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Abstract. 12 

The permafrost region contains a significant portion of the world’s soil organic carbon, and its thawing, driven by accelerated 13 

Arctic warming, could lead to the substantial release of greenhouse gases, potentially disrupting the global climate system. 14 

Accurate predictions of carbon cycling in permafrost ecosystems hinge on the robust calibration of model parameters. 15 

However, manually calibrating numerous parameters in complex process-based models is labor-intensive and further 16 

complicated by equifinality - the presence of multiple parameter sets that can equally fit the observed data. Incorrect calibration 17 

can lead to unrealistic ecological predictions. In this study, we employed the Model Analysis and Decision Support (MADS) 18 

software package to automate and enhance the accuracy of parameter calibration for carbon dynamics within the coupled 19 

Dynamic Vegetation Model, Dynamic Organic Soil Model, and Terrestrial Ecosystem Model (DVM-DOS-TEM), a process-20 

based ecosystem model designed for high-latitude regions. The calibration process involved adjusting rate-limiting parameters 21 

to accurately replicate observed carbon and nitrogen fluxes and stocks in both soil and vegetation. Gross primary production, 22 

net primary production, vegetation carbon, vegetation nitrogen, and soil carbon and nitrogen pools served as synthetic 23 

observations for a black spruce boreal forest ecosystem. To validate the efficiency of this new calibration method, we utilized 24 

model-generated synthetic and actual observations. When matching model outputs to observed data, we encountered 25 

difficulties in maintaining mineral soil carbon stocks. Additionally, due to strong interdependencies between parameters and 26 

target values, the model consistently overestimated carbon and nitrogen allocation to the stem of evergreen tree. This study 27 

demonstrates the calibration workflow, offers an in-depth analysis of the relationships between parameters and observations 28 

(synthetic and actual), and evaluates the accuracy of the calibrated parameter values. 29 
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1 Introduction 34 

The permafrost region contains 1,440-1,600 petagrams of organic carbon in its soils, representing nearly half of the world's 35 

soil organic carbon pool (Hugelius et al., 2014; Schuur et al., 2022). Accelerated warming in the Arctic leads to permafrost 36 

thaw, resulting in the decomposition and potential release of a substantial portion of this stored carbon as greenhouse gases, 37 

significantly impacting the global climate system (Natali et al., 2021; Schuur et al., 2022; Treharne et al., 2022). The permafrost 38 

carbon-climate feedback remains one of the largest sources of model uncertainty for future climate predictions, as critical 39 

ecological and biogeochemical processes are poorly represented and constrained in ecosystem models, if included at all 40 

(McGuire et al., 2016, 2018; Schädel et al., 2024). A significant portion of this uncertainty stems from parameter uncertainty, 41 

particularly in rate-limiting factors that control biogeochemical cycles, which are challenging to measure directly and can vary 42 

considerably across spatial and temporal scales (Koven et al., 2015; Mishra et al., 2021). These uncertainties propagate through 43 

model simulations, contributing to a wide range of projected permafrost carbon emissions (Lawrence et al., 2015; McGuire et 44 

al., 2018). 45 

When compared to structural uncertainty (which arises from incomplete or simplified representations of ecological processes) 46 

and input data uncertainty (resulting from limited or biased forcing datasets), parameter uncertainty is particularly pervasive 47 

and difficult to constrain (Euskirchen et al., 2022; Fisher and Koven, 2020; Luo et al., 2016). While structural uncertainties 48 

limit a model’s ability to fully capture real-world processes, parameter uncertainties directly alter numerical outputs, often 49 

amplifying variations in projections (Fisher and Koven, 2020; Turetsky et al., 2020). Models are particularly sensitive to 50 

parameter uncertainties, given the complexity and variability of the processes they simulate, including soil thermal dynamics, 51 

vegetation feedbacks, and hydrological interactions (Andresen et al., 2020; Harp et al., 2016; Koven et al., 2015). While 52 

structural improvements to model frameworks are ongoing, addressing parameter uncertainty through robust calibration 53 

methods remains an essential and complementary step for enhancing the accuracy and reliability of model outputs (Fisher and 54 

Koven, 2020; Luo et al., 2016). Addressing these uncertainties through the development of effective calibration techniques is 55 

essential for refining predictions of permafrost dynamics and better constraining future permafrost carbon-climate feedbacks 56 

(McGuire et al., 2018; Mishra et al., 2021). 57 

Calibration involves estimating and adjusting model parameters to enhance the agreement between model outputs and observed 58 

data, with the model serving as a mathematical representation of ecological and physical processes (Rykiel, 1996). These 59 

parameters are often rate or transport constants that are onerous or impractical to empirically estimate, though model outputs 60 

can be highly sensitive to them. Since many model representations are grounded in physics, generalized physical laws are 61 

often used to describe ecological and cryohydrological processes. Typically, model outputs are validated against data from 62 

laboratory experiments, idealized mathematical models, or site-specific observations, also referred to as target data. During 63 

this validation, model parameters are adjusted so that model outputs match the target data. The validated model is then applied 64 

to broader geographic locations and/or different time periods, assuming that the validation data represent the environment or 65 

ecosystem for which the parameters were calibrated. 66 
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 75 

Parameter calibration for complex process-based models is often constrained by the significant labor required and the limited 76 

availability of sites with the necessary observations, especially in permafrost regions (Birch et al., 2021; Virkkala et al., 2019). 77 

Despite these challenges, process-based models remain essential because they encapsulate our current understanding of 78 

ecosystem functions and structures, serving as powerful tools for extrapolation. The assumption of representativeness is 79 

intrinsic to these models, as they are designed to simulate processes that reflect our best understanding of ecosystem dynamics, 80 

allowing for their application beyond the individual sites where they have been initially parameterized. The approach of 81 

extrapolating model parameterization for ecosystems of the same type, across wider regions is standard and widely used within 82 

ecosystem modeling communities (Matthes et al., 2025; McGuire et al., 2018). Additionally, the role of ecosystem diversity 83 

on the spatio-temporal patterns of ecosystem carbon dynamics in the permafrost region has been characterized by numerous 84 

empirical studies (Euskirchen et al., 2014; Melvin et al., 2015) and evaluated by modeling investigations (Lara et al., 2016). 85 

Therefore, a critical step in improving model accuracy involves calibrating the model against a suite of data for a representative 86 

diversity of ecosystem types in the Arctic where observations are available. To prepare an ecosystem model for this extensive 87 

calibration task, it is essential to develop robust calibration tools and methods that can automate the process of efficiently 88 

optimizing model parameters. 89 

Another well-known and significant issue in optimizing model parameters through calibration, also referred to as parameter 90 

estimation or optimization, is the existence of equifinality (Jafarov et al., 2020; Nicolsky et al., 2007; Tran et al., 2017). 91 

