effective than calibrating all parameters simultaneously. Jn the current workflow, we combined n,,,, and Kr, (Figure 1, Step

a), which was based on the low sensitivity of 1,4, to NPP. Combining multiple variables in one calibration step increases the
compute time and could result in low match accuracy. On the other hand, sequential parameter calibration carries the risk of
losing accuracy for parameters calibrated in previous steps. To mitigate this risk, we include targets from previous calibration
steps in the current calibration step. For example, when optimizing for ns,,;, we include targets for NPP, vegetation C, and

vegetation N.

Sequentially calibrating individual parameter sets, is advantageous not only computationally but also in preventing the

occurrence of an underdetermined problem, which arise when the number of parameters exceeds the number of targets.
Undetermined problems exhibit a lower rate of convergence due to the correlation between parameters and the sensitivity of
multiple parameters to one or a few similar target values. The study by Jafarov et al., (2020) showed that overdetermined

problems withyhigher and diverse number of target values, are more effective in recovering accurate parameter values.

4.6 Sensitivity of the K7, parameter to NPP and vegetation C
The Kr;, parameter exhibited higher sensitivity to both NPP and vegetation C compared to other parameters. Despite the
overall good model fitness, the deviation from the synthetic values for K7;, was higher. This was primarily due to Kr°°

parameter for evergreen trees (Figure S3C) persistently showed higher discrepancy. Its sensitivity can be explained by
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examining its role in the equations governing maintenance respiration (R, Eq. S3). The relationship between biomass and
maintenance respiration is non-linear; R,,, increases as biomass increases, where K1, controls the intercept of this relationship
(Tian et al., 1999). Since NPP is computed as a resultant of GPP and autotrophic respiration, including R,,, any alteration in
KT, impacts NPP directly (Eq. S9). This sensitivity underscores the importance of accurately calibrating K73, to ensure the

correct simulation of ecosystem productivity and C dynamics in the DVM-DOS-TEM.

4.7 Vegetation and Below-Ground C stocks equilibrium time

Due faster turnover, yegetation C and N stocks and fluxes equilibrate faster than soil C and N stocks and fluxes. Thus, we used

o (" leted: Since

a two-phase equilibration approach: 200 years for the vegetation and 2000 years for the soil. However, the C stocks achieved
after 200 years of equilibration for vegetation might shift when the model is run for an additional 1800 years to equilibrate

soil. To mitigate this issue, we developed equilibrium checks to ensure that the vegetation stocks remain stable and close to

their equilibrium values throughout the extended simulation period required for soil stocks equilibration. These checks help

identify significant departures from the initial equilibrium values of vegetation C and N while allowing the model to run for a

longer duration to achieve below-ground,equilibrium. This approach ensures the accuracy and stability of both vegetation and

below-ground C and N stocks in long-term model simulations.

4.8 Observed target values

The results of parameter calibration using site-specific observations indicate challenges in accurately matching Cg,,, and

N om_target values for the evergreen plant functional type. This discrepancy could be related to the allocation scheme of the

model, attributing NPP resources to the various compartments of the plant (Fox et al., 2018). Additionally, the model struggled

to maintain the assigned carbon value for ¥,C,ninerq The difficulty in calibrating Cyyepm gy and Croor gy for evergreen trees can

be partially attributed to strong parameter interdependencies (see Figures SI7-SI10). For instance Krbleaf(E) exhibits
simultaneous correlations with both Cytem gy and Cy ¢ () (Figure S7), while cfsflflm(m shows an inverse correlation with N leaf,

stem, and root (Figure S8). These multi-target dependencies introduce additional complexity, making it challenging to achieve

a precise match for individual target values.

Similarly, the ¥ Cpinerqi target value is strongly influenced by kdc,gpq_and kdcggmpy, both of which exert substantial control

over Cdeep and Y N,,q;_target values. These interactions underscore the systemic constraints imposed by parameter

interdependencies. Furthermore, this discrepancy could be related to the functions controlling vertical transfers of carbon

between horizons and the vertical distribution of carbon quality (Harden et al., 2012), The model consistently showed that

longer equilibration times lead to a reduction in the mineral soil carbon pool. This was also observed by Schaefer and Jafarov,

(2016)_in a different process-based ecosystem model, where they addressed the issue by incorporating substrate availability

constraints to prevent long-term carbon loss. Given the complexity of these interdependencies, further investigation is needed

though it falls beyond the scope of this study.
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The calibration of rate-limiting soil parameters that influence C and N stocks and turnover directly impacts vegetation

productivity by modulating nitrogen availability. Figure S10 shows a significant correlation between microbial nitrogen uptake

and Cyeqf(ps)of deciduous shrub, highlighting the interaction between soil processes and vegetation-related parameters. While

long-term soil parameter calibration inherently feeds backs ointo vegetation dynamics, the most substantial changes in

vegetation-related parameters typically occur during short-term model runs, resulting in minimal net changes over extended

simulations.