Parameterization equifinality occurs when different sets of parameter values result in the same or similar model predictions, 92 

given that the model, forcing data, and observations used in calibration are the same (Beven and Freer, 2001). Model 93 

equifinality can subsequently lead to different outcomes in model projections. In an aim to address the issue of equifinality, 94 

we run the model using randomly varied parameter values within the given range. If the majority of calibration tests with 95 

different initial guesses yield a good fit with observations and result in optimal parameter sets that are similar or closely aligned, 96 

it increases confidence that the recovered parameter set is indeed optimal. This approach mitigates the risk of converging on a 97 

local minimum and ensures a more robust and reliable parameter estimation process (Hansen, 1998). 98 

Various methods have been employed to improve the calibration of model parameters across multiple scientific disciplines, 99 

utilizing sophisticated techniques and integrating diverse data sources such as remote sensing and field measurements, while 100 

accounting for model and data uncertainty (Dietze et al., 2018; Efstratiadis and Koutsoyiannis, 2010; Luo et al., 2016). 101 

Optimization-based inverse methods have been successfully used to calibrate parameters in physical models, including snow 102 

properties and subsurface thermo-hydrological properties (Jafarov et al., 2014, 2020), as well as soil properties for permafrost 103 

modeling (Nicolsky et al., 2007, 2009). However, inverse modeling can become computationally intractable when applied to 104 

complex process-based models (Linde et al., 2015). 105 
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Markov Chain Monte Carlo (MCMC) and data assimilation (DA) techniques have been employed to optimize model 109 

parameters by synchronizing model outputs with observed data, thereby enhancing model prediction accuracy (Brunetti et al., 110 

2023; Fer et al., 2018; Xu et al., 2017). These methods often leverage Bayesian inference to address structural uncertainties 111 

within models. Nonetheless, the computational demand required for conducting MCMC simulations can outweigh the gains 112 

in model accuracy, particularly when dealing with complex process-based models with slow turnover rates that necessitate 113 

long simulations to reach equilibrium. 114 

In recent years, DA techniques have been applied to optimize both model state variables (Fox et al., 2018; Ling et al., 2019) 115 

and parameters (Bloom et al., 2016; Peylin et al., 2016; Scholze et al., 2016; Schürmann et al., 2016). However, DA also 116 

encounters challenges related to unbalanced outputs and the need for extended simulations to achieve equilibrium. Persistent 117 

issues include the incorrect characterization of the error covariance matrix, which can lead to inaccurate posterior parameter 118 

values due to unaccounted model structural errors and observation biases (MacBean et al., 2016; Wutzler and Carvalhais, 119 

2014). 120 

Various surrogate-based optimization approaches have been proposed to alleviate the computational burden associated with 121 

parameter calibration (Koziel et al., 2011; Queipo et al., 2005). Surrogate models, also known as reduced-order models, 122 

simplify certain physical processes to approximate the underlying dynamics of the real model while being computationally 123 

less demanding (Forrester et al., 2006). By simplifying specific aspects of the model, surrogate models retain essential 124 

characteristics of the original system, allowing for faster and more efficient calibration without significantly compromising 125 

accuracy (Razavi et al., 2012; Regis and Shoemaker, 2007). However, simplifying complex models presents significant 126 

challenges. It is often unclear which assumptions can be safely made and which should be avoided, potentially leading to a 127 

loss of model accuracy. Surrogate models must carefully balance the trade-off between simplification and the retention of 128 

critical model characteristics to ensure reliable performance. This complexity necessitates rigorous validation to confirm that 129 

the surrogate model provides an adequate approximation of the real system without introducing significant errors. 130 

In recent years, machine learning-based emulators, often referred to as "models of models," have emerged as a promising 131 

approach to reduce the computational burden associated with parameter calibration in complex ecosystem models (Castelletti 132 

et al., 2012; Fer et al., 2018; Reichstein et al., 2019). These emulators aim to approximate the outputs of physical and process-133 

based models by learning the relationships between model inputs and outputs through multi-dimensional matrices, significantly 134 

enhancing computational efficiency. Unlike traditional surrogate models, which simplify the physical processes within a 135 

model, emulators strive to mimic the full complexity of the original model while requiring less computational power. For 136 

instance, Dagon et al., (2020) utilized artificial neural networks to emulate the Community Land Model version 5 outputs, 137 

focusing on biophysical parameter estimation and global calibration. By integrating machine learning techniques, they were 138 

able to explore parameter spaces more efficiently and achieve better alignment with observed data. This method demonstrates 139 
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the potential of machine learning emulators in improving the accuracy and efficiency of parameter calibration in ecosystem 140 

models, particularly when faced with the challenge of high computational demands. 141 

To facilitate the automation of the calibration process while minimizing computational demand and avoiding the 142 

oversimplification of ecological processes and feedbacks, we employed a non-linear least squares approach for our calibration. 143 

We utilized the Model Analysis and Decision Support (MADS) software package (Barajas‐Solano et al., 2015; O’Malley and 144 

Vesselinov, 2015) for parameter calibration of a terrestrial ecosystem permafrost-enabled model. MADS has been actively 145 

developed since 2010, and its conversion to the Julia programming language has provided automatic differentiation capabilities 146 

suitable for calibration problems, improving computational efficiency (Vesselinov V.V., 2022). 147 

In this study, we developed an automated parameter calibration method for a process-based terrestrial ecosystem model 148 

developed for high-latitude regions and characterized by a high level of complexity. To demonstrate its efficacy, we utilized 149 

synthetic data and evaluated the capacity of the calibration method to recover the data after perturbing initial guesses (a given 150 

set of parameters) using random sampling. The model was run using known parameter values, and the resulting outputs were 151 

treated as observations. The primary objective was to illustrate that the parameter calibration method could recover the 152 

synthetic parameter set successfully. The secondary objective was to optimize and reduce the labor and time associated with 153 

manual parameter calibration. We developed and tested our calibration method for the coupled dynamic vegetation model, 154 

dynamic organic soil, and terrestrial ecosystem model (DVM-DOS-TEM) and tested our approach using synthetic and site 155 

observations at a black spruce forest site, a dominant community type in Interior Alaska. 156 

2 Methods  157 

2.1 Black Spruce Forest site 158 

Approximately 39% of Interior Alaska is covered by evergreen forest stands, dominated by white or black spruce and 24% by 159 

deciduous forest stands, dominated by Alaska paper birch or trembling aspen (Calef et al., 2005; Jean et al., 2020). In our 160 

study, we developed model calibration for a black spruce (Picea mariana) forest community type, using observations collected 161 

in a site located within the Tanana Valley State Forest, just outside Fairbanks, Alaska (64°53′N, 148°23′W). Carbon (C) and 162 

nitrogen (N) cycling and environmental monitoring in this forest stand were originally observed by Melvin et al., (2015). The 163 

stand resulted from a self-replacement succession trajectory following the 1958 Murphy Dome fire, which covered 8,930 164 

hectares.  165 

2.2 DVM-DOS-TEM description  166 

DVM-DOS-TEM is a process-based biosphere model designed to simulate biophysical and biogeochemical processes between 167 

the soil, vegetation, and atmosphere. DVM-DOS-TEM has been applied extensively in Arctic and Boreal ecosystems in 168 

Deleted: Synthetic data for 169 

Deleted: The two most common forest types in interior Alaska are 170 
evergreen stands of black spruce and mixed spruce-deciduous 171 
broadleaf forests. 172 
Deleted:  173 
Deleted:  (CMT)174 

Deleted:  1958175 

Deleted: , burned this area and resulted in complete stand 176 
mortality…177 

Moved (insertion) [1]



6 
 

permafrost and non-permafrost regions (Briones et al., 2024; Euskirchen et al., 2022; Genet et al., 2013, 2018; Jafarov et al., 178 

2013; Yi et al., 2009, 2010). This model focuses on representing C and N cycles in high-latitude ecosystems and how they are 179 

affected at seasonal (i.e., monthly) to centennial scales by climate, disturbances (Genet et al., 2013, 2018; Kelly et al., 2013), 180 

biophysical processes such as soil thermal and hydrological dynamics (McGuire et al., 2018; Yi et al., 2009; Zhuang et al., 181 

2002), snow cover (Euskirchen et al., 2006), and plant canopy development (Euskirchen et al., 2014). Modeled vegetation is 182 

structured into multiple tiers: (1) the community type (CMT) represents the land cover class and characterizes vegetation 183 

composition and soil structure at the gridcell level (spatial unit, e.g. black spruce forest, tussock tundra, bog), (2) plant 184 

functional types (groups of species sharing similar functional traits) characterize the vegetation composition within every CMT 185 

(e.g. black spruce forest community would be composed of evergreen trees, deciduous shrubs and sphagnum and feather moss 186 

plant functional types), and (3) plant structural compartments (leaves, stems, roots). The soil column is split into multiple 187 

horizons (fibric, humic, mineral, and rock/parent material). Every horizon is split into multiple layers for which C, N, 188 

temperature, and water content are simulated individually. The biophysical processes represented in DVM-DOS-TEM include 189 

radiation and water fluxes between the atmosphere, vegetation, snow cover, and soil column. Soil moisture and temperature 190 

are updated at a pseudo-daily time step (from linear interpolation of monthly climate forcings). A two-directional Stefan 191 

Algorithm is used to predict the positions of freezing/thawing fronts in the soil. The Richards equation is used to calculate soil 192 

moisture changes in the unfrozen layers of soil. Both the thermal and hydraulic properties of soil layers are affected by their 193 

water content (Yi et al., 2009, 2010; Zhuang et al., 2002). The ecological processes represented in DVM-DOS-TEM include 194 

C and N dynamics for every plant functional type (PFT) of the vegetation community and every layer of the soil column. ! 195 

and " dynamics are driven by climate, atmospheric CO2 content, soil and canopy environment, and wildfire occurrence and 196 

severity. ! and " cycles are coupled in the soil and the vegetation processes. The growth primary productivity (GPP) of each 197 

PFT  is limited by " availability. When resources in N are limited, GPP is downregulated for all PFTs based on a comparison 198 

of " demand (N required to build new tissues) and N supply in the ecosystem (Euskirchen et al., 2009). ! and " from the 199 

litterfall are divided into aboveground and belowground. Aboveground litterfall is assigned only to the top layer of the soil 200 

column, while belowground litterfall (root mortality) is assigned to different layers of the three soil horizons based on the 201 

fractional distribution of fine roots with depth.  202 

 203 

2.3 Synthetic data 204 

We used GPP without N limitation (GPP*), Net Primary Productivity (NPP), Vegetation C, and Vegetation N stocks by 205 

compartments (i.e. roots, stems, and leaves) as synthetic observations shown in Table 1. Synthetic observations are model-206 

generated data that simulate actual measurements using known parameter values, referred to as synthetic target values. To 207 

generate these target values, we used existing parameters and the setup described in Section 2.3. The target values shown in 208 

Table 1 represent the state of the ecosystem where vegetation and below-ground C stocks are in a steady state. Table 2 includes 209 

the below-ground target values. The model was previously manually calibrated using observations from the site. The actual 210 

observations were collected and prepared from the measured data at the site and from existing literature and published datasets. 211 
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Data pre-processing was required before the time series data could be analyzed. Pre-processing was performed to identify and 222 

resolve missing data, inconsistencies, and potential outliers. In addition, site observations were aggregated to a monthly 223 

resolution to match the temporal resolution of the model outputs, and unit transformations were applied when needed to 224 

standardize the units of each variable. Target values for the site were compiled from various data literature sources containing 225 

information on C and N stocks, plant biomass, soil horizon depths, and productivity. However, following the initial calibration, 226 

the model outputs were similar but did not exactly match the target observations. As stated above, we choose synthetic targets 227 

because we know a set of parameters used to produce them and can compare how closely we can recover known parameter 228 

values. Therefore, we used the actual model output as our synthetic target values. 229 

Table 1: Synthetic vegetation target values for the black spruce forest site used in the parameter calibration process 230 

Above-ground Target Names Notation Units Plant Functional Types 

Evergreen 
Tree 

Deciduous 
Shrub 

Deciduous 
Tree 

Moss 

Gross Primary Productivity 

without nitrogen limitation 

#$$∗  
[gC/m²/year] 

307.17 24.53 46.53 54.23 

Net Primary Productivity  "$$  
[gC/m²/year] 