4.9 Limitations

There are cases where the model fails to accurately match target values due to poor data quality or its inability to fully represent

certain ecological processes (Dietze et al., 2018; Luo et al., 2016). Large discrepancies between observed and modeled targets

can hinder the convergence of the LM method, requiring more iterations and leading to suboptimal agreement with

observations. As previously mentioned, starting with well-constrained initial parameter estimates can mitigate this issue, which

can be achieved by performing sensitivity analyses to identify the most influential parameters and refine their ranges prior to

calibration (Efstratiadis and Koutsoyiannis, 2010).
Additionally, calibrating soil-related parameters is computationally demanding, often resulting in a substantial slowdown of

the overall calibration workflow. Machine learning (ML) models offer a promising solution by acting as surrogate models to

approximate the equilibrium state, thereby reducing the computational burden (Fer et al., 2018; Reichstein et al., 2019).

However, implementing such approaches necessitates large training datasets, often requiring thousands of model simulations

to achieve reliable predictions. Future research should explore the integration of ML-based calibration techniques into the

workflow, which could significantly enhance computational efficiency and further improve model accuracy (Castelletti et al.,

2012; Dagon et al., 2020).

5. Conclusion

In this study, we showed that the developed MADS parameter calibration method for the DVM-DOS-TEM can effectively
recover the synthetic parameter set, optimizing labor and time, and enhancing reproducibility of the calibration process. By
implementing a structured workflow that calibrates one or two parameters at a time and including equilibrium checks the
method ensured accurate parameter estimation even for high variance parameter range. The primary advantage of the semi-
automated MADS calibration approach is its significant enhancement of repeatability and clear quantification of calibration

performance. In contrast, manual calibration processes are often difficult to reproduce as it is impractical if not impossible, to

record users continuous adjustments to parameters values until improved results are achieved. Additionally, appreciation of

model improvement by the user is often subjective as running a statistical evaluation at each parameter adjustment would be
too time consuming. In the approach demonstrated in this study, we introduced a calibration metric that provides a quantifiable

measure of the overall quality of the calibration. This metric enhances reproducibility by allowing future users working on the
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same site to follow the established workflow and reliably reproduce the calibrated parameter and target values. The RMSE
quantifies the average differences between calibrated and observed (synthetic) values, while the RE metric indicates deviations

from the synthetic values.

In all calibration experiments, we utilized only ten randomly perturbed initial parameter sets within a specified variance range.
Our results indicated that perturbation ranges of 10%-20% were equally effective in achieving optimal target/parameter
calibration. However, increasing the number of random perturbations could potentially shift the statistics, favoring a 10%

variance range. ,

While the choice of the initial guess is crucial, its impact was mitigated in our study due to the design involving variance
around synthetic parameter values. The developed method significantly reduces the labor and time required for calibrating
DVM-DOS-TEM model parameters. However, it does not entirely replace the need for human intervention. Users still need
to understand the specifics of the model and the relationship between parameters and targets, as well as conduct post-processing
assessments of the fit. In future work, we will apply this method to data processed at multiple study sites to validate further

and refine the calibration approach.

The application of the calibration method to site-specific observations revealed challenges in accurately matching Cgiems Nstem

and Y\C,inerq; values, primarily due to parameter interdependencies and data uncertainties. Discrepancies between observed

and modeled target values exceeded the known the measurement uncertainty, suggesting that structural uncertainty within the

model may contribute to these deviations. This indicates a potential need for a more detailed representation of ecological

processes to improve model accuracy. However, these challenges may be site-specific and may not necessarily apply to other

ecosystem types. Despite these limitations, the study demonstrates the effectiveness and reliability of the calibration approach

while identifying key areas for future model refinement.
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