113.08 11.3 24.02 32.41 

Vegetation Carbon Leaf !"#$%   [gC/m²] 572.36 8.35 6.14 136.54 

Vegetation Carbon Stem !&'#(   [gC/m²] 1894.03 98.90 477.80  

Vegetation Carbon Root !)**'   [gC/m²] 474.55 33.19 7.17  

Vegetation Nitrogen Leaf ""#$%   [gC/m²] 14.79 0.38 0.57 1.15 

Vegetation Nitrogen Stem "&'#(   [gC/m²] 30.26 2.6 12.53  

Vegetation Nitrogen Root ")**'   [gC/m²] 9.51 0.72 0.16  

 231 
 232 
Table 2: Synthetic below-ground target values for the black spruce forest site used in the parameter calibration process 233 

Below-ground Targets 
Names 

Notation Unit Value 

Carbon Shallow !&+$""*,  g/m2 888.91 

Carbon Deep !-##.  g/m2 3174.53 
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Carbon Mineral Sum ∑!(/0#)$"  g/m2 19821.50 

Available Nitrogen Sum ∑"$1$/"  g/m2 0.76 

 234 

2.4 Input data used for equilibrium run 235 

The driving inputs for the DVM-DOS-TEM model comprise spatial distribution of CMTs, landform, and mineral soil texture. 236 

These initialization data were forced to field observations at the study site (Melvin et al., 2015). The spatiotemporal dynamics 237 

of the model are driven by an annual time series of atmospheric CO2 concentration (not spatially explicit), annual time series 238 

of spatially explicit distribution of fire scars and dates, and a spatially explicit monthly time series of climate, including mean 239 

air temperature, total precipitation, net incoming shortwave radiation, and vapor pressure (Genet et al., 2018). For the present 240 

study, we use historical climate data from 1901 to 2015, sourced from the Climatic Research Unit time series version 4.0 (CRU 241 

TS4.0; Harris et al., 2014) and downscaled at a 1-km resolution using the delta method (Pastick et al., 2017). For the 242 

equilibrium run, the model was driven using the averaged climate forcings from the 1901-1930 period for the study site 243 

location, repeated continuously for a sufficient period so equilibrium of vegetation and below-ground C and N fluxes and 244 

stocks was achieved. The resulting modeled ecosystem state for each site is then used to initialize historical simulations. 245 

However, the calibration process described here only utilized outputs from the equilibrium.  246 

2.5 MADS parameter calibration  247 

We employed the MADS software package for parameter calibration of DVM-DOS-TEM, aiming to minimize the discrepancy 248 

between synthetic target and modeled data at the selected site (Barajas‐Solano et al., 2015; O’Malley and Vesselinov, 2015). 249 

Since its inception in 2010, MADS has undergone active development, including a transition to the Julia programming 250 

language, which supports automatic differentiation suitable for calibration problems(Vesselinov V.V., 2022).  251 

The MADS package utilizes the Levenberg-Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 1963; Pujol, 2007) to 252 

minimize the difference (the sum of squared residuals) between observations and modeled predictions. In SI1, we provide 253 

more details on the LM algorithm. The LM optimization method designed to solve non-linear least squares 254 

optimization/minimization problems, which are common in the field of history matching, model inversion, curve fitting, and 255 

parameter estimation. It combines two approaches: the first-order steepest-descent gradient method and the second-order 256 

Gauss-Newton method. This steepest-descent gradient method updates parameter values in the direction opposite to the 257 

gradient, thereby it is generally efficient in finding local minima. The Gauss-Newton method assumes that in a region close to 258 

the solution, the solved objective function behaves quadratically.  259 

The algorithm begins by selecting an initial estimate for the parameters that need to be optimized (Fig S1). This initial guess 260 

is important as it sets the starting point for the optimization process. In our experiment, the initial guess is randomly generated 261 
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from within the provided range near `true` parameter values. Alternatively, users can provide the initial guess. However, 405 

exploring a set of random initial guesses provides an efficient approach to exploring the parameter space and discrimination 406 

between local and global minima. In LM, we set the damping parameter (the Marquardt lambda) to 0.01. This parameter helps 407 

in adjusting the steps taken during the optimization process, balancing between the two optimization strategies (the first- and 408 

the second order techniques discussed above). 409 

The main advantages of the LM method are its robustness and minimal computational demand. It effectively handles ill-410 

conditioned problems where other optimization methods might fail (Lin et al., 2016; Pujol, 2007). Additionally, for problems 411 

well-suited to the Gauss-Newton method, LM often converges faster than gradient descent, making it an efficient choice for 412 

many non-linear least squares problems. 413 

The disadvantage of the LM method is its sensitivity to the initial parameter guesses, potentially affecting its efficiency and 414 

convergence (Transtrum and Sethna, 2012). In these cases, MADS provides alternative efficient approaches to address these 415 

computational challenges, such as (1) initializing the calibration with random initial guesses, (2) multiple restarts of the LM 416 

algorithms throughout the minimization process, and (3) exploration of a series of alternative values for various parameters 417 

controlling LM performance (Lin et al., 2016).. In addition, the compute speed deteriorates with the higher number of 418 

parameters used in calibration. It requires the computation of the Jacobian matrix and its pseudo-inverse, which can be 419 

computationally expensive for large-scale problems.  420 

 421 

2.6 Calibration Process, Parameters and Targets  422 

The calibration process in DVM-DOS-TEM is currently focused on the ! and " annual cycles. Thus, calibrated parameters 423 

are associated with and adjusted to the major ! and " fluxes and stocks in the vegetation and the soil. The calibration process 424 

follows a hierarchical approach (Figure 1), in which parameters to be calibrated are organized in hierarchical levels associated 425 

with (1) model complexity and feedback and (2) turnover of the processes the parameters are associated with. Therefore, 426 

parameters related to vegetation dynamics are calibrated first, followed by the slowest soil-related parameters.  427 

The first step of the calibration relates to the simplest, fastest, first-order process in DVM-DOS-TEM, and consists of adjusting 428 

the rate limiting parameter of maximum C assimilation of the vegetation (&($2) driving vegetation GPP. Under baseline 429 

climate, the main limiting parameter of vegetation productivity in the Arctic is N availability (Chapin and Kedrowski, 1983) . 430 

Therefore, &($2 is calibrated to reproduce estimates of GPP from fertilization experiments where N limitation is ignored 431 

(GPP*). When fertilization experiments are not available for the community/region of interest, GPP* is estimated by applying 432 

a multiplicative factor to observed GPP under natural conditions. This multiplicative factor is estimated from published 433 

fertilization experiments in similar communities and computed as the ratio between GPP estimated in fertilized plots and GPP 434 

estimated in control plots. Based on the literature, this fertilization factor can vary from 1.25 to 1.5 (Ruess et al., 1996; Shaver 435 

and Chapin, 1995).  436 
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The second step of the calibration process consists of turning on the representation of " limitation on vegetation productivity 452 

in the model (Euskirchen et al., 2009) and calibrating the rest of the vegetation-related parameters. In the current workflow, it 453 

consists of three substeps. These substeps could follow a different order based on the preference of the user and the specifics 454 

of a given site.  These are rate-limiting parameters for maintenance respiration ('(3), maximum plant N uptake ()($2), C and 455 

N litterfall (&%$"" and )%$"" respectively). These parameters are adjusted until DVM-DOS-TEM outputs match observations of 456 

GPP and NPP, plant N uptake (Nup), and vegetation C and N pools, respectively). Target values of these variables are listed 457 

in Table 1. It is important to note that the parameters '(3, &%$"", and )%$"", as well as the variables for vegetation ! and ", are 458 

specified per PFT and per compartment (leaf, stem, root).  459 

In the third step, the rate-limiting parameters of soil heterotrophic respiration (*+&) and rate of microbial " uptake ()(/43
5. 	) 460 

are calibrated as soil processes and takes longer to run in comparison to the first two steps. These parameters are adjusted until 461 

DVM-DOS-TEM outputs match observations of soil organic ! and available " stocks. Target values of these variables are 462 

listed in Table 2. In a final state, vegetation-related parameters are checked for a final adjustment after soil calibration, as soil 463 

processes can feedback to vegetation dynamics. 464 
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2.7 Calibrations setup and evaluation metric  465 

Table 3 shows the parameter values used to calculate synthetic target values. We established four cases by perturbing the 466 

parameters by 10%, 20%, 50%, and 90% from their original values. For each case, the MADS calibration function randomly 467 

sampled ten sets of parameters within the specified ranges. These ten sets of randomly perturbed parameters were then 468 

optimized using the MADS algorithm. For each set of calibrated parameters and targets, we computed the root mean square 469 

error (RMSE) and relative error (RE) metrics. RMSE is employed to measure the magnitude of varying quantities, while RE 470 

gauges the absolute difference relative to the actual values. Given that some parameters are small (less than 10-³), the relative 471 

error provides more informative insights. The following equations were used to compute these metrics: 472 

Figure 2. Schematics of the DVM-DOS-TEM model parameters and targets participated in the 
calibration process.  
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-./0 = 2(4 	− 4)
6 ,      (1) 477 

-0	 = | 2722 | ⋅ 100%,      (2) 478 

where 4 is the mean of the best five out of ten computed target/parameter matches and 4 is a synthetic target value.  479 

To ensure the selection of the best-fitting parameters, we sorted error values from the lowest to the highest. Then, we selected 480 

the top five parameter sets, calculated their mean values, and compared these averaged parameters with the synthetic target 481 

values and known parameters.  482 

 483 

Table 3: Synthetic parameter values for the black spruce forest site used in the parameter calibration process. 484 

Name Parameters Units Plant Functional Types 

Evergreen 
Tree 

Deciduous 
Shrub 

Deciduous 
Tree 

Moss 

Maximum rate of atmospheric CO2 
assimilation 

	&($2 gC/m2/
month 

381.19 113.93 210.48 93.31 

Maximum rate of plant N uptake 	)($2 gN/m2/
month 

3.38 1.55 1.0 3.55 

rate limiting factor for C litterfall for leaf  &%$""
"#$%	  month-1 0.0011 0.05 0.025 0.02 

… for stem  &%$""
&'#(	 month-1 0.0034 0.0048 0.0036  

… for root &%$""
)**'	  month-1 0.0052 0.0012 0.026  

Rate limiting factor for N litterfall for leaf  )%$""
"#$%  month-1 0.0102 0.045 0.018 0.007 

… for stem  )%$""
&'#(

  month-1 0.001 0.001 0.005  

… for root )%$""
)**'

  month-1 0.003 0.007 0.008  

Rate limiting factor for maintenance 
respiration for leaf 

'(3
"#$%

 month-1 -6.0 -3.45 -2.95 -4.65 

… for stem  '(3
&'#(  month-1 -4.88 -5.15 -6.65  

… for root '(3
)**' month-1 -8.2 -6.2 -3.2  

 485 

Table 4: Synthetic below-ground target values for the black spruce forest site used in the parameter calibration process 486 Deleted: participated 487 
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Name Parameters Unit Value 

Rate of microbial N uptake )(/43
5. 	  <<78 0.4495 

Rate limiting factor of litter decomposition 	*+&)$,9  =>)?ℎ78 0.634 

Rate limiting factor of active pool decomposition *+&&*($  =>)?ℎ78 0.54 

Rate limiting factor of physically resistant pool 
decomposition 

*+&&*(.)  =>)?ℎ78 0.002 

Rate limiting factor of chemically resistant pool 
decomposition 

*+&&*(4)  =>)?ℎ78 0.00007 

 488 

2.8 Application of the calibration method to observed target values 489 

After validating our calibration method with synthetic data, we applied it to observed at the Black Spruce site. The 490 

observational dataset was compiled using a combination of in-situ measurements and values from existing literature (Tables 5 491 

and 6). Unlike synthetic targets, observed values inherently carry uncertainty, which must be accounted for in the calibration 492 

process. The uncertainty range in the observed targets varied from 27% to 40% (maximum coefficient of variation estimated 493 

from observations reported in Melvin et al., 2015) influencing the final calibrated parameter estimates. After calibrating 494 

parameters using observed means as targets, we sampled one thousand parameter sets around the calibrated parameter set with 495 

a ±5% variation for all parameters excluding &($2. This approach was implemented to increase the probability of achieving 496 

an optimal match with observations, thereby allowing for a higher set of optimal parameter estimates. Additionally, this process 497 

enabled us to evaluate the impact of calibrated soil parameters on vegetation-related target values, which were calibrated over 498 

shorter time intervals. 499 

Table 5: Observed vegetation target values at the black spruce forest site used in the parameter calibration process. Standard 500 
deviations are indicated in parenthesis and estimated from field measurements (n=15, Melvin et al., 2015). 501 

Above-ground Target Names Notation Units Plant Functional Types 

Evergreen 
Tree 

Deciduous 
Shrub 

Deciduous 
Tree 

Moss 

Gross Primary Productivity 
without nitrogen limitation 

GPP*  
[gC/m²/year] 

306.07 
(±106) 

24.53 (±8.4) 46.53 
(±15.9) 

54.23 
(±18.5) 

Net Primary Productivity  NPP  
[gC/m²/year] 

153.04 
(±39) 

12.27 (±3.9) 17.36 (±8.2) 27.10 
(±11.1) 
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Vegetation Carbon Leaf !"#$%   [gC/m²] 293.76 
(±100) 

15.13 (±5.4) 9.06 (±2.4) 180.85 
(±93.3) 

Vegetation Carbon Stem !&'#( [gC/m²] 1796.32 
(±706) 

100.16 (±37) 333.75 
(±185) 

 

Vegetation Carbon Root !)**' [gC/m²] 404.48 
(±177) 

15.07 (±6.4) 44.8 (±15.9) 
 

Vegetation Nitrogen Leaf ""#$%   [gC/m²] 6.35 (±3.5) 0.72 (±0.14) 0.7 (±0.2) 1.61 (±0.8) 

Vegetation Nitrogen Stem "&'#(   [gC/m²] 24.34 
(±11.3) 

2.48 (±1) 9.45 (±4.9) 
 

Vegetation Nitrogen Root ")**' [gC/m²] 0.17 
(±0.04) 

0.01 0.03 (±0.1) 
 

 503 

Table 6: Observed below-ground target values at the black spruce forest site used in the parameter calibration process. Standard 504 
deviations are indicated in parenthesis and estimated from field measurements (n=15, Melvin et al., 2015). 505 

Below-ground Targets Names Notation Unit Value 

Carbon Shallow !&+$""*,  g/m2 782.73 (±216.7) 

Carbon Deep !-##.  g/m2 3448.46 (±955) 

Carbon Mineral Sum ∑!(/0#)$"  g/m2 41665.0 (±10580) 

Available Nitrogen Sum ∑"$1$/"  g/m2 0.76 (±0.24) 

 506 

3 Results  507 

3.1 Vegetation Targets  508 

Depending on the range of parameter variance, our analysis revealed varying levels of accuracy between known synthetic 509 

parameters and those determined using the MADS search approach. In general, the variance between calibrated and synthetic 510 

values grew higher with a higher degree of parameter perturbation. The averaged RMSE values for all four PFTs showed 511 

similar increases (Figure 2) with an exception for !&'#((&%$"") deciduous shrubs, which made the RMSE score for the 10% 512 
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variance higher than the 20% variance (Figure 2a and 2b). That is why we introduced the RE metric, which shows that the 515 

departure between synthetic and calibrated parameters increases with increasing perturbation and is the smallest for the 10% 516 

variance (Figure 3a). Additional analyses to explore the detailed relationship between parameter variance and RMSE for 517 

specific cases are presented in the supplementary materials (Figures S2-S5). 518 

 519 

3.2 Vegetation Parameters  520 

The RMSE for parameters was highest for '(3)**' in the evergreen tree PFT (Figure 3). Overall, '(3 and 	)($2 parameters 521 

exhibited the worst recovery compared to other parameters based on the RMSE metric. Conversely, REs were highest for &%$"" 522 

deciduous shrubs and less for '(3	paramters. The RE indicated that smaller parameter values, such as )%$"", deviated more 523 

significantly from their synthetic values. Interestingly the RE score showed the same error range for 10% and 20% variance 524 

ranges, whereas RMSE showed that 10% variance has the smallest error.   525 

3.3 Soil parameters  526 

In general, the RMSE values for the sub-surface target parameters were relatively small but increased with a higher variance 527 

range (Figure 4). Notably, !-##. and ∑!(/0#)$" exhibited high RMSE values of 3.34 and 9.12, respectively, for the 10% 528 

variance range (Figure 4a). Despite this, the soil parameters for 10% variance showed the best match, with RMSE values less 529 

than 0.01. The RE for targets revealed increasing deviations from the synthetic parameter values for ∑"$1$/". The RE for 530 

parameters indicated that )(/43
5. , *+&)$,9 and *+&&*($ had higher deviations from their respective synthetic values for the 531 

50% and 90% variance range, respectively. 532 

3.4 Comparison with Observations 533 

Figure 5 shows a comparison between observed and modeled target values after calibration. Both observed and modeled values 534 

were normalized by dividing by the highest value within their respective groups (e.g., GPP, NPP). The highest difference 535 

(exceeding 20% uncertainty) was observed for Evergreen Trees (Black Spruce). Notably, we encountered challenges in 536 

accurately matching the values of the !&'#(   target and the values of "&'#(   (Figure 5a). Additionally, while the calibration 537 

method struggled to align the carbon in the soil mineral pool, it captured other soil target values (Figure 5a). Overall, the results 538 

demonstrate that the calibration approach is effective and reliable for optimizing DVM-DOS-TEM model parameters.      539 

 540 

Deleted: 3541 
Deleted: 3542 

Deleted: 4543 

Deleted: 4544 
Deleted: s545 

Deleted: 5546 
Deleted: ∑ $!"#$%&'547 
Deleted: 5548 

Deleted:  549 

Deleted: is 550 



16 
 

 551 

 552 

 
Figure 2. a), b), c), and d) are root mean square error (RMSE) metric and e), f), g), and h) are relative 
error (RE) metric for 10%, 20%, 50%, and 90% variance in the parameter range, correspondingly. 
Targets shown on y-axis, and plant functional types are on x-axis. The colorbar represents the RMSE 
and RE scores. 

a) b) d) 

e) f) h) g) 

c) 
Field Code Changed
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 554 

 

Figure 3. a), b), c), and d) are root mean square error (RMSE) metric and e), f), g), and h) are relative 
error (RE) metric for 10%, 20%, 50%, and 90% variance in the parameter range, correspondingly. 
DVM-DOS-TEM parameters shown on y-axis, and plant functional types are on x-axis. The colorbar 
represents the RMSE and RE scores. 
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e) f) h) 
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 556 

Figure 4. Comparison between calibrated and synthetic sub-
surface target values (a) root mean square error (RMSE) and 
(b) relative error (RE) scores. Comparison between 
calibrated and synthetic sub-surface parameter values (a) 
root mean square error (RMSE) and (b) relative error (RE) 
scores for all range variances. The colorbar represents the 
RMSE and RE score.   

a b

c d

Figure 5.The comparison between observed and calibrated target 
values. The target values shown on y-axis, and plant functional 
types (a) and soil targets (b) on the x-axis. The colorbar represents 
the difference between nomilized modeled and observed target 
values.    

b) 

a) 
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 557 

4 Discussion 558 

Our findings highlight the challenges associated with calibrating carbon and nitrogen dynamics in high latitude permafrost 559 

ecosystems, particularly in accurately estimating carbon pools with slow turnover deep mineral soil carbon and allocation of 560 

partitioning carbon and nitrogen resources among within vegetation compartments to match in-situ observations closely. The 561 

strong interdependencies among parameters and state variables target values underscore the complexities of process-based 562 

modeling, reinforcing the need for automated calibration approaches like MADS to improve predictive accuracy. 563 

 564 

4.1 Importance of the initial parameter guess 565 

The initial parameter values, or initial guess, had minimal impact on the synthetic experiment, as the perturbed parameters 566 

were sufficiently close to the true values. However, for non-synthetic calibrations, the initial state is crucial, as starting with 567 

parameter values far from the true state can lead to non-convergence and significantly increase computation time(Nocedal and 568 

Wright, 2006). To address this, we developed parameter sensitivity methods to improve initial estimates (Briones et al., 2024). 569 

This approach utilized ensemble model simulations executed in parallel, systematically exploring parameter ranges through 570 

Latin hypercube sampling or uniform random sampling. By employing parallel processing before integrating parameters into 571 

the MADS calibration framework, we effectively refined initial estimates, minimized deviations from target values, and 572 

improved overall calibration efficiency. 573 

 574 

4.2 Analysis of the recovery metrics 575 

The mean parameter values calculated from the five best-matched MADS value predictions align closely with the synthetic 576 

parameter values, demonstrating the method's efficacy. The calculated REs for parameters indicate that the relative distance 577 

between the calibrated and the synthetic values increases with a higher parameter variance range, except RE for soil targets 578 

(Figure 4b, case 20%). For the soil targets, the RMSE for ∑"$1$/" for 10% variance range were higher than 20% variance 579 

range. The higher RMSE for 10% variance than 20% variance range for vegetation-related targets as well as soil targets could 580 

be attributed to the limited number of cases (n=10) participated in each variance case. It is highly probable that increasing the 581 

total number of searches (higher than 10) would yield a more consistent pattern of decreasing accuracy with increasing 582 

variance. 583 

 584 

4.3 Parameter-target relationship and small parameter values 585 

The method demonstrated robust recovery of &($2 values, indicating that it performs best when there is a linear relationship 586 

between parameters and target values (Eq. S1). For parameters, which do not exhibit a linear relationship with their target 587 

values (e.g. '(3, Eq. S4), the calibrated parameters showed wider variance. Additionally, small parameter values, such as 588 
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)%$"", corresponded to small range of sampled values, leading to insensitivity between )%$"" and vegetation ". To address this, 615 

we applied a logarithmic transformation to these and to some other small values for soil C rates. 616 

 617 

4.4 The impact of )($2 on N uptake and NPP 618 

Sensitivity between model parameters and targets is crucial for effective parameter calibration. We observed that the sensitivity 619 

between )($2 and "$$ was not strong (Eq. S2, Eq. S5), which led us to combine its calibration with the '(3 parameter. Based 620 

on (Eq. S2), )($2 directly influences "5.'$:#. An increase in )($2 enhances "5.'$:#, thereby increasing the total " supply. 621 

Since "$$ is proportional to "&5.."; and inversely proportional to ")#<5/)#-, a higher " supply can lead to a higher "$$, 622 

provided that other factors remain constant. Therefore, despite the initial observation of weak sensitivity, )($2 could have a 623 

considerable impact on "$$ due to its role in "5.'$:# and the overall "&5..";. However, our target values for plant " uptake 624 

are poorly constrained due to a lack of sufficient observations. This underestimation of plant " uptake could account for the 625 

observed lack of sensitivity of NPP to )($2. This issue requires further investigation and currently underscores the importance 626 

of accurately calibrating )($2 to ensure better simulation of ecosystem productivity. 627 

 628 

4.5 The Calibration Workflow 629 

Our findings indicate that calibrating one or two parameter sets at a time, while keeping other parameters constant, is more 630 

effective than calibrating all parameters simultaneously. In the current workflow, we combined )($2 and '(3 (Figure 1 Step 631 

a), which was based on the low sensitivity of )($2 to "$$. Combining multiple variables in one calibration step increases the 632 

compute time and could result in low match accuracy. On the other hand, sequential parameter calibration carries the risk of 633 

losing accuracy for parameters calibrated in previous steps. To mitigate this risk, we include targets from previous calibration 634 

steps in the current calibration step. For example, when optimizing for )%$"", we include targets for "$$, vegetation !, and 635 

vegetation ". 636 

 637 

Sequentially calibrating individual parameter sets is advantageous not only computationally but also in preventing the 638 

occurrence of an underdetermined problem, which arise when the number of parameters exceeds the number of targets. 639 

Undetermined problems exhibit a lower rate of convergence due to the correlation between parameters and the sensitivity of 640 

multiple parameters to one or a few similar target values. The study by Jafarov et al., (2020) showed that overdetermined 641 

problems with higher and diverse number of target values, are more effective in recovering accurate parameter values. 642 

 643 

4.6 Sensitivity of the '(3 parameter to NPP and vegetation C 644 

The '(3 parameter exhibited higher sensitivity to both "$$ and vegetation ! compared to other parameters. Despite the 645 

overall good model fitness, the deviation from the synthetic values for '(3 was higher. This was primarily due to '(3)**' 646 

parameter for evergreen trees (Figure S3C) persistently showed higher discrepancy. Its sensitivity can be explained by 647 
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examining its role in the equations governing maintenance respiration (-( Eq. S3). The relationship between biomass and 658 

maintenance respiration is non-linear; -(  increases as biomass increases, where '(3 controls the intercept of this relationship 659 

(Tian et al., 1999). Since "$$ is computed as a resultant of #$$ and autotrophic respiration, including -(, any alteration in 660 

'(3 impacts "$$ directly (Eq. S9). This sensitivity underscores the importance of accurately calibrating '(3 to ensure the 661 

correct simulation of ecosystem productivity and C dynamics in the DVM-DOS-TEM. 662 

 663 

4.7 Vegetation and Below-Ground C stocks equilibrium time 664 

Due faster turnover, vegetation C and N stocks and fluxes equilibrate faster than soil C and N stocks and fluxes. Thus we used 665 

a two-phase equilibration approach: 200 years for the vegetation and 2000 years for the soil. However, the C stocks achieved 666 

after 200 years of equilibration for vegetation might shift when the model is run for an additional 1800 years to equilibrate 667 

soil. To mitigate this issue, we developed equilibrium checks to ensure that the vegetation stocks remain stable and close to 668 

their equilibrium values throughout the extended simulation period required for soil stocks equilibration. These checks help 669 

identify significant departures from the initial equilibrium values of vegetation C and N while allowing the model to run for a 670 

longer duration to achieve below-ground equilibrium. This approach ensures the accuracy and stability of both vegetation and 671 

below-ground C and N stocks in long-term model simulations. 672 

 673 

4.8 Observed target values 674 

The results of parameter calibration using site-specific observations indicate challenges in accurately matching !&'#( and 675 

"&'#( target values for the evergreen plant functional type. This discrepancy could be related to the allocation scheme of the 676 

model, attributing NPP resources to the various compartments of the plant (Fox et al., 2018). Additionally, the model struggled 677 

to maintain the assigned carbon value for ∑!(/0#)$". The difficulty in calibrating !&'#((>) and !)**'(>) for evergreen trees can 678 

be partially attributed to strong parameter interdependencies (see Figures SI7–SI10). For instance, '(3
"#$%(>) exhibits 679 

simultaneous correlations with both !&'#((>) and !)**'(>) (Figure S7), while &%$""
&'#((>) shows an inverse correlation with N leaf, 680 

stem, and root (Figure S8). These multi-target dependencies introduce additional complexity, making it challenging to achieve 681 

a precise match for individual target values. 682 

Similarly, the ∑!(/0#)$" target value is strongly influenced by *+&&*($ and *+&&*(.), both of which exert substantial control 683 

over !-##. and ∑"$1$/" target values. These interactions underscore the systemic constraints imposed by parameter 684 

interdependencies. Furthermore, this discrepancy could be related to the functions controlling vertical transfers of carbon 685 

between horizons and the vertical distribution of carbon quality (Harden et al., 2012). The model consistently showed that 686 

longer equilibration times lead to a reduction in the mineral soil carbon pool. This was also observed by Schaefer and Jafarov, 687 

(2016) in a different process-based ecosystem model, where they addressed the issue by incorporating substrate availability 688 

constraints to prevent long-term carbon loss. Given the complexity of these interdependencies, further investigation is needed, 689 

though it falls beyond the scope of this study. 690 
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The calibration of rate-limiting soil parameters that influence C and N stocks and turnover directly impacts vegetation 699 

productivity by modulating nitrogen availability. Figure S10 shows a significant correlation between microbial nitrogen uptake 700 

and !"#$%(@A) of deciduous shrub, highlighting the interaction between soil processes and vegetation-related parameters. While 701 

long-term soil parameter calibration inherently feeds backs ointo vegetation dynamics, the most substantial changes in 702 

vegetation-related parameters typically occur during short-term model runs, resulting in minimal net changes over extended 703 

simulations. 704 

 705 

4.9 Limitations 706 

There are cases where the model fails to accurately match target values due to poor data quality or its inability to fully represent 707 

certain ecological processes (Dietze et al., 2018; Luo et al., 2016). Large discrepancies between observed and modeled targets 708 

can hinder the convergence of the LM method, requiring more iterations and leading to suboptimal agreement with 709 

observations. As previously mentioned, starting with well-constrained initial parameter estimates can mitigate this issue, which 710 

can be achieved by performing sensitivity analyses to identify the most influential parameters and refine their ranges prior to 711 

calibration (Efstratiadis and Koutsoyiannis, 2010). 712 

Additionally, calibrating soil-related parameters is computationally demanding, often resulting in a substantial slowdown of 713 

the overall calibration workflow. Machine learning (ML) models offer a promising solution by acting as surrogate models to 714 

approximate the equilibrium state, thereby reducing the computational burden (Fer et al., 2018; Reichstein et al., 2019). 715 

However, implementing such approaches necessitates large training datasets, often requiring thousands of model simulations 716 

to achieve reliable predictions. Future research should explore the integration of ML-based calibration techniques into the 717 

workflow, which could significantly enhance computational efficiency and further improve model accuracy (Castelletti et al., 718 

2012; Dagon et al., 2020). 719 

5. Conclusion 720 

In this study, we showed that the developed MADS parameter calibration method for the DVM-DOS-TEM can effectively 721 

recover the synthetic parameter set, optimizing labor and time, and enhancing reproducibility of the calibration process. By 722 

implementing a structured workflow that calibrates one or two parameters at a time and including equilibrium checks the 723 

method ensured accurate parameter estimation even for high variance parameter range. The primary advantage of the semi-724 

automated MADS calibration approach is its significant enhancement of repeatability and clear quantification of calibration 725 

performance. In contrast, manual calibration processes are often difficult to reproduce as it is impractical if not impossible, to 726 

record users continuous adjustments to parameters values until improved results are achieved. Additionally, appreciation of 727 

model improvement by the user is often subjective as running a statistical evaluation at each parameter adjustment would be 728 

too time consuming. In the approach demonstrated in this study, we introduced a calibration metric that provides a quantifiable 729 

measure of the overall quality of the calibration. This metric enhances reproducibility by allowing future users working on the 730 
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same site to follow the established workflow and reliably reproduce the calibrated parameter and target values. The RMSE 732 

quantifies the average differences between calibrated and observed (synthetic) values, while the RE metric indicates deviations 733 

from the synthetic values.  734 

 735 

In all calibration experiments, we utilized only ten randomly perturbed initial parameter sets within a specified variance range. 736 

Our results indicated that perturbation ranges of 10%-20% were equally effective in achieving optimal target/parameter 737 

calibration. However, increasing the number of random perturbations could potentially shift the statistics, favoring a 10% 738 

variance range.  739 

 740 

While the choice of the initial guess is crucial, its impact was mitigated in our study due to the design involving variance 741 

around synthetic parameter values. The developed method significantly reduces the labor and time required for calibrating 742 

DVM-DOS-TEM model parameters. However, it does not entirely replace the need for human intervention. Users still need 743 

to understand the specifics of the model and the relationship between parameters and targets, as well as conduct post-processing 744 

assessments of the fit. In future work, we will apply this method to data processed at multiple study sites to validate further 745 

and refine the calibration approach. 746 

 747 

The application of the calibration method to site-specific observations revealed challenges in accurately matching !&'#(, "&'#(  748 

and ∑!(/0#)$" values, primarily due to parameter interdependencies and data uncertainties. Discrepancies between observed 749 

and modeled target values exceeded the known the measurement uncertainty, suggesting that structural uncertainty within the 750 

model may contribute to these deviations. This indicates a potential need for a more detailed representation of ecological 751 

processes to improve model accuracy. However, these challenges may be site-specific and may not necessarily apply to other 752 

ecosystem types. Despite these limitations, the study demonstrates the effectiveness and reliability of the calibration approach 753 

while identifying key areas for future model refinement. 754 

 755 
